EP2166214B1 - Procédé de détection de combustion anormale pour moteurs à combustion interne - Google Patents

Procédé de détection de combustion anormale pour moteurs à combustion interne Download PDF

Info

Publication number
EP2166214B1
EP2166214B1 EP09290618A EP09290618A EP2166214B1 EP 2166214 B1 EP2166214 B1 EP 2166214B1 EP 09290618 A EP09290618 A EP 09290618A EP 09290618 A EP09290618 A EP 09290618A EP 2166214 B1 EP2166214 B1 EP 2166214B1
Authority
EP
European Patent Office
Prior art keywords
combustion
pressure
cylinder
ignition
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09290618A
Other languages
German (de)
English (en)
Other versions
EP2166214A1 (fr
Inventor
Dominique Auclair
Laurent Duval
Alexandre Pagot
Jean-Marc Zaccardi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP2166214A1 publication Critical patent/EP2166214A1/fr
Application granted granted Critical
Publication of EP2166214B1 publication Critical patent/EP2166214B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/12Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with non-fuel substances or with anti-knock agents, e.g. with anti-knock fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • F02D35/024Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections

Definitions

  • the present invention relates to the field of controlling the combustion phase of an internal combustion engine.
  • the present invention relates to a method for detecting an abnormal combustion of the pre-ignition type at low speed and high load in a combustion chamber of such an engine.
  • This type of engine comprises at least one cylinder having a combustion chamber defined by the inner side wall of the cylinder, the top of the piston which slides in this cylinder and the cylinder head.
  • a fuel mixture is contained in this combustion chamber and undergoes a compression step and a combustion step under the effect of a controlled ignition, by a candle, these steps being grouped under the term "combustion phase" in the following description.
  • the first combustion is the result of the propagation of the combustion of a compressed fuel mixture during a preliminary stage of compression of the engine. This combustion normally propagates along a flame front from the spark generated at the spark plug and does not risk damaging the engine.
  • Another type of combustion is a knocking combustion, which results from undesirable self-ignition in the combustion chamber.
  • the spark plug is actuated to allow ignition of this fuel mixture.
  • the spark plug Under the effect of the pressure generated by the piston and the heat released by the beginning of the combustion of the fuel mixture, there is a sudden and localized auto-ignition of a part of the compressed carburetted mixture, before it arrives. the flame front resulting from the ignition of the fuel mixture by the candle.
  • This mechanism called rattling, leads to a local increase in pressure and temperature and can cause, in case of repetitions, destructive effects on the engine and mainly at the piston.
  • Another type of combustion is an abnormal combustion due to a pre-ignition of the fuel mixture before the spark ignites ignition of the fuel mixture present in the combustion chamber.
  • This abnormal combustion affects the engines that are the result of a "miniaturization” operation, better known as “downsizing”.
  • This operation aims to reduce the size and / or the engine displacement while maintaining the same power and / or the same torque as conventional engines.
  • this type of engine is mainly gasoline type and is highly supercharged.
  • This abnormal combustion is carried out at high loads, and generally at low operating speeds of the engine, when the timing of the combustion of the fuel mixture can not be optimum because of the rattling.
  • an abnormal combustion start can occur, sporadically or continuously, well before the moment when ignition of the fuel mixture by the candle is achieved .
  • This combustion is characterized by a first phase of flame propagation that is wedged too early compared to that of a conventional combustion. This propagation phase can be interrupted by a self-ignition that will affect a large part of the fuel mixture present in the combustion chamber, much larger than in the case of rattling.
  • pre-ignition In the case where this abnormal combustion occurs repeatedly, engine-cycle engine-cycle, and is carried out from a hot spot of the cylinder for example, it is called “pre-ignition”. If this combustion occurs in a violent, random and sporadic way, it is called “snap” or “rumble” (“pre-ignition”)
  • the general methodology for treating these abnormal combustions is schematized on the figure 1 , with initially a phase of prevention (PP) to limit as much as possible the chances of occurrence of the phenomenon, then a phase of detection (PD) when the prevention was not enough to avoid the phenomenon, to determine if yes or not it is necessary to intervene in the same cycle where the pre-ignition was detected, by means of a corrective phase (PC).
  • PP phase of prevention
  • PD phase of detection
  • the detection phase includes a signal acquisition phase and then a signal processing phase to detect the appearance of the high-load pre-ignition, to characterize it and to quantify it.
  • the detection thus made does not make it possible to act during the very cycle of the detection. Corrective actions of this type of pre-ignition can therefore be performed only after the occurrence of such a phenomenon, which can seriously affect the integrity of the engine.
  • FR 2,897,900 The method described in the patent is also known.
  • FR 2,897,900 According to this method, it is possible to act more quickly after the detection of the pre-ignition: one is able to act during the same cycle as the detection cycle of the phenomenon.
  • the threshold signal is previously calculated, that is to say before the operation of the engine, and then stored in data tables of the computer, called maps.
  • the subject of the invention relates to an alternative method for detecting in real time the occurrence of a high-load pre-ignition phenomenon (of the rumble type), of characterizing it and of quantifying it, with the devices and systems commonly used in engines, so as to take measures to avoid it in the further operation of the engine, during the same cycle as that of detection.
  • This detection and quantification can be performed at each crank angle.
  • the method relies on a processing of a cylinder pressure measurement combined with a cylinder pressure modeling.
  • the physical model can describe the evolution of the pressure in the cylinder as a function of the inlet pressure and the volume of the combustion chamber of the cylinder.
  • the course of the abnormal combustion can be controlled by introducing into the combustion chamber an agent containing fuel, water, or carbon dioxide.
  • the progress of the abnormal combustion can also be controlled by lowering the pressure inside the combustion chamber (14).
  • it is still possible to control the progress of the abnormal combustion by opening at least one additional valve to reduce the pressure inside the combustion chamber (14).
  • it is possible to control the unfolding the abnormal combustion by opening at least one of the valves (24, 30) to lower the pressure inside the combustion chamber (14).
  • the magnitude may be a cylinder pressure gradient.
  • a supercharged spark ignition internal combustion engine in particular of the gasoline type, comprises at least one cylinder 12 with a combustion chamber 14 inside which combustion of a mixture of supercharged air and fuel.
  • the cylinder comprises at least one pressurized fuel supply means 16, for example in the form of a fuel injector 18 controlled by a valve 20, which opens into the combustion chamber, at least one intake means of 22 with a valve 24 associated with an intake manifold 26 terminating in a plenum 26b (not shown in the figure), at least one exhaust gas exhaust means 28 with a valve 30 and an exhaust manifold 32 and at least one ignition means 34, such as a spark plug, which makes it possible to generate one or more sparks making it possible to ignite the fuel mixture present in the combustion chamber.
  • a fuel injector 18 controlled by a valve 20
  • a valve 24 associated with an intake manifold 26 terminating in a plenum 26b (not shown in the figure)
  • at least one exhaust gas exhaust means 28 with a valve 30 and an exhaust manifold 32
  • at least one ignition means 34 such as a spark plug
  • the pipes 32 of the exhaust means 28 of this engine are connected to an exhaust manifold 36 itself connected to an exhaust line 38.
  • a supercharging device 40 for example a turbocharger or a positive displacement compressor, is placed on this exhaust line and comprises a drive stage 42 with a turbine swept by the exhaust gas flowing in the exhaust line and a compression stage 44 which makes it possible to admit an intake air under pressure in the combustion chambers 14 through the intake manifolds 26.
  • the engine comprises means 46a for measuring the cylinder pressure, arranged within the cylinder 12 of the engine.
  • These measuring means are generally constituted by a pressure sensor which makes it possible to generate a signal representative of the evolution of the pressure in a cylinder.
  • the engine comprises means 46b for measuring the intake pressure, arranged in the plenum 26b.
  • These measuring means are generally constituted by an absolute pressure sensor, of piezoelectric type, which makes it possible to generate a signal representative of the evolution of the admission pressure in the intake plenum.
  • the motor also comprises a computing and control unit 48, called a motor-calculator, which is connected by conductors (for some bi-directional) to the different organs and sensors of the motor so as to be able to receive the different signals emitted by these sensors, such as the temperature of the water or the temperature of the oil, to treat them by calculation and then to control the organs of this engine to ensure its proper functioning.
  • a computing and control unit 48 called a motor-calculator
  • the spark plugs 34 are connected by conductors 50 to the engine computer 48 so as to control the moment of ignition of the fuel mixture
  • the cylinder pressure sensor 46a is connected by a line 52 to the same engine computer to send it the signals representative of the evolution of the pressure in the cylinder
  • the control valves 20 of the injectors 18, are connected by conductors 54 to the computer 48 to control the injection of fuel into the combustion chambers.
  • the means 46b are also connected by a line 53 to the motor calculator 48.
  • the method according to the invention makes it possible to detect the occurrence of a high-load pre-ignition phenomenon (of the rumble type), to characterize it and to quantify it. This detection and quantification can be performed at each crank angle.
  • V ( ⁇ ) volume law of the engine
  • V ( ⁇ ) is the relation which links the volume of the combustion chamber to the angle of rotation of the crankshaft ⁇ . This law is a function of the geometric characteristics of the engine (stroke, bore, volumetric compression ratio, connecting rod length).
  • the dead volume Vm corresponds to the minimum volume of the chamber (at Top Dead Center).
  • V PMB the volume of the combustion chamber at the Low Dead Point, that is to say the maximum volume, which is reached twice in the cycle (a first time at the end of the admission phase, and a second time at the end of the relaxation phase).
  • the volume law V ( ⁇ ) of the motor is known.
  • the pressure during the intake phase is also known thanks to the means 46b for measuring the intake pressure.
  • the exponent n called the polytropic exponent, is also known.
  • the measurement of the cylinder pressure P m ( ⁇ ) is carried out from the means 46a for measuring the cylinder pressure. Cylinder instrumentation for pressure measurement is becoming more common on vehicles.
  • the measured cylinder pressure P m ( ⁇ ) is compared to the modeled cylinder pressure P e ( ⁇ ) .
  • This comparison can be made at each crank angle. This makes it possible to detect very quickly the slightest difference in cylinder pressure measured with respect to the theoretical (modeled) cylinder pressure. By making this comparison, on several angles crankshaft, we can characterize this difference: the gap can increase slowly, rapidly, stabilize, decrease ... Depending on the evolution of this difference, we characterize the pre-ignition, and one is able to decide corrective actions to be undertaken or not.
  • the figure 3 shows a measured cylinder pressure curve ( R P ), in black, and a modeled cylinder pressure curve ( N P ) according to the model previously described, and which describes a cylinder pressure curve for a conventional combustion.
  • the abscissa axis indicates the crankshaft angle ⁇ .
  • the vertical dotted line indicates the moment when the controlled ignition takes place. It is noted that the pre-ignition phenomenon leads to excessive thermodynamic conditions, jeopardizing the integrity of the engine. However, it is noted that the detection of a difference between the measured and modeled cylinder pressures can be done very early.
  • This gap can also be quantified to determine when it is important to intervene.
  • the thresholds S1, S2 and S3 are defined before operation of the engine, for example on a test bench.
  • these thresholds can change during the operation of the engine.
  • We can for example weight these thresholds so as to take into account the aging of the vehicle.
  • the fouling of the engine can be an aggravating factor as regards the sensitivity of the engine to the pre-ignition.
  • this phenomenon is taken into account by arbitrarily making the various evoked thresholds arbitrary (by reducing the pressure limit for example) while regularly examining the behavior of the motor to adjust these thresholds periodically.
  • the necessary level of adjustment can be determined during the engine tuning phase by simulating accelerated aging of the engine, for example by generating significant fouling by means of a specific procedure.
  • the comparison of the two signals can of course be done at several crank angles.
  • An early detection during the compression phase is however preferable, firstly to keep a margin of maneuver sufficient to intervene in the cycle, and secondly, because the most violent pre-ignitions start at this stage of compression.
  • the engine calculator can detect the beginning of an abnormal "rumble” or "pre-ignition” type combustion in the combustion chamber.
  • this computer In the event of abnormal combustion, this computer then initiates the actions necessary to control this combustion in order to avoid the continuation of such combustion.
  • this control of the combustion is achieved by a fuel injection at a crankshaft angle determined by the injectors 18. More specifically, the computer controls the valves 20 so that the cylinder injector concerned allows for introducing into the combustion chamber a quantity of fuel in liquid form.
  • the amount of fuel reinjected depends on the constitution of the engine and can range from 10% to 200% of the amount of fuel initially introduced into the combustion chamber.
  • the reinjected fuel serves to thwart the flame that begins to unfold during the abnormal combustion. This reinjection allows either to blow this flame, or to stifle this flame by increasing the richness of the fuel mixture.
  • the fuel injected in liquid form uses the heat present around this flame to vaporize and the temperature conditions around the flame will drop by retarding the combustion of the fuel mixture and especially its auto-ignition.
  • agents to stop the abnormal combustion can be introduced into the combustion chamber.
  • these agents may be water in vapor or liquid form, or carbon dioxide.
  • the engine comprises additional specific injectors for the introduction of these agents in association with a dedicated circuit (pump, tank, ).
  • This relief valve may be either an additional valve or the inlet valve 24 and / or the exhaust valve 30.
  • the present invention may also relate to a spark ignition engine and indirect injection.
  • the control of the unfolding of the abnormal combustion will be done by the use of a specific injector (fuel, water, CO2), as mentioned above, or by valve opening.
  • the conditions of appearance of the pre-ignition make that, as a rule, ignition by the spark of the candle is strongly wedged during the relaxation phase so as to avoid rattling.
  • the cylinder pressure curve then shows a first peak related to compression and a second offset peak related to combustion ( figure 3 ).
  • Pre-ignition can therefore be detected based solely on the sign of the cylinder pressure gradient: if it is positive even before the spark has been produced, then it is a pre-ignition.
  • the average temperature of the fresh gases T is a parameter which has the advantage of being very influential on the sensitivity of the combustion to the pre-ignition.
  • this temperature can be estimated from several other variables such as the temperature in the intake manifold ( Figure 6A ), the quantities of air and fuel allowed and the cylinder pressure. It is therefore possible to detect, or even anticipate, a pre-ignition by having a threshold on this temperature of the fresh gases. Early detection of pre-ignition and good anticipation allow more time to trigger a curative action in the cycle itself.
  • the Figure 6A represents the maximum energy release ( DEM ) as a function of the CA10, for a temperature of the admitted air (measured in the plenum) of 30 ° C in gray, and a temperature of the admitted air (measured in the plenum) of 40 ° C in black.
  • the circled area on this graph represents a preignition zone.
  • the Figures 6B and 6C represent the maximum energy release (DEM) as a function of CA10, for a water temperature of 80 ° C ( Figure 6B ) and a water temperature of 100 ° C ( Figure 6C ).
  • the circled area on this graph represents a preignition zone.
  • the Figure 6D illustrates the relationship between water temperature and fresh gas temperature.
  • the curves represent the evolution of the fresh gas temperature ( TGF ) as a function of crankshaft angle ( ⁇ ).
  • the upper curve corresponds to a water temperature of 100 ° C, and the lower one a temperature of 80 ° C.
  • the mass of mixture m can be known on the motor, either by direct measurement by flow meter, or by models that evaluate in real time the flow of air entering from pressure measurements in the intake line.
  • log ( P ) and log ( V ) variables have the advantage of simplifying the representation of the evolution of the cylinder pressure during the engine cycle.
  • PV not coast ⁇ log P + not .
  • the figure 7 represents the evolution log ( P ) as a function of log ( V ), in a case of pre-ignition (black curve, N log ) and according to a modeling of a conventional combustion without pre-ignition (gray curve, R log ) .
  • this method makes it possible to detect not only the pre-ignitions which are triggered during the compression, but also those which are triggered during the relaxation ( Det ), since this linear relation also exists during this relaxation. In the case of an ignition ( All ) to the candle shifted in the trigger is thus able to predict the path that must follow the cylinder pressure until ignition.
  • the spark plug ignition with very high load must be shifted in the trigger to avoid the occurrence of knocking. Although negative in terms of efficiency, this shift is very effective to avoid rattling.
  • a cylinder pressure curve with two bumps a first bump corresponding to the pure compression of the mixture, and a second bump corresponding to the pressure increase generated by the combustion ( figure 3 ). Under these conditions, the pre-ignition can be triggered either during the compression (most critical cases), or during the relaxation after the first peak of compression.
  • the ratio is made less unstable, by regularizing the expression with one or more constant terms (here P0m and P0e), preventing the cancellation or the calculation, and also making it possible to compensate for a strict non-linearity between the quantities.
  • P0m and P0e constant terms
  • the cylinder pressure measuring means 46a record the evolution of this pressure within the cylinder 12. This information is sent in the form of a signal by the line 52 to the engine calculator 48.
  • This calculator estimates, at each crankshaft angle for example , the cylinder pressure by means of a physical model, and compares cylinder pressures modeled and measured, using threshold values for example. This comparison allows the engine-calculator to determine the presence of an abnormal combustion start of type "rumble" in the combustion chamber.
  • the engine computer then sends control instructions to the pressurized fuel supply means 16 via the conductors 54 to modify the injection parameters so that this abnormal "rumble" type combustion does not occur again during following cycles.
  • the detection of the pre-ignition takes place as soon as it starts, so as to quantify and characterize its evolution in real time.
  • the detection can be done for any crankshaft angle of each engine cycle. It therefore takes place well before pre-ignition leads to thermodynamic conditions that are critical for the integrity of the engine.
  • the invention thus makes it possible, on the one hand, to judge whether this pre-ignition is critical, and on the other hand to act in the very cycle of the detection to make it disappear or reduce it.
  • the detection is based on a comparison of signals related to the cylinder pressure with modeled signals corresponding to the values obtained for these same signals in the case of conventional combustion, that is to say without appearance of pre-ignition, and this for any angle crankshaft of each engine cycle, allowing extremely precise detection of the phenomenon, quantification, and fast action.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Description

  • La présente invention concerne le domaine du contrôle de la phase de combustion d'un moteur à combustion interne. Notamment la présente invention se rapporte à une méthode pour détecter une combustion anormale du type pré allumage à bas régime et à forte charge dans une chambre de combustion d'un tel moteur.
  • Elle concerne plus particulièrement mais non exclusivement une telle méthode appliquée à un moteur à allumage commandé « downsizé », fonctionnant sous très fortes charges.
  • Ce type de moteur comprend au moins un cylindre comportant une chambre de combustion délimitée par la paroi latérale interne du cylindre, par le haut du piston qui coulisse dans ce cylindre et par la culasse. Généralement, un mélange carburé est renfermé dans cette chambre de combustion et subit une étape de compression puis une étape de combustion sous l'effet d'un allumage commandé, par une bougie, ces étapes étant regroupées sous le vocable de « phase de combustion » dans la suite de la description.
  • Il a pu être constaté que ce mélange carburé peut subir différents types de combustion et que ces types de combustion sont la source de différents niveaux de pression ainsi que de contraintes mécaniques et/ou thermiques, dont certains peuvent endommager gravement le moteur.
  • La première combustion, dite combustion conventionnelle ou combustion normale, est le résultat de la propagation de la combustion d'un mélange carburé comprimé lors d'une étape préalable de compression du moteur. Cette combustion se propage normalement selon un front de flamme à partir de l'étincelle générée à la bougie et ne risque pas de détériorer le moteur.
  • Un autre type de combustion est une combustion avec cliquetis, qui résulte d'une auto-inflammation indésirable dans la chambre de combustion. Ainsi, après l'étape de compression du mélange carburé, la bougie est actionnée pour permettre l'allumage de ce mélange carburé. Sous l'effet de la pression générée par le piston et de la chaleur dégagée par le début de la combustion du mélange carburé, il se produit une auto-inflammation brutale et localisée d'une partie du mélange carburé comprimé, avant que n'arrive le front de flamme issu de l'allumage du mélange carburé par la bougie. Ce mécanisme, dénommé cliquetis, conduit à une augmentation locale de la pression et de la température et peut engendrer, en cas de répétitions, des effets destructifs sur le moteur et principalement au niveau du piston.
  • Enfin, un autre type de combustion est une combustion anormale due à un pré-allumage du mélange carburé avant que la bougie n'initie l'allumage du mélange carburé présent dans la chambre de combustion.
  • Cette combustion anormale affecte les moteurs qui sont le résultat d'une opération de "miniaturisation", plus connu sous le terme anglais de "downsizing". Cette opération vise à diminuer la taille et/ou la cylindrée du moteur tout en conservant la même puissance et/ou le même couple que des moteurs conventionnels. Généralement, ce type de moteurs est principalement de type essence et est fortement suralimenté.
  • Il a pu être constaté que cette combustion anormale se réalise à fortes charges, et généralement lors des bas régimes de fonctionnement du moteur, lorsque le calage de la combustion du mélange carburé ne peut pas être l'optimum à cause du cliquetis. Compte tenu des fortes pressions et des températures élevées atteintes dans la chambre de combustion par la suralimentation, un démarrage de combustion anormale peut se produire, sporadiquement ou de façon continue, bien avant le moment où se réalise l'allumage du mélange carburé par la bougie. Cette combustion se caractérise par une première phase de propagation de flamme qui est calée trop tôt par rapport à celle d'une combustion conventionnelle. Cette phase de propagation peut être interrompue par une auto-inflammation qui va concerner une grande partie du mélange carburé présent dans la chambre de combustion, beaucoup plus grande que dans le cas du cliquetis.
  • Dans le cas où cette combustion anormale se produit de façon répétitive, de cycle-moteur à cycle-moteur, et se réalise à partir d'un point chaud du cylindre par exemple, celle-ci est dénommée "pré-allumage". Si cette combustion se produit de manière violente, aléatoire et sporadique, elle est appelée "claquement" ou "rumble" (« pre-ignition »)
  • Cette dernière combustion anormale entraîne des niveaux de pressions très élevés (120 à 250 bars), ainsi qu'une augmentation des transferts thermiques qui peuvent entraîner une destruction partielle ou totale de l'équipage mobile du moteur, comme le piston ou la bielle.
  • La méthodologie générale de traitement de ces combustions anormales est schématisée sur la figure 1, avec dans un premier temps une phase de prévention (PP) pour limiter au maximum les chances d'apparition du phénomène, puis une phase de détection (PD) lorsque la prévention n'a pas suffit à éviter le phénomène, pour déterminer si oui ou non il y a lieu d'intervenir dans le cycle même où le pré allumage a été détecté, au moyen d'une phase corrective (PC).
  • État de la technique
  • La phase de détection comporte une phase d'acquisition de signaux, puis une phase de traitement de signaux permettant de détecter l'apparition du pré allumage à forte charge, de le caractériser et de le quantifier.
  • On connaît par la demande de brevet EP 1.828.737 , une méthode pour détecter l'apparition du pré allumage à forte charge, de type rumble. Cette méthode est basée sur la mesure d'un signal relatif au déroulement de la combustion, et une comparaison avec un signal-seuil. La présence d'une combustion anormale, de type bruit sourd de grondement ou "rumble", dans la chambre de combustion, est détectée lorsque l'amplitude du signal dépasse de façon significative celle du signal-seuil. Selon cette méthode, le signal-seuil correspond à l'amplitude du signal produit lors d'une combustion avec cliquetis ou lors d'une combustion normale.
  • Cependant, selon cette méthode, la détection ainsi réalisée ne permet pas d'agir au cours du cycle même de la détection. Les actions de corrections de ce type de pré allumage ne peuvent donc être réalisée qu'après la réalisation d'un tel phénomène, ce qui peut nuire sérieusement à l'intégrité du moteur.
  • On connaît également la méthode décrite dans le brevet FR 2.897.900 . Selon cette méthode, on peut agir plus rapidement après la détection du pré allumage : on est capable d'agir au cours du même cycle que le cycle de détection du phénomène. Pour ce faire, le signal-seuil est préalablement calculé, c'est-à-dire avant le fonctionnement du moteur, puis stocké dans des tables de données du calculateur, appelées cartographies.
  • Cependant, l'utilisation de cartographies, ne permet pas de détecter à tout moment, c'est-à-dire en temps réel, le début d'un tel phénomène. De ce fait, il est toujours possible que la détection se fasse trop tardivement. De plus, aucune quantification dé l'évolution du phénomène ne peut être réalisée. Ainsi, la nécessité ou non d'appliquer une phase de correction repose uniquement sur la comparaison de deux amplitudes à un instant donné. Or un tel phénomène peut très bien débuter, puis s'arrêter sans entraîner de dommage pour le moteur, et donc ne pas nécessiter de phase corrective.
  • Ainsi, l'objet de l'invention concerne un procédé alternatif permettant de détecter en temps réel l'apparition d'un phénomène de pré allumage à forte charge (du type rumble), de le caractériser et de le quantifier, avec les dispositifs et systèmes couramment utilisés dans les moteurs, de façon à prendre des mesures permettant de l'éviter dans la suite du fonctionnement du moteur, au cours du même cycle que celui de la détection. Cette détection et cette quantification peuvent être réalisées à chaque angle vilebrequin. La méthode s'appuie sur un traitement d'une mesure de la pression cylindre combinée à une modélisation de la pression cylindre.
  • Le procédé selon l'invention
  • L'invention concerne un procédé de contrôle de la combustion d'un moteur à combustion interne suralimenté à allumage commandé, dans lequel on détecte une combustion anormale dans une chambre de combustion (14) d'au moins un cylindre (12) dudit moteur, au moyen d'une mesure continue de pression Pm (α) au sein dudit cylindre. Le procédé comporte les étapes suivantes :
    1. a- on choisit un modèle physique décrivant, en fonction de l'angle α de rotation du vilebrequin dudit moteur, l'évolution de la pression dans le cylindre dans le cadre d'une combustion sans aucun phénomène de pré allumage ;
    2. b- on estime une pression cylindre Pe (α) à partir dudit modèle et de ladite mesure de pression d'admission ;
    3. c- on détecte le début d'une combustion anormale en comparant au moins une première valeur d'une grandeur calculée à partir de la mesure de la pression cylindre, à au moins une seconde valeur de ladite grandeur calculée à partir de l'estimation de la pression cylindre ;
    4. d- on caractérise l'amplitude du pré allumage en réitérant les étapes b) et c) pour un nombre défini d'angles vilebrequin ;
    5. e- on contrôle le déroulement de la combustion anormale détectée dans la chambre de combustion, selon l'amplitude du phénomène de pré allumage.
  • Selon l'invention, le modèle physique peut décrire l'évolution de la pression dans le cylindre en fonction de la pression d'admission et du volume de la chambre de combustion du cylindre.
  • On peut contrôler le déroulement de la combustion anormale en introduisant dans la chambre de combustion un agent contenant du carburant, de l'eau, ou du dioxyde de carbone. On peut aussi contrôler le déroulement de la combustion anormale en faisant chuter la pression à l'intérieur de la chambre de combustion (14). Selon un autre mode de réalisation, on peut encore contrôler le déroulement de la combustion anormale en ouvrant au moins une soupape additionnelle pour faire chuter la pression à l'intérieur de la chambre de combustion (14). Enfin, selon un autre mode de réalisation, on peut contrôler le déroulement de la combustion anormale en ouvrant au moins une des soupapes (24, 30) pour faire chuter la pression à l'intérieur de la chambre de combustion (14).
  • Selon l'invention, la grandeur peut être un gradient de pression cylindre. On détecte alors le début d'une combustion anormale en analysant le signe de ce gradient. On peut également, choisir la grandeur parmi l'une des grandeurs suivantes : un gradient de pression cylindre, un dégagement d'énergie, une température de gaz frais, le logarithme de la pression cylindre.
  • Enfin, selon l'invention, on peut comparer plusieurs grandeurs mesurées et estimées. Ceci peut être réalisé au moyen de seuils.
  • Présentation des figures
  • Les autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description donnée ci-après en se référant aux graphiques annexés où :
    • la figure 1 montre la méthodologie générale de traitement des combustions anormales de type pré allumage ;
    • la figure 2 montre un moteur utilisant la méthode de détection selon l'invention ;
    • la figure 3 montre, en fonction de l'angle vilebrequin α, une courbe de pression cylindre mesurée (R P ) et une courbe de pression cylindre modélisée (NP ) ;
    • la figure 4 illustre les modèles physiques utilisés par l'invention selon différents modes de réalisation, et dérivant de la pression cylindre.
    • la figure 5 montre, en fonction de l'angle vilebrequin α, une courbe de gradient de pression cylindre mesurée (RdP ) et une courbe de gradient de pression cylindre modélisée (NdP );
    • les figures 6A à 6D illustrent la sensibilité de la température des gaz frais au pré allumage. La figure 6A représente le dégagement d'énergie maximal (DEM) en fonction du CA10, pour une température de l'air admis (mesurée dans le plénum) de 30°C en gris, et une température de l'air admis (mesurée dans le plénum) de 40°C en noir. Les figures 6B et 6C représentent le dégagement d'énergie maximal (DEM) en fonction du CA10, pour une température d'eau de 80°C (figure 6B) et une température d'eau de 100°C (figure 6C). La zone encerclée sur ce graphique représente une zone de pré allumage. La figure 6D illustre le lien entre la température de l'eau et la température de gaz frais. Les courbes représentent l'évolution de la température des gaz frais (TGF) en fonction de l'angle vilebrequin (α). La courbe du haut correspond à une température d'eau de 100°C, et celle du bas une température de 80°C.
    • la figure 7 représente l'évolution de log(P) en fonction de log(V), dans un cas de pré allumage (courbe noire, Nlog ) et selon une modélisation d'une combustion conventionnelle sans pré allumage (courbe grise, Rlog ).
    Description détaillée du procédé
  • Sur la figure 2, un moteur à combustion interne 10 suralimenté à allumage commandé, en particulier de type essence, comprend au moins un cylindre 12 avec une chambre de combustion 14 à l'intérieur de laquelle se produit la combustion d'un mélange d'air suralimenté et de carburant.
  • Le cylindre comprend au moins un moyen d'alimentation en carburant sous pression 16, par exemple sous la forme d'un injecteur de carburant 18 contrôlé par une vanne 20, qui débouche dans la chambre de combustion, au moins un moyen d'admission d'air 22 avec une soupape 24 associée à une tubulure d'admission 26 se terminant par un plénum 26b (non représenté sur la figure), au moins un moyen d'échappement des gaz brûlés 28 avec une soupape 30 et une tubulure d'échappement 32 et au moins un moyen d'allumage 34, comme une bougie, qui permet de générer une ou plusieurs étincelles permettant d'enflammer le mélange carburé présent dans la chambre de combustion.
  • Les tubulures 32 des moyens d'échappement 28 de ce moteur sont raccordées à un collecteur d'échappement 36 lui-même connecté à une ligne d'échappement 38. Un dispositif de suralimentation 40, par exemple un turbocompresseur ou un compresseur volumétrique, est placé sur cette ligne d'échappement et comprend un étage d'entraînement 42 avec une turbine balayée par les gaz d'échappement circulant dans la ligne d'échappement et un étage de compression 44 qui permet de faire admettre un air d'admission sous pression dans les chambres de combustion 14 par les tubulures d'admission 26.
  • Le moteur comprend des moyens 46a de mesure de la pression cylindre, disposés au sein même du cylindre 12 du moteur. Ces moyens de mesure sont généralement constitués par un capteur de pression qui permet de générer un signal représentatif de l'évolution de la pression dans un cylindre.
  • Le moteur comprend des moyens 46b de mesure de la pression d'admission, disposés dans le plénum 26b. Ces moyens de mesure sont généralement constitués par un capteur de pression absolue, de type piézoélectrique, qui permet de générer un signal représentatif de l'évolution de la pression d'admission dans le plénum d'admission.
  • Le moteur comprend également une unité de calcul et de commande 48, dénommée calculateur-moteur, qui est reliée par des conducteurs (pour certains bidirectionnels) aux différents organes et capteurs du moteur de façon à pouvoir recevoir les différents signaux émis par ces capteurs, comme la température de l'eau ou la température de l'huile, pour les traiter par calcul et ensuite commander les organes de ce moteur pour assurer son bon fonctionnement.
  • Ainsi, dans le cas de l'exemple montré à la figure 2, les bougies 34 sont reliées par des conducteurs 50 au calculateur-moteur 48 de façon à commander le moment de l'allumage du mélange carburé, le capteur de pression cylindre 46a est connecté par une ligne 52 à ce même calculateur-moteur pour lui envoyer les signaux représentatifs de l'évolution de la pression dans le cylindre, et les vannes 20 de commande des injecteurs 18, sont raccordées par des conducteurs 54 au calculateur 48 pour commander l'injection de carburant dans les chambres de combustion. Les moyens 46b sont également connectés par une ligne 53 au calculateur-moteur 48.
  • Au sein d'un tel moteur, le procédé selon l'invention permet de détecter l'apparition d'un phénomène de pré allumage à forte charge (du type rumble), de le caractériser et de le quantifier. Cette détection et cette quantification peuvent être réalisée à chaque angle vilebrequin.
  • La méthode s'appuie sur un traitement d'une mesure de la pression cylindre combinée à une modélisation de la pression cylindre (les signaux issus de capteur de pression cylindre sont représentatifs de l'état de la combustion). Selon un exemple de réalisation, le procédé comporte les étapes suivantes :
    1. 1- on modélise la pression dans le cylindre ;
    2. 2- on mesure la pression dans le cylindre ;
    3. 3- on détecte le début d'une combustion anormale en comparant ladite pression cylindre mesurée à ladite pression cylindre modélisée ;
    4. 4- on contrôle le déroulement de la combustion anormale détectée dans la chambre de combustion.
    1- Modélisation de la pression dans le cylindre
  • La pression cylindre au cours de la phase de compression peut être modélisée pour chacun des cycles moteur, en utilisant l'hypothèse d'une compression polytropique : PV n = cte
    Figure imgb0001

    P est la pression dans le cylindre et V le volume de la chambre de combustion du cylindre. Ces deux paramètres varient bien sûr en fonction de l'angle de rotation du vilebrequin α.
  • On appelle « loi de volume du moteur » V(α), la relation qui lie le volume de la chambre de combustion à l'angle de rotation du vilebrequin α. Cette loi est fonction des caractéristiques géométriques du moteur (course, alésage, rapport volumétrique de compression, longueur de bielle). Le volume mort Vm correspond au volume minimal de la chambre (au Point Mort Haut). On note VPMB , le volume de la chambre de combustion au Point Mort Bas, c'est-à-dire le volume maximal, qui est atteint deux fois dans le cycle (une première fois à la fin de la phase d'admission, et une seconde fois à la fin de la phase de détente).
  • En utilisant cette relation pour tout angle vilebrequin, et la même relation pour la pression à l'admission Padm (moment où le Point Mort Bas est atteint), on peut estimer la pression cylindre Pe (α), dans le cadre d'une combustion conventionnelle, c'est-à-dire sans aucun phénomène de pré allumage, à partir du modèle suivant : P e α = P adm V PMB V α n
    Figure imgb0002
  • La loi de volume V(α) du moteur est connue. La pression pendant la phase d'admission est également connue grâce aux moyens 46b de mesure de la pression d'admission. L'exposant n, appelé exposant polytropique, est également connu. Ainsi, il est possible d'estimer une pression cylindre « théorique », c'est-à-dire la pression qui devrait régner dans le cylindre si aucun pré allumage n'a lieu, tout au long de la compression.
  • Remarque : La pression pendant la phase d'admission correspond théoriquement à la pression dans le cylindre au moment de l'admission du mélange carburé. Cette pression est mesurée dans le plénum. On peut remplacer cette pression par la pression dans le cylindre en début de compression (i.e. en fin d'admission), recalée sur la pression absolue mesurée à l'admission dans le plénum en fin de phase d'admission (on suppose que l'équilibre est atteint en fin de phase d'admission et qu'à ce moment : Padm = P).
  • 2- Mesure de la pression dans le cylindre
  • La mesure de la pression cylindre Pm (α) est réalisée à partir des moyens 46a de mesure de la pression cylindre. L'instrumentation des cylindres pour une mesure de pression est de plus en plus courante sur les véhicules.
  • 3- Comparaison des pressions cylindre mesurée et modélisée
  • Pour déterminer si un pré allumage est en train de se produire, on compare la pression cylindre mesurée Pm (α) à la pression cylindre modélisée Pe (α). Cette comparaison peut donc être réalisée à chaque angle vilebrequin. Ceci permet donc de détecter très rapidement le moindre écart de la pression cylindre mesurée par rapport à la pression cylindre théorique (modélisée). En réalisant cette comparaison, sur plusieurs angles vilebrequin, on peut caractériser cet écart : l'écart peut augmenter de façon lente, de façon rapide, se stabiliser, diminuer... En fonction de l'évolution de cet écart, on caractérise ainsi le pré allumage, et on est en mesure de décider des actions correctives à entreprendre ou non.
  • La figure 3 montre une courbe de pression cylindre mesurée (RP ), en noire, et une courbe de pression cylindre modélisée (NP ) selon le modèle décrit précédemment, et qui décrit une courbe de pression cylindre pour une combustion conventionnelle. L'axe des abscisses indique l'angle vilebrequin α. La ligne verticale en pointillé indique l'instant où l'allumage commandé a lieu. On constate que le phénomène de pré allumage conduit à des conditions thermodynamiques excessives, mettant en péril l'intégrité du moteur. Cependant, on note que la détection d'un écart entre les pressions cylindre mesurée et modélisée peut se faire de façon très précoce.
  • On peut également quantifier cet écart, de façon à déterminer à quel moment il est important d'intervenir.
  • Pour ce faire, on peut déterminer des seuils, à partir desquels on considère qu'un phénomène de pré allumage de type rumble est en train de se produire, et que ce phénomène devrait avoir une telle ampleur qu'il est nécessaire d'intervenir.
  • On peut par exemple définir les seuils suivants à chaque angle vilebrequin
    • une pression cylindre absolue à ne pas dépasser Pm (α) < S 1
    • un écart de pression à ne pas dépasser Pm (α) - Pe (α) < S 2
    • un rapport de pression à ne pas dépasser Pm (α)/Pe (α) < S 3
  • Les seuils S1, S2 et S3 sont définis avant le fonctionnement du moteur, sur banc d'essai par exemple.
  • Selon un mode de réalisation avantageux, ces seuils peuvent évoluer au cours du fonctionnement du moteur. On peut par exemple pondérer ces seuils de façon à prendre en compte le vieillissement du véhicule. En effet, l'encrassement du moteur peut être un facteur aggravant en ce qui concerne la sensibilité du moteur au pré allumage. Selon l'invention, on tient compte de ce phénomène en rendant arbitrairement plus sévère les différents seuils évoqués (en réduisant la limite de pression par exemple) tout en en scrutant régulièrement le comportement du moteur pour ajuster ces seuils périodiquement. Le niveau d'ajustement nécessaire peut être déterminé pendant la phase de mise au point du moteur, en simulant un vieillissement accéléré de celui-ci, en générant par exemple un encrassement important à l'aide d'une procédure spécifique. On joue généralement sur la thermique du moteur, mais aussi sur les phasages d'injection et d'allumage pour dégrader la combustion, et générer ainsi des dépôts carbonés sur les parois de la chambre de combustion à l'identique de que ce qui se passe lors du vieillissement naturel du moteur. Chaque expérimentateur est alors libre de définir la correspondance entre un vieillissement accéléré volontaire, et le vieillissement naturel du moteur considéré. Au final, les seuils évoqués précédemment évoluent de manière inversement proportionnelle au vieillissement du véhicule, grâce à un coefficient de correction K. = S * K avec 1 kilométrage ou encore par exemple 1 kilométrage e
    Figure imgb0003
  • La comparaison des deux signaux peut bien sûr se faire à plusieurs angles vilebrequin. Une détection précoce pendant la phase de compression est toutefois préférable, d'une part pour garder une marge de manoeuvre suffisante pour intervenir dans le cycle, et d'autre part, car les pré allumages les plus violents démarrent dès cette phase de compression.
  • 4- Contrôle de la combustion anormale
  • Au moyen de cette comparaison, le calculateur-moteur peut détecter le début d'une combustion anormale de type "rumble" ou du type "pré-allumage" dans la chambre de combustion.
  • En cas de combustion anormale, ce calculateur lance ensuite les actions nécessaires au contrôle de cette combustion afin d'éviter la poursuite d'une telle combustion.
  • Par contrôle de la combustion anormale, il est entendu non seulement la possibilité de maîtriser le déroulement de cette combustion pour éviter les augmentations brutales de pressions destructrices mais aussi d'arrêter complètement une telle combustion, telle que par étouffement.
  • A titre préférentiel, ce contrôle de la combustion est réalisé par une réinjection de carburant à un angle de vilebrequin déterminé par les injecteurs 18. Plus précisément, le calculateur commande les vannes 20 de façon à ce que l'injecteur du cylindre concerné permette d'introduire dans la chambre de combustion une quantité de carburant sous forme liquide. La quantité de carburant réinjectée dépend de la constitution du moteur et peut aller de 10% à 200% de la quantité de carburant initialement introduite dans cette chambre de combustion. De ce fait, le carburant réinjecté sert à contrarier la flamme qui commence à se déployer lors de la combustion anormale. Cette réinjection permet soit de souffler cette flamme, soit d'étouffer cette flamme par augmentation de la richesse du mélange carburé. De plus, le carburant injecté sous forme liquide utilise la chaleur présente autour de cette flamme pour se vaporiser et les conditions de température autour de la flamme vont baisser en retardant la combustion du mélange carburé et surtout son auto-inflammation.
  • Après cette injection de carburant, la pression dans le cylindre augmente mais moins brutalement. Cette pression décroît ensuite pour atteindre un niveau compatible avec le niveau de pression d'une combustion conventionnelle.
  • Par ce mécanisme, tout développement d'une combustion anormale avec une grande vitesse de combustion et des pressions élevées est prohibé. Bien entendu, la mise en oeuvre des moyens pour contrôler la combustion anormale se fait à chaque cycle durant lequel une telle combustion est détectée par le calculateur.
  • Les actions du procédé telles que décrites ci-dessus peuvent être combinées à d'autres actions plus lentes, telles que la fermeture du papillon, pour empêcher que les conditions de pression de la chambre de combustion soient favorables à une combustion anormale dans les cycles qui suivent.
  • La présente invention n'est pas limitée aux exemples de réalisation décrits ci-dessus mais englobe toutes variantes et tous équivalents.
  • Notamment et cela sans sortir du cadre de l'invention, d'autres agents pour arrêter la combustion anormale peuvent être introduits dans la chambre de combustion. Ainsi, ces agents peuvent être de l'eau sous forme vapeur ou liquide, ou du dioxyde de carbone. Dans ce cas, le moteur comprend des injecteurs spécifiques additionnels pour l'introduction de ces agents en association avec un circuit dédié (pompe, réservoir,...).
  • Il peut également être envisagé de contrôler la combustion anormale en faisant baisser la pression interne de la chambre de combustion en effectuant une décharge de pression en ouvrant une soupape de décharge. Cette soupape de décharge peut être soit une soupape additionnelle soit la soupape d'admission 24 et/ou la soupape d'échappement 30.
  • De plus, la présente invention peut également concerner un moteur à allumage commandé et à injection indirecte. Dans ce cas, le contrôle du déroulement de la combustion anormale se fera par l'utilisation d'un injecteur spécifique (carburant, eau, CO2), comme évoqué ci-dessus, ou par ouverture de soupape.
  • Variantes
  • Un mode de réalisation utilisant directement un modèle de la pression cylindre a été décrit. Selon d'autres modes de réalisation, on peut utiliser des modèles dérivés (figure 4). En effet, plusieurs signaux peuvent être utilisés pour détecter le pré allumage en temps réel en travaillant par exemple sur : le gradient de pression cylindre, le dégagement d'énergie, la température des gaz frais, ou encore en travaillant sur le diagramme log P / log V.
  • Gradient de pression cylindre (figure 5)
  • Les conditions d'apparition du pré allumage (bas régime et fortes charges) font qu'en règle générale, l'allumage par l'étincelle de la bougie est fortement sous calée pendant la phase de détente de manière à éviter le cliquetis. La courbe de pression cylindre fait alors apparaître un premier pic lié à la compression et un second pic décalé lié à la combustion (figure 3). On peut donc détecter le pré allumage en se basant uniquement sur le signe du gradient de pression cylindre : si celui-ci est positif avant même que l'étincelle n'ait été produite, alors il s'agit d'un pré allumage.
  • De la même manière que pour la pression cylindre, des seuils de détection sur la dérivée de la pression cylindre peuvent également être définis, à chaque angle vilebrequin (l'indice 'e' indique une estimation et l'indice 'm' une mesure) :
    • par un gradient de pression absolu à ne pas dépasser dPm (α) < S 4
    • un écart à ne pas dépasser dPm (α)-dPe (α) < S 5
    • un rapport à ne pas dépasser dPm (α)/dPe (α) < S 6
    Dégagement d'énergie
  • La dérivée de la pression cylindre peut aussi être utilisée pour calculer un dégagement d'énergie ∂Q simplifié : dU = Q + W dU = m . C v . dT W = - P . dV P . V = m . r . T r = C p - C v s = C p C v } Q = s s - 1 P . dV + 1 s - 1 V . dP
    Figure imgb0004
  • Ce dégagement d'énergie simplifié peut alors lui aussi servir à définir un seuil (l'indice 'e' indique une estimation et l'indice 'm' une mesure) :
    • par un dégagement d'énergie absolu à ne pas dépasser ∂Qm (α) < S 7
    • par un écart de dégagement d'énergie ∂Qm (α) -Qe (α) < S 8
    • par un rapport de dégagement d'énergie ∂Qm (α)/∂Qe (α) < S 9
    • en calculant des indicateurs d'avancement de la combustion, notés CAX, et en les comparant aux mêmes indicateurs calculés à partir de la pression cylindre théorique évaluée par modélisation. X désigne le pourcentage d'avancement de la combustion. L'angle CA10 correspond par exemple à l'angle où 10 % de l'énergie introduite a été dégagée ou, selon la convention utilisée, à 10 % de l'énergie totale libérée.
    Température des gaz frais (figures 6A - 6D)
  • La température moyenne des gaz frais T (air et carburant) est un paramètre qui présente l'avantage d'être très influent sur la sensibilité de la combustion au pré allumage. Or, cette température peut être estimée à partir de plusieurs autres grandeurs comme la température dans le répartiteur d'admission (figure 6A), les quantités d'air et de carburant admises et la pression cylindre. Il est donc possible de détecter, voire même d'anticiper, un pré allumage en disposant d'un seuil sur cette température des gaz frais. Une détection précoce du pré allumage et une bonne anticipation permettent de disposer de plus de temps pour déclencher une action curative dans le cycle même.
  • La figure 6A représente le dégagement d'énergie maximal (DEM) en fonction du CA10, pour une température de l'air admis (mesurée dans le plénum) de 30°C en gris, et une température de l'air admis (mesurée dans le plénum) de 40°C en noir. La zone encerclée sur ce graphique représente une zone de pré allumage.
  • Les figures 6B et 6C représentent le dégagement d'énergie maximal (DEM) en fonction du CA10, pour une température d'eau de 80°C (figure 6B) et une température d'eau de 100°C (figure 6C). La zone encerclée sur ce graphique représente une zone de pré allumage.
  • La figure 6D illustre le lien entre la température de l'eau et la température de gaz frais. Les courbes représentent l'évolution de la température des gaz frais (TGF) en fonction de l'angle vilebrequin (α). La courbe du haut correspond à une température d'eau de 100°C, et celle du bas une température de 80°C.
  • Cette température moyenne des gaz frais Te (α) peut être calculée simplement en utilisant l'équation d'état des gaz parfait : P . V = m . r . T T e α = P e α . V α m . r
    Figure imgb0005
  • La masse de mélange m peut être connue sur moteur, soit par mesure directe par débitmètre, soit par des modèles qui évaluent en temps réel le débit d'air entrant à partir de mesures de pression dans la ligne d'admission.
  • Le seuil de détection sur la température peut lui aussi être défini de trois manières à un angle vilebrequin donné (l'indice 'e' indique une estimation et l'indice 'm' une mesure) :
    • par une température absolue à ne pas dépasser Tm (α) < S 10
    • par un écart de température Tm (α)-Te (α) < S 11
    • par un rapport de température Tm (α)/Te (α) < S 12
    Diagramme log P / log V (figure 7)
  • Les grandeurs log(P) et log(V) offrent l'avantage de simplifier la représentation de l'évolution de la pression cylindre au cours du cycle moteur. PV n = cte log P + n . log V = cte log P = cte - n . log V
    Figure imgb0006
  • La figure 7 représente l'évolution le log(P) en fonction de log(V), dans un cas de pré allumage (courbe noire, Nlog ) et selon une modélisation d'une combustion conventionnelle sans pré allumage (courbe grise, Rlog ).
  • L'avantage de cette représentation réside dans l'exploitation de la linéarité qui lie log P et log V. Cette linéarité permet en effet de gagner en capacité prédictive car la pente suivie par la compression (Comp) jusqu'au PMH peut être connue dès les premiers instants de cette compression. On peut donc modéliser la pression théorique en calculant la pente n à partir des mesures réalisées en début de compression.
  • De plus, cette méthode permet de détecter non seulement les pré allumages qui se déclenchent pendant la compression, mais également ceux qui se déclenchent pendant la détente (Det), puisque cette relation linéaire existe aussi pendant cette détente. Dans le cas d'un allumage (All) à la bougie décalé dans la détente on est donc capable de prédire le chemin que doit suivre la pression cylindre jusqu'à cet allumage.
  • Pour rappel, l'allumage à la bougie à très forte charge doit être décalée dans la détente pour éviter l'apparition du cliquetis. Bien que négatif en terme de rendement, ce décalage est très efficace pour éviter le cliquetis. On se retrouve alors avec une courbe de pression cylindre à deux bosses : une première bosse correspondant à la compression pure du mélange, et une seconde bosse correspondant à l'augmentation de pression générée par la combustion (figure 3). Dans ces conditions, le pré allumage peut se déclencher soit pendant la compression (cas les plus critiques), soit pendant la détente après le premier pic de compression.
  • Le seuil peut alors être défini par une déviance entre la courbe représentant le log de la pression cylindre mesurée et la courbe représentant le log de la pression cylindre théorique (modélisée) :
    • par un terme log(P) absolu à ne pas dépasser log Pm (α) < S 13
    • par un écart à ne pas dépasser logPm (α)-logPe (α) < S 14
    • par un rapport à ne pas dépasser logPm (α)/logPe (α) < S 15
  • Selon un mode de réalisation, pour tous les rapports entre une grandeur expérimentale et une grandeur modélisée, notamment ceux qui risquent de s'annuler, on rend le rapport moins instable, en régularisant l'expression avec un ou plusieurs termes constants (ici P0m et P0e), empêchant l'annulation ou le calcul, et permettant par ailleurs de compenser une non-linéarité stricte entre les grandeurs. Par exemple : log P m α + P m 0 / P e α + P e 0 < S 15
    Figure imgb0007
  • Ces termes sont déterminés a priori, en fonction des grandeurs attendues.
  • De façon avantageuse, on n'utilise non pas une grandeur mais une combinaison de grandeurs, par exemple P et V.
  • Enfin, pour limiter l'impact des fluctuations localisées, il est intéressant d'effectuer des comparaisons avec les seuils, non seulement avec des grandeurs prise en un angle α, mais avec des estimations de ces grandeurs sur une certaine plage angulaire (petite ou du même ordre que la durée minimale nécessaire à estimer le franchissement d'un seuil). Si l'on prend trois mesures angulaires successives P(-1) P(0) P(+1) par exemple, une estimation de P au point 0 peut être obtenue en prenant la moyenne des [P(-1) P(0) P(+1)], leur valeur médiane, leur max... ou toute combinaison avec une pondération de ces valeurs. Ceci est utile pour le calcul de la dérivée par exemple. Ce calcul peut se faire de manière récursive, c'est-à-dire en réutilisant au point 0 la mesure précédente au point -1 portant sur [P(-2) P(-1) P(0)].
  • Application
  • Ainsi, lors du fonctionnement du moteur décrit en relation avec la figure 2, les moyens de mesure de pression cylindre 46a enregistrent l'évolution de cette pression au sein du cylindre 12. Ces informations sont envoyées sous forme de signal par la ligne 52 au calculateur-moteur 48. Ce calculateur estime, à chaque angle vilebrequin par exemple, la pression cylindre au moyen d'un modèle physique, et compare les pressions cylindre modélisée et mesurée, à l'aide de valeurs seuil par exemple. Cette comparaison permet au calculateur-moteur de déterminer la présence d'un début de combustion anormale de type "rumble" dans la chambre de combustion. Le calculateur-moteur envoie ensuite des instructions de commande au moyen d'alimentation en carburant sous pression 16 par les conducteurs 54 pour modifier les paramètres d'injection de façon à ce que cette combustion anormale de type "rumble" ne se reproduise pas lors des cycles suivants.
  • Ainsi, selon l'invention, la détection du pré allumage a lieu dès que celui-ci s'amorce, de façon à pouvoir quantifier et caractériser son évolution en temps réel. La détection peut se faire pour tout angle vilebrequin de chaque cycle moteur. Elle a donc lieu bien avant que le pré allumage ne conduise à des conditions thermodynamiques critiques pour l'intégrité du moteur. L'invention permet ainsi, d'une part de juger si ce pré allumage est critique, et d'autre part d'agir dans le cycle même de la détection pour le faire disparaître ou l'amoindrir. La détection repose sur une comparaison de signaux liés à la pression cylindre avec des signaux modélisés correspondant aux valeurs obtenus pour ces mêmes signaux dans le cas de combustion conventionnelle, c'est-à-dire sans apparition de pré allumage, et ce pour tout angle vilebrequin de chaque cycle moteur, permettant ainsi une détection extrêmement précise du phénomène, une quantification, et une action rapide.

Claims (10)

  1. Procédé de contrôle de la combustion d'un moteur à combustion interne suralimenté à allumage commandé, dans lequel on détecte une combustion anormale dans une chambre de combustion (14) d'au moins un cylindre (12) dudit moteur, au moyen d'une mesure continue de pression Pm (α) au sein dudit cylindre, caractérisé en ce que :
    a- on choisit un modèle physique décrivant, en fonction de l'angle α de rotation du vilebrequin dudit moteur, l'évolution de la pression dans le cylindre dans le cadre d'une combustion sans aucun phénomène de pré allumage ;
    b- on estime une pression cylindre Pe (α) à partir dudit modèle et d'une mesure de pression d'admission ;
    c- on détecte le début d'une combustion anormale en comparant au moins une première valeur d'une grandeur calculée à partir de la mesure de la pression cylindre, à au moins une seconde valeur de ladite grandeur calculée à partir de l'estimation de la pression cylindre ;
    d- on caractérise l'amplitude du pré allumage en réitérant les étapes b) et c) pour un nombre défini d'angles vilebrequin ;
    e- on contrôle le déroulement de la combustion anormale détectée dans la chambre de combustion, selon l'amplitude du phénomène de pré allumage.
  2. Procédé selon la revendication 1, dans lequel ledit modèle physique décrit l'évolution de la pression dans le cylindre en fonction de la pression d'admission et du volume de la chambre de combustion dudit cylindre.
  3. Procédé selon la revendication 1 ou 2, dans lequel on contrôle le déroulement de la combustion anormale en introduisant dans la chambre de combustion un agent contenant du carburant, de l'eau, ou du dioxyde de carbone.
  4. Procédé selon la revendication 1 ou 2, dans lequel on contrôle le déroulement de la combustion anormale en faisant chuter la pression à l'intérieur de la chambre de combustion (14).
  5. Procédé selon la revendication 1 ou 2, dans lequel on contrôle le déroulement de la combustion anormale en ouvrant au moins une soupape additionnelle pour faire chuter la pression à l'intérieur de la chambre de combustion (14).
  6. Procédé selon la revendication 1 ou 2, dans lequel on contrôle le déroulement de la combustion anormale en ouvrant au moins une des soupapes (24, 30) pour faire chuter la pression à l'intérieur de la chambre de combustion (14).
  7. Procédé selon l'une des revendications précédentes, dans lequel la grandeur est un gradient de pression cylindre, et dans lequel on détecte le début d'une combustion anormale en analysant le signe dudit gradient.
  8. Procédé selon l'une des revendications précédentes, dans lequel ladite grandeur est choisie parmi l'une des grandeurs suivantes : un gradient de pression cylindre, un dégagement d'énergie, une température de gaz frais, le logarithme de la pression cylindre.
  9. Procédé selon l'une des revendications précédentes, dans lequel on compare plusieurs grandeurs mesurées et estimées.
  10. Procédé selon la revendication 9, dans lequel on compare les grandeurs mesurées et estimées au moyen de seuils.
EP09290618A 2008-09-18 2009-08-05 Procédé de détection de combustion anormale pour moteurs à combustion interne Not-in-force EP2166214B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0805132A FR2936019B1 (fr) 2008-09-18 2008-09-18 Procede de detection de combustion anormale pour moteurs a combustion interne

Publications (2)

Publication Number Publication Date
EP2166214A1 EP2166214A1 (fr) 2010-03-24
EP2166214B1 true EP2166214B1 (fr) 2013-02-20

Family

ID=40640305

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09290618A Not-in-force EP2166214B1 (fr) 2008-09-18 2009-08-05 Procédé de détection de combustion anormale pour moteurs à combustion interne

Country Status (4)

Country Link
US (1) US8677975B2 (fr)
EP (1) EP2166214B1 (fr)
JP (1) JP5405950B2 (fr)
FR (1) FR2936019B1 (fr)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2952678B1 (fr) * 2009-11-13 2012-07-13 Inst Francais Du Petrole Procede de detection de combustion anormale pour moteurs a combustion interne a partir de plusieurs indicateurs de la combustion
FR2952679B1 (fr) * 2009-11-13 2012-02-24 Inst Francais Du Petrole Procede de detection de combustion anormale pour moteurs a combustion interne a partir de modelisations de distributions d'indicateurs de combustion
JP5424944B2 (ja) * 2010-03-12 2014-02-26 三菱電機株式会社 内燃機関の制御装置
FR2962767B1 (fr) * 2010-07-13 2012-07-13 Inst Francais Du Petrole Procede de controle de la phase de combustion d'un melange carbure d'un moteur a combustion interne suralimente a allumage commande, notamment de type essence.
EP2672095B1 (fr) 2011-02-02 2016-12-21 Toyota Jidosha Kabushiki Kaisha Dispositif de commande pour un moteur à combustion interne
JP5614320B2 (ja) * 2011-02-16 2014-10-29 トヨタ自動車株式会社 内燃機関の制御装置
CN103782024B (zh) * 2011-09-07 2016-03-09 马自达汽车株式会社 直喷式汽油发动机及直喷式汽油发动机的控制方法
US10273886B2 (en) * 2012-01-18 2019-04-30 Toyota Motor Engineering & Manufacturing North America, Inc. Process for reducing abnormal combustion within an internal combustion engine
DE102012202567A1 (de) * 2012-02-20 2013-08-22 Robert Bosch Gmbh Verfahren und Vorrichtung zur Erkennung von unkontrollierten Verbrennungen in einer Brennkraftmaschine
DE102012203487B4 (de) * 2012-03-06 2014-07-10 Robert Bosch Gmbh Verfahren und Vorrichtung zur Erkennung von Vorentflammungen in einem Ottomotor
US9903322B2 (en) * 2012-03-09 2018-02-27 Nissan Motor Co., Ltd. Control device and control method for internal combustion engine with supercharger
US9057339B2 (en) * 2012-07-19 2015-06-16 GM Global Technology Operations LLC Stochastic pre-ignition mitigation system
AT513359B1 (de) * 2012-08-17 2014-07-15 Ge Jenbacher Gmbh & Co Og Verfahren zum Betreiben einer Brennkraftmaschine
JP5942805B2 (ja) * 2012-11-16 2016-06-29 トヨタ自動車株式会社 火花点火式内燃機関
DE102012221245B4 (de) * 2012-11-21 2014-07-17 Continental Automotive Gmbh Verfahren und Vorrichtung zum Erkennen von Glühzündungen bei einer Verbrennungskraftmaschine
DE102012221249B3 (de) 2012-11-21 2014-03-20 Continental Automotive Gmbh Verfahren und Vorrichtung zum Erkennen von Glühzündungen bei einer Verbrennungskraftmaschine
DE102013102071B4 (de) * 2013-03-04 2014-12-31 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Überprüfen einer Funktion eines Auslassventiles
CN106030084B (zh) * 2014-02-26 2020-03-27 日产自动车株式会社 内燃机的控制装置以及控制方法
US20160160779A1 (en) * 2014-12-08 2016-06-09 Caterpillar Inc. Prognostic Engine System and Method
US9441561B2 (en) * 2014-12-11 2016-09-13 Caterpillar Inc. System and method for increasing tolerance to fuel variation
US9556810B2 (en) 2014-12-31 2017-01-31 General Electric Company System and method for regulating exhaust gas recirculation in an engine
US9752949B2 (en) 2014-12-31 2017-09-05 General Electric Company System and method for locating engine noise
US9803567B2 (en) 2015-01-07 2017-10-31 General Electric Company System and method for detecting reciprocating device abnormalities utilizing standard quality control techniques
US9874488B2 (en) 2015-01-29 2018-01-23 General Electric Company System and method for detecting operating events of an engine
US9528445B2 (en) 2015-02-04 2016-12-27 General Electric Company System and method for model based and map based throttle position derivation and monitoring
US9903778B2 (en) 2015-02-09 2018-02-27 General Electric Company Methods and systems to derive knock sensor conditions
US9791343B2 (en) 2015-02-12 2017-10-17 General Electric Company Methods and systems to derive engine component health using total harmonic distortion in a knock sensor signal
US10001077B2 (en) 2015-02-19 2018-06-19 General Electric Company Method and system to determine location of peak firing pressure
US9915217B2 (en) 2015-03-05 2018-03-13 General Electric Company Methods and systems to derive health of mating cylinder using knock sensors
US9695761B2 (en) 2015-03-11 2017-07-04 General Electric Company Systems and methods to distinguish engine knock from piston slap
CN107690520B (zh) 2015-04-14 2021-09-14 伍德沃德有限公司 具有可变分辨率采样窗口基于燃烧压力反馈的发动机控制
US9435244B1 (en) 2015-04-14 2016-09-06 General Electric Company System and method for injection control of urea in selective catalyst reduction
US9784231B2 (en) 2015-05-06 2017-10-10 General Electric Company System and method for determining knock margin for multi-cylinder engines
US9689339B2 (en) * 2015-06-10 2017-06-27 GM Global Technology Operations LLC Engine torque control with fuel mass
WO2016203102A1 (fr) * 2015-06-16 2016-12-22 Wärtsilä Finland Oy Procédé et appareil de commande d'un moteur à combustion interne
US9933334B2 (en) 2015-06-22 2018-04-03 General Electric Company Cylinder head acceleration measurement for valve train diagnostics system and method
US9784635B2 (en) 2015-06-29 2017-10-10 General Electric Company Systems and methods for detection of engine component conditions via external sensors
US10393609B2 (en) 2015-07-02 2019-08-27 Ai Alpine Us Bidco Inc. System and method for detection of changes to compression ratio and peak firing pressure of an engine
US9897021B2 (en) 2015-08-06 2018-02-20 General Electric Company System and method for determining location and value of peak firing pressure
WO2019038470A1 (fr) * 2017-08-24 2019-02-28 Wärtsilä Finland Oy Procédé et agencement permettant de détecter un temps de fermeture anormal ou un dysfonctionnement de soupapes d'admission
WO2019123129A1 (fr) * 2017-12-18 2019-06-27 King Abdullah University Of Science And Technology Commande de libération de chaleur à l'intérieur d'un cylindre de moteur
JP6848889B2 (ja) * 2018-01-22 2021-03-24 マツダ株式会社 エンジン
DE102018208037A1 (de) * 2018-05-23 2019-11-28 Robert Bosch Gmbh Verfahren zur Diagnose von Ventilsteuerzeiten einer Brennkraftmaschine
JP6777119B2 (ja) * 2018-07-02 2020-10-28 マツダ株式会社 エンジンの制御装置
JP6777120B2 (ja) * 2018-07-02 2020-10-28 マツダ株式会社 エンジンの制御装置
US10934965B2 (en) 2019-04-05 2021-03-02 Woodward, Inc. Auto-ignition control in a combustion engine
KR102246466B1 (ko) * 2020-04-16 2021-04-30 서울대학교산학협력단 엔진 노킹 발생 예측 방법
JP2024027920A (ja) 2022-08-19 2024-03-01 ヤンマーホールディングス株式会社 エンジン、制御装置、及び制御プログラム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0417142U (fr) * 1990-05-31 1992-02-13
JPH09273436A (ja) * 1995-11-10 1997-10-21 Yamaha Motor Co Ltd エンジンの制御方法
DE19749817B4 (de) * 1997-11-11 2008-03-20 Robert Bosch Gmbh Vorrichtung und Verfahren zur Ermittlung des Spritzbeginns
JP2005140054A (ja) * 2003-11-07 2005-06-02 Toyota Motor Corp 内燃機関の制御装置
FR2879665B1 (fr) * 2004-12-17 2009-12-18 Inst Francais Du Petrole Methode de detection de combustion anormale pour moteurs a combustion interne
JP4380604B2 (ja) * 2005-07-29 2009-12-09 トヨタ自動車株式会社 内燃機関の制御装置
FR2897900B1 (fr) * 2006-02-28 2008-06-06 Inst Francais Du Petrole Procede de controle de la phase de combustion d'un moteur a combustion interne, notamment moteur suralimente a injection directe de type essence
US7533651B2 (en) * 2006-03-17 2009-05-19 Ford Global Technologies, Llc System and method for reducing knock and preignition in an internal combustion engine
JP2007291959A (ja) * 2006-04-25 2007-11-08 Honda Motor Co Ltd 内燃機関の制御装置

Also Published As

Publication number Publication date
EP2166214A1 (fr) 2010-03-24
US20100077992A1 (en) 2010-04-01
US8677975B2 (en) 2014-03-25
FR2936019B1 (fr) 2010-09-10
JP2010071284A (ja) 2010-04-02
JP5405950B2 (ja) 2014-02-05
FR2936019A1 (fr) 2010-03-19

Similar Documents

Publication Publication Date Title
EP2166214B1 (fr) Procédé de détection de combustion anormale pour moteurs à combustion interne
EP2175121A1 (fr) Procédé de détection de combustion anormale pour moteurs à combustion interne
FR2952678A1 (fr) Procede de detection de combustion anormale pour moteurs a combustion interne a partir de plusieurs indicateurs de la combustion
FR2952679A1 (fr) Procede de detection de combustion anormale pour moteurs a combustion interne a partir de modelisations de distributions d&#39;indicateurs de combustion
EP1828737B1 (fr) Methode de detection de combustion anormale pour moteurs a combustion interne
EP1826379A1 (fr) Procédé de contrôle de la phase de combustion d&#39;un moteur à combustion interne, notamment moteur suralimenté à injection directe de type essence
EP2128409B1 (fr) Methode de detection du cliquetis dans un moteur à allumage commandé
EP2407654B1 (fr) Procédé de contrôle de la phase de combustion d&#39;un mélange carburé d&#39;un moteur à combustion interne suralimenté à allumage commandé, notamment de type essence
FR2919671A1 (fr) Procede de diagnostic d&#39;un moteur a combustion interne par analyse des gaz d&#39;echappement et dispositif de mise en oeuvre.
EP2581589A1 (fr) Procédé de contrôle d&#39;un moteur à combustion à partir d&#39;une estimation de la fraction massique de gaz brûlés dans le collecteur d&#39;admission
EP2549087B1 (fr) Procédé de détection et de caractérisation de combustion anormale pour moteurs à combustion interne
EP3626954B1 (fr) Procede de determination d&#39;un indicateur de cliquetis par determination de la pression globale dans le cylindre
EP2166216A1 (fr) Procédé de contrôle de la combustion d&#39;un mélange carburé pour un moteur à combustion interne à allumage commandé
EP1920144B1 (fr) Dispositif pour la detection en temps reel du commencement de la phase de combustion et procede correspondant
EP1923558B1 (fr) Système et procédé de commande d&#39;un moteur à combustion interne
EP2184597A1 (fr) Procédé de contrôle de la combustion d&#39;un moteur fonctionnant en mode stratifié
FR2923294A1 (fr) Procede de detection de combustion anormale
WO2017088967A1 (fr) Procédé de commande pour le démarrage d&#39;un moteur à combustion comportant une phase de thermie et une phase de génération de couple
FR3048266A1 (fr) Procede de limitation de charge d&#39;un moteur thermique sur avance a l&#39;allumage degradee
EP3420214A1 (fr) Procédé de gestion préventive de combustions anormales dans un moteur thermique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: IFP ENERGIES NOUVELLES

17P Request for examination filed

Effective date: 20100924

RIC1 Information provided on ipc code assigned before grant

Ipc: F02D 19/12 20060101ALN20120627BHEP

Ipc: F02D 35/02 20060101AFI20120627BHEP

Ipc: F02D 41/40 20060101ALN20120627BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PAGOT, ALEXANDRE

Inventor name: DUVAL, LAURENT

Inventor name: ZACCARDI, JEAN-MARC

Inventor name: AUCLAIR, DOMINIQUE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 597669

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009013428

Country of ref document: DE

Effective date: 20130418

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 597669

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130220

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130220

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130520

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130520

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130531

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130620

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130521

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130620

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

26N No opposition filed

Effective date: 20131121

BERE Be: lapsed

Owner name: IFP ENERGIES NOUVELLES

Effective date: 20130831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009013428

Country of ref document: DE

Effective date: 20131121

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130805

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130805

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090805

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160831

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602009013428

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180301

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180829

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831