EP2162112A2 - Verfahren zur herstellung feinteiliger emulsionen - Google Patents

Verfahren zur herstellung feinteiliger emulsionen

Info

Publication number
EP2162112A2
EP2162112A2 EP08773439A EP08773439A EP2162112A2 EP 2162112 A2 EP2162112 A2 EP 2162112A2 EP 08773439 A EP08773439 A EP 08773439A EP 08773439 A EP08773439 A EP 08773439A EP 2162112 A2 EP2162112 A2 EP 2162112A2
Authority
EP
European Patent Office
Prior art keywords
branched
fatty
alcohols
linear
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP08773439A
Other languages
English (en)
French (fr)
Inventor
Matthias Hloucha
Esther Küsters
Jasmin Menzer
Wolf Eisfeld
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cognis IP Management GmbH
Original Assignee
Cognis IP Management GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP07011967A external-priority patent/EP2014274A1/de
Priority claimed from DE102007046575A external-priority patent/DE102007046575A1/de
Application filed by Cognis IP Management GmbH filed Critical Cognis IP Management GmbH
Priority to EP08773439A priority Critical patent/EP2162112A2/de
Publication of EP2162112A2 publication Critical patent/EP2162112A2/de
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/01Hydrocarbons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • A61K8/068Microemulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/37Esters of carboxylic acids
    • A61K8/375Esters of carboxylic acids the alcohol moiety containing more than one hydroxy group
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/60Sugars; Derivatives thereof
    • A61K8/604Alkylpolyglycosides; Derivatives thereof, e.g. esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/731Cellulose; Quaternized cellulose derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/817Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Compositions or derivatives of such polymers, e.g. vinylimidazol, vinylcaprolactame, allylamines (Polyquaternium 6)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/12Preparations containing hair conditioners
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/54Polymers characterized by specific structures/properties
    • A61K2800/542Polymers characterized by specific structures/properties characterized by the charge
    • A61K2800/5426Polymers characterized by specific structures/properties characterized by the charge cationic

Definitions

  • the invention is in the field of cosmetic agents which are in the form of finely divided emulsions and further relates to a process for the preparation of such emulsions.
  • the object of the present invention has thus been to provide aqueous finely divided emulsions which are easier to prepare.
  • a first object of the invention relates to the preparation of aqueous emulsions having an average particle size of less than 1 micron by first preparing in a first step a microemulsion containing at least 10-20 wt.% Of an alkyl (oligo) glycoside of the general formula R.
  • R 1 is an alkyl and / or alkenyl radical having 4 to 22 carbon atoms
  • G is a sugar radical having 5 or 6 carbon atoms
  • p is a number from 1 to 10 and 4-10% by weight an ester of glycerol with a fatty acid of chain length C12-C22 and 5-30% by weight of an oil body and the balance to 100% by weight of water and optionally further ingredients, and then in a second step this microemulsion with the 5 to 20 times the volume of the microemulsion at temperatures of 10 to 45 ° C, preferably from 15 to 35 ° C diluted with water.
  • the method according to the invention is therefore a two-stage process in which a microemulsion is prepared in a known manner in the first step.
  • Microemulsions are understood to mean initially all macroscopically homogeneous, optically transparent, low-viscosity and in particular thermodynamically stable mixtures of two immiscible liquids and at least one nonionic or ionic surfactant.
  • the average particle sizes of the microemulsions are usually below 100 nm, they have a high transparency and are stable on centrifugation at 2000 rpm for at least 30 minutes against a visible phase separation.
  • step 1 The preparation of the microemulsions in step 1 is preferably carried out simply by mixing the oil phase with the further oil-soluble ingredients, heating the O phase over the melting point of all constituents and then adding the aqueous surfactant-containing phase.
  • the thermodynamically stable microemulsion then forms spontaneously, if necessary, a little more stirring is required.
  • the microemulsion contains as compulsory constituents a sugar surfactant, specifically an acyl (oligo) glycoside (also referred to below as "APG").
  • a sugar surfactant specifically an acyl (oligo) glycoside (also referred to below as "APG").
  • Alkyl and / or alkenyl oligoglucosides in the context of the present teaching follow the formula R' ⁇ - [cf. G] P in which R 1 is an alkyl and / or alkenyl radical having 4 to 22 carbon atoms, G is a sugar radical having 5 or 6 carbon atoms and p is a number from 1 to 10.
  • the alkyl and / or alkenyl oligoglycosides can be derived from aldoses or ketones having 5 or 6 carbon atoms, preferably glucose,
  • the preferred alkyl and / or alkenyl oligoglycosides are thus alkyl and / or alkenyl oligoglucosides
  • Index number p in the general formula (I) indicates the degree of oligomerization (DP), ie the distribution of mono- and oligoglycosides, and stands for a number between 1 and 10.
  • the value p for a given alkyloligoglycoside is an analytically determined arithmetic quantity, which usually represents a fractional number. Preference is given to using alkyl and / or alkenyl oligoglycosides having an average degree of oligomerization p of from 1.1 to 3.0. From an application point of view, those alkyl and / or alkenyl oligoglycosides whose degree of oligomerization is less than 1.7 and in particular between 1.2 and 1.4 are preferred.
  • APGs are present in amounts of between 10 and 20% by weight, based in each case on the total amount of microemulsions. emulsion included. Amounts in the range of 14 to 19 wt .-% are particularly preferred.
  • esters of fatty acids of chain length C12-C22 with glycerol are contained in the emulsions according to the invention.
  • Monoesters of glycerol are preferably used in this case, with monoesters of glycerol in particular being suitable with unsaturated linear fatty acids.
  • Glycerol mono-oleate is particularly preferred for the purposes of the invention.
  • These glycerol esters are contained in the microemulsions in amounts of from 4 to 10% by weight, preferably from 5 to 9% by weight, based in each case on the total weight of the microemulsion.
  • the microemulsions of the present invention still contain an oil body, ie a non-water-soluble organic phase in amounts of 5 to 30 wt .-%.
  • Particularly preferred oil phases are selected from the group of Guerbet alcohols based on fatty alcohols having 6 to 18 C atoms, esters of linear C 6 -C 22 fatty acids with linear or branched C 6 -C 22 fatty alcohols or esters of branched C ⁇ -C ⁇ carboxylic acids with linear or branched C 6 -C 22 fatty alcohols, esters of linear C 6 -C 22 fatty acids with branched alcohols, esters of C 6 -C 22 fatty alcohols and / or Guerbet alcohols with aromatic carboxylic acids, triglycerides based on C 6 - Cio fatty acids, liquid mono- / di- / Triglyceridmischept based on C 6 -C] 8 fatty acids, esters of C 2 -Cj 2 dicarbox
  • hydrocarbon mixture mixtures of hydrocarbons containing up to 10% by weight of substances other than hydrocarbons.
  • the percentages by weight of the linear C11 and linear C13 hydrocarbons relate in each case to the sum of the hydrocarbons present in the mixture.
  • the non-hydrocarbons present up to 10% by weight are not taken into account for this calculation.
  • the substances which do not belong to the hydrocarbons and which may contain up to 10% by weight, in particular up to 8% by weight, preferably up to 5% by weight, in the hydrocarbon mixture are, for example, fatty alcohols , which remain as unreacted starting materials in the hydrocarbon mixture.
  • CX hydrocarbon includes hydrocarbons having a C number of X, for example, the term Cl 1 hydrocarbon includes all hydrocarbons having a C number of 11.
  • hydrocarbon mixture which contains at least 2 different hydrocarbons whose carbon number differs by more than 1, wherein these 2 mutually different hydrocarbons at least 60 wt .-%, preferably at least 70 wt .-% - based on the Make up the sum of hydrocarbons.
  • n is an odd number, in particular 7, 9, 11, 13, 15, 17, 19, 21 and / or 23.
  • hydrocarbon a hydrocarbon mixture can be used which contains 14 C isotopes and wherein the hydrocarbon mixture contains at least 2 different hydrocarbons whose C number differs by more than 1.
  • solid fats and / or waxes can also be used as the oil component. These may also be in mixture with the oils mentioned in the previous section.
  • Typical examples of fats are glycerides, i. solid or liquid vegetable or animal products consisting essentially of mixed glycerol esters of higher fatty acids. Particular mention should be made of solid mono- and diglycerides, e.g. Glycerol monooleate or glycerol monostearate.
  • waxes come u.a. natural waxes, e.g.
  • microemulsions Another essential component of the microemulsions, as used in the process according to the invention is water.
  • the water should preferably be demineralized.
  • the microemulsions used in the first step of the process preferably contain up to 81% by weight of water. Preferred ranges are amounts of 30 to 80 wt .-% and in particular from 45 to 65 wt .-% water.
  • the microemulsions may contain, as an additional constituent, also fatty alcohols of the general formula R -OH, where R is a saturated or unsaturated, branched or unbranched alkyl or Alkenyl radical having 6 to 22 carbon atoms, may contain.
  • Typical examples are caprol alcohol, capryl alcohol, 2-ethylhexyl alcohol, capric alcohol, lauryl alcohol, isotridecyl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, linolyl alcohol, linolenyl alcohol, elaeostearyl alcohol, arachyl alcohol, gadoleyl alcohol , Behenyl alcohol, erucyl alcohol and brassidyl alcohol and their technical mixtures which are obtained, for example, in the high-pressure hydrogenation of industrial methyl esters based on fats and oils or aldehydes from Roelen's oxosynthesis and as monomer fraction in the dimerization of unsaturated fatty alcohols.
  • fatty alcohols having 12 to 18 carbon atoms such as coconut, palm, palm kernel or Taigfettalkohol. Particularly preferred is the concomitant use of cetyl alcohol, stearyl alcohol, arachyl alcohol and behenyl alcohol and mixtures thereof.
  • fatty alcohols are included, they are preferably used in amounts of up to 15% by weight, based on the total microemulsion, with the range from 1 to 10% by weight and preferably from 2 to 8% by weight being particularly preferred.
  • These fatty alcohols, which are water-insoluble organic constituents also do not fall under the definition of the oil body according to the invention.
  • the microemulsion which is prepared in the first step of the process according to the invention may also contain anionic surfactants.
  • anionic surfactants are soaps, alkylbenzenesulfonates, alkanesulfonates, olefinsulfonates, ⁇ -methyl ester sulfonates, sulfo fatty acids, alkyl sulfates, alkyl ether sulfates, mono- and dialkyl sulfosuccinates, mono- and dialkyl sulfosuccinamates, sulfotriglycerides, monoglyceride sulfates, amide soaps, ether carboxylic acids and their salts, fatty acid isethionates , Fatty acid sarcosinates, fatty acid taurides, N-acyl amino acids such as acyl lactylates, acyl tartrates, acyl glutamates and acyl aspartates, alkyl
  • fatty alcohol ether sulfates are preferred, especially those of the general formula R 3 O- (CH 2 CH 2 O) 1n SOsX in which R 3 is a linear or branched alkyl and / or alkenyl group containing 6 to 22 carbon atoms n is a number from 1 to 10 and X is an alkali and / or alkaline earth metal, ammonium, alkylammonium, alkanolammonium or glucammonium.
  • ether sulfates are known anionic surfactants which are industrially produced by SO 3 or chlorosulfonic acid (CSA) sulfation of fatty alcohol or oxoalcohol polyglycol ethers and subsequent neutralization.
  • Typical examples are the sulfates of addition products of on average 1 to 10 and especially 2 to 5 moles of ethylene oxide, capryl alcohol, 2-ethylhexyl alcohol, capric alcohol, lauryl alcohol, isotridecyl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol and brassidyl alcohol, and technical mixtures thereof Form of their sodium and / or magnesium salts.
  • the ether sulfates can aur rub both a conventional and a narrow homolog distribution.
  • ether sulfates based on adducts of an average of 2 to 3 moles of ethylene oxide to technical C 12 / H - or C ⁇ / JS - Kokosfettalkoholfr hopeen in the form of their sodium and / or magnesium salts.
  • microemulsions used in the process according to the invention may contain further nonionic, amphoteric and / or cationic surfactants, preferably in amounts of from 1 to 25% by weight, based on the total weight of the emulsion.
  • Typical examples of other nonionic surfactants are, for example, fatty acid N-alkylglucamides, polyol fatty acid esters, sugar esters, sorbitan esters, polysorbates, alcohol ethoxylates and amine oxides.
  • Alcohol ethoxylates are referred to as fatty alcohol or Oxoalkoholethoxylate production and preferably follow the formula R 4 O (CH 2 CH 2 O) n HR 4 for a linear or branched alkyl and / or alkenyl radical having 6 to 22 carbon atoms and n for numbers of 1 to 50 stands.
  • Typical examples are the adducts of an average of 1 to 50, preferably 5 to 40 and especially 10 to 25 moles of caproic alcohol, caprylic alcohol, 2-ethylhexyl alcohol, capric alcohol, lauryl alcohol, isotridecyl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, Petroselinyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol and brassidyl alcohol and their technical mixtures, for example, in the high pressure hydrogenation of technical methyl esters based on fats and oils or aldehydes from the Roelen 1 - rule oxo synthesis and as a monomer fraction in the dimerization of unsaturated fatty alcohols.
  • Preferred are adducts of 10 to 40 moles of ethylene oxide with technical fatty alcohols having 12
  • amphoteric or zwitterionic surfactants are alkyl betaines, alkyl amidobetaines, aminopropionates, aminoglycinates, imidazolinium betaines and sulfobetaines.
  • suitable alkylbetaines are the carboxyalkylation products of secondary and in particular tertiary amines. Typical examples are the carboxymethylation products of hexylmethylamine, hexyldimethylamine, octyldimethylamine, decyldimethylamine, dodecylmethylamine, dodecyldimethylamine, dodecylethylamine.
  • methylamine Ci 2 / i 4 -Kokosalkyldimethylamin, myristyldimethylamine, cetyldimethylamine, Stearyldimethyl-amine, stearyl, oleyldimethylamine, C16 / 18 tallow alkyl dimethyl amine and technical mixtures thereof.
  • carboxyalkylation products of amidoamines are also suitable.
  • Typical examples are reaction products of fatty acids having 6 to 22 carbon atoms, namely capronic, caprylic, capric, lauric, myristic, palmitic, palmitic, stearic, isostearic, oleic, elaidic, petroselic, linoleic, linolenic, elaeostearic, arachidic, gadoleic and behenic acids and erucic acid and their technical mixtures, with N, N-dimethylaminoethylamine, N, N-dimethylaminopropylamine, N, N-diethylaminoethylamine and N, N-diethylaminopropylamine, which are condensed with sodium chloroacetate.
  • condensation product of C 8 / i 8 coconut fatty acid-N, N-dimethylaminopropylamidamide with sodium chloroacetate Preference is given to the use of a condensation product of C 8 / i 8 coconut fatty acid-N, N-dimethylaminopropylamidamide with sodium chloroacetate.
  • imidazolinium betaines are also suitable. These substances are also known substances which can be obtained, for example, by cyclizing condensation of 1 or 2 moles of fatty acid with polyfunctional amines, such as, for example, aminoethylethanolamine (AEEA) or diethylenetriamine.
  • AEEA aminoethylethanolamine
  • the corresponding carboxyalkylation products are mixtures of different open-chain betaines.
  • Typical examples are condensation products of the above mentioned fatty acids with AEEA, preferably imidazolines based on lauric acid or turn Ci 2/14 coconut oil fatty acid, which are subsequently betainized with sodium chloroacetate.
  • Typical examples of cationic surfactants are quaternary ammonium compounds and ester quats, especially quaternized fatty acid trialkanolamine ester salts.
  • microemulsions for step 1 are composed as follows:
  • microemulsions prepared in the first step of the process according to the invention in accordance with the above general description are diluted with water in a separate step and then spontaneously form the finely divided emulsion according to the invention having an average particle size of less than 1 ⁇ m.
  • 4 to 9 parts of water are added to a portion of the microemulsion.
  • the dilution step can be carried out immediately upon the completion of the microemulsion in step 1 - but it is also possible and preferred in practice that the dilution be done later.
  • the microemulsions of step 1 are likewise storage-stable, so that no disadvantages with regard to the stability or constitution of the emulsion produced later in the second step occur even after prolonged storage of this intermediate.
  • the emulsion which are obtained by the final dilution step, have an average particle size of less than 1 micron, preferably less than 0.8 microns.
  • the proportion of particles with a diameter or a size of ⁇ 1 ⁇ m is preferably at least 70%, preferably at least 80% and particularly preferably at least 90% of all particles.
  • the finely divided emulsions thus prepared are themselves an object of the present application.
  • the finely divided emulsions according to the invention can be used for the preparation of cosmetic preparations, such as hair shampoos, hair lotions, bubble baths, shower baths, creams, gels, lotions, alcoholic and aqueous / alcoholic solutions, emulsions, wax / fat compounds, stick preparations, powders or ointments ,
  • These cosmetic agents may also contain, as further auxiliaries and additives, mild surfactants, oil bodies, emulsifiers, pearlescent waxes, bodying agents, thickeners, superfatting agents, stabilizers, polymers, silicone compounds, fats, waxes, lecithins, phospholipids, biogenic agents, UV sun protection factors, antioxidants , Deodorants, antiperspirants, antidandruff agents, film formers, swelling agents, insect repellents, self-tanner, tyrosine inhibitors (depigmentation agents), hydrotropes, solubilizers, preservatives, perfume oils, dyes and the
  • microemulsion of the following composition was prepared by mixing the ingredients:
  • the particle size of the emulsions was measured with a Horiba LB500 meter.
  • the resulting emulsions are storage stable, i. when stored at 40 ° C for 4 weeks no visible oil separation occurs.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Dermatology (AREA)
  • Chemical & Material Sciences (AREA)
  • Emergency Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Dispersion Chemistry (AREA)
  • Cosmetics (AREA)
  • Colloid Chemistry (AREA)

Abstract

Feinteilige Emulsionen, vorzugsweise zur Verwendung in kosmetischen Zubereitungen können hergestellt werden, indem man in einem ersten Schritt eine Mikroemulsion herstellt, enthaltend mindestens 10 - 20 Gew.-% eines Alkyl(oligo)glycosids der allgemeinen Formel R1O-[G]p in der R1 für einen Alkyl- und/oder Alkenylrest mit 4 bis 22 Kohlenstoffatomen, G für einen Zuckerrest mit 5 oder 6 Kohlenstoffatomen und p für Zahlen von 1 bis 10 steht und 4 - 10 Gew.-% eines Ester von Glycerin mit einer Fettsäure der Kettenlänge C12-C22 und 5 - 30 Gew.-% eines Ölkörpers und den Rest auf 100 Gew.-% Wasser und ggf. weitere Inhaltsstoffe, und anschließend in einem zweiten Schritt diese Mikroemulsion mit dem 5 bis 20 fachen Volumen der Mikroemulsion bei Temperaturen von 15 bis 35°C mit Wasser verdünnt.

Description

Verfahren zur Herstellung von feinteiliger Emulsionen
Die Erfindung befindet sich auf dem Gebiet der kosmetischen Mittel, die in Form feinteiliger Emulsionen vorliegen und betrifft weiterhin ein Verfahren zur Herstellung solcher Emulsionen.
Es ist bekannt, dass Öl-in- Wasser-Emulsionen, die mit nichtionischen Emulgatoren hergestellt sind, beim Erwärmen häufig eine Phaseninversion erleiden, d. h., dass bei höheren Temperaturen die äußere, wässerige Phase zur inneren Phase werden kann. Dieser Vorgang ist in der Regel reversibel, so dass sich beim Abkühlen wieder der ursprüngliche Emulsionstyp zurückbildet. Emulsionen, die oberhalb der Phaseninversionstemperatur hergestellt wurden, weisen im Allgemeinen eine niedrige Viskosität und hohe Lagerstabilität auf. Aus der WO 97/06870 Al sind zuckertensid-haltige Emulsionen dieses Typs bekannt. Die Herstellung solcher Emulsionen ist in der Praxis aber umständlich und teuer, da zunächst eine Emulsion erwärmt und danach abgekühlt werden muss. Weiterhin besteht der Wunsch beim Verbraucher feinteilige Emulsionen direkt zu erzeugen, also vor oder während einer Anwendung. Damit kann auf Zusatzstoffe verzichtet werden, die üblicherweise zu Erhöhung der Lagerstabilität von feinteiligen Emulsionen eingesetzt werden.
Die Aufgabe der vorliegenden Erfindung hat somit darin bestanden, wässrige feinteilige Emulsionen bereit zu stellen, die einfacher herzustellen sind.
Ein erster Gegenstand der Erfindung betrifft die Herstellung von wässerigen Emulsionen mit einer mittleren Teilchengröße von weniger als 1 μm indem man zunächst in einem ersten Schritt eine Mikroemulsion herstellt, enthaltend mindestens 10 - 20 Gew.-% eines Alkyl(oligo)glycosids der allgemeinen Formel R1O-[GJp in der R1 für einen Alkyl- und/oder Alkenylrest mit 4 bis 22 Kohlenstoffatomen, G für einen Zuckerrest mit 5 oder 6 Kohlenstoffatomen und p für Zahlen von 1 bis 10 steht und 4 - 10 Gew.-% eines Ester von Glycerin mit einer Fettsäure der Kettenlänge C12-C22 und 5 - 30 Gew.-% eines Öl- körpers und den Rest auf 100 Gew.-% Wasser und ggf. weitere Inhaltsstoffe, und anschließend in einem zweiten Schritt diese Mikroemulsion mit dem 5 bis 20 fachen Volumen der Mikroemulsion bei Temperaturen von 10 bis 45°C bevorzugt von 15 bis 35°C mit Wasser verdünnt. Das erfindungsgemäße Verfahren ist also ein zweistufiger Prozess, bei dem im ersten Schritt auf an sich bekannte Weise eine Mikroemulsion hergestellt wird. Unter Mikroemulsionen werden zunächst alle makroskopisch homogenen, optisch transparenten, niedrigviskosen und insbesondere thermodynamisch stabile Mischungen aus zwei miteinander nicht mischbaren Flüssigkeiten und mindestens einem nichtionischen oder einem ionischen Tensid verstanden. Die mittleren Teilchengrößen der Mikroemulsionen liegen üblicherweise unter 100 nm, sie weisen eine hohe Transparenz auf und sind beim Zentrifugieren bei 2000 UPM für mindestens 30 Minuten gegenüber einer sichtbaren Phasenseparation stabil.
Die Herstellung der Mikroemulsionen in Schritt 1 erfolgt vorzugsweise einfach durch Vermischen der Ölphase mit den weiteren öllöslichen Inhaltsstoffen, Erwärmen der 01- phase über den Schmelzpunkt aller Bestandteile und anschließender Zugabe der wässri- gen tensidhaltigen Phase. Die thermodynamisch stabile Mikroemulsion bildet sich dann spontan, ggf. muss noch etwas gerührt werden.
Die Mikroemulsion enthält als zwingende Bestandteile ein Zuckertensid, und zwar ein Akyl(oligo)glycosid (im Folgenden auch als „APG" bezeichnet). Alkyl- und/oder Alke- nyloligoglucoside im Sinne der vorliegenden Lehre folgen dabei der Formel R'θ-[G]P in der R1 für einen Alkyl- und/oder Alkenylrest mit 4 bis 22 Kohlenstoffatomen, G für einen Zuckerrest mit 5 oder 6 Kohlenstoffatomen und p für Zahlen von 1 bis 10 steht. Sie können nach den einschlägigen Verfahren der präparativen organischen Chemie erhalten werden. Die Alkyl- und/oder Alkenyloligoglykoside können sich von Aldosen bzw. Keto- sen mit 5 oder 6 Kohlenstoffatomen, vorzugsweise der Glucose ableiten. Die bevorzugten Alkyl- und/oder Alkenyloligoglykoside sind somit Alkyl- und/oder Alkenyloli- goglucoside. Die Indexzahl p in der allgemeinen Formel (I) gibt den Oligo- merisierungsgrad (DP), d. h. die Verteilung von Mono- und Oligoglykosiden an und steht für eine Zahl zwischen 1 und 10. Während p in einer gegebenen Verbindung stets ganzzahlig sein muss und hier vor allem die Werte p = 1 bis 6 annehmen kann, ist der Wert p für ein bestimmtes Alkyloligoglykosid eine analytisch ermittelte rechnerische Größe, die meistens eine gebrochene Zahl darstellt. Vorzugsweise werden Alkyl- und/oder Alkenyloligoglykoside mit einem mittleren Oligomerisierungsgrad p von 1,1 bis 3,0 eingesetzt. Aus anwendungstechnischer Sicht sind solche Alkyl- und/oder Alkenyloligoglykoside bevorzugt, deren Oligomerisierungsgrad kleiner als 1,7 ist und insbesondere zwischen 1,2 und 1,4 liegt. APGs sind in den Mikroemulsionen gemäß der vorliegenden Erfindung in Mengen zwischen 10 und 20 Gew.-%, jeweils bezogen auf die Gesamtmenge der Mikro- emulsion enthalten. Besonders bevorzugt sind dabei Mengen im Bereich von 14 bis 19 Gew.-%.
Weiterhin sind Ester aus Fettsäuren der Kettenlänge C12-C22 mit Glycerin in den erfindungsgemäßen Emulsionen enthalten. Vorzugsweise werden dabei Monoester des Glyce- rins eingesetzt, wobei insbesondere Monoester von Glycerin mit ungesättigten linearen Fettsäuren geeignet sind. Besonders bevorzugt im Sinne der Erfindung ist Glycerinmono- oleat. Diese Glycerinester sind in den Mikroemulsionen in Mengen von 4 bis 10 Gew.-%, vorzugsweise 5 bis 9 Gew.-% - jeweils bezogen auf das Gesamtgewicht der Mikroemul- sion - enthalten.
Schließlich enthalten die Mikroemulsionen der vorliegenden Erfindung noch einen Öl- körper, also eine nicht-wasserlösliche organische Phase in Mengen von 5 bis 30 Gew.-%. Dabei sind besonders bevorzugte Ölphase ausgewählt aus der Gruppe von Guerbetalko- holen auf Basis von Fettalkoholen mit 6 bis 18 C-Atomen, Estern linearer C6-C22- Fettsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen bzw. Estern von verzweigten Cό-Cπ-Carbonsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen, Ester von linearen C6-C22-Fettsäuren mit verzweigten Alkoholen, Estern von C6-C22-Fettalkoholen und/oder Guerbetalkoholen mit aromatischen Carbonsäuren, Triglyceriden auf Basis C6- Cio-Fettsäuren, flüssigen Mono-/Di-/Triglyceridmischungen auf Basis von C6-C]8- Fettsäuren, Estern von C2-Cj2-Dicarbonsäuren mit linearen oder verzweigten Alkoholen mit 1 bis 22 Kohlenstoffatomen oder Polyolen mit 2 bis 10 Kohlenstoffatomen und 2 bis 6 Hydroxylgruppen, pflanzlichen Öle, verzweigten primäre Alkoholen, substituierte Cyc- lohexanen, linearen und verzweigten C6-C22-Fettalkoholcarbonaten, Guerbetcarbonaten auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 C Atomen, Estern der Benzoesäure mit linearen und/oder verzweigten C6-C22-Alkoholen n linearen oder verzweigte, symmetrischen oder unsymmetrischen Dialkylethern mit 6 bis 22 Kohlenstoffatomen pro Alkylgruppe, Ringöffnungsprodukten von epoxidierten Fettsäureestern mit Polyolen, Siliconölen und/oder aliphatischen bzw. naphthenischen Kohlenwasserstoffe, Dialkylcyclohexanen und/oder Silikonölen.
Als Kohlenwasserstoffe werden organische Verbindungen bezeichnet, die nur aus Kohlenstoff und Wasserstoff bestehen. Sie umfassen sowohl cyclische als auch acyclische (=aliphatische) Verbindungen. Sie umfassen sowohl gesättigte wie einfach oder mehrfach ungesättigte Verbindungen. Die Kohlenwasserstoffe können linear oder verzweigt sein. Je nach Anzahl der Kohlenstoffatome im Kohlenwasserstoff kann man die Kohlenwasserstoffe einteilen in ungradzahlige Kohlenwasserstoffe (wie beispielsweise Nonan, Unde- can, Tridecan) oder geradzahlige Kohlenwasserstoffe (wie beispielsweise Octan, Dode- can, Tetradecan). Je nach Art der Verweigung kann man die Kohlenwasserstoffe einteilen in lineare (= unverzweigte) oder verzweigte Kohlenwasserstoffe. Gesättigte, aliphatische Kohlenwasserstoffe werden auch als Paraffine bezeichnet.
Als "Kohlenwasserstoff Gemisch" werden Mischungen von Kohlenwasserstoffen verstanden, die bis zu 10 Gew.-% Substanzen enthalten, die nicht zu den Kohlenwasserstoffen zählen. Die Gew.-% Angaben der linearen CI l und linearen Cl 3 Kohlenwasserstoffe beziehen sich jeweils auf die Summe der im Gemisch vorhandenen Kohlenwasserstoffe. Die bis zu 10 Gew.-% vorhandenen Nicht-Kohlenwasserstoffe werden für diese Berechnung nicht berücksichtigt.
Bei den Substanzen, die nicht zu den Kohlenwasserstoffen zählen und die bis zu 10 Gew.- %, insbesondere bis zu 8 Gew.-%, vorzugsweise bis zu 5 Gew.-% im Kohlenwasserstoff- Gemisch enthalten sein können, handelt sich beispielsweise um Fettalkohole, die als nicht umgesetzte Edukte im Kohlenwasserstoff Gemisch verbleiben.
Der Begriff "CX-Kohlenwasserstoff ' umfasst Kohlenwasserstoffe mit einer C-Zahl von X, so umfasst beispielsweise der Begriff Cl 1 -Kohlenwasserstoff alle Kohlenwasserstoffe mit einer C-Zahl von 11.
Bevorzugt werden Kohlenwasserstoff-Gemische, wobei das Gemisch enthält
(a) 50 bis 90 Gew.-% lineare C-I l Kohlenwasserstoffe, vorzugsweise n- Undecan
(b) 10 bis 50 Gew.-% lineare Cl 3 Kohlenwasserstoffe, vorzugsweise n- Tridecan bezogen auf die Summe der Kohlenwasserstoffe.
Weiterhin ist ein Kohlenwasserstoff-Gemisch bevorzugt, das mindestens 2 voneinander verschiedene Kohlenwasserstoffe enthält, deren Kohlenstoff Zahl sich um mehr als 1 unterscheidet, wobei diese 2 voneinander verschiedene Kohlenwasserstoffe mindestens 60 Gew.-%, vorzugsweise mindestens 70 Gew.-% - bezogen auf die Summe der Kohlenwasserstoffe ausmachen.
Der Begriff „2 voneinander verschiedene Kohlenwasserstoffe" bezeichnet Kohlenwasserstoffe mit einer unterschiedlichen C-Zahl. Das bedeutet, wenn das Kohlenwasserstoff Gemisch einen Kohlenwasserstoff mit einer C Zahl von n (n = ganzzahlige Zahl) enthält, so enthält das Gemisch mindestens noch einen weiteren Kohlenwasserstoff mit einer C-Zahl von größer gleich n+2 bzw. kleiner gleich n-2.
Vorzugsweise ist n eine ungrade Zahl, insbesondere 7,9,11,13,15,17,19, 21 und/oder 23.
Weiterhin kann als Kohlenwasserstoff ein Kohlenwasserstoff Gemisch eingesetzt werden, das 14C- Isotope enthält und wobei das Kohlenwasserstoff Gemisch mindestens 2 voneinander verschiedene Kohlenwasserstoffe enthält, deren C-Zahl sich um mehr als 1 unterscheidet.
Als Ölkomponente können jedoch auch feste Fette und/oder Wachse verwendet werden. Diese können auch in Mischung mit den im vorherigen Abschnitt genannten Ölen vorliegen. Typische Beispiele für Fette sind Glyceride, d.h. feste oder flüssige pflanzliche oder tierische Produkte, die im Wesentlichen aus gemischten Glycerinestern höherer Fettsäuren bestehen. Hier sind insbesondere feste Mono- und Diglyceride zu nennen wie z.B. Glycerinmonooleat oder Glycerinmonostearat. Als Wachse kommen u.a. natürliche Wachse, wie z.B. Candelillawachs, Carnaubawachs, Japanwachs, Espartograswachs, Korkwachs, Guarumawachs, Reiskeimölwachs, Zuckerrohrwachs, Ouricurywachs, Montanwachs, Bienenwachs, Schellackwachs, Walrat, Lanolin (Wollwachs), Bürzelfett, Ceresin, Ozokerit (Erdwachs), Petrolatum, Paraffinwachse, Mikro wachse; chemisch modifizierte Wachse (Hartwachse), wie z.B. Montanesterwachse, Sasolwachse, hydrierte Jojo- bawachse sowie synthetische Wachse, wie z.B. Polyalkylenwachse und Polyethylengly- colwachse in Frage. Tocopherole und ätherische Öle eignen sich ebenfalls als Ölkomponente. Die Glycerinmonoester werden dabei aber nicht als Bestandteil der Ölphase betrachtet.
Ein weiterer wesentlicher Bestandteil der Mikroemulsionen, wie sie im erfindungsgemäßen Verfahren zum Einsatz kommen ist Wasser. Das Wasser sollte vorzugsweise demine- ralisiert sein. Die im ersten Schritt des Verfahrens verwendeten Mikroemulsionen enthalten vorzugsweise bis zu 81 Gew.-% Wasser. Bevorzugte Bereiche sind Mengen von 30 bis 80 Gew.-% und insbesondere von 45 bis 65 Gew.-% Wasser.
Neben den oben beschriebene Inhaltsstoffen können die Mikroemulsionen als zusätzli- chen Bestandteil noch Fettalkohole der allgemeinen Formel R -OH enthalten, wobei R für einen gesättigten oder ungesättigten, verzweigten oder unverzweigten Alkyl- oder Alkenylrest mit 6 bis 22 C-Atomen steht, enthalten kann. Typische Beispiele sind Capro- nalkohol, Caprylalkohol, 2-Ethylhexylalkohol, Caprinalkohol, Laurylalkohol, Isotridecy- lalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylal- kohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Linolylalkohol, Linolenylalko- hol, Elaeostearylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalko- hol und Brassidylalkohol sowie deren technische Mischungen, die z.B. bei der Hochdruckhydrierung von technischen Methylestern auf Basis von Fetten und Ölen oder Aldehyden aus der Roelen'schen Oxosynthese sowie als Monomerfraktion bei der Dimeri- sierung von ungesättigten Fettalkoholen anfallen. Bevorzugt sind technische Fettalkohole mit 12 bis 18 Kohlenstoffatomen, wie beispielsweise Kokos-, Palm-, Palmkern- oder Taigfettalkohol. Besonders bevorzugt ist die Mitverwendung von Cetylalkohol, Stearylalkohol Arachylalkohol und Behenylalkohol sowie deren Mischungen. Wenn Fettalkohole enthalten sind werden sie bevorzugt in Mengen bis zu 15 Gew.-%, bezogen auf die gesamte Mikroemulsion eingesetzt, wobei der Bereich von 1 bis 10 Gew.-% und vorzugsweise 2 bis 8 Gew.-% besonders bevorzugt sein können. Auch diese Fettalkohole, die wasserunlösliche organische Bestandteile darstellen fallen erfindungsgemäß nicht unter die Definition des Ölkörpers.
Die Mikroemulsion, die im ersten Schritt des erfindungsgemäßen Verfahrens hergestellt wird, kann weiterhin noch anionische Tenside enthalten. Typische Beispiele für anionische Tenside sind Seifen, Alkylbenzolsulfonate, Alkansulfonate, Olefinsulfonate, α- Methylestersulfonate, Sulfofettsäuren, Alkylsulfate, Alkylethersulfate, Mono- und Dial- kylsulfosuccinate, Mono- und Dialkylsulfosuccinamate, Sulfotriglyceride, Monoglycerid- sulfate, Amidseifen, Ethercarbonsäuren und deren Salze, Fettsäureisethionate, Fettsäure- sarcosinate, Fettsäuretauride, N-Acylaminosäuren, wie beispielsweise Acyllactylate, A- cyltartrate, Acylglutamate und Acylaspartate, Alkyloligoglucosidsulfate und Proteinfettsäurekondensate (insbesondere pflanzliche Produkte auf Weizenbasis).
Im Sinne der vorliegenden Erfindung sind Fettalkoholethersulfate bevorzugt, hier insbesondere solche der allgemeinen Formel R3O-(CH2CH2O)1nSOsX, in der R3 für einen linearen oder verzweigten Alkyl- und/oder Alkenylrest mit 6 bis 22 Kohlenstoffatomen, n für Zahlen von 1 bis 10 und X für ein Alkali- und/oder Erdalkalimetall, Ammonium, Alky- lammonium, Alkanolammonium oder Glucammonium steht. Alkylethersulfate ("Ethersul- fate") stellen bekannte anionische Tenside dar, die großtechnisch durch SO3- oder Chlor- sulfonsäure (CSA)-Sulfatierung von Fettalkohol- oder Oxoalkoholpolyglycolethern und nachfolgende Neutralisation hergestellt werden. Typische Beispiele sind die Sulfate von Anlagerungsprodukten von durchschnittlich 1 bis 10 und insbesondere 2 bis 5 Mol Ethy- lenoxid an Capronalkohol, Caprylalkohol, 2-Ethylhexylalkohol, Caprinalkohol, Laurylal- kohol, Isotridecylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalko- hol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol und Brassidylalkohol sowie deren technische Mischungen in Form ihrer Natrium- und/oder Magnesiumsalze. Die Ethersulfate können dabei sowohl eine konventionelle als auch eine eingeengte Homologenverteilung aurweisen. Besonders bevorzugt ist der Einsatz von Ethersulfaten auf Basis von Addukten von durchschnittlich 2 bis 3 Mol Ethylenoxid an technische C12/H- bzw. CΠ/JS- Kokosfettalkoholfraktionen in Form ihrer Natrium- und/oder Magnesiumsalze.
Die im erfindungsgemäßen Verfahren eingesetzten Mikroemulsionen können noch weitere nichtionische, amphotere und/oder kationische Tenside, vorzugsweise in Mengen von insgesamt 1 bis 25 Gew.-%, bezogen auf das Gesamtgewicht der Emulsion, enthalten. Typische Beispiele für weitere nichtionische Tenside (neben dem Alkyl(oligo)glycosiden) sind z.B. Fettsäure-N-alkylglucamide, Polyolfettsäureester, Zuckerester, Sorbitanester, Polysorbate, Alkoholethoxylate und Aminoxide. Alkoholethoxylate werden herstellungsbedingt als Fettalkohol- oder Oxoalkoholethoxylate bezeichnet und folgen vorzugsweise der Formel R4O(CH2CH2O)nH R4 für einen linearen oder verzweigten Alkyl- und/oder Alkenylrest mit 6 bis 22 Kohlenstoff-atomen und n für Zahlen von 1 bis 50 steht. Typische Beispiele sind die Addukte von durchschnittlich 1 bis 50, vorzugsweise 5 bis 40 und insbesondere 10 bis 25 Mol an Capronalkohol, Caprylalkohol, 2-Ethylhexylalkohol, Caprinalkohol, Laurylalkohol, Isotridecylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol und Brassidylalkohol sowie deren technische Mischungen, die z.B. bei der Hochdruckhydrierung von technischen Methylestern auf Basis von Fetten und Ölen oder Aldehyden aus der Roelen1- schen Oxosynthese sowie als Monomerfraktion bei der Dimerisierung von ungesättigten Fettalkoholen anfallen. Bevorzugt sind Addukte von 10 bis 40 Mol Ethylenoxid an technische Fettalkohole mit 12 bis 18 Kohlenstoffatomen, wie beispielsweise Kokos-, Palm-, Palmkern- oder Taigfettalkohol.
Beispiele für geeignete amphotere bzw. zwitterionische Tenside sind Alkylbetaine, Alkyl- amidobetaine, Aminopropionate, Aminoglycinate, Imidazoliniumbetaine und Sulfobetai- ne. Beispiele für geeignete Alkylbetaine stellen die Carboxyalkylierungsprodukte von sekundären und insbesondere tertiären Aminen dar. Typische Beispiele sind die Carbo- xymethylierungsprodukte von Hexylmethylamin, Hexyldimethylamin, Octyldimethyla- min, Decyldimethylamin, Dodecylmethylamin, Dodecyldimethylamin, Dodecylethyl- methylamin, Ci2/i4-Kokosalkyldimethylamin, Myristyldimethylamin, Cetyldimethylamin, Stearyldimethyl-amin, Stearylethylmethylamin, Oleyldimethylamin, C16/18- Talgalkyldimethylamin sowie deren technische Gemische. Weiterhin kommen auch Car- boxyalkylierungsprodukte von Amidoaminen in Betracht. Typische Beispiele sind Umsetzungsprodukte von Fettsäuren mit 6 bis 22 Kohlenstoffatomen, namentlich Capronsäu- re, Caprylsäure, Caprinsäure, Laurinsäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Gemische, mit N,N-Dimethylaminoethylamin, N,N-Dimethylami- nopropylamin, N,N-Diethylaminoethylamin und N,N-Diethylaminopropylamin, die mit Natriumchloracetat kondensiert werden. Bevorzugt ist der Einsatz eines Kondensationsproduktes von C8/i8-Kokosfettsäure-N,N-dime-thylaminopropylamid mit Natriumchloracetat. Weiterhin kommen auch Imidazoliniumbetaine in Betracht. Auch bei diesen Substanzen handelt es sich um bekannte Stoffe, die beispielsweise durch cyclisierende Kondensation von 1 oder 2 Mol Fettsäure mit mehrwertigen Aminen wie beispielsweise Ami- noethylethanolamin (AEEA) oder Diethylentriamin erhalten werden können. Die entsprechenden Carboxyalkylierungsprodukte stellen Gemische unterschiedlicher offenkettiger Betaine dar. Typische Beispiele sind Kondensationsprodukte der oben genannten Fettsäuren mit AEEA, vorzugsweise Imidazoline auf Basis von Laurinsäure oder wiederum Ci2/14-Kokosfettsäure, die anschließend mit Natriumchloracetat betainisiert werden.
Typische Beispiele für kationische Tenside sind quartäre Ammoniumverbindungen und Esterquats, insbesondere quaternierte Fettsäuretrialkanolaminestersalze.
Besonders bevorzugte Mikroemulsionen für den Schritt 1 sind wie folgt zusammengesetzt:
Alkyl(oligo)glycoside 10 bis 20 Gew.-%
Glycerinfettsäureester 4 bis 10 Gew.-%
Ölkörper 5 bis 30 Gew.-%
Fettalkoholethersulfate 0 bis 15 Gew.-%
Fettalkohole 0 bis 15 Gew.-%
Der Rest auf 100 Gew.-% ist dann jeweils Wasser, ggf. ergänzt um weitere, optionale Inhaltsstoffe. Die im ersten Schritt des erfindungsgemäßen Verfahrens hergestellten Mikroemulsionen gemäß der obigen allgemeinen Beschreibung werden in einem separaten Schritt mit Wasser verdünnt und bilden dann spontan die erfindungsgemäße feinteilige Emulsion mit einer mittleren Teilchengröße von kleiner 1 μm aus. Dabei wird - bezogen auf das Volumen der Mirkoemulsion - das 5 bis 20igfache Volumen an Wasser für die Verdünnung verwendet. Der Verdünnungsschritt kann bei Temperaturen von 15 bis 35 °C durchgeführt werden, vorzugsweise bei Raumtemperatur (= 21 °C). Vorzugsweise werden auf einen Teil der Mikroemulsion 4 bis 9 Teile an Wasser gegeben. Der Verdünnungsschritt kann unmittelbar auf die Fertigstellung der Mikroemulsion im Schritt 1 erfolgen - es ist aber auch möglich und in der Praxis bevorzugt, dass die Verdünnung später erfolgt. Die Mikroemulsionen des Schritts 1 sind ebenfalls lagerstabil, so dass auch bei längerer Lagerung dieses Intermediates keine Nachteile in Bezug auf die Stabilität bzw. Konstitution der später im zweiten Schritt hergestellten Emulsion auftreten.
Die Emulsion, die durch den abschließenden Verdünnungs schritt erhalten werden, weisen eine mittlere Teilchengröße von kleiner 1 μm, vorzugsweise kleiner 0,8 μm auf. Vorzugsweise ist dabei der Anteil an Teilchen mit einem Durchmesser bzw. einer Größe < 1 μm mindestens 70 %, vorzugsweise mindestens 80 % und besonders bevorzugt mindestens 90 % aller Teilchen. Die so hergestellten feinteiligen Emulsionen sind ihrerseits ein Gegen- stand der vorliegenden Anmeldung.
Die erfindungsgemäß hergestellten feinteiligen Emulsionen können zur Herstellung von kosmetischen Zubereitungen verwendet werden, wie beispielsweise Haarshampoos, Haarlotionen, Schaumbäder, Duschbäder, Cremes, Gele, Lotionen, alkoholische und wässerig/alkoholische Lösungen, Emulsionen, Wachs/ Fett-Massen, Stiftpräparaten, Pudern oder Salben. Diese kosmetischen Mittel können ferner als weitere Hilfs- und Zusatzstoffe milde Tenside, Ölkörper, Emulgatoren, Perlglanzwachse, Konsistenzgeber, Verdickungsmittel, Überfettungsmittel, Stabilisatoren, Polymere, Siliconverbindungen, Fette, Wachse, Lecithine, Phospholipide, biogene Wirkstoffe, UV-Lichtschutzfaktoren, Antio- xidantien, Deodorantien, Antitranspirantien, Antischuppenmittel, Filmbildner, Quellmittel, Insektenrepellentien, Selbstbräuner, Tyrosininhibitoren (Depigmentierungsmittel), Hydrotrope, Solubilisatoren, Konservierungsmittel, Parfümöle, Farbstoffe und dergleichen enthalten. Ein weiterer Gegenstand der Anmeldung betrifft daher kosmetische Mittel, enthaltend eine wässerige Emulsion gemäß der obigen Beschreibung. Bevorzugt sind dünnflüssige Lotionen zur Behandlung von Haut oder Haaren. Beispiele
Es wurde zunächst eine Mikroemulsion der folgenden Zusammensetzung durch Vermischen der Inhaltsstoffe hergestellt:
Diese Mikroemulsion wurde anschließend erfindungsgemäß mit Wasser verdünnt. Dabei wurden drei verschiedene Verdünnungen untersucht. Die Ergebnisse sind in der folgenden Tabelle aufgeführt:
Die Teilchengröße der Emulsionen wurde mit einem Messgerät des Typs Horiba LB500 gemessen. Die erhaltenen Emulsionen sind lagerstabil, d.h. bei Lagerung bei 40 °C über 4 Wochen tritt keine sichtbare Ölabscheidung auf.

Claims

Patentansprüche
1. Verfahren zur Herstellung von wässerigen Emulsionen mit einer mittleren Teilchengröße von weniger als 1 μm, dadurch gekennzeichnet, dass man zunächst in einem ersten Schritt eine Mikroemulsion herstellt, enthaltend mindestens
(a) 10 - 20 Gew.-% eines Alkyl(oligo)glycosids der allgemeinen Formel R'θ-[G]P in der R1 für einen Alkyl- und/oder Alkenylrest mit 4 bis 22 Kohlenstoffatomen, G für einen Zuckerrest mit 5 oder 6 Kohlenstoffatomen und p für Zahlen von 1 bis 10 steht und
(b) 4 — 10 Gew.-% eines Ester von Glycerin mit einer Fettsäure der Kettenlänge C12-C22 und
(c) 5 - 30 Gew.-% eines Ölkörpers und
(d) den Rest auf 100 Gew.-% Wasser und ggf. weitere Inhaltsstoffe, und anschließend in einem zweiten Schritt diese Mikroemulsion mit dem 5 bis 20 fachen Volumen der Mikroemulsion bei Temperaturen von 15 bis 35°C mit Wasser verdünnt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Mikroemulsion zusätzlich noch anionische, nichtionische, amphotere oder kationische Tenside enthalten kann.
3. Verfahren nach mindestens einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass die Mikroemulsion noch Fettalkohole der allgemeinen Formel R2-OH, wobei R2 für einen gesättigten oder ungesättigten, verzweigten oder unverzweigten Alkyl- oder Alkenylrest mit 6 bis 22 C-Atomen steht, enthalten kann.
4. Verfahren nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Mikroemulsion noch Fettalkoholethersulfate der allgemeinen Formel R O- (CH2CH2O)1TISO3X in der R3 für einen linearen oder verzweigten Alkyl- und/oder Alkenylrest mit 6 bis 22 Kohlenstoffatomen, n für Zahlen von 1 bis 10 und X für ein Alkali- und/oder Erdalkalimetall, Ammonium, Alkylammonium, Alkanolammonium oder Glucammonium steht enthält.
5. Verfahren nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die in Schritt 1 hergestellten Mikroemulsionen wie folgt zusammengesetzt sind:
Alkyl(oligo)glycoside 10 bis 20 Gew.-% Glycerinfettsäureester 4 bis 10 Gew.-%
Ölkörper 5 bis 30 Gew.-%
Fettalkoholethersulfate 0 bis 15 Gew.-% Fettalkohole 0 bis 15 Gew.-%
Rest auf 100 % Wasser und ggf. weitere Inhaltsstoffe.
6. Verfahren nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Ölkörper ausgewählt ist aus der Gruppe von Guerbetalkoholen auf Basis von Fettalkoholen mit 6 bis 18 C-Atomen, Estern linearer C6-C22-Fettsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen bzw. Estern von verzweigten C6-Ci3- Carbonsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen, Ester von linearen C6-C22-Fettsäuren mit verzweigten Alkoholen, Estern von C6-C22-Fettalkoholen und/oder Guerbetalkoholen mit aromatischen Carbonsäuren, Triglyceriden auf Basis Cö-Cio-Fettsäuren, flüssigen Mono-/Di-/Triglyceridmischungen auf Basis von C6- C18-Fettsäuren, Estern von C2-Ci2-Dicarbonsäuren mit linearen oder verzweigten Alkoholen mit 1 bis 22 Kohlenstoffatomen oder Polyolen mit 2 bis 10 Kohlenstoffatomen und 2 bis 6 Hydroxylgruppen, pflanzlichen Öle, verzweigten primäre Alkoholen, substituierte Cyclohexanen, linearen und verzweigten C6-C22-Fettalkoholcarbonaten, Guerbetcarbonaten auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis IO C Atomen, Estern der Benzoesäure mit linearen und/oder verzweigten C6-C22- Alkoholen n linearen oder verzweigte, symmetrischen oder unsymmetrischen Dialky- lethern mit 6 bis 22 Kohlenstoffatomen pro Alkylgruppe, Ringöffnungsprodukten von epoxidierten Fettsäureestern mit Polyolen, Siliconölen und/oder aliphatischen bzw. naphthenischen Kohlenwasserstoffe, Dialkylcyclohexanen und/oder Silikonölen.
7. Wässerige Emulsion mit einer mittleren Teilchengröße von kleiner 1 μm, vorzugsweise kleiner 0,8 μm, hergestellt nach einem Verfahren gemäß Anspruch 1.
8. Kosmetische Mittel, enthaltend eine wässerige Emulsion gemäß Anspruch 7.
EP08773439A 2007-06-19 2008-06-14 Verfahren zur herstellung feinteiliger emulsionen Ceased EP2162112A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08773439A EP2162112A2 (de) 2007-06-19 2008-06-14 Verfahren zur herstellung feinteiliger emulsionen

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
EP07011967A EP2014274A1 (de) 2007-06-19 2007-06-19 Kohlenwasserstoff Gemische und ihre Verwendung
DE102007046575A DE102007046575A1 (de) 2007-09-27 2007-09-27 Verfahren zur Herstellung von feinteiliger Emulsion
DE102008017032 2008-04-03
DE102008017034 2008-04-03
DE102008022433 2008-05-07
PCT/EP2008/004802 WO2008155074A2 (de) 2007-06-19 2008-06-14 Verfahren zur herstellung von feinteiliger emulsionen
EP08773439A EP2162112A2 (de) 2007-06-19 2008-06-14 Verfahren zur herstellung feinteiliger emulsionen

Publications (1)

Publication Number Publication Date
EP2162112A2 true EP2162112A2 (de) 2010-03-17

Family

ID=40156737

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08773439A Ceased EP2162112A2 (de) 2007-06-19 2008-06-14 Verfahren zur herstellung feinteiliger emulsionen

Country Status (5)

Country Link
US (1) US20100247588A1 (de)
EP (1) EP2162112A2 (de)
JP (2) JP5690138B2 (de)
CN (1) CN101835451A (de)
WO (1) WO2008155074A2 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2954107B1 (fr) * 2009-12-23 2012-04-20 Oreal Composition cosmetique sous forme de nanoemulsion contenant un alcane lineaire volatil
DE102011015192A1 (de) * 2011-03-25 2012-09-27 Henkel Ag & Co. Kgaa Verfahren zur Herstellung eines konditionierenden Reinigungsmittels
JP5976796B2 (ja) * 2011-07-08 2016-08-24 コグニス・アイピー・マネージメント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングCognis IP Management GmbH 化粧洗浄組成物におけるマイクロエマルションの使用
FR2980342B1 (fr) 2011-09-23 2014-01-24 Oreal Dispositif de conditionnement et d'application d'un produit cosmetique solide
EP2774604B1 (de) * 2013-03-08 2017-08-30 Symrise AG Kosmetische Zubereitungen
FR3007281B1 (fr) 2013-06-21 2015-07-24 Oreal Procede de coloration d'oxydation mettant en oeuvre une composition riche en corps gras comprenant des catalyseurs metalliques, et des coupleurs
FR3007276B1 (fr) 2013-06-21 2015-06-19 Oreal Procede de coloration d'oxydation mettant en œuvre un pretraitement a base de composition riche en corps gras et de catalyseurs metalliques
FR3015260B1 (fr) 2013-12-19 2018-08-31 L'oreal Composition anhydre anti-transpirante sous forme d'aerosol comprenant un actif anti-transpirant et un polymere ethylenique filmogene non hydrosoluble et sequence

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4033928A1 (de) * 1990-10-25 1992-04-30 Henkel Kgaa Oel-in-wasser-emulsionen
DE19530220A1 (de) * 1995-08-17 1997-02-20 Henkel Kgaa Translucente Antitranspirantien/Deodorantien
EP1264633B1 (de) * 2001-06-08 2007-02-28 Cognis IP Management GmbH Verwendung von Alkyl(ether)phosphaten(I)
DE10150729A1 (de) * 2001-10-13 2003-04-17 Cognis Deutschland Gmbh Kosmetische und/oder pharmazeutische Zubereitungen
GB0207647D0 (en) * 2002-04-03 2002-05-15 Dow Corning Emulsions
EP1502644A3 (de) * 2003-07-28 2006-08-09 Cognis IP Management GmbH Emulgatorkombination, diese enthaltende Emulsion und Verfahren zu deren Herstellung
DE10347940A1 (de) * 2003-10-15 2005-05-19 Cognis Deutschland Gmbh & Co. Kg Selbstemulgierende Zubereitungen
JP4553605B2 (ja) * 2004-02-27 2010-09-29 株式会社資生堂 マイクロエマルション組成物、及びその製造方法
JP4810129B2 (ja) * 2005-02-01 2011-11-09 マルホ株式会社 非水乳化型組成物
DE102005011785A1 (de) * 2005-03-11 2006-09-21 Goldschmidt Gmbh Langzeitstabile kosmetische Emulsionen
JP4643377B2 (ja) * 2005-07-07 2011-03-02 株式会社資生堂 一相マイクロエマルション組成物、及びo/w超微細エマルション外用剤の製造方法
DE102006004353A1 (de) * 2006-01-30 2007-08-02 Goldschmidt Gmbh Kaltherstellbare, niedrigviskose und langzeitstabile kosmetische Emulsionen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
human translation of JP2005239674 *

Also Published As

Publication number Publication date
JP2013237672A (ja) 2013-11-28
WO2008155074A2 (de) 2008-12-24
WO2008155074A3 (de) 2010-01-28
JP2010530297A (ja) 2010-09-09
US20100247588A1 (en) 2010-09-30
JP5690138B2 (ja) 2015-03-25
CN101835451A (zh) 2010-09-15

Similar Documents

Publication Publication Date Title
EP2194956B1 (de) Shampoo-zusammensetzung mit verbesserter pflegeleistung
EP2164449B1 (de) Shampoo-zusammensetzung mit verbesserter pflegeleistung
EP2368972B1 (de) Hautfreundliche Handgeschirrspülmittel
EP1715833B1 (de) Nanoemulsionen
DE19646867C1 (de) Kosmetische Zubereitungen
EP3238786B1 (de) Verwendung von speziellen n-methyl-n-acylglucaminen in hautreinigungsmitteln
WO2008155074A2 (de) Verfahren zur herstellung von feinteiliger emulsionen
EP2858621B1 (de) Tensidlösungen enthaltend n-methyl-n-c8-c10-acylglucamine und n-methyl-n-c12-c14-acylglucamine
DE4301820A1 (de) Schäumende Emulsionen
DE19511572A1 (de) Niedrigviskose Trübungsmittelkonzentrate
WO2012130413A2 (de) Ein haarpflegemittel
DE4409321A1 (de) Detergensgemische
EP3038590A1 (de) Kosmetische mittel
WO2017012727A1 (de) Stabilisierungsgemisch
DE102007046575A1 (de) Verfahren zur Herstellung von feinteiliger Emulsion
DE102008024570A1 (de) Shampoo-Zusammensetzung mit verbesserter Pflegeleistung
EP1702606A2 (de) Ölhaltige Tensidgele
DE19641280A1 (de) Wäßrige Perlglanzdispersionen
WO2015121101A1 (de) Mikroemulsionen sowie kosmetische reinigungsmittel enthaltende mikroemulsionen
DE19737497C2 (de) Wäßrige Hautreinigungsmittel in Emulsionsform
DE9317968U1 (de) Schäumende Emulsionen
WO1996021423A1 (de) Elektrolytsalzfreie wässrige tensidformulierungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091211

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HLOUCHA, MATTHIAS

Inventor name: KUESTERS, ESTHER

Inventor name: EISFELD, WOLF

Inventor name: MENZER, JASMIN

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20120315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20170423