EP2156469A1 - Leuchtmittel - Google Patents

Leuchtmittel

Info

Publication number
EP2156469A1
EP2156469A1 EP07818904A EP07818904A EP2156469A1 EP 2156469 A1 EP2156469 A1 EP 2156469A1 EP 07818904 A EP07818904 A EP 07818904A EP 07818904 A EP07818904 A EP 07818904A EP 2156469 A1 EP2156469 A1 EP 2156469A1
Authority
EP
European Patent Office
Prior art keywords
light
lamp according
semiconductor structures
emitting semiconductor
chip arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07818904A
Other languages
English (en)
French (fr)
Inventor
Georg Diamantidis
Frederic Tonhofer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOCTRON SOPARFI SA
Original Assignee
NOCTRON SOPARFI SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOCTRON SOPARFI SA filed Critical NOCTRON SOPARFI SA
Publication of EP2156469A1 publication Critical patent/EP2156469A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/647Heat extraction or cooling elements the elements conducting electric current to or from the semiconductor body
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing

Definitions

  • the invention relates to a luminous means according to the preamble of claim 1.
  • Such bulbs find widespread use in many applications and are characterized by a matched to the particular application terminal socket, which can cooperate with a corresponding version.
  • a luminous element e.g. a filament
  • Such lamps often have the disadvantage that they have only a relatively short life at partially high initial cost, since the light-emitting element is prone and already narh. 1 000 operating hours is no longer functional.
  • the object of the invention is to provide a lamp of the type mentioned, in which the life is increased.
  • semiconductor Terkristalle with a pn junction in question which emit light when exposed to voltage.
  • Such semiconductor crystals are characterized by a high energy yield coupled with a long life.
  • the power supply lines can be connected via the supply lines in addition to the power supply
  • Luminescent chip arrangement and a heat dissipation of the heating up under voltage Leuchtchip- arrangement can be ensured.
  • a higher light output of the luminous means can advantageously be achieved by the measures according to claim 5 or claim 6.
  • the light chip arrangement is designed as specified in claim 9, a light emission in substantially all spatial directions can be achieved.
  • the development of the invention according to claim 9 has the advantage that one receives a higher amount of light and at the same time comes with the operating voltage of the lamp in higher areas for which standard voltage sources such as batteries, power supplies and standard power line are available.
  • An illuminant according to claim 11 radiates forward and backward light.
  • Phosphor particles absorb radiation impinging on them and emit radiation of at least one other wavelength. at a suitable choice of phosphor particles or phosphor particle mixtures can thus umgenell11 the radiation emitted by the Leuchtchip arrangement in a radiation with a different spectrum.
  • the phosphor particles are fixed in their homogeneous distribution.
  • the efficiency of the color specification of the light is improved by the phosphor particles.
  • a light-transmissive substrate provided in any case, which carries the semiconductor structures, can simultaneously ensure the desired spacing on one side of the light-chip arrangement.
  • the semiconductor light-emitting structures are connected by interconnects running parallel to the substrate planes. These can be particularly well and particularly even by vapor deposition show (no shading of the metal vapor).
  • Figure IA is a side view of a light chip arrangement with a semiconductor structure
  • FIG. 1B is a top view of the luminous chip arrangement according to FIG. 1A;
  • FIG. 2A shows a modified light chip arrangement with three semiconductor structures
  • FIG. 2B shows a plan view of the modified light-emitting chip arrangement according to FIG. 2A;
  • FIG. 3 shows a detailed view of the region enclosed between an ellipse in FIG. 2A between two semiconductor structures
  • FIG. 4 shows a luminous means with a standardized bayonet base, wherein supply lines contact a luminescent chip arrangement and a transparent bulb is shown separated from the bayonet base;
  • FIG. 5 shows a detail view of the Leuchcmictels of Figure 4 on an enlarged scale, the supply lines contact the light chip arrangement according to Figures IA and IB;
  • FIG. 6 is a view corresponding to FIG. 5, wherein the light chip arrangement is enveloped by a material with phosphor particles;
  • FIG. 7 shows a view corresponding to FIG. 5 of a modified luminous means according to FIG. 4, in which the luminous chip arrangement according to FIGS. 2A and 2B is contacted on the supply lines;
  • FIG. 8 shows a light-emitting chip arrangement with light-emitting semiconductor structures connected in parallel;
  • FIG. 9 shows a section through a modified light chip arrangement with series-connected semiconductor structures.
  • a luminescent chip arrangement which comprises a carrier substrate 12 made of sapphire glass.
  • Sapphire crystal is also known as corundum (Al 3 O glass).
  • the carrier substrate 12 has a thickness of about 400 ⁇ m in the light chip arrangement 10, but it can also have other thicknesses, which may be, for example, between 5 ⁇ m and 600 ⁇ m.
  • a cheaper material in the form of a high-temperature-resistant glass such as pyrex glass may also be used for the carrier substrate 12.
  • the carrier substrate 12 carries a semiconductor structure 14, which in turn comprises three layers:.
  • a lower layer 16 attached to the sapphire glass support substrate 12 is an n-type layer, which may be e.g. consists of n-GaN or n-InGaN.
  • a middle layer 18 is an MQW layer.
  • MQW is the abbreviation for "Multiple Quantum Well”.
  • An MQW material is a superlattice which has an electronic band structure modified according to the superlattice structure and accordingly emits light at other wavelengths. The choice of the MQW layer can influence the spectrum of the radiation emitted by the pn-semiconductor structure 14.
  • An upper layer 20 is made of a p-type III-V semiconductor material, for example, P-type GaN.
  • the semiconductor structure 14 has a circumferential U-shaped circumferential step 22, whose step surface 24 is located in the height between the Victoriastubstrat 12 and the MQW layer 18. In this way, the n-type layer 16 projects laterally beyond the MQW layer 18 and the p-type layer 20 in the region of the step surface 24.
  • the step surface 24 is covered with a correspondingly U-shaped vapor-deposited conductor track 26 with two parallel conductor tracks 26a and 26b and a conductor track 26c running perpendicular thereto.
  • the conductor 26c forms a contact terminal to the n-type layer 16.
  • a conductor surface 30 is vapor-deposited on its upper side next to the region 28 flanked laterally by the U-shaped conductor track 26, which forms a contact connection to the p-type layer 20. From the conductor surface 30 extend on the surface of the p-type layer 20, three initially parallel conductor tracks 32a, 32b, 32c in the region 28 of the p-type layer 20 into it. The free ends of the two outer conductor tracks 32a and 32c are angled in each case by 90 ° in the direction of the middle conductor track 32b, as can be clearly seen in FIG. 1A.
  • the region 28 of the semiconductor structure 14 has an extension of 280 ⁇ m ⁇ 280 ⁇ m to 1 800 ⁇ m ⁇ 1 800 ⁇ m.
  • the conductor tracks 26a, 26b, 26c and 32a, 32b, 32c and the conductor surface 30 are formed by vapor deposition of a copper Obtained gold alloy. Alternatively, silver or aluminum alloys may also be used. In the region of the contact terminals 26c and 30, gold may be provided, which is doped in a manner known per se for connection to a p-type layer or an n-type layer.
  • FIGS. 2A and 2B a modified light chip arrangement 10 'is shown in each case.
  • Components which correspond to those of the light chip arrangement 10 according to FIGS. 1A and 1B have the same reference sign plus a dash.
  • three semiconductor structures 14' a, 14 'b and 14' c are provided on a carrier substrate 12 'which essentially correspond to the semiconductor structure 14 according to FIGS. 1A and 1B.
  • the semiconductor structures 14 'a, 14' b and 14 'c are connected in series, with the conductor surface 30' of the middle semiconductor structure 14 'b with the conductor track 26' c of the semiconductor structure 14 ( a and the conductor track 26 'c of the semiconductor structure 14 'b is connected to the conductor surface 30' of the semiconductor structure 14 'c.
  • connection between a conductor track 26'c and a conductor surface 30 ' is shown in greater detail in FIG. 3 on the example of the connection between the semiconductor structures 14 "b and 14'c (see FIG.
  • a ramp-shaped insulator 34 is provided between the semiconductor structures 14 'b and 14 1 C.
  • an electrically insulating material can be sputtered between the corresponding semiconductor structures 14 '.
  • the distance between two halves Conductor structures 14 ', in Figure 3, the semiconductor structures 14' b and 14 'c, is of the order of 100 microns.
  • a conductor 36 is vapor-deposited, which may for example consist of the same material, which has been explained above in connection with the conductor tracks 26 and 32 and the conductor surface 30.
  • the conductor track 36 ensures a secure and stable conductive connection between the semiconductor structures 14 '.
  • Conventionally used bonding structures with extremely thin bonding wires are less resistant to thermal and / or mechanical stress.
  • the semiconductor structure 14 'c is somewhat modified there, and a recess 38 filled with the insulator material of the ramp 34 is provided below the conductor track 36.
  • FIG. 4 shows a luminous means 40 which has a standardized bayonet socket as the terminal base 42.
  • the bayonet base such as a GU10O socket and the like
  • a standardized socket or a standardized glass squeeze base may be provided.
  • a reference numeral and known per se outer terminal areas of the terminal base 42 extend in the interior of two supply lines 44a, 44b. These pass above the connection base 42 a spacer 46 made of an electrically insulating material. This prevents that the supply lines 44a, 44b touch, which would lead to a short circuit.
  • the free ends 48a and 48b of the supply lines 44a and 44b form contact areas, which contact a light chip arrangement 10 or 10 ', which is merely indicated in FIG.
  • the lighting means 40 comprises a piston 50 made of a light-transmitting material which, in the mounted state, together with the connection base 42, delimits an interior 52 of the light-emitting means 40.
  • the piston 50 is made of glass or an epoxy resin, for example, and may also, if desired, fulfill the function of collecting optics.
  • the inner space 52 is filled with a silicone oil 54, through which heat generated by the light chip arrangement 10 or 10 'is dissipated to the radially outer area of the pistons 50.
  • the supply lines 44a, 44b in addition to their electrical conductivity on a good thermal conductivity, which should preferably at least equal to that of copper. 33
  • these have a diameter of 0.3 mm to 2 mm, preferably between 0.5 mm and 1.0 mm, more preferably about 0.7 mm.
  • FIG. 5 shows an enlarged view of how the light chip arrangement 10 is contacted with a single semiconductor structure 14 between the contact regions 48a, 48b of the supply lines 44a, 44b.
  • the contact region 48a of the supply line 44a is contacted to the conductor track 26c of the semiconductor structure 14 by brazing by means of a silver solder 56a.
  • Their conductor surface 30 is also connected to the contact region 48b of the second supply line 44b of the luminous means 40 via a silver solder designated 56b.
  • the contact areas 48a, 48b of the supply lines 44a, 44b can also be conductively connected to the corresponding conductor track 26c or the conductor surface 30 of the semiconductor structure 14 by means of an electrically conductive adhesive be.
  • the light chip arrangement 10 is additionally enveloped by a transparent material 58, in which phosphor particles 60 indicated by dots are distributed homogeneously.
  • the material 58 may be, for example, a transparent two-component adhesive.
  • the material 58 is shown in a broken view. However, the light chip assembly 10 is actually completely enveloped by the material 58.
  • the semiconductor structure 14 radiates upon application of a Voltage ultraviolet light and blue light in a wavelength range of 420 nm to 480 nm from.
  • the material layer 58 enveloping the light-emitting chip arrangement 10 with the phosphor particles 60 makes it possible to obtain a white-light LED.
  • Suitable phosphor particles 60 are made from color centered transparent solid state materials. In order to convert the ultraviolet and blue light emitted from the semiconductor structure 14 into white light, three types of phosphor particles 60 are used, which partially absorb the ultraviolet and blue light and emit themselves in yellow and red. If desired, it is also possible to add phosphor particles which emit in the blue.
  • a change in the spectrum of the light generated by the illuminant 40 is also possible by constructing the semiconductor structure 14 from layers 16, 18 and 20 formed of materials known in the art other than those specified herein.
  • the latter can also be distributed homogeneously in the silicone oil 54 in the interior 52 of the luminous means 40.
  • the silicone oil 54 can also be dispensed with.
  • the inner surface of the interior 52 of the piston 50 could be coated with a layer of material 58 with phosphor particles 60 of the type discussed above.
  • the phosphor particles 60 or the material 58 receiving them can also be applied on the outside to a transparent plastic or glass envelope, which is designed such that it forms the semiconductor structure 14 in the envelope used illuminated chip assembly 10 or 10 'in all directions in space at substantially the same distance surrounds.
  • a favorable distance between the material 58, in which the phosphor particles 60 are homogeneously distributed, to the semiconductor structure 14 is between about 0.3 mm and 3.0 mm, preferably 0.5 mm and 1.5 mm, preferably about 1 mm ,
  • FIG. 7 shows, on an enlarged scale, the contacting of the luminescent chip arrangement 10 'with the three semiconductor structures 14' a, 14 'b, 14' c via the supply lines 44a, 44b.
  • the luminescent chip arrangement 10 ' can also be enveloped by a material 58, in which phosphor particles 60 are homogeneously distributed, in order to achieve white-light radiation.
  • the material 58 is indicated by dashed lines in FIG.
  • the respectively formed illuminant 40 with the Leuchtchip- arrangement 10 or 10 ' is screwed or plugged into a correspondingly designed version suitable for operation with its terminal base 42.
  • the supply lines 44a, 44b and above the corresponding light chip arrangement 10 or 10 ' are applied to an operating voltage, whereby the corresponding semiconductor structures 14 and 14' are excited to shine.
  • the illustrated semiconductor structures 14 and 14 'and the corresponding light chip arrangement 10 and 10' are characterized by a long life with high luminosity. In this way, long-lasting luminaires realized means that can replace known standard bulbs with a shorter life, without structural changes must be made, for example, in associated lamp holders.
  • Each semiconductor structure 14 or 14 ' is operated with an operating voltage of approximately 3.5 to 4 V, so that the light chip arrangement 10 formed of three semiconductor structures 14' a, 14 'b and 14' c can be operated with 12 V. , This is particularly advantageous for the motor vehicle sector.
  • terminal base 42 electronic components such as one or more ⁇ corresponding series resistors, or the like may additionally be provided, which are connected between the external terminal portions of the connecting base 42 and the supply lines 44a, 44b connected and a substantially constant operating current to the semiconductor structures 14 or 14 'guarantee.
  • electronic components such as one or more ⁇ corresponding series resistors, or the like may additionally be provided, which are connected between the external terminal portions of the connecting base 42 and the supply lines 44a, 44b connected and a substantially constant operating current to the semiconductor structures 14 or 14 'guarantee.
  • ⁇ corresponding series resistors or the like
  • Terminal base 42 may be provided electronic components by which ' one of the required operating voltage of the semiconductor structures 14 and 14' deviating external supply voltage, such as a mains voltage, is transformed to the required operating voltage.
  • each semiconductor structure 14 or 14 At 1 W power consumption, each semiconductor structure 14 or 14 'achieves a light output of about 40 lumens.
  • Carrier substrate 12 six semiconductor light-emitting structures 14 are provided, which are electrically connected in parallel, as is apparent from the contact by terminals 36. 08833
  • the luminescent chip arrangement 10 In the luminescent chip arrangement 10 according to FIG. 9, six semiconductor structures 14 are arranged on a carrier substrate 12, which are adjacent to the carrier substrate 12 with their n-layer or their p-layer, which carry both transparent electrodes 26, 30. It can therefore be connected in series by parallel to the substrate plane conductors 70 and 72, which can be easily produced in the required thickness and uniformity by vapor deposition.
  • the spaces lying between the semiconductor structures 14 are filled by transparent insulating material volumes 74. These can be obtained by screen printing glass frit and then fusing together or sintering the frit together.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

Es ist ein Leuchtmittel (40) angegeben, welches einen standardisierten Anschlußsockel (42) und eine Abdeckung (50) aus lichtdurchlässigem Material, welche einen Innenraum (52) begrenzt, aufweist. Zwischen Kontaktbereichen (48a, 48b) wenigstens zweier Versorgungsleitungen (44a, 44b) ist eine Leuchtchip-Anordnung (10; 110) kontaktiert, welche wenigstens eine Halbleiterstruktur (14; 114) umfaßt.

Description

Leuchtmittel
Die Erfindung betrifft ein Leuchtmittel gemäß dem Oberbegriff des Anspruches 1.
Derartige Leuchtmittel finden in vielen Einsatzgebieten weitverbreitete Verwendung und zeichnen sich durch einen an das jeweilige Einsatzgebiet angepaßten Anschlußsockel aus, der mit einer entsprechenden Fassung zusammenarbeiten kann.
Zwischen den Kontaktbereichen der Versorgungsleitungen ist üblicherweise ein Leuchtelement , z.B. ein Glühwendel, kontaktiert .
Derartige Leuchtmittel haben häufig den Nachteil, daß sie bei teilweise hohen Anschaffungskosten nur eine verhältnismäßig geringe Lebensdauer haben, da das Leucht- element anfällig ist und bereits narh z.B. 1 000 Betriebsstunden nicht mehr funktionsfähig ist.
Aufgabe der Erfindung ist es, ein Leuchtmittel der eingangs genannten Art zu schaffen, bei welchem die Lebensdauer erhöht ist .
Dies wird bei einem Leuchtmittel der eingangs genannten Art dadurch erreicht, daß die Kontaktbereiche der Versorgungsleitungen eine Leuchtchip-Anordnung kontaktieren, welche wenigstens eine Licht emittierende Halbleiterstruktur umfaßt .
Als Licht emittierende Halbleiterstruktur kommen Halblei- terkristalle mit einem p-n-Übergang in Frage, welche bei Spannungsbeaufschlagung Licht emittieren. Solche Halbleiterkristalle zeichnen sich durch eine hohe Energieausbeute gepaart mit einer langen Lebensdauer aus.
Vorteilhafte Weiterbildungen der Erfindung sind in Unteransprüchen angegeben.
Durch die Maßnahme gemäß Anspruch 2 kann über die Ver- sorgungsleitungen neben der Spannungsversorgung der
Leuchtchip-Anordnung auch eine Wärmeabfuhr von der sich unter Spannungsbeaufschlagung aufheizenden Leuchtchip- Anordnung gewährleistet werden.
Bekannte Kontaktierungsverfahren können auf günstige
Weise verwendet werden, wenn die Kontaktierung der Versorgungsleitungen mit der Leucht-Anordnung wie in Anspruch 3 angegeben, ausgebildet ist.
Alternativ kann es günstig sein, diese Kontaktierung wie in Anspruch 4 beschrieben auszubilden, um höhere Temperaturbelastungen der Leuchtchip-Anordnung zu ver- " meiden.
Eine höhere Lichtleistung des Leuchtmittels kann vorteilhaft durch die Maßnahmen nach Anspruch 5 oder nach Anspruch 6 erzielt werden.
Wenn mehrere Halbleiterstrukturen in einer Leuchtchip- Anordnung zusammengefaßt sind, ist es günstig, wenn diese gemäß Anspruch 7 leitend miteinander verbunden sind. Eine solcher Verbindung ist stabiler als eine Verbindung mittels Bonden, wie sie häufig bei Halbleiterstrukturen üblich ist. Anspruch 8 bringt den Vorteil, daß die aufgedampften Verbindungen gleichförmige Dicke aufweisen, obwohl sie einen Höhenunterschied auf dem Chip überwinden müssen.
Wenn die Leuchtchip-Anordnung wie in Anspruch 9 angegeben ausgebildet ist, kann eine Lichtabstrahlung in im wesentlichen alle Raumrichtungen erreicht werden.
Die Weiterbildung der Erfindung gemäß Anspruch 9 hat den Vorteil, daß man eine höhere Lichtmenge erhält und zugleich mit der Betriebsspannung des Leuchtmittels in höhere Bereiche kommt, für welche Standardspannungsquellen wie Akkumulatoren, Netzteile und Standard-Netzleiter zur Verfügung stehen.
Gemäß Anspruch 10 kann man die Betriebsspannung des Leuchtmittels auf die Ausgangsspanung gängiger Spannungs- quellen anpassen.
Ein Leuchtmittel gemäß Anspruch 11 strahlt nach vorne und hinten Licht ab.
Vorteilhafte Materialien für das Trägersubstrat sind in Anspruch 12 angegeben.
Durch die Maßnahme nach Anspruch 13 wird eine gute Wärme- abfuhr von der Leuchtchip-Anordnung durch den Innenraum des Leuchtmittels nach außen erreicht.
Wenn die Wellenlänge des von der LeuchtChip-Anordnung emittierten Lichts nicht mit einer gewünschten Wellenlänge übereinstimmt, so kann diese durch die Maßnahme nach Anspruch 14 eingestellt werden. Phosphorpartikel absorbieren auf sie treffende Strahlung und emittieren Strahlung mindestens einer anderen Wellenlänge. Bei geeigneter Wahl von Phosphorpartikeln bzw. Phosphorpartikelmischungen kann also die von der LeuchtChip-Anordnung emittierte Strahlung in eine Strahlung mit anderem Spektrum umgewände11 werden .
Gemäß Anspruch 15 kann man die homogene Verteilung der Phosphorpartikel auf einfache Weise gewährleisten.
Gemäß Anspruch 16 und 17 sind die Phosphorpartikel in ihrer homogenen Verteilung fixiert.
Gemäß Anspruch 18 wird die Effizienz der Farbvorgabe des Lichtes durch die Phosphorpartikel verbessert.
Dabei kann man den gewünschten Abstand zwischen Phosphor- Partikeln und Licht emittiernden Halbleiterstrukturen gemäß Anspruch 19 sicher und bleibend einstellen.
Dabei kann ein sowieso vorgesehenes lichtdurchlässiges Substrat, welches die HalbleiterStrukturen trägt, gemäß Anspruch 20 zugleich auf der einen Seite der Leuchtchip- Anordnung den gewünschten Abstand sicherstellen.
Bei einem Leuchtmittel gemäß Anspruch 21 sind die Licht emittierenden Halbleiterstrukturen durch parallel zur Substrateben verlaufende Leiterbahnen verbunden. Diese lassen sich besonders gut und besonders gleichmäßig auch durch Aufdampfen erzeigen (keine Abschattung des Metalldampfes) .
Nachstehend werden Ausführungsbeispiele der Erfindung anhand der Zeichnungen näher erläutert. In diesen zeigen:
Figur IA eine Seitenansicht einer Leuchtchip-Anordnung mit einer Halbleiterstruktur;
Figur IB eine Draufsicht auf die LeuchtChip-Anordnung nach Figur IA;
Figur 2A eine abgewandelte Leuchtchip-Anordnung mit drei Halbleiterstrukturen;
Figur 2B eine Draufsicht auf die abgewandelte Leucht- chip-Anordnung nach Figur 2A;
Figur 3 eine Detailansicht des in Figur 2A von einer Ellipse eingeschlossenen Bereichs zwischen zwei Halbleiterstrukturen;
Figur 4 ein Leuchtmittel mit einem standardisierten Bajonettsockel, wobei Versorgungsleitungen eine Leuchtchip-Anordnung kontaktieren und eine transparente Kolben von dem Bajonett- sockel getrennt gezeigt ist;
Figur 5 eine Detailansicht des Leuchcmictels nach Figur 4 in vergrößertem Maßstab, wobei die Versorgungsleitungen die Leuchtchip-Anord- nung nach den Figuren IA und IB kontaktieren;
Figur 6 eine der Figur 5 entsprechende Ansicht, wobei die Leuchtchip-Anordnung von einem Material mit Phosphorpartikeln umhüllt ist;
Figur 7 eine der Figur 5 entsprechende Ansicht eines abgewandelten Leuchtmittels nach Figur 4, bei welchem die Leuchtchip-Anordnung nach den Figuren 2A und 2B an den Versorgungsleitungen kontaktiert ist; Figur 8 eine Leuchtchip-Anordnung mit parallel geschalteten Licht emittierenden Halbleiterstrukturen; und
Figur 9 einen Schnitt durch eine abgewandelte Leuchtchip- Anordnung mit in Reihe geschalteten Halbleiter- Strukturen.
In den Figuren IA und IB ist mit 10 insgesamt eine Leucht- chip-Anordnung bezeichnet, welche ein Trägersubstrat 12 aus Saphirglas umfaßt. Saphirglas ist auch unter dem Namen Korundglas (Al3O- -Glas) bekannt. Das Trägersubstrat 12 hat bei der Leuchtchip-Anordnung 10 eine Dicke von etwa 400 μm, es kann jedoch auch andere Dicken ha- ben, welche beispielsweise zwischen 5 μm und 600 μm liegen können. Anstelle des Saphirglases kann auch ein preiswerteres Material in Form eines hochtemperaturbeständigen Glases wie beispielsweise Pyrexglas für das Trägersubstrat 12 verwendet werden.
Das Trägersubstrat 12 trägt eine Halbleiterstruktur 14, die ihrerseits drei Schichten umfaßt:.
Eine untere an dem Trägersubstrat 12 aus Saphirglas an- liegende Schicht 16 ist eine n-leitende Schicht, welche z.B. aus n-GaN oder auch n- InGaN besteht.
Eine mittlere Schicht 18 ist eine MQW-Schicht. MQW ist die Abkürzung für "Multiple Quantum Well". Ein MQW-Ma- terial stellt ein Übergitter dar, welches eine gemäß der Übergitter-Struktur veränderte elektronische Bandstruktur aufweist und entsprechend bei anderen Wellenlängen Licht emittiert. Über die Wahl der MQW-Schicht läßt sich das Spektrum der von der p-n-Halbleiterstruktur 14 abgegebenen Strahlung beeinflussen. Eine obere Schicht 20 ist aus einem p- leitenden III-V-Halbleitermaterial gefertigt, beispielsweise aus P-GaN.
Die Halbleiterstruktur 14 weist eine in Aufsicht U-förτnige umlaufende Stufe 22 auf, deren Stufenfläche 24 in der Höhe zwischen dem Trägerstubstrat 12 und der MQW-Schicht 18 liegt. Auf diese Weise steht die n-leitende Schicht 16 im Bereich der Stufenfläche 24 seitlich über die MQW- Schicht 18 und die p-leitende Schicht 20 über. Die Stufenfläche 24 ist mit einer entsprechend U-förmigen aufgedampften Leiterbahn 26 mit zwei parallel verlaufenden Leiterbahnen 26a und 26b und einer senkrecht dazu verlaufenden Leiterbahn 26c abgedeckt. Die Leiterbahn 26c bildet einen Kontaktanschluß zur n-leitenden Schicht 16.
Um auch die p-leitende Schicht 20 zu kontaktieren, ist auf deren Oberseite neben dem von oben betrachtet seitlich von der U-fόrmigen Leiterbahn 26 flankierten Bereich 28 eine Leiterfläche 30 aufgedampft, welche einen Kontaktanschluß zur p-leitenden Schicht 20 bildet. Von der Leiterfläche 30 erstrecken sich auf der Oberfläche der p- leitenden Schicht 20 drei zunächst parallel verlaufende Leiterbahnen 32a, 32b, 32c in den Bereich 28 der p-leitenden Schicht 20 hinein. Die freien Enden der beiden äußeren Leiterbahnen 32a und 32c sind jeweils um 90° in Richtung auf die mittlere Leiterbahn 32b abgewinkelt, wie dies in Figur IA gut zu erkennen ist.
Der Bereich 28 der Halbleiterstruktur 14 hat eine Erstreckung von 280 μm x 280 μm bis 1 800 μm x 1 800 μm.
Die Leiterbahnen 26a, 26b, 26c sowie 32a, 32b, 32c und die Leiterfläche 30 sind durch Aufdampfen einer Kupfer- Gold-Legierung erhalten. Alternativ können auch Silberoder Aluminium-Legierungen verwendet werden. Im Bereich der Kontaktanschlüsse 26c und 30 kann Gold vorgesehen sein, welches in an und für sich bekannter Weise für den Anschluß an eine p-leitende Schicht bzw. eine n-leitende Schicht dotiert ist.
In den Figuren 2A und 2B ist jeweils eine abgewandelte Leuchtchip-Anordnung 10' dargestellt. Komponenten, die den- jenigen der Leuchtchip-Anordnung 10 nach den Figuren IA und IB entsprechen, tragen dasselbe Bezugszeichen zuzüglich eines Striches.
Bei der Leuchtchip-Anordnung 10 ' sind drei Halbleiter- Strukturen 14 'a, 14 'b und 14 ' c auf einem Trägersubstrat 12' vorgesehen, welche im wesentlichen der Halbleiterstruktur 14 nach den Figuren IA und IB entsprechen. Die Halbleiterstrukturen 14 'a, 14 'b und 14' c sind in Reihe geschaltet, wobei die Leiterfläche 30' der mitt- leren Halbleiterstruktur 14 ' b mit der Leiterbahn 26 'c der Halbleiterstruktur 14 ( a und die Leiterbahn 26 'c der Halbleiterstruktur 14 'b mit der Leiterfläche 30' der Halbleiterstruktur 14 ' c verbunden ist.
Eine bevorzugte Realisierung der Verbindung zwischen einer Leiterbahn 26'c und einer Leiterfläche 30' ist in Figur 3 detaillierter in vergrößertem Maßstab am Beispiel der Verbindung zwischen den Halbleiterstrukturen 14 "b und 14'c (vgl. Figur 2A) gezeigt.
Zwischen den Halbleiterstrukturen 14 'b und 141C ist ein rampenförmiger Isolator 34 vorgesehen. Dazu kann beispielsweise ein elektrisch isolierendes Material zwischen die entsprechenden Halbleiterstrukturen 14 ' aufgesputtert werden. Der Abstand zwischen zwei HaIb- leiterstrukturen 14 ', in Figur 3 den Halbleiterstrukturen 14 'b und 14 'c, liegt in der Größenordnung von 100 μm.
Auf den rampenförmigen Isolator 34 ist eine Leiterbahn 36 aufgedampft, die beispielsweise aus demselben Material bestehen kann, das oben im Zusammenhang mit den Leiterbahnen 26 und 32 bzw. der Leiterfläche 30 erläutert worden ist.
Durch die Rampenform ist eine gleichmäßige Dicke der aufgedmpften Leiterbahn gewährleistet . Man hat keine abgeschatteten Bereiche, wie sie bei senkrecht zur Ebene des Trägersubstrates 12 verlaufenden Leiterbahnabschnitten zu erwarten wären.
Durch die Leiterbahn 36 ist eine sichere und beständige leitende Verbindung zwischen den Halbleiterstrukturen 14' gewährleistet. Herkömmlich eingesetzte Bondingstrukturen mit extrem dünnen Bonddrähten halten der thermischen und/oder mechanischen Belastung schlechter stand.
Wie in Figur 3 zu erkennen ist, ist dort die Halbleiterstruktur 14 ' c etwas abgewandelt und es ist eine mit dem Isolatormaterial der Rampe 34 gefüllte Ausnehmung 38 unterhalb der Leiterbahn 36 vorgesehen.
In Figur 4 ist ein Leuchtmittel 40 gezeigt, welches als Anschlußsockel 42 einen standardisierten Bajonett- sockel aufweist. Anstelle des Bajonettsockels (wie beispielsweise auch ein GUlO -Sockel und dergleichen) kann auch ein standardisierter Edison-Sockel (z.B. E12, E26 und dergleichen) , ein standardisierter Stecksockel oder ein standardisierter Glasquetschsockel vorgesehen sein. Von den hier nicht eigens mit einem Bezugszeichen gekennzeichneten und an und für sich bekannten äußeren Anschlußbereichen des Anschlußsockels 42 verlaufen in dessen Innerem zwei Versorgungsleitungen 44a, 44b. Diese durchqueren oberhalb des Anschlußsockels 42 einen Abstands- halter 46 aus einem elektrisch isolierenden Material. Durch diesen wird verhindert, daß sich die Versorgungsleitungen 44a, 44b berühren, was zu einem Kurzschluß führen würde .
Die freien Enden 48a und 48b der Versorgungsleitungen 44a bzw. 44b bilden Kontaktbereiche, die eine Leuchtchip-Anordnung 10 bzw. 10' kontaktieren, was in Figur 4 lediglich angedeutet ist.
Das Leuchtmittel 40 umfaßt einen Kolben 50 aus einem lichtdurchlässigen Material, welcher im montierten Zustand zusammen mit dem Anschlußsockel 42 einen Innenraum 52 des Leuchtmittels 40 begrenzt.
Der Kolben 50 ist beispielsweise aus Glas oder einem Epoxidharz und kann außerdem, falls gewünscht, die Funktion einer Sammeloptik erfüllen.
Der Innenraum 52 ist mit einem Silikonöl 54 gefüllt, durch welches von der Leuchtchip-Anordnung 10 bzw. 10' erzeugte Wärme zum radial äußeren Bereich der Kolben 50 abgeführt wird.
Ebenfalls zum Zwecke der Wärmeabfuhr weisen die Versorgungsleitungen 44a, 44b neben ihrer elektrischen Leitfähigkeit eine gute Wärmeleitfähigkeit auf, die vorzugsweise wenigstens derjenigen von Kupfer entsprechen sollte . 33
11
Damit eine zufriedenstellende Wärmeabfuhr über die Versorgungsleitungen 44a, 44b erfolgen kann, weisen diese einen Durchmesser von 0,3 mm bis 2 mm, bevorzugt zwischen 0,5 mm und 1,0 mm, nochmals bevorzugt etwa 0,7 mm auf.
In Figur 5 ist in vergrößerter Ansicht gezeigt, wie die Leuchtchip-Anordnung 10 mit einer einzigen Halbleiterstruktur 14 zwischen den Kontaktbereichen 48a, 48b der Versorgungsleitungen 44a, 44b kontaktiert ist. Wie dort zu erkennen ist, ist der Kontaktbereich 48a der Versorgungsleitung 44a durch Hartlöten mittels eines Silberlots 56a auf die Leiterbahn 26c der Halbleiterstruktur 14 kontaktiert. Deren Leiterfläche 30 ist ebenfalls über ein mit 56b bezeichnetes Silberlot mit dem Kontaktbereich 48b der zweiten Versorgungsleitung 44b des Leuchtmittels 40 verbunden .
Anstelle des jeweiligen Silberlots 56a, 56b zur Kontak- tierung der Leuchtchip-Anordnung 10 können die Kontakt- bereiche 48a, 48b der Versorgungsleitungen 44a, 44b auch mittels eines elektrisch leitenden Klebstoffs mit der entsprechenden Leiterbahn 26c bzw. der Leiterfläche 30 der Halbleiterstruktur 14 leitend verbunden sein.
Bei einer in Figur 6 gezeigten Abwandlung ist die Leuchtchip-Anordnung 10 zusätzlich mit einem transparenten Material 58 umhüllt, in welchem durch Punkte angedeutete Phosphorpartikel 60 homogen verteilt sind. Bei dem Material 58 kann es sich beispielsweise um einen transparenten Zwei-Komponenten-Klebstoff handeln. Das Material 58 ist in einer aufgebrochenen Ansicht gezeigt. Die Leuchtchip- Anordnung 10 ist jedoch tatsächlich vollständig von dem Material 58 umhüllt.
Die Halbleiterstruktur 14 strahlt bei Anlegen einer Spannung ultraviolettes Licht sowie blaues Licht in einem Wellenlängenbereich von 420 nm bis 480 nm ab. Durch die die Leuchtchip-Anordnung 10 umhüllende Materialschicht 58 mit den Phosphorpartikeln 60 kann eine Weißlicht-LED erhalten werden. Geeignete Phosphorpartikel 60 sind aus Farbzentren aufweisenden transparenten Festkörpermaterialien hergestellt. Um das von der Halbleiterstruktur 14 emittierte ultraviolette und blaue Licht in Weißlicht umzuwandeln, werden drei Arten Phosphorpartikel 60 verwen- det, die das ultraviolette und blaue Licht teilweise absorbieren und selber im Gelben und Roten emittieren. Falls gewünscht kann man zusätzlich noh Phosphorpartikel zumischen, die im Blauen emittieren.
Eine Veränderung des Spektrums des von dem Leuchtmittel 40 erzeugten Lichts ist auch dadurch möglich, daß die Halbleiterstruktur 14 aus Schichten 16, 18 und 20 aufgebaut wird, die aus anderen bekannten Materialien ausgebildet sind als hier angegeben.
Alternativ zu dem Material 58 mit den Phosphorpartikeln 60 können letztere auch homogen verteilt in dem Silikonöl 54 im Innenraum 52 des Leuchtmittels 40 vorgesehen sein.
Bei einer Abwandlung des Leuchtmittels 40 kann auch auf das Silikonöl 54 verzichtet werden. In diesem Fall könnte beispielweise die Innenfläche des Innenraums 52 des Kolbens 50 mit einer Schicht aus Material 58 mit Phosphorpartikeln 60 der oben erläuterten Art beschich- tet sein.
Die Phosphorpartikel 60 bzw. das diese aufnehmende Material 58 können auch außen auf einer transparenten Kunststoffoder Glashülle aufgebracht sein, welche so ausgebildet ist, daß es die Halbleiterstruktur 14 einer in die Hülle eingesetzten Leuchtchip-Anordnung 10 oder 10 ' in allen Raumrichtungen in im wesentlichen gleichen Abstand umgibt.
Ein günstiger Abstand zwischen dem Material 58, in wel- ehern die Phosphorpartikel 60 homogen verteilt sind, zur Halbleiterstruktur 14 liegt zwischen etwa 0,3 mm und 3,0 mm, vorzugsweise 0,5 mm und 1,5 mm, vorzugsweise etwa 1 mm.
In Figur 7 ist in vergrößertem Maßstab die Kontaktie- rung der Leuchtchip-Anordnung 10' mit den drei Halbleiterstrukturen 14 'a, 14 'b, 14'c über die Versorgungsleitungen 44a, 44b, gezeigt. Abgesehen davon, daß dort die Leuchtchip-Anordnung 10 ' vorgesehen ist, gilt das oben zur Kontaktierung der Leuchtchip-Anordnung 10 Gesagte sinngemäß entsprechend. Auch die Leuchtchip- Anordnung 10' kann von einem Material 58, in welchem Phosphorpartikel 60 homogen verteilt sind, umhüllt sein, um zu einer Weißlichtstrahlung zu gelangen. Das Material 58 ist in Figur 7 gestrichelt angedeutet.
Das so jeweils gebildete Leuchtmittel 40 mit der Leuchtchip- Anordnung 10 oder 10 ' wird zum Betrieb mit seinem Anschlußsockel 42 in eine entsprechend ausgebildete dazu passende Fassung eingedreht oder eingesteckt. Über den Anschlußsockel 42 werden die Versorgungleitungen 44a, 44b und darüber die entsprechende Leuchtchip-Anordnung 10 bzw. 10' mit einer Betriebsspannung beaufschlagt, wodurch die entsprechenden Halbleiterstrukturen 14 bzw. 14' zum Leuchten angeregt werden.
Die erläuterten Halbleiterstrukturen 14 bzw. 14' bzw. die entsprechende Leuchtchip-Anordnung 10 bzw. 10' zeichnen sich durch eine lange Lebensdauer bei hoher Leuchtkraft aus. Auf diese Weise sind langlebige Leucht- mittel verwirklicht, die bekannte standardisierte Leuchtmittel mit geringerer Lebensdauer ersetzen können, ohne daß beispielsweise bei zugehörigen Lampenfassungen bauliche Veränderungen vorgenommen werden müssen.
Jede Halbleiterstruktur 14 bzw. 14' wird mit einer Betriebsspannung von ca. 3,5 bis 4 V betrieben, so daß die aus drei Halbleiterstrukturen 14 'a, 14 'b und 14 ' c gebildete Leuchtchip-Anordnung 10 mit 12 V betrieben werden kann. Dies ist insbesondere für den Kraftfahrzeug-Bereich von großem Vorteil.
Im Inneren des Anschlußsockels 42 können gegebenenfalls zusätzlich elektronische Komponenten wie ein oder mehrere entsprechende Vorwiderstände oder dergleichen vorgesehen sein, welche zwischen die äußeren Anschlußbereiche des Anschlußsockels 42 und die Versorgungsleitungen 44a, 44b geschaltet sind und eine im wesentlichen konstante Betriebs- Stromstärke an den Halbleiterstrukturen 14 bzw. 14' gewährleisten. Darüber hinaus können im Inneren des
Anschlußsockels 42 elektronische Komponenten vorgesehen sein, durch welche' eine von der benötigten Betriebsspannung der Halbleiterstrukturen 14 bzw. 14' abweichende äußere Versorgungsspannung, wie beispielsweise eine Netzspannung, auf die erforderliche Betriebsspannung transformiert wird.
Bei 1 W Leistungsaufnahme erzielt jede Halbleiterstruktur 14 bzw. 14' eine Lichtleistung von etwa 40 Lumen.
Bei der Leuchtchip-Anordnung nach Figur 8 sind auf einem
Trägersubstrat 12 sechs Licht emittierende Halbleiterstrukturen 14 vorgesehen, die elektrisch parallel geschaltet sind, wie sich aus der Kontaktierung durch Anschlüsse 36 ergibt . 08833
15
Bei der Leuchtchip-Anordnung 10 nach Figur 9 sind auf einem Trägersubstrat 12 sechs Halbleiterstrukturen 14 angeordnet, die mit abwechselnd mit ihrer n-Schicht bzw. ihrer p-Schicht, die beide transparente Elektroden 26, 30 tragen, dem Trägersubstrat 12 benachbart sind. Man kann sie daher durch parallel zur Substratebene verlaufende Leiterbahnen 70 und 72 in Reihe schalten, die leicht in der benötigten Dicke und Gleichförmigkeit durch Aufdampfen erzeugt werden können.
Die zwischen den Halbleiterstrukturen 14 liegenden Räume sind durch transparente isolierende Materialvolumina 74 ausgefüllt. Diese können durch Siebdrucken von Glasfritte und anschließendes Zusammenschmelzen oder Zusammensintern der Fritte erhalten werden.

Claims

Patentansprüche
1. Leuchtmittel, insbesondere für ein Kraftfahrzeug, mit
a) einem Anschlußsockel (42) ;
b) einem Kolben (50) aus lichtdurchlässigem Material, welcher wenigstens teilweise einen Innenraum (52) begrenzt und vom Anschlußsockel (42) getragen ist;
c) einer ersten Versorgungsleitung (44a) und einer zweiten Versorgungsleitung (44b) , welche über den Anschlußsockel (42) mit einer Betriebsspannung beaufschlagbar sind und mit Kontaktbereichen (48a, 48b) in den Innenraum (52) hineinragen,
dadurch gekennzeichnet, daß
d) die Kontaktbereiche (48a, 48b) der Versorgungsleitungen (44a, 44b) mit einer Leuchtchip-Anordnung (10; 110) verbunden sind, welche wenigstens eine Licht emittierende Halbleiterstruktur (14; 114) umfaßt.
2. Leuchtmittel nach Anspruch 1, dadurch gekennzeichnet, daß die Versorgungsleitungen (44a, 44b) einen Durchmesser zwischen 03, und 2,0 mm, vorzugsweise 0,5 mm und 1,0 mm, nochmals vorzugsweise etwa von 0,7 mm haben und aus einem elektrisch leitfähigen Material gefertigt sind, das eine gute Wärmeleitfähigkeit hat.
3. Leuchtmittel nach Anspruch 1 oder 2, dadurch gekenn- zeichnet, daß die Kontaktbereiche der Versorgungsleitungen (44a, 44b) mit der Leuchtchip-Anordnung (10; 110) jeweils durch einen Hartlot-Kontakt (56a, 56b), insbesondere durch einen Silberlot-Kontakt , verbunden sind.
4. Leuchtmittel nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Kontaktbereiche der Versorgungsleitungen (44a, 44b) mit der Leuchtchip-Anordnung (10; 110) durch einen elektrisch leitfähigen Klebstoff verbunden sind.
5. Leuchtmittel nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Leuchtchip-Anordnung (110) wenigstens zwei Licht emittierende Halbleiterstrukturen (114a, 114b, 114c) umfaßt.
6. Leuchtmittel nach Anspruch 5, dadurch gekennzeichnet, daß die Leuchtchip-Anordnung drei Licht emittierende Halbleiterstrukturen (114a, 114b, 114c) umfaßt.
7. Leuchtmittel nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß die Halbleiterstrukturen (114a, 114b,
114c) mittels aufgedampfter Leiterbahnen (136) leitend miteinander verounάen sind.
8. Leuchtmittel nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß eine Mehrzahl Licht emittierender
Halbleiter-Strukturen (144a, 114b, 114c) elektrisch in Reihe geschaltet ist.
9. Leuchtmittel nach einem der Anspruch 8, dadurch gekennzeichnet, daß die Halbleiterstrukturen (114a,
1114b) mit gleichen Schichten zu einem sie tragenden Trägersubstrat (12) weisen und durch Leiterbahnen (36) verbunden sind, die von einer Rampe (34) getragen sind.
10. Leuchtmittel nach Anspruch 8 oder 9, dadurch gekennzeichnet, daß die Anzahl der in Reihe geschalteten Licht emittierenden Halbleitsterstrukuren (114a, 114b, 114c) so gewählt ist, daß der GesamtSpannungsabfall 12 V, 24 V, 110 V oder 220 V beträgt.
11. Leuchtmittel nach einem der Ansprüche 1 bis 10, da- durch gekennzeichnet, daß die Leuchtchip-Anordnung
(10; 110) ein Trägersubstrat (12; 112) aus transparentem Material umfaßt, welches die Licht emittierende Halbleiterstruktur (14; 114) trägt.
12. Leuchtmittel nach Anspruch 11, dadurch gekennzeichnet, daß das transparente Material des Trägersubstrats (12; 112) Saphirglas oder ein hoch hitzebeständiges Glas ist.
13. Leuchtmittel nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß der Innenraum (42) mit einer wärmeleitenden elektrisch isolierenden Flüssigkeit wie Silikonöl (54) gefüllt ist.
14. Leuchtmittel nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß die Leuchtchip-Anordnung (10; 110) wenigstens bereichsweise von im wesentlichen homogen verteilten Phosphorpartikeln umgeben ist, die von den Licht emittierenden Halbleiterstrukturen (14; emittiertes Licht absorbieren und zum Teil in Komplementärlicht umsetzen, derart, daß das Leuchtmittel insgesamt im wesentlichen weißes Licht abgibt.
15. Leuchtmittel nach Anspruch 14, dadurch gekennzeichnet, daß zumindet ein Teil der Phosphorpartikel in einem Trägermediura, vorzugseise einem flüssigen Trägermedium wie Silikonöl (54) im wesentlichen homogen verteilt sind.
16. Leuchtmittel nach Anspruch 14 oder 15, dadurch gekennzeichnet, daß zumindet ein Teil der Phosphorpar- von der Leuchtchip-Anordnung (10) getragen ist.
17. Leuchtmittel nach einem der Ansprüche 14 bis 16, dadurch gekennzeichnet, daß zumindet ein Teil der
Phosphorpartikel vom Kolben (50) getragen ist, vorzugsweise auf dessn Innenfläche angebracht ist.
18. Leuchtmittel nach einem der Ansprüche 14 bis 17, dadurch gekennzeichnet, daß zwischen den im wesentlichen homogen verteilten Phosphorpartikeln und den Licht emittierenden Halbleiterstrukturen (14; 114) ein Abstand von etwa 0,3 mm bis 3,0 mm, vorzugsweise von etwa 0,5 bis 1,5 mm, nochmals vorzugsweise etwa 1 mm verbleibt.
19. Leuchtmittel nach Anspruch 18, dadurch gekennzeichnet, daß die Licht emittierenden Halbleiterstrukturen (14,-
114) zwischen zwei lichtdurchlässigen Substraten angeordnet ist, deren Dicke dem gewünschten Abstand zwischen Licht emittierenden Halbleiterstrukturen (14; 114) und Phosphorpartikeln entspricht.
20. Leuchtmittel nach Anspruch 19, dadurch gekennzeichnet, dadurch gekennzeichnet, daß eines der lichtdurchläs- sigen Substrate durch eine die Halbleiterstrukturen (14;
114) tragende transparente Platte gebildet ist.
21. Leuchtmittel nach einem der Ansprüche 8 bis 20 dadurch gekennzeichnet, daß zumindest ein Teil der Licht emittierenden Halbleiterstrukturen (14) paarweise T/EP2007/008833
20
mit unterschiedlichen Seiten zu einem Trägersubstrat (12) weisend angeordnet sind und über parallel zur Trägersubstratebene verlaufende Leiterbahnen (36, 37) in Reihe geschaltet sind.
22. Leuchtmittel nach einem der Ansprüche 1 bis 21 dadurch gekennzeichnet, daß mindestens ein Teil der Licht emittierenden Halbleiterstrukturen (14) paarweise mit gleichen Schichten zu einem Trägersubstrat weisend angeordnet sind und über parallel zur Trägersubstratebene verlaufende Leiterbahnen (36, 37) verbunden sind.
EP07818904A 2007-02-23 2007-10-11 Leuchtmittel Withdrawn EP2156469A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007009351A DE102007009351A1 (de) 2007-02-23 2007-02-23 Leuchtmittel
PCT/EP2007/008833 WO2008101525A1 (de) 2007-02-23 2007-10-11 Leuchtmittel

Publications (1)

Publication Number Publication Date
EP2156469A1 true EP2156469A1 (de) 2010-02-24

Family

ID=38754774

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07818904A Withdrawn EP2156469A1 (de) 2007-02-23 2007-10-11 Leuchtmittel

Country Status (6)

Country Link
US (2) US20110024772A1 (de)
EP (1) EP2156469A1 (de)
CN (2) CN101647116A (de)
DE (1) DE102007009351A1 (de)
TW (1) TW200836324A (de)
WO (2) WO2008101524A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008005935A1 (de) * 2007-11-29 2009-06-04 Osram Opto Semiconductors Gmbh Halbleiteranordnung sowie Verfahren zur Herstellung einer Halbleiteranordnung
DE102008049188A1 (de) * 2008-09-26 2010-04-01 Osram Opto Semiconductors Gmbh Optoelektronisches Modul mit einem Trägersubstrat und einer Mehrzahl von strahlungsemittierenden Halbleiterbauelementen und Verfahren zu dessen Herstellung
DE102010023342A1 (de) * 2010-06-10 2011-12-15 Osram Opto Semiconductors Gmbh Leuchtdiodenanordnung und Leuchtmittel insbesondere mit solch einer Leuchtdiodenanordnung
TWI446578B (zh) * 2010-09-23 2014-07-21 Epistar Corp 發光元件及其製法
CN102130239B (zh) * 2011-01-31 2012-11-07 郑榕彬 全方位采光的led封装方法及led封装件
DE102012209325B4 (de) * 2012-06-01 2021-09-30 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronisches Modul
WO2014028312A1 (en) * 2012-08-15 2014-02-20 Dow Global Technologies Llc Bi-component electrical connector
CN104091867B (zh) * 2014-07-25 2017-07-14 厦门市三安光电科技有限公司 高压发光二极管芯片及其制作方法
DE102015114849B4 (de) * 2015-09-04 2022-01-13 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung von Leuchtdiodenfilamenten und Leuchtdiodenfilament
DE102015120085A1 (de) * 2015-11-19 2017-05-24 Osram Opto Semiconductors Gmbh LED-Filamente, Verfahren zur Herstellung von LED-Filamenten und Retrofitlampe mit LED-Filament
DE102016106734A1 (de) * 2015-12-14 2017-06-14 Osram Opto Semiconductors Gmbh Träger für ein optoelektronisches Bauelement, Verfahren zum Herstellen eines Trägers für ein optoelektronisches Bauelement, Wafer und Lötverfahren
KR102162739B1 (ko) * 2018-04-19 2020-10-07 엘지전자 주식회사 반도체 발광소자의 자가조립 장치 및 방법
DE102019105031B4 (de) * 2019-02-27 2022-03-17 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Vorrichtung und Verfahren zum Ersatz von mindestens einem Chip

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0662911B2 (ja) * 1987-03-11 1994-08-17 積水化学工業株式会社 導電ペ−スト
US5404282A (en) * 1993-09-17 1995-04-04 Hewlett-Packard Company Multiple light emitting diode module
EP0781075B1 (de) * 1994-09-08 2001-12-05 Idemitsu Kosan Company Limited Verfahren zur abdichtung eines organischen elektrolumineszenten elements und organisches elektrolumineszentes element
JP3195720B2 (ja) * 1994-12-20 2001-08-06 シャープ株式会社 多色led素子およびその多色led素子を用いたled表示装置、並びに多色led素子の製造方法
JPH0982133A (ja) * 1995-09-12 1997-03-28 Hitachi Chem Co Ltd 導電粉体の製造法
US5583350A (en) * 1995-11-02 1996-12-10 Motorola Full color light emitting diode display assembly
JP3337405B2 (ja) * 1996-12-27 2002-10-21 シャープ株式会社 発光表示素子およびその電気配線基板への接続方法ならびに製造方法
JP4290887B2 (ja) * 1998-09-17 2009-07-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Led電球
JP2001068742A (ja) * 1999-08-25 2001-03-16 Sanyo Electric Co Ltd 混成集積回路装置
GB2366610A (en) * 2000-09-06 2002-03-13 Mark Shaffer Electroluminscent lamp
JP2002334604A (ja) * 2001-03-06 2002-11-22 Yoshimitsu Suda ヘッドライト等のバルブ
US6480389B1 (en) * 2002-01-04 2002-11-12 Opto Tech Corporation Heat dissipation structure for solid-state light emitting device package
US6936856B2 (en) * 2002-01-15 2005-08-30 Osram Opto Semiconductors Gmbh Multi substrate organic light emitting devices
EP1433831B1 (de) * 2002-03-22 2018-06-06 Nichia Corporation Nitrid-leuchtstoff und verfahren zu dessen herstellung sowie lichtemittierende einrichtung
TWI249148B (en) * 2004-04-13 2006-02-11 Epistar Corp Light-emitting device array having binding layer
KR101173320B1 (ko) * 2003-10-15 2012-08-10 니치아 카가쿠 고교 가부시키가이샤 발광장치
EP1544923A3 (de) * 2003-12-19 2007-03-14 Osram Opto Semiconductors GmbH Strahlungemittierendes Halbleiterbauelement und Verfahren zum Befestigen eines Halbleiterchips auf einem Leiterrahmen
EP1700344B1 (de) * 2003-12-24 2016-03-02 Panasonic Intellectual Property Management Co., Ltd. Halbleiter-lichtemissionsbauelement und beleuchtungsmodul
US7195944B2 (en) * 2005-01-11 2007-03-27 Semileds Corporation Systems and methods for producing white-light emitting diodes
US7045375B1 (en) * 2005-01-14 2006-05-16 Au Optronics Corporation White light emitting device and method of making same
JP5059739B2 (ja) * 2005-03-11 2012-10-31 ソウル セミコンダクター カンパニー リミテッド 直列接続された発光セルのアレイを有する発光ダイオードパッケージ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008101525A1 *

Also Published As

Publication number Publication date
US20110049714A1 (en) 2011-03-03
DE102007009351A1 (de) 2008-08-28
US20110024772A1 (en) 2011-02-03
WO2008101524A1 (de) 2008-08-28
CN101681908A (zh) 2010-03-24
TW200836324A (en) 2008-09-01
WO2008101525A1 (de) 2008-08-28
CN101647116A (zh) 2010-02-10

Similar Documents

Publication Publication Date Title
EP2156469A1 (de) Leuchtmittel
EP1328976B1 (de) Led-modul
EP1352432B9 (de) Lumineszenzdiode und verfahren zu deren herstellung
DE102008025923B4 (de) Strahlungsemittierende Vorrichtung
WO2017037010A1 (de) Verfahren zur herstellung von leuchtdiodenfilamenten und leuchtdiodenfilament
DE102014118238A1 (de) Licht emittierende Vorrichtung, dieselbe beinhaltende Beleuchtungsvorrichtung und Montiersubstrat
EP1843402B1 (de) Halbleiter-Leuchtmittel und dessen Verwendung in einem Leuchtpaneel
DE112011101981T5 (de) Oberflächenemittierende LED mit hoher Spannung und niedrigem Strom
DE102012108763B4 (de) Optoelektronischer halbleiterchip und lichtquelle mit dem optoelektronischen halbleiterchip
DE102016113470A1 (de) Laserbauelement
DE102007011123A1 (de) Licht emittierendes Modul und Herstellungsverfahren für ein Licht emittierendes Modul
DE102010045390A1 (de) Optoelektronisches Halbleiterbauteil und Verfahren zur Herstellung eines optoelektronisches Halbleiterbauteils
WO2014048830A1 (de) Optoelektronisches bauelement
WO2015162023A1 (de) Optoelektronisches halbleiterbauteil und verfahren zur herstellung eines optoelektronischen halbleiterbauteils
WO2016180810A1 (de) Optoelektronischer halbleiterchip und leuchtmittel
DE102006049081B4 (de) Halbleiter-Leuchtmittel und Leuchtpaneel mit solchen
WO2018146084A1 (de) Led-einheit
WO2018149963A1 (de) Strahlungsemittierendes filament mit wärmeleitungselement
DE102017130764B4 (de) Vorrichtung mit Halbleiterchips auf einem Primärträger und Verfahren zur Herstellung einer solchen Vorrichtung
DE102009005709A1 (de) Optoelektronisches Halbleiterbauteil und Verfahren zur Herstellung eines optoelektronischen Halbleiterbauteils
DE102016103632A1 (de) Bildpunkteeinheit und Videoanzeigeeinrichtung
DE102013212294A1 (de) Optoelektronischer Halbleiterchip
DE102016106951A1 (de) Optoelektronischer Halbleiterchip
EP1898467A2 (de) Halbleiter-Leuchtmittel und Leuchtenpaneel mit solchen
DE112017001192B4 (de) Optoelektronisches Halbleiterbauteil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090922

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130503