EP2156047B1 - Fuel injector having low wear - Google Patents

Fuel injector having low wear Download PDF

Info

Publication number
EP2156047B1
EP2156047B1 EP08759582.3A EP08759582A EP2156047B1 EP 2156047 B1 EP2156047 B1 EP 2156047B1 EP 08759582 A EP08759582 A EP 08759582A EP 2156047 B1 EP2156047 B1 EP 2156047B1
Authority
EP
European Patent Office
Prior art keywords
pressure
damping
injector
fuel injector
bore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08759582.3A
Other languages
German (de)
French (fr)
Other versions
EP2156047A1 (en
Inventor
Paulo Jorge Ferreira Goncalves
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2156047A1 publication Critical patent/EP2156047A1/en
Application granted granted Critical
Publication of EP2156047B1 publication Critical patent/EP2156047B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/04Means for damping vibrations or pressure fluctuations in injection pump inlets or outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2547/00Special features for fuel-injection valves actuated by fluid pressure
    • F02M2547/003Valve inserts containing control chamber and valve piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails

Definitions

  • the invention is based on known fuel injectors for injecting fuel into a combustion chamber of an internal combustion engine.
  • These fuel injectors may in particular be fuel injectors for high-pressure accumulator injection systems, which are also referred to as common rail injectors.
  • fuel from a high-pressure accumulator (rail) is supplied to the fuel injectors via a high-pressure inlet, and the injection of the fuel, i. the opening of the fuel injector, is usually controlled by an actuator, such as a magnetic or piezoelectric actuator.
  • One advantage of the common-rail injectors is that the injection behavior can be controlled very precisely via the actuator, so that even complex, for combustion particularly favorable injection curves can be realized. As a result, internal combustion engines with extremely low pollutant emission can be realized.
  • a high-pressure line will break proposed an injector and a common rail, which degrades the pressure waves generated during actuation of the injector in whole or in part.
  • the high-pressure line has a first section and a second section, which are connected in parallel with one another.
  • Another common rail injector is out EP 1 612 401 A known.
  • the invention is based essentially on the idea of providing at least one further, separate vibration damping bore in addition to a high-pressure bore which is usually present in common-rail injectors and extends substantially parallel to the injector axis.
  • This vibration damping bore comprises a damping channel extending essentially parallel to the injector axis in the injector housing.
  • the vibration damping behavior according to the invention is not based, as in DE 103 07 871 A1 , on a superposition of back and forth waves. As a result, an attenuation within a wide frequency range can be realized.
  • the damping behavior is based on known systems rather on a "parallel circuit" of a damping channel, with a corresponding resistance to pressure waves and a corresponding volume of liquid.
  • the vibration damping bore is located between a high-pressure region, in particular a high-pressure chamber, which is adjacent to the control chamber (for example, a high-pressure annular space which surrounds the control chamber), and the nozzle space.
  • the vibration damping bore may be substantially equal in length and extend substantially parallel to a high pressure bore which carries fuel under high pressure into the nozzle space to be injected from there through injection openings in the combustion chamber.
  • the throttle element comprises a first throttle element connecting the damping channel and the high-pressure annulus. Furthermore, the throttle element comprises a second throttle element connecting the damping channel and the nozzle chamber.
  • This implementation of the throttle elements is also comparatively easy to implement in terms of production since in this case, for example, only one bore extending substantially parallel to the injector axis must be implemented for the damping channel and two bores for the throttle elements running obliquely thereto.
  • the throttle elements have a cross section with a diameter between 0.1 and 0.8 mm, in particular between 0.2 and 0.5 and particularly preferably at 0.3 mm.
  • cross-sections of at least 1.0 mm, in particular at least 1.5 mm and particularly preferably of approximately 2.0 mm have proved to be advantageous.
  • the latter value represents a compromise which can be realized in practice between the highest possible volume of liquid for the damping (inertial mass) and the space requirement of the damping channel in the injector body.
  • the damping channel has a length of at least 40 mm, in particular of at least 60 mm and particularly preferably of 90 mm.
  • the damping channel can be implemented in today commercial fuel injectors, without their outer dimensions would have to be changed.
  • the fuel injector in one of the embodiments described above allows vibration damping of pressure oscillations within a wide frequency range.
  • the wear of the fuel injector can be significantly reduced, and the life of the common rail systems can be significantly improved.
  • FIG. 1 is a characteristic performance of a commercially available common rail injector shown as a time course.
  • the upper curve (reference numeral 110) shows the pressure curve in bar, and the lower curve (reference symbol 112) the force, the nozzle needle or the injection valve member (hereinafter referred to as needle force), plotted in Newtons. Shown is the time course over a full injection cycle of a six-cylinder engine.
  • the operating behavior of the injection system can be divided into two areas: on the one hand into the area (in Fig. 1 denoted by reference numeral 114), in which the response to the own injection dominates, and in a second region (in Fig. 1 denoted by reference numeral 116), in which the influence of the neighboring islands predominates.
  • Fig. 1 The boundary between the two areas is approximately 0.027 s.
  • the vibration behavior for example the vibration of the needle force 112
  • the vibration behavior is dominated by the injection of the fuel injector under consideration.
  • the vibration behavior is triggered by neighboring injections, that is to say by injections of adjacent fuel injectors of the internal combustion engine. This area of unfamiliarized vibrations is commonly referred to as the "telephony" area or “telephony” area.
  • Fig. 2 is a possible cause of the effects described above shown.
  • the gradients of the system responses ie the derivatives I of the needle force (see curve 112 in FIG Fig. 1 ) in frequency space in arbitrary units. While curve 118 represents the system response to its own injection, curve 120 shows the system response to neighbor injections.
  • system response 120 of the neighboring injections ie the telephony effects
  • Fig. 3 the result of such a wear model is illustrated graphically.
  • the Y-axis 122 shows the accumulated wear
  • the X-axis 124 symbolizes the time. The time is plotted over a complete injection cycle of a six-cylinder engine.
  • the injections of the individual injectors are designated by the reference numeral 126.
  • a curve 128, in which only the own injection is taken into account and a wear curve 130 in which also adjacent injections are taken into account, which thus symbolize a fully activated system of an internal combustion engine.
  • one significant approach of the present invention is to reduce the sensitivities of a fuel injector to higher frequencies through geometric changes in the high pressure fluid system. Accordingly, a measure is proposed which is able to minimize the transmission behavior of the input pressure on the needle force in terms of its gain with respect to the natural frequencies.
  • Fig. 4 an embodiment of a fuel injector 132 according to the invention is shown.
  • the fuel injector 132 has an injector housing 134, which is modularly composed of a plurality of modules held together by a union nut 136.
  • an injection valve member 140 is accommodated, which is mounted movably parallel to the injector 142.
  • the injection valve member 140 is surrounded by a nozzle chamber 144 and closes at its lower end injection openings 146.
  • the nozzle chamber 144 communicates with a high-pressure bore 148 in connection, which extends substantially parallel to the injector 142, ie with an angular deviation of about 4 °.
  • the high-pressure bore 148 communicates with a high-pressure inlet 150 and can via this from a high-pressure accumulator (common rail), which in Fig. 4 not shown, are acted upon by high pressure fuel.
  • the injection valve member 140 is acted upon by a nozzle spring 152 with a closing force. Furthermore, the injection valve member 140 is in communication with a control piston 154, above which a control chamber 156 is located.
  • the control chamber 156 is surrounded by a high pressure annulus 158, which in turn communicates with the high pressure bore 148.
  • the high-pressure annulus 158 is connected to the control chamber 156 via a control chamber throttle element 160.
  • the pressure in the control chamber 156 is controlled in this embodiment by a solenoid valve 162, via which a relief hole 164, which is also equipped with a throttle element, can be closed or released. Thereby, the relief hole 164 and thus the control chamber 156 is disconnected from a low pressure drain 166 and connected thereto.
  • the solenoid valve 162 If the solenoid valve 162 is opened, the pressure in the control chamber 156 decreases, and the control piston 154 and thus the injection valve member 140 move upwards and release the injection opening 146. This starts the injection process. If the solenoid valve 162 is fired, high pressure prevails in the control chamber 156, so that the injection valve member 140 is pressed into its valve seat, the injection openings 146 being closed.
  • a damping measure according to the invention is implemented to dampen these pressure fluctuations.
  • a vibration damping hole 168 is provided, welene has a damping channel 170.
  • This damping channel 170 extends essentially the same length to the high-pressure bore 148 through the injector body 134 and likewise runs essentially parallel to the injector axis 142.
  • the angle deviations from the parallelism essentially correspond to the angular deviations of the high-pressure bores 148.
  • the vibration damping bore 168 connects the high pressure annulus 158 to the nozzle space 144.
  • the damping passage 170 in this embodiment is connected via an annulus throttle 172 and to the nozzle space 144 via a nozzle space restrictor 174.
  • damping measure can be in a simple manner (ie only by additional implementation of the damping channel 170 and the throttles 172, 174) selectively modify the fluidic vibration behavior of the fuel injector 132.
  • the natural frequencies of the vibration system can be detuned and the sensitivity of the system to external stimulation can be significantly reduced.
  • a length of the damping channel 170 of 90 mm and a diameter of about 2 mm proved suitable.
  • the throttles 172, 174 each have a diameter of 0.3 mm in this exemplary embodiment.
  • the vibration damping bore 168 thus represents a total of a second fluidic high pressure system, which is arranged parallel to the high pressure bore 148. Vibration damping is essentially caused by the combination of the inertial fluid mass within the damping channel 170 and the throttles 172, 174, which is similarly describable as electrical damping in an RC resonant circuit.
  • damping action changes the transmission behavior of the fuel injector 132 in a positive sense.
  • a transfer function for a standard injector curve 176
  • a transfer function 178 of an injector having a vibration damping bore 168 The transmission function ⁇ is plotted in dB, which is the quotient of the derivative of the needle force and the derivative of the rail pressure. The application takes place in the frequency domain.
  • curve 176 represents a fuel injector without the vibration damping bore 168 (ie, without damping passage 170, without annulus throttle 172 and without nozzle space throttle 174)
  • curve 178 represents a fuel injector 132 Fig. 4 with the said elements, ie with a vibration damping bore 168.
  • Fig. 5 shown diagram which is also referred to as Bode diagram, clearly shows two effects of the vibration damping measure: on the one hand, the natural frequencies marked as characteristic peaks in the curves 176, 178 shift through the vibration damping measure towards smaller frequencies. On the other hand, the peaks in the transfer functions are also significantly minimized, so that a total of broadband attenuation in the entire frequency range is recorded. Thus, the sensitivity of the fuel injector 132 against pressure fluctuations is significantly minimized. Particularly in the operating frequency range between 100 Hz and 4 KHz, which is particularly relevant for the wear behavior of fuel injectors, the amplitude responses due to the vibration damping bore 168 have been significantly reduced.
  • vibration damping hole 168 According to the embodiment in Fig. 4 significant advantages over known vibration damping measures, such as in DE 103 07 871 A1 presented measure. There is overall a vibration damping recorded in the entire frequency range, so that the vibration measure, for example, is not specifically set to a specific operating point of the entire injector system or the internal combustion engine. This is a considerable advantage, as this, for example, the flexibility and applicability of the vibration damping system is extended not only with respect to different Injektortypen or types of machines, but also with respect to the efficiency of the individual operating points of the internal combustion engine.
  • the vibration damping bore 168 is integrated directly in the injector housing 134, which saves additional measures outside of the fuel injector. The absorption damping is thus additional components or components within the fuel injector 132 itself.
  • the bar 182 denotes a fuel injector 132 with a so-called “Rail Injector Throttle” (RIT), with a diameter of 1.1 mm.
  • RIT Rotary Injector Throttle
  • This throttle element RIT which is also known from the prior art, is arranged in the high-pressure inlet 150, in the rail outlet in front of the high-pressure line leading to the injector, and already causes a certain damping of pressure oscillations in the rail. Thus, this measure already reduces the wear of the fuel injector by about 20%.
  • the bar 184 illustrates a vibration damping measure according to the invention, for example, the in Fig. 4 shown vibration damping hole 168 and their effect. It can clearly be seen that the total wear is reduced from 100% to about 66% by the vibration damping hole 168.
  • the invention thus provides a way to efficiently reduce wear on fuel injectors 132 by simple additional damping measures.
  • the damping measures can be implemented in particular in fuel injectors 132, in which the distance between the control chamber 150 and the nozzle chamber 144 is high, so that here a sufficient volume of fluid and a sufficient discharge path through the damping channel 170 can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

Stand der TechnikState of the art

Die Erfindung geht aus von bekannten Kraftstoffinjektoren zum Einspritzen von Kraftstoff in einen Brennraum einer Brennkraftmaschine. Bei diesen Kraftstoffinjektoren kann es sich insbesondere um Kraftstoffinjektoren für Hochdruck-Speichereinspritzsysteme handeln, welche auch als Common-Rail-Injektoren bezeichnet werden. Dabei wird Kraftstoff aus einem Hochdruckspeicher (Rail) den Kraftstoffinjektoren über einen Hochdruckzulauf zugeleitet, und die Injektion des Kraftstoffs, d.h. das Öffnen des Kraftstoffinjektors, wird in der Regel durch einen Aktor, beispielsweise einen Magnet- oder Piezoaktor, gesteuert.The invention is based on known fuel injectors for injecting fuel into a combustion chamber of an internal combustion engine. These fuel injectors may in particular be fuel injectors for high-pressure accumulator injection systems, which are also referred to as common rail injectors. In this case, fuel from a high-pressure accumulator (rail) is supplied to the fuel injectors via a high-pressure inlet, and the injection of the fuel, i. the opening of the fuel injector, is usually controlled by an actuator, such as a magnetic or piezoelectric actuator.

Ein Vorteil der Common-Rail-Injektoren besteht darin, dass das Einspritzverhalten über den Aktor sehr präzise gesteuert werden kann, sodass sich auch komplexe, für die Verbrennung besonders günstige Einspritzverläufe realisieren lassen. Dadurch lassen sich Brennkraftmaschinen mit äußerst geringer Schadstoffemission realisieren.One advantage of the common-rail injectors is that the injection behavior can be controlled very precisely via the actuator, so that even complex, for combustion particularly favorable injection curves can be realized. As a result, internal combustion engines with extremely low pollutant emission can be realized.

Eine bei Common-Rail-Kraftstoffinjektoren in der Praxis auftretende unliebsame Erscheinung ist jedoch das Problem der Druckschwingungen. Druckschwingungen im Common-Rail-System können unerwünschte bis schädigende Auswirkungen auf das Betriebsverhalten des Gesamtsystems und der Brennkraftmaschine haben. Zudem können diese auch die Halt-barkeit des Gesamtsystems sowie einzelner Injektoren vermindern. So sind Druckschwingungen im Hochdruckbereich mit einer Amplitude von ca. 300 bar in vielen Fällen ein alltägliches Ereignis.However, a problem occurring in common-rail fuel injectors in practice unpleasant phenomenon is the problem of pressure oscillations. Pressure oscillations in the common rail system can have undesirable or damaging effects on the operating behavior of the overall system and of the internal combustion engine. In addition, these can also reduce the durability of the overall system and individual injectors. Thus, pressure oscillations in the high-pressure region with an amplitude of about 300 bar are in many cases a commonplace event.

Die Druckschwingungen führen jedoch in der Praxis zu Düsensitzverschleiß und zu einer Mengenungenauigkeit, insbesondere bei Mehrfacheinspritzungen. Daher wird versucht, diesen Druckschwingungen mit Dämpfungsmaßnahmen, wie beispielsweise Drosseln und Mengenstromventilen, entgegenzuwirken.However, in practice, the pressure oscillations lead to nozzle seat wear and to an inaccurate quantity, in particular in the case of multiple injections. Therefore, it is attempted to counteract these pressure oscillations with damping measures, such as throttles and flow control valves.

Ein Beispiel einer derartigen Maßnahme zur zumindest teilweisen Eliminierung von Druckschwingungen ist in DE 103 07 871 A1 offenbart. Dabei wird eine Hochdruckleitung zwisenen einem injektor und einem Common-Rail vorgeschlagen, welche die beim Betätigen des Injektors entstehenden Druckwellen ganz oder teilweise abbaut. Die Hochdruckleitung weist einen ersten Abschnitt und einen zweiten Abschnitt auf, welche zueinander parallel geschaltet sind.An example of such a measure for the at least partial elimination of pressure oscillations is in DE 103 07 871 A1 disclosed. In the process, a high-pressure line will break proposed an injector and a common rail, which degrades the pressure waves generated during actuation of the injector in whole or in part. The high-pressure line has a first section and a second section, which are connected in parallel with one another.

Die in DE 103 07 871 A1 gezeigte Anordnung trägt zur Verbesserung des Schwingungsverhaltens und zur Eliminierung von Druckschwingungen bei. Dennoch lässt die DE 103 07 871 A1 Raum für weitere Verbesserungen, insbesondere da die vorgeschlagene Hochdruckleitung vom Aufbau her vergleichsweise komplex ist und aufgrund der fest vorgegebenen Längenverhältnisse in der Regel nur Druckschwingungen innerhalb eines schmalen Frequenzbereichs dämpft.In the DE 103 07 871 A1 shown arrangement contributes to the improvement of the vibration behavior and to the elimination of pressure oscillations. Nevertheless, the leaves DE 103 07 871 A1 Room for further improvements, especially since the proposed high-pressure line is structurally relatively complex and attenuates only pressure oscillations within a narrow frequency range due to the fixed length ratios usually.

Ein weiterer Common-Rail-InjeKtor ist aus EP 1 612 401 A bekannt.Another common rail injector is out EP 1 612 401 A known.

Offenbarung der ErfindungDisclosure of the invention

Die Erfindung beruht im Wesentlichen auf der Idee, zusätzlich zu einer in Common-Rail-Injektoren üblicherweise vorhandenen, sich im Wesentlichen parallel zur Injektorachse erstreckenden Hochdruckbohrung mindestens eine weitere, separate Schwingungsdämpfungsbohrung vorzusehen. Diese Schwingungsdämpfungsbohrung umfasst einen sich im Injektorgehäuse im Wesentlichen parallel zur Injektorachse erstreckenden Dämpfungskanal. Unter "im Wesentlichen parallel" sind dabei hier und im Folgenden auch leichte Abweichungen von der Parallelität zu verstehen, vorzugsweise Abweichungen von nicht mehr als 20°, besonders bevorzugt von nicht mehr als 5°.The invention is based essentially on the idea of providing at least one further, separate vibration damping bore in addition to a high-pressure bore which is usually present in common-rail injectors and extends substantially parallel to the injector axis. This vibration damping bore comprises a damping channel extending essentially parallel to the injector axis in the injector housing. By "substantially parallel" are here and below also slight deviations from the parallelism to understand, preferably deviations of not more than 20 °, more preferably not more than 5 °.

Im Gegensatz zur DE 103 07 871 A1 wird somit vorgeschlagen, das Schwingungsdämpfungselement in den Injektorkörper selbst zu verlagern. Die zusätzliche Bohrung kann ohne größeren konstruktiven Aufwand realisiert werden und ist daher auch fertigungstechnisch leicht implementierbar.In contrast to DE 103 07 871 A1 It is thus proposed to displace the vibration damping element into the injector body itself. The additional hole can be realized without major design effort and is therefore also easy to implement in terms of manufacturing technology.

Weiterhin beruht das Schwingungsdämpfungsverhalten gemäß der Erfindung nicht, wie in der DE 103 07 871 A1 , auf einer Überlagerung von hin- und rücklaufenden Wellen. Dadurch ist eine Dämpfung innerhalb eines weiten Frequenzbereichs realisierbar. Das Dämpfungsverhalten beruht gegenüber bekannten Systemen vielmehr auf einer "Parallelschaltung" eines Dämpfungskanals, mit einem entsprechenden Widerstand für Druckwellen und einem entsprechenden Flüssigkeitsvolumen.Furthermore, the vibration damping behavior according to the invention is not based, as in DE 103 07 871 A1 , on a superposition of back and forth waves. As a result, an attenuation within a wide frequency range can be realized. The damping behavior is based on known systems rather on a "parallel circuit" of a damping channel, with a corresponding resistance to pressure waves and a corresponding volume of liquid.

Dabei ist es vorgesehen, dass die Schwingungsdämpfungsbohrung sich zwischen einem Hochdruckbereich, insbesondere einem Hochdruckraum, welcher dem Steuerraum benachbart ist (beispielsweise einem Hochdruck-Ringraum, welcher den Steuerraum umgibt), und dem Düsenraum erstreckt. Beispielsweise kann in diesem Fall die Schwingungsdämpfungsbohrung im Wesentlichen gleich lang sein und sich im Wesentlichen parallel erstrecken zu einer Hochdruckbohrung, welche Kraftstoff unter Hochdruck in den Düsenraum befördert, damit dieser von dort durch Einspritzöffnungen in den Brennraum eingespritzt werden kann.It is provided that the vibration damping bore is located between a high-pressure region, in particular a high-pressure chamber, which is adjacent to the control chamber (for example, a high-pressure annular space which surrounds the control chamber), and the nozzle space. For example, in this case, the vibration damping bore may be substantially equal in length and extend substantially parallel to a high pressure bore which carries fuel under high pressure into the nozzle space to be injected from there through injection openings in the combustion chamber.

Das Drosselelement umfasst ein den Dämpfungskanal und den Hochdruck-Ringraum verbindendes erstes Drosselelement. Weiterhin umfasst das Drosselelement ein den Dämpfungskanal und den Düsenraum verbindendes zweites Drosselelement. Diese Implementierung der Drosselelemente ist auch fertigungstechnisch vergleichsweise einfach implementierbar, da in diesem Fall beispielsweise lediglich eine im Wesentlichen parallel zur Injektorachse verlaufende Bohrung für den Dämpfungskanal und zwei schräg dazu verlaufende Bohrungen für die Drosselelemente implementiert werden müssen.The throttle element comprises a first throttle element connecting the damping channel and the high-pressure annulus. Furthermore, the throttle element comprises a second throttle element connecting the damping channel and the nozzle chamber. This implementation of the throttle elements is also comparatively easy to implement in terms of production since in this case, for example, only one bore extending substantially parallel to the injector axis must be implemented for the damping channel and two bores for the throttle elements running obliquely thereto.

Dabei hat es sich als besonders vorteilhaft für die Dämpfungseigenschaften erwiesen, wenn die Drosselelemente einen Querschnitt mit einem Durchmesser zwischen 0,1 und 0,8 mm, insbesondere zwischen 0,2 und 0,5 und besonders bevorzugt bei 0,3 mm aufweisen. Für den Dämpfungskanal haben sich Querschnitte von mindestens 1,0 mm, insbesondere mindestens 1,5 mm und besonders bevorzugt von ca. 2,0 mm als vorteilhaft erwiesen. Letzterer Wert stellt einen in der Praxis gut realisierbaren Kompromiss zwischen einem möglichst hohen Flüssigkeitsvolumen für die Dämpfung (träge Masse) und der Raumbedarf des Dämpfungskanals im Injektorkörper dar.It has proven to be particularly advantageous for the damping properties, when the throttle elements have a cross section with a diameter between 0.1 and 0.8 mm, in particular between 0.2 and 0.5 and particularly preferably at 0.3 mm. For the damping channel, cross-sections of at least 1.0 mm, in particular at least 1.5 mm and particularly preferably of approximately 2.0 mm have proved to be advantageous. The latter value represents a compromise which can be realized in practice between the highest possible volume of liquid for the damping (inertial mass) and the space requirement of the damping channel in the injector body.

Um ein möglichst hohes Dämpfungsvolumen als "träge Masse" bereitstellen zu können, ist es bevorzugt, wenn der Dämpfungskanal eine Länge von mindestens 40 mm, insbesondere von mindestens 60 mm und besonders bevorzugt von 90 mm aufweist. Damit ist der Dämpfungskanal in heute kommerzielle Kraftstoffinjektoren implementierbar, ohne dass deren Außenabmessungen verändert werden müssten.To be able to provide the highest possible damping volume as an "inertial mass", it is preferred if the damping channel has a length of at least 40 mm, in particular of at least 60 mm and particularly preferably of 90 mm. Thus, the damping channel can be implemented in today commercial fuel injectors, without their outer dimensions would have to be changed.

Der Kraftstoffinjektor in einer der oben beschriebenen Ausführungsformen ermöglicht eine Schwingungsdämpfung von Druckschwingungen innerhalb eines weiten Frequenzbereichtes. Damit lässt sich der Verschleiß des Kraftstoffinjektors erheblich vermindern, und die Lebensdauer der Common-Rail-Systeme lassen sich erheblich verbessern.The fuel injector in one of the embodiments described above allows vibration damping of pressure oscillations within a wide frequency range. Thus, the wear of the fuel injector can be significantly reduced, and the life of the common rail systems can be significantly improved.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert.Embodiments of the invention are illustrated in the drawings and explained in more detail in the following description.

Es zeigen

Figur 1
einen Druck- und Kraftverlauf für ein Common-Rail-System;
Figur 2
eine Systemantwort im Frequenzraum eines Common-Rail-Systems auf eine eigene Einspritzung und eine Nachbareinspritzung;
Figur 3
einen kumulierten Verschleiß für ein Ein-Injektor-System und ein gesamtes Common-Rail-System mit mehreren aktiven Injektoren;
Figur 4
ein Ausführungsbeispiel eines Common-Rail-Injektors gemäß der vorliegenden Erfindung;
Figur 5
ein Übertragungsverhalten eines Common-Rail-Injektors gemäß dem Stand der Technik im Vergleich zu einem erfindungsgemäßen Common-Rail-Injektor und
Figur 6
simulierter Verschleiß von Common-Rail-Injektoren mit verschiedenen Verschleiß reduzierenden Maßnahmen.
Show it
FIG. 1
a pressure and force curve for a common rail system;
FIG. 2
a system response in the frequency space of a common rail system to its own injection and a neighboring injection;
FIG. 3
cumulative wear for a one-injector system and an entire common rail system with multiple active injectors;
FIG. 4
an embodiment of a common rail injector according to the present invention;
FIG. 5
a transmission behavior of a common rail injector according to the prior art compared to a common rail injector according to the invention and
FIG. 6
simulated wear of common rail injectors with different wear reducing measures.

Anhand der Figuren 1 bis 3 sollen zunächst Verschleißeffekte in Kraftstoffinjektoren und deren Ursachen skizziert werden. Die dadurch gewonnenen Erkenntnisse stellen die Grundlage für einen erfindungsgemäßen Kraftstoffinjektor dar, welcher anschließend in den Figuren 4 bis 6 anhand eines Ausführungsbeispiels erläutert wird.Based on FIGS. 1 to 3 First, wear effects in fuel injectors and their causes are to be outlined. The knowledge gained thereby provide the basis for a fuel injector according to the invention, which subsequently in the FIGS. 4 to 6 will be explained with reference to an embodiment.

In der Figur 1 ist ein charakteristisches Betriebsverhalten eines kommerziell erhältlichen Common-Rail-Injektors als Zeitverlauf dargestellt. Dabei zeigt die obere Kurve (Bezugszeichen 110) den Druckverlauf in Bar, und die untere Kurve (Bezugszeichen 112) die Kraft auf, die Düsennadel bzw. das Einspritzventilglied (im Folgenden als Nadelkraft bezeichnet), aufgetragen in Newton. Dargestellt ist der Zeitverlauf über einen vollen Injektionszyklus eines Sechszylinder-Motors.In the FIG. 1 is a characteristic performance of a commercially available common rail injector shown as a time course. The upper curve (reference numeral 110) shows the pressure curve in bar, and the lower curve (reference symbol 112) the force, the nozzle needle or the injection valve member (hereinafter referred to as needle force), plotted in Newtons. Shown is the time course over a full injection cycle of a six-cylinder engine.

Es lässt sich erkennen, dass das Betriebsverhalten des Einspritzsystems in zwei Bereiche aufgeteilt werden kann: zum Einen in den Bereich (in Fig. 1 mit Bezugsziffer 114 bezeichnet), in dem die Antwort auf die eigene Einspritzung dominiert, und in einen zweiten Bereich (in Fig. 1 mit Bezugsziffer 116 bezeichnet), in welchem der Einfluss der Nachbarinjekhonen uberwiegt. In Fig. 1 verläuft die Grenze zwischen den beiden Bereichen ungefähr bei 0,027 s.It can be seen that the operating behavior of the injection system can be divided into two areas: on the one hand into the area (in Fig. 1 denoted by reference numeral 114), in which the response to the own injection dominates, and in a second region (in Fig. 1 denoted by reference numeral 116), in which the influence of the neighboring islands predominates. In Fig. 1 The boundary between the two areas is approximately 0.027 s.

Innerhalb des ersten Bereichs 114 wird das Schwingungsverhalten, beispielsweise die Schwingung der Nadelkraft 112, dominiert durch die eigene Einspritzung des betrachteten Kraftstoffinjektors. Im zweiten Bereich 116 hingegen wird das Schwingungsverhalten ausgelöst durch Nachbarinjektionen, also durch Injektionen benachbarter Kraftstoffinjektoren der Brennkraftmaschinc. Dieser Bereich der fremdominierten Schwingungen wird üblicherweise auch als "Telefonie"-Bereich bzw. Bereich der "Telefonie"-Effekte bezeichnet.Within the first region 114, the vibration behavior, for example the vibration of the needle force 112, is dominated by the injection of the fuel injector under consideration. In contrast, in the second region 116, the vibration behavior is triggered by neighboring injections, that is to say by injections of adjacent fuel injectors of the internal combustion engine. This area of unfamiliarized vibrations is commonly referred to as the "telephony" area or "telephony" area.

Die Telefonie-Effekte, also Effekte der Schwingung in einem Kraftstoffinjektor, welche durch Nachbarinjektionen ausgelöst werden, haben einen massiven Einfluss auf den Verschleiß der Kraftstoffinjektoren. Untersuchungen haben ergeben, dass die eigene Einspritzung lediglich eine Gesamtbelastung pro Zyklus von 1/3 an Verschleiß verursacht, im Gegensatz zu dem Einfluss der Nachbarinjektionen, welche einen Anteil von ca. 2/3 am Verschleiß haben.The telephony effects, ie effects of the vibration in a fuel injector, which are triggered by neighboring injections, have a massive influence on the wear of the fuel injectors. Investigations have shown that the own injection only causes a total load per cycle of 1/3 of wear, in contrast to the influence of the neighboring injections, which have a share of about 2/3 of the wear.

In Fig. 2 ist eine mögliche Ursache der oben beschriebenen Effekte aufgezeigt. Dabei sind die Gradienten der Systemantworten, also die Ableitungen I der Nadelkraft (vgl. Kurve 112 in Fig. 1) im Frequenzraum in willkürlichen Einheiten aufgetragen. Während die Kurve 118 die Systemantwort auf eine eigene Injektion darstellt, zeigt die Kurve 120 die Systemantwort auf Nachbarinjektionen.In Fig. 2 is a possible cause of the effects described above shown. The gradients of the system responses, ie the derivatives I of the needle force (see curve 112 in FIG Fig. 1 ) in frequency space in arbitrary units. While curve 118 represents the system response to its own injection, curve 120 shows the system response to neighbor injections.

Dabei ist deutlich zu erkennen, dass sowohl bei der eigenen Einspritzung 118 als auch bei Nachbarinjektionen 120 im Wesentlichen zwei Hauptfrequenzen angeregt werden, nämlich eine erste Frequenz bei ca. 650 Hz und eine zweite Frequenz bei ca. 3,2 KHz. Diese Eigenfrequenzen sind in beiden Kurven 118, 120 als steile Peaks (Maxima) zu erkennen.It can be clearly seen that essentially two main frequencies are excited both in the case of the own injection 118 and in the case of neighboring injections 120, namely a first frequency at approximately 650 Hz and a second frequency at approximately 3.2 kHz. These natural frequencies can be seen in both curves 118, 120 as steep peaks (maxima).

Darüber hinaus zeigt die Systemantwort 120 der Nachbarinjektionen, also der Telefonie-Effekte, eine Vielzahl weiterer Anregungsfrequenzen. Dies bedeutet, dass die Düsennadel bzw. das Einspritzventilglied eines Kraftstoffinjektors sehr empfindlich auf Anregungen durch Nachbarinjektionen reagiert und ein wesentlich ausgeprägteres Schwingungsverhalten aufweist.In addition, the system response 120 of the neighboring injections, ie the telephony effects, shows a multiplicity of further excitation frequencies. This means that the nozzle needle or the injection valve member of a fuel injector reacts very sensitively to excitations by neighboring injections and has a significantly more pronounced oscillation behavior.

Diese erhöhte Empfindlichkeit, d.h. ausgeprägtere Systemantwort bzw. Kraftgradient, gegenüber einer Rail-seitigen Anregung durch Nachbarinjektionen hat einen erheblichen Einfluss auf das Verschleißverhalten der Kraftstoffinjektoren. Zwar sind, wie aus Kurve 112 in Fig. 1 hervorgeht, die Schwingungsamplituden, welche durch Nachbarinjektionen verursacht werden, kleiner als die Schwingungsamplituden im Bereich der eigenen Einspritzungen 114. Dies Könnte zunächst einen niedrigeren Verschleiß vermuten lassen. Maßgeblich für den Verschleiß sind jedoch die Gradienten dieser Kräfte, welche in Fig. 2 dargestellt sind und die Verschleißleistung charakterisieren. Aufgrund dieser höheren Gradienten durch die Telefonie-Effekte weisen die Nachbarinjektionen 120 einen höheren Anteil in den akkumulierten berechneten Verschleißwerten auf.This increased sensitivity, ie more pronounced system response or force gradient compared to a rail-side excitation by neighboring injections has a significant influence on the wear behavior of the fuel injectors. True, as from curve 112 in Fig. 1 shows that the vibration amplitudes, which are caused by neighboring injections, smaller than the vibration amplitudes in the range of their own injections 114. This might initially suggest lower wear. Decisive for the wear, however, are the gradients of these forces, which in Fig. 2 are shown and characterize the wear performance. Due to these higher gradients due to the telephony effects, the neighbor injections 120 have a higher proportion in the accumulated calculated wear values.

Für die Berechnung des Verschleißes lassen sich verschiedene physikalische Modelle generieren, auf die hier nicht im Detail eingegangen werden soll. In Fig. 3 ist das Ergebnis eines derartigen Verschleißmodells grafisch veranschaulicht. Dabei zeigt die Y-Achse 122 den akkumulierten Verschleiß, wohingegen die X-Achse 124 die Zeit symbolisiert. Aufgetragen ist die Zeit über einen vollständigen Injektionszyklus eines Sechszylinder-Motors. Dabei sind jeweils symbolisch die Injektionen der einzelnen Injektoren mit der Bezugsziffer 126 bezeichnet.For the calculation of the wear different physical models can be generated, which will not be discussed in detail here. In Fig. 3 the result of such a wear model is illustrated graphically. In this case, the Y-axis 122 shows the accumulated wear, whereas the X-axis 124 symbolizes the time. The time is plotted over a complete injection cycle of a six-cylinder engine. In each case symbolically the injections of the individual injectors are designated by the reference numeral 126.

Wiederum sind zwei Kurven dargestellt: eine Kurve 128, bei welcher lediglich die eigene Injektion berücksichtigt wird, und eine Verschleißkurve 130 bei welcher auch Nachbarinjektionen berücksichtigt werden, welche also ein vollständig aktiviertes System einer Brennkraftmaschine symbolisieren.Again, two curves are shown: a curve 128, in which only the own injection is taken into account, and a wear curve 130 in which also adjacent injections are taken into account, which thus symbolize a fully activated system of an internal combustion engine.

Die Kurve 128, bei welcher lediglich ein einzelner Injektor während eines Injektionszyklus aktiv ist, zeigt den erwarteten, im Wesentlichen flachen Verlauf. Die Kurve 130, bei welcher auch die Nachbarinjektionen berücksichtigt sind, zeigt jedoch ein charakteristisches Stufenbild, bei welchem nicht nur bei der eigenen Injektion am Anfang des Zyklus ein Verschleiß auftritt, sondern auch bei jeder nachfolgenden Injektion durch benachbarte Injektoren. Dies ist das Ergebnis der in Fig. 2 dargestellten Systemantwort des nicht aktivierten Injektors auf Injektionen durch Nachbarinjektoren.Curve 128, in which only a single injector is active during an injection cycle, shows the expected, substantially flat course. Curve 130, in which the neighboring injections are also taken into account, however, shows a characteristic step pattern in which wear occurs not only in the own injection at the beginning of the cycle, but also in every subsequent injection by adjacent injectors. This is the result of in Fig. 2 shown system response of the non-activated injector to injections by Nachbarinjektoren.

Wie oben beschrieben, beruht ein wesentlicher Ansatz der vorliegenden Erfindung darauf, die Empfindlichkeiten eines Kraftstoffinjektors gegenüber höheren Frequenzen durch geometrische Veränderungen des Hochdruck-Fluidsystems zu verkleinern. Dementsprechend wird eine Maßnahme vorgeschlagen, welche in der Lage ist, das Übertragungsverhalten der Eingangsgröße Druck auf die Nadelkraft hinsichtlich seiner Verstärkung bzgl. der Eigenfrequenzen zu minimieren.As described above, one significant approach of the present invention is to reduce the sensitivities of a fuel injector to higher frequencies through geometric changes in the high pressure fluid system. Accordingly, a measure is proposed which is able to minimize the transmission behavior of the input pressure on the needle force in terms of its gain with respect to the natural frequencies.

In Fig. 4 ist ein Ausführungsbeispiel eines erfindungsgemäßen Kraftstoffinjektors 132 dargestellt. Der Kraftstoffinjektor 132 weist ein Injektorgehäuse 134 auf, welches modular aus mehreren, durch eine Überwurfmutter 136 zusammengehaltenen Modulen zusammengesetzt ist.In Fig. 4 an embodiment of a fuel injector 132 according to the invention is shown. The fuel injector 132 has an injector housing 134, which is modularly composed of a plurality of modules held together by a union nut 136.

in einem Dusenmodul 138 ist ein Einspritzventilglied 140 aufgenommen, welches parallel zur Injektorachse 142 beweglich gelagert ist. Das Einspritzventilglied 140 ist von einem Düsenraum 144 umgeben und verschließt an seinem unteren Ende Einspritzöffnungen 146. Der Düsenraum 144 steht mit einer Hochdruckbohrung 148 in Verbindung, welche sich im Wesentlichen parallel zur Injektorachse 142 erstreckt, d.h. mit einer Winkelabweichung von ca. 4°. Die Hochdruckbohrung 148 steht mit einem Hochdruckzulauf 150 in Verbindung und kann über diesen aus einem Hochdruckspeicher (Common-Rail), welcher in Fig. 4 nicht dargestellt ist, mit unter hohem Druck stehenden Kraftstoff beaufschlagt werden.In a Dusenmodul 138, an injection valve member 140 is accommodated, which is mounted movably parallel to the injector 142. The injection valve member 140 is surrounded by a nozzle chamber 144 and closes at its lower end injection openings 146. The nozzle chamber 144 communicates with a high-pressure bore 148 in connection, which extends substantially parallel to the injector 142, ie with an angular deviation of about 4 °. The high-pressure bore 148 communicates with a high-pressure inlet 150 and can via this from a high-pressure accumulator (common rail), which in Fig. 4 not shown, are acted upon by high pressure fuel.

Das Einspritzventilglied 140 wird durch eine Düsenfeder 152 mit einer Schließkraft beaufschlagt. Weiterhin steht das Einspritzventilglied 140 in Verbindung mit einem Steuerkolben 154, oberhalb dessen sich ein Steuerraum 156 befindet. Der Steuerraum 156 ist von einem Hochdruck-Ringraum 158 umgeben, welcher wiederum mit der Hochdruckbohrung 148 in Verbindung steht. Der Hochdruck-Ringraum 158 ist mit dem Steuerraum 156 über ein Steuerraum-Drosselelement 160 verbunden.The injection valve member 140 is acted upon by a nozzle spring 152 with a closing force. Furthermore, the injection valve member 140 is in communication with a control piston 154, above which a control chamber 156 is located. The control chamber 156 is surrounded by a high pressure annulus 158, which in turn communicates with the high pressure bore 148. The high-pressure annulus 158 is connected to the control chamber 156 via a control chamber throttle element 160.

Der Druck im Steuerraum 156 wird in diesem Ausführungsbeispiel durch ein Magnetventil 162 gesteuert, über welches eine Entlastungsbohrung 164, welche ebenfalls mit einem Drosselelement ausgestattet ist, verschlossen bzw. freigegeben werden kann. Dadurch wird die Entlastungsbohrung 164 und damit der Steuerraum 156 von einem Niederdruckablauf 166 getrennt bzw. mit diesem verbunden.The pressure in the control chamber 156 is controlled in this embodiment by a solenoid valve 162, via which a relief hole 164, which is also equipped with a throttle element, can be closed or released. Thereby, the relief hole 164 and thus the control chamber 156 is disconnected from a low pressure drain 166 and connected thereto.

Wird das Magnetventil 162 geöffnet, so sinkt der Druck im Steuerraum 156, und der Steuerkolben 154 und damit das Einspritzventilglied 140 bewegen sich nach oben und geben die Einspritzöffnung 146 frei. Damit beginnt der Einspritzvorgang. Wird das Magnetventil 162 geschossen, so herrscht im Steuerraum 156 hingegen Hochdruck, sodass das Einspritzventilglied 140 in seinen Ventilsitz gepresst wird, wobei die Einspritzöffnungen 146 verschlossen sind.If the solenoid valve 162 is opened, the pressure in the control chamber 156 decreases, and the control piston 154 and thus the injection valve member 140 move upwards and release the injection opening 146. This starts the injection process. If the solenoid valve 162 is fired, high pressure prevails in the control chamber 156, so that the injection valve member 140 is pressed into its valve seat, the injection openings 146 being closed.

Die oben beschriebenen Systemanregungen des Fluidsystems des Kraftstoffinjektors 132 durch Nachbarinjektionen werden somit in dem Ausführungsbeispiel gemäß Fig. 4 durch den Hochdruckzulauf 150 angeregt, welcher mit dem Common-Rail in Verbindung steht. Die Druckschwankungen breiten sich durch die Hochdruckbohrung 148 aus und verursachen somit, wie oben beschrieben, typische Druckschwingungen im Düsenraum 144 und im Hochdruck-Ringraum 158 mit Amplituden von typischerweise bis zu 300 bar.The above-described system suggestions of the fluid system of the fuel injector 132 by neighbor injections thus become in the embodiment according to FIG Fig. 4 excited by the high-pressure inlet 150, which is in communication with the common rail. The pressure fluctuations propagate through the high-pressure bore 148 and thus cause, as described above, typical pressure oscillations in the nozzle chamber 144 and in the high-pressure annulus 158 with amplitudes of typically up to 300 bar.

Bei dem in Fig. 4 dargestellten Ausführungsbeispiel des Kraftstoffinjektors 132 ist eine erfindungsgemäße Dämpfungsmaßnahme implementiert, um diese Druckschwankungen zu dämpfen. Zu diesem Zweck ist eine Schwingungsdämpfungsbohrung 168 vorgesehen, welene einen Dampfungskanal 170 aufweist. Dieser Dämpfungskanal 170 erstreckt sich im Wesentlichen auf gleicher Länge zur Hochdruckbohrung 148 durch den Injektorkörper 134 und verläuft ebenfalls im Wesentlichen parallel zur Injektorachse 142. Die Winkelabweichungen von der Parallelität entsprechen dabei im Wesentlichen den Winkelabweichungen der Hochdruckbohrungen 148.At the in Fig. 4 illustrated embodiment of the fuel injector 132, a damping measure according to the invention is implemented to dampen these pressure fluctuations. For this purpose, a vibration damping hole 168 is provided, welene has a damping channel 170. This damping channel 170 extends essentially the same length to the high-pressure bore 148 through the injector body 134 and likewise runs essentially parallel to the injector axis 142. The angle deviations from the parallelism essentially correspond to the angular deviations of the high-pressure bores 148.

Die Schwingungsdämpfungsbohrung 168 verbindet den Hochdruck-Ringraum 158 mit dem Düsenraum 144. Zu diesem Zweck ist der Dämpfungskanal 170 in diesem Ausführungsbeispiel über eine Ringraumdrossel 172 und mit dem Düsenraum 144 über eine Düsenraumdrossel 174 verbunden.The vibration damping bore 168 connects the high pressure annulus 158 to the nozzle space 144. For this purpose, the damping passage 170 in this embodiment is connected via an annulus throttle 172 and to the nozzle space 144 via a nozzle space restrictor 174.

Durch die in Fig. 4 dargestellte Dämpfungsmaßnahme lässt sich auf einfache Weise (d.h. lediglich durch zusätzliche Implementierung des Dämpfungskanals 170 und der Drosseln 172, 174) das fluidische Schwingungsverhalten des Kraftstoffinjektors 132 gezielt modifizieren. Insbesondere lassen sich auf diese Weise die Eigenfrequenzen des Schwingungssystems verstimmen und die Empfindlichkeit des Systems gegenüber einer Anregung von außen deutlich reduzieren.By the in Fig. 4 illustrated damping measure can be in a simple manner (ie only by additional implementation of the damping channel 170 and the throttles 172, 174) selectively modify the fluidic vibration behavior of the fuel injector 132. In particular, in this way the natural frequencies of the vibration system can be detuned and the sensitivity of the system to external stimulation can be significantly reduced.

Dabei haben sich in dem in Fig. 4 dargestellten Ausführungsbeispiel eine Länge des Dämpfungskanals 170 von 90 mm und ein Durchmesser von ca. 2 mm als geeignet erwiesen. Die Drosseln 172, 174 weisen in diesem Ausführungsbeispiel jeweils Durchmesser von 0,3 mm auf. Die Schwingungsdämpfungsbohrung 168 stellt somit insgesamt ein zweites fluidisches Hochdrucksystem dar, welches parallel zur Hochdruckbohrung 148 angeordnet ist. Eine Schwingungsdämpfung wird im Wesentlichen durch die Kombination der trägen fluidischen Masse innerhalb des Dämpfungskanals 170 und die Drosseln 172, 174 bewirkt, was auf ähnliche Weise beschreibbar ist wie eine elektrische Dämpfung in einem RC-Schwingkreis.Here are in the in Fig. 4 illustrated embodiment, a length of the damping channel 170 of 90 mm and a diameter of about 2 mm proved suitable. The throttles 172, 174 each have a diameter of 0.3 mm in this exemplary embodiment. The vibration damping bore 168 thus represents a total of a second fluidic high pressure system, which is arranged parallel to the high pressure bore 148. Vibration damping is essentially caused by the combination of the inertial fluid mass within the damping channel 170 and the throttles 172, 174, which is similarly describable as electrical damping in an RC resonant circuit.

Die in Fig. 4 dargestellte Dämpfungsmaßnahme verändert das Übertragungsverhalten des Kraftstoffinjektors 132 im positiven Sinne. In Fig. 5 ist eine Übertragungsfunktion für einen Standardinjektor (Kurve 176) mit einer Übertragungsfunktion 178 eines Injektors mit einer Schwingungsdämpfungsbohrung 168 verglichen. Aufgetragen ist dabei jeweils die Übertragungsfunktion η in dB, welches sich als Quotient der Ableitung der Nadelkraft und der Ableitung des Rail-Drucks ergibt. Die Auftragung erfolgt im Frequenzraum.In the Fig. 4 shown damping action changes the transmission behavior of the fuel injector 132 in a positive sense. In Fig. 5 For example, a transfer function for a standard injector (curve 176) is compared to a transfer function 178 of an injector having a vibration damping bore 168. The transmission function η is plotted in dB, which is the quotient of the derivative of the needle force and the derivative of the rail pressure. The application takes place in the frequency domain.

Die beiden Kurven 176, 178 entsprechen dabei einem Kraftstoffinjektor 132 gemäß Fig. 4, wobei Kurve 176 einen Kraftstoffinjektor ohne die Schwingungsdämpfungsbohrung 168 (d.h. ohne Dämpfungskanal 170, ohne Ringraumdrossel 172 und ohne Düsenraumdrossel 174) darstellt, Kurve 178 hingegen einen Kraftstoffinjektor 132 gemäß Fig. 4 mit den genannten Elementen, also mit einer Schwingungsdämpfungsbohrung 168.The two curves 176, 178 correspond to a fuel injector 132 according to Fig. 4 wherein curve 176 represents a fuel injector without the vibration damping bore 168 (ie, without damping passage 170, without annulus throttle 172 and without nozzle space throttle 174), curve 178, on the other hand, represents a fuel injector 132 Fig. 4 with the said elements, ie with a vibration damping bore 168.

Das in Fig. 5 dargestellte Diagramm, welches auch als Bode-Diagramm bezeichnet wird, zeigt deutlich zwei Effekte der Schwingungsdämpfungsmaßnahme: zum einen verschieben sich die als charakteristische Spitzen in den Kurven 176, 178 gekennzeichneten Eigenfrequenzen durch die Schwingungsdämpfungsmaßnahme hin zu kleineren Frequenzen. Zum anderen werden die Spitzen in den Übertragungsfunktionen auch deutlich minimiert, sodass insgesamt eine breitbandige Dämpfung im gesamten Frequenzbereich zu verzeichnen ist. Damit ist die Empfindlichkeit des Kraftstoffinjektors 132 gegenüber Druckschwankungen deutlich minimiert. Insbesondere in dem für das Verschleißverhalten von Kraftstoffinjektoren besonders relevanten Betriebsfrequenzbereich zwischen 100 Hz und 4 KHz sind die Amplitudenantworten durch die Schwingungsdämpfungsbohrung 168 deutlich vermindert worden.This in Fig. 5 shown diagram, which is also referred to as Bode diagram, clearly shows two effects of the vibration damping measure: on the one hand, the natural frequencies marked as characteristic peaks in the curves 176, 178 shift through the vibration damping measure towards smaller frequencies. On the other hand, the peaks in the transfer functions are also significantly minimized, so that a total of broadband attenuation in the entire frequency range is recorded. Thus, the sensitivity of the fuel injector 132 against pressure fluctuations is significantly minimized. Particularly in the operating frequency range between 100 Hz and 4 KHz, which is particularly relevant for the wear behavior of fuel injectors, the amplitude responses due to the vibration damping bore 168 have been significantly reduced.

Somit ergeben sich durch die Schwingungsdämpfungsbohrung 168 gemäß dem Ausführungsbeispiel in Fig. 4 deutliche Vorteile gegenüber bekannten Schwingungsdämpfungsmaßnahmen, wie beispielsweise der in DE 103 07 871 A1 dargestellten Maßnahme. Es ist insgesamt im gesamten Frequenzbereich eine Schwingungsdämpfung zu verzeichnen, sodass die Schwingungsmaßnahme beispielsweise nicht spezifisch eingerichtet ist auf einen bestimmten Betriebspunkt des gesamten Injektorsystems bzw. der Brennkraftmaschine. Dies ist ein erheblicher Vorteil, da hierdurch beispielsweise die Flexibilität und Einsetzbarkeit des Schwingungsdämpfungssystems nicht nur bezüglich verschiedener Injektortypen bzw. Maschinentypen erweitert wird, sondern auch bezüglich der Effizienz für die einzelnen Betriebspunkte der Brennkraftmaschine. Zudem ist die Schwingungsdämpfungsbohrung 168 unmittelbar im Injektorgehäuse 134 integriert, was zusätzliche Maßnahmen außerhalb des Kraftstoffinjektors erspart. Die Absorptionsdämpfung erfolgt also zusätzliche Bauteile oder Komponenten innerhalb des Kraftstoffinjektors 132 selbst.Thus arise through the vibration damping hole 168 according to the embodiment in Fig. 4 significant advantages over known vibration damping measures, such as in DE 103 07 871 A1 presented measure. There is overall a vibration damping recorded in the entire frequency range, so that the vibration measure, for example, is not specifically set to a specific operating point of the entire injector system or the internal combustion engine. This is a considerable advantage, as this, for example, the flexibility and applicability of the vibration damping system is extended not only with respect to different Injektortypen or types of machines, but also with respect to the efficiency of the individual operating points of the internal combustion engine. In addition, the vibration damping bore 168 is integrated directly in the injector housing 134, which saves additional measures outside of the fuel injector. The absorption damping is thus additional components or components within the fuel injector 132 itself.

In Fig. 6 sind schließlich Ergebnisse von Verschleißsimulationen dargestellt. Gezeigt sind dabei drei verschiedene Situationen: der Balken 180 zeigt den Verschleiß für eine Mehrfacheinspritzung ohne jegliche Dämpfungsmaßnahme, d.h. ohne irgendeine Dämpfung zwischen Common-Rail und Düsenraum 144. Diese Situation, welche auch als "DC" (direct connection) bezeichnet wird, wurde willkürlich auf 100% gesetzt.In Fig. 6 Finally, results of wear simulations are shown. Shown are three different situations: the bar 180 shows the wear for a multiple injection without any attenuation measure, ie without any damping between common rail and nozzle space 144. This situation, which is also referred to as "DC" (direct connection), became arbitrary set to 100%.

Der Balken 182 bezeichnet demgegenüber einen Kraftstoffinjektor 132 mit einer sog. "Rail Injector Throttle" (RIT), mit einem Durchmesser von 1,1 mm. Dieses Drosselelement RIT, welches ebenfalls aus dem Stand der Technik bekannt ist, ist im Hochdruckzulauf 150 angeordnet, und zwar im Railausgang vor der zum Injektor führenden Hochdruckleitung, und bewirkt bereits eine gewisse Dämpfung von Druckschwingungen im Rail. Somit sinkt bereits durch diese Maßnahme der Verschleiß des Kraftstoffinjektors um ca. 20%.On the other hand, the bar 182 denotes a fuel injector 132 with a so-called "Rail Injector Throttle" (RIT), with a diameter of 1.1 mm. This throttle element RIT, which is also known from the prior art, is arranged in the high-pressure inlet 150, in the rail outlet in front of the high-pressure line leading to the injector, and already causes a certain damping of pressure oscillations in the rail. Thus, this measure already reduces the wear of the fuel injector by about 20%.

Der Balken 184 veranschaulicht hingegen eine Schwingungsdämpfungsmaßnahme gemäß der Erfindung, beispielsweise die in Fig. 4 dargestellte Schwingungsdämpfungsbohrung 168 bzw. deren Auswirkung. Deutlich ist zu erkennen, dass durch die Schwingungsdämpfungsbohrung 168 der Gesamtverschleiß von 100% auf ca. 66% reduziert wird.The bar 184, on the other hand, illustrates a vibration damping measure according to the invention, for example, the in Fig. 4 shown vibration damping hole 168 and their effect. It can clearly be seen that the total wear is reduced from 100% to about 66% by the vibration damping hole 168.

Die Erfindung zeigt somit einen Weg auf, um effizient den Verschleiß an Kraftstoffinjektoren 132 durch einfache zusätzliche Dämpfungsmaßnahmen zu reduzieren. Die Dämpfungsmaßnahmen lassen sich insbesondere in Kraftstoffinjektoren 132 implementieren, in denen der Abstand zwischen dem Steuerraum 150 und dem Düsenraum 144 hoch ist, sodass hier ein ausreichendes Flüssigkeitsvolumen und eine ausreichende Entlastungsstrecke durch den Dämpfungskanal 170 bereit gestellt werden können.The invention thus provides a way to efficiently reduce wear on fuel injectors 132 by simple additional damping measures. The damping measures can be implemented in particular in fuel injectors 132, in which the distance between the control chamber 150 and the nozzle chamber 144 is high, so that here a sufficient volume of fluid and a sufficient discharge path through the damping channel 170 can be provided.

Claims (5)

  1. Fuel injector (132) for injecting fuel into a combustion chamber of an internal combustion engine, comprising an injection valve member (140), a nozzle chamber (144) which is connected to a high-pressure supply (150), and a control chamber (156) which controls a stroke movement of the injection valve member (140), wherein the pressure in the control chamber (156) can be switched by means of an actuator-controlled valve (162), and an additional vibration-damping bore (168) is provided between two points that are connected to the high-pressure supply (150), wherein the vibration-damping bore (168) comprises a damping duct (170) that extends in the injector housing (134) substantially parallel to the injector axis (142),
    wherein the vibration-damping bore (168) extends between a high-pressure annular chamber (158), which is adjacent to the control chamber (156), and the nozzle chamber (144), and
    the vibration-damping bore (168) also comprises at least one throttle element (172, 174), characterized in that
    the throttle element (172, 174) comprises a first throttle element (172) which connects the damping duct (170) and the high-pressure chamber (158), and
    a second throttle element (174) which connects the damping duct (170) and the nozzle chamber (144).
  2. Fuel injector (132) according to Claim 1, wherein the throttle element (172, 174) has a cross section with a diameter of 0.1 to 0.8 mm, in particular of 0.2 to 0.5 mm and particularly preferably of 0.3 mm.
  3. Fuel injector (132) according to one of the preceding claims, wherein the damping duct (170) comprises a cylindrical duct with a section of at least 1.0 mm, in particular of at least 1.5 mm and particularly preferably of 2.0 mm.
  4. Fuel injector (132) according to one of the preceding claims, wherein the damping duct (170) has a length of at least 40 mm, in particular of at least 60 mm and particularly preferably of 90 mm.
  5. Fuel injector (132) according to one of the preceding claims, wherein the fuel injector (132) comprises a high-pressure bore (148) which extends substantially parallel to the injector axis (142) and which is connected to the high-pressure supply (150), to the control chamber (156) and to the nozzle chamber (144), wherein the damping duct (170) extends substantially parallel to the high-pressure bore (148).
EP08759582.3A 2007-06-01 2008-05-14 Fuel injector having low wear Not-in-force EP2156047B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200710025617 DE102007025617A1 (en) 2007-06-01 2007-06-01 Fuel injector with low wear
PCT/EP2008/055899 WO2008145515A1 (en) 2007-06-01 2008-05-14 Fuel injector having low wear

Publications (2)

Publication Number Publication Date
EP2156047A1 EP2156047A1 (en) 2010-02-24
EP2156047B1 true EP2156047B1 (en) 2014-07-16

Family

ID=39865567

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08759582.3A Not-in-force EP2156047B1 (en) 2007-06-01 2008-05-14 Fuel injector having low wear

Country Status (3)

Country Link
EP (1) EP2156047B1 (en)
DE (1) DE102007025617A1 (en)
WO (1) WO2008145515A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9644590B2 (en) 2014-01-31 2017-05-09 Cummins Inc. Fuel injection pressure pulsation dampening system
DE102016209546A1 (en) 2016-06-01 2017-12-07 Robert Bosch Gmbh Fuel injection valve
DE102017126642A1 (en) 2017-11-13 2019-05-16 Volkswagen Aktiengesellschaft Device for reducing pressure wave oscillations in an injection device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002046602A1 (en) * 2000-12-07 2002-06-13 Robert Bosch Gmbh Fuel injection system for internal combustion engines
WO2002046601A1 (en) * 2000-12-07 2002-06-13 Robert Bosch Gmbh Fuel injection system for internal combustion engines
WO2002090753A1 (en) * 2001-05-05 2002-11-14 Robert Bosch Gmbh Fuel injection valve for internal combustion engines with damping chamber reducing pressure oscillations
WO2002090755A1 (en) * 2001-05-05 2002-11-14 Robert Bosch Gmbh Fuel injection valve for internal combustion engines
DE102004007342A1 (en) * 2004-02-14 2005-09-01 Robert Bosch Gmbh Hydraulic system for an internal combustion engine's fuel injection system has a source for a fluid under high pressure linked to a valve with control and nozzle devices

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19842067A1 (en) * 1998-09-15 2000-03-16 Daimler Chrysler Ag Fuel injection system for diesel internal combustion engine has accumulator associated directly with each injector to eliminate fuel pressure fluctuations
DE10307871A1 (en) 2003-02-25 2004-09-02 Robert Bosch Gmbh High pressure line for a fuel injection system
ATE413527T1 (en) * 2004-06-30 2008-11-15 Fiat Ricerche FUEL INJECTION DEVICE FOR AN INTERNAL COMBUSTION ENGINE

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002046602A1 (en) * 2000-12-07 2002-06-13 Robert Bosch Gmbh Fuel injection system for internal combustion engines
WO2002046601A1 (en) * 2000-12-07 2002-06-13 Robert Bosch Gmbh Fuel injection system for internal combustion engines
WO2002090753A1 (en) * 2001-05-05 2002-11-14 Robert Bosch Gmbh Fuel injection valve for internal combustion engines with damping chamber reducing pressure oscillations
WO2002090755A1 (en) * 2001-05-05 2002-11-14 Robert Bosch Gmbh Fuel injection valve for internal combustion engines
DE102004007342A1 (en) * 2004-02-14 2005-09-01 Robert Bosch Gmbh Hydraulic system for an internal combustion engine's fuel injection system has a source for a fluid under high pressure linked to a valve with control and nozzle devices

Also Published As

Publication number Publication date
EP2156047A1 (en) 2010-02-24
WO2008145515A1 (en) 2008-12-04
DE102007025617A1 (en) 2008-12-04

Similar Documents

Publication Publication Date Title
EP2635794B1 (en) Device for injecting fuel into the combustion chamber of an internal combustion engine
DE4340305C2 (en) Fuel injection nozzle for an internal combustion engine
DE4313852B4 (en) Fuel injection device for internal combustion engines
DE102007000080B4 (en) Fuel injector and fuel injector
AT503660B1 (en) DEVICE FOR INJECTING FUEL IN THE COMBUSTION ENGINE OF AN INTERNAL COMBUSTION ENGINE
EP1342005B1 (en) Fuel injection system for internal combustion engines
DE112006002281T5 (en) Injection device for a single fluid with rate forming capability
EP1252437B1 (en) Injection device and method for injecting a fluid
EP2387661A1 (en) Fuel injector for internal combustion engines
EP2156047B1 (en) Fuel injector having low wear
DE19938169A1 (en) Fuel injector
EP1117921B1 (en) Fuel injector for a common rail fuel system
AT9288U1 (en) HYDRAULIC DEVICE WITH AT LEAST ONE PRESSURE MEMORY
WO2016055293A1 (en) Accumulator injection system for internal combustion engines
DE102006020634B4 (en) Injection injector for internal combustion engines
EP2807367B1 (en) Device for injecting fuel into the combustion chamber of an internal combustion engine
DE10132246A1 (en) Fuel injector with high pressure resistant inlet
DE10307002A1 (en) Fuel injection nozzle has outer nozzle needle and control element in form of inner nozzle needle with first and second lower and higher fuel outlet cross-section positions
WO2003027485A1 (en) Fuel injection system with injector hydraulically decoupled from the supply
DE102008044743A1 (en) Injection valve and fluid delivery system with injection valve
DE102004016508A1 (en) Common rail automotive fuel injection assembly has throttle prior to jet causing lower back-pressure to pump than to jet
DE102008041561A1 (en) Fuel injector, particularly common rail injector for injecting fuel into combustion chamber of internal combustion engine, comprises two injector valve element units that are coupled together over hydraulic coupler
DE10358861A1 (en) injection
DE102019220172A1 (en) Fuel injector for an internal combustion engine
DE102007005574A1 (en) Injector for injecting fuel into combustion chambers of fuel engines

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100104

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130708

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502008012017

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F02M0047020000

Ipc: F02M0063020000

RIC1 Information provided on ipc code assigned before grant

Ipc: F02M 63/02 20060101AFI20131219BHEP

Ipc: F02M 47/02 20060101ALI20131219BHEP

Ipc: F02M 55/04 20060101ALI20131219BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140220

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 677823

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008012017

Country of ref document: DE

Effective date: 20140828

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140716

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141117

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141016

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141017

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141116

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008012017

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150514

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150514

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150514

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 677823

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140716

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200519

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200728

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008012017

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531