EP2151299B1 - Chemisch-mechanisches Polierpad - Google Patents

Chemisch-mechanisches Polierpad Download PDF

Info

Publication number
EP2151299B1
EP2151299B1 EP09154680.4A EP09154680A EP2151299B1 EP 2151299 B1 EP2151299 B1 EP 2151299B1 EP 09154680 A EP09154680 A EP 09154680A EP 2151299 B1 EP2151299 B1 EP 2151299B1
Authority
EP
European Patent Office
Prior art keywords
polishing pad
polishing
density
percent
isocyanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09154680.4A
Other languages
English (en)
French (fr)
Other versions
EP2151299A2 (de
EP2151299A3 (de
Inventor
Mary Jo Kulp
T. Todd Crkvenac
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm and Haas Electronic Materials CMP Holdings Inc
Rohm and Haas Electronic Materials LLC
Original Assignee
Rohm and Haas Electronic Materials CMP Holdings Inc
Rohm and Haas Electronic Materials LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41203879&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2151299(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Rohm and Haas Electronic Materials CMP Holdings Inc, Rohm and Haas Electronic Materials LLC filed Critical Rohm and Haas Electronic Materials CMP Holdings Inc
Publication of EP2151299A2 publication Critical patent/EP2151299A2/de
Publication of EP2151299A3 publication Critical patent/EP2151299A3/de
Application granted granted Critical
Publication of EP2151299B1 publication Critical patent/EP2151299B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/20Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially organic
    • B24D3/28Resins or natural or synthetic macromolecular compounds
    • B24D3/32Resins or natural or synthetic macromolecular compounds for porous or cellular structure

Definitions

  • This specification relates to polishing pads useful for polishing or planarizing semiconductor substrates.
  • the production of semiconductors typically involves several chemical mechanical polishing (CMP) processes.
  • CMP chemical mechanical polishing
  • a polishing pad in combination with a polishing solution such as an abrasive-containing polishing slurry or an abrasive-free reactive liquid, removes excess material in a manner that planarizes or maintains flatness for receipt of a subsequent layer.
  • the stacking of these layers combines in a manner that forms an integrated circuit.
  • the fabrication of these semiconductor devices continues to become more complex due to requirements for devices with higher operating speeds, lower leakage currents and reduced power consumption. In terms of device architecture, this translates to finer feature geometries and increased numbers of metallization levels.
  • cast polyurethane polishing pads have provided the mechanical integrity and chemical resistance for most polishing operations used to fabricate integrated circuits.
  • polyurethane polishing pads have sufficient tensile strength and elongation for resisting tearing; abrasion resistance for avoiding wear problems during polishing; and stability for resisting attack by strong acidic and strong caustic polishing solutions.
  • the hard cast polyurethane polishing pads that tend to improve planarization, also tend to increase defects.
  • polishing pads having high tensile modulus.
  • the disclosed polishing pads comprise a polymeric matrix and hollow polymeric particles within the polymeric matrix, wherein the polymeric matrix is a polyurethane reaction product of an amine-based curative agent and an isocyanate-terminated polytetrmethylene ether glycol.
  • these polishing pads can provide excellent polishing performance for ceria-containing polishing slurries, for polishing silicon oxide/silicon nitride applications, such as direct shallow trench isolation (STI) polishing applications.
  • silicon oxide refers to silicon oxide, silicon oxide compounds and doped silicon oxide formulations useful for forming dielectrics in semiconductor devices
  • silicon nitride refers to silicon nitrides, silicon nitride compounds and doped silicon nitride formulations useful for semiconductor applications.
  • these pads do not have universal applicability for improving polishing performance with all polishing slurries for the multiple substrate layers contained in today's and future semiconductor wafers. Furthermore, as the cost of semiconductor devices decreases, there remains a need for further and further increases in polishing performance.
  • oxide dielectric removal rates are important for removing dielectrics during inter-layer dielectric (“ILD”) or inter-metallic dielectric (“IMD”) polishing.
  • ILD inter-layer dielectric
  • Specific types of dielectric oxides in use include the following: BPSG, TEOS formed from the decomposition of tetraethyloxysilicates, HDP ("high-density plasma”) and SACVD ("sub-atmospheric chemical vapor deposition").
  • polishing pads that have increased removal rate in combination with acceptable defectivity performance and wafer uniformity.
  • polishing pads suitable for ILD polishing with an accelerated oxide removal rate in combination with acceptable planarization and defectivity polishing performance are desirable.
  • Figure 1 is a 250X magnification post-polishing scanning electron photomicrograph of the polishing surface of a pad of the invention.
  • Figure 2 is a 500X magnification post-polishing scanning electron photomicrograph of the polishing surface of a pad of the invention.
  • Figure 3 is a 500X EDS image of the polishing pad of Figures 1 and 2 , in the same region as Figure 2 ,illustrating a high concentration of silicon after polishing with a silica-containing polishing slurry.
  • the invention provides a polishing pad suitable for planarizing at least one of semiconductor, optical and magnetic substrates, the polishing pad comprising a polymeric matrix.
  • the polishing pads are particularly suitable for polishing and planarizing ILD dielectric materials as in inter-layer dielectric (ILD) applications, but could also be used for polishing metals such as copper or tungsten.
  • ILD inter-layer dielectric
  • the pad provides increased removal rate over current pads-especially in the first 30 seconds of polishing. The accelerated response of the pad during the early part of polishing makes possible increased wafer throughput by shortening needed polishing time to remove a specified amount of material from a wafer surface.
  • the removal rate for ILD polishing with fumed silica at 30 seconds can be greater than 3750 ⁇ /minute.
  • the invention may provide at least a 10% higher removal rate than the removal rate at 30 seconds given by IC1010TM polyurethane polishing pads in the same polishing test. (IC1010 is a trademark of Rohm and Haas Company or its affiliates.)
  • the removal rate for the polishing pads of the invention at thirty seconds for polishing TEOS sheet wafers with a silica-containing abrasive is equal to or greater than the removal rate for IC1000 polishing pads for polishing TEOS sheet wafers with a silica-containing abrasive at both thirty and sixty seconds.
  • IC 1000TM may increase TEOS removal rate with polishing time because it comprises aliphatic isocyanate that tends to impart thermoplastic character to parts made from the ingredients.
  • IC 1000 is a trademark of Rohm and Haas Company or its affiliates.
  • the thermoplastic character of IC1000 polishing pads appears to facilitate an increase in contact between the polishing pad and the wafer along with an increase in removal rate until some maximum in removal rate occurs.
  • Increasing pad to wafer contact area to ever higher levels appears to decrease removal rate as the localized asperity to wafer contact pressure decreases.
  • formulations not comprising aliphatic isocyanate will have more thermoplastic character as the degree of cross-linking or molecular weight decreases; and they may show more of an increase in removal rate with a wafer's polishing time.
  • the pad of the invention has sufficient levels of porosity to maximize pad to wafer contact very early in the polishing process; and the relatively high level of cross-linking appears to provide the pad sufficient localized stiffness to facilitate the polishing process.
  • polishing pad can increase with abrasive content
  • an improvement over IC1010 polishing pad's removal rate independent of abrasive level represents an important advance in polishing performance. For example, this facilitates increasing removal rate with low defectivity and may decrease slurry costs.
  • wafer-scale nonuniformity also represents an important polishing performance consideration. Typically, because polished wafer uniformity is important for getting the maximum number of well-polished dies, the wafer-scale nonuniformity should be less than 6%.
  • polyurethanes are products derived from difunctional or polyfunctional isocyanates, e.g. polyetherureas, polyisocyanurates, polyurethanes, polyureas, polyurethaneureas, copolymers thereof and mixtures thereof.
  • Cast polyurethane polishing pads are suitable for planarizing semiconductor, optical and magnetic substrates.
  • the pads' particular polishing properties arise in part from a prepolymer reaction product of a prepolymer polyol and a polyfunctional isocyanate.
  • the prepolymer product is cured with a curative agent selected from the group comprising curative polyamines, curative polyols, curative alcohol amines and mixtures thereof to form a polishing pad. It has been discovered that controlling the ratio of the curative agent to the unreacted NCO in the prepolymer reaction product can improve porous pads' defectivity performance during polishing.
  • the urethane production involves the preparation of an isocyanate-terminated urethane prepolymer from a polyfunctional aromatic isocyanate and a prepolymer polyol.
  • the prepolymer polyol is polytetramethylene ether glycol [PTMEG].
  • Example polyfunctional aromatic isocyanates include 2,4-toluene diisocyanate, 2,6- toluene diisocyanate, 4,4'-diphenylmethane diisocyanate, naphthalene-1,5-diisocyanate, tolidine diisocyanate, para-phenylene diisocyanate, xylylene diisocyanate and mixtures thereof.
  • the polyfunctional aromatic isocyanate contains less than 20 weight percent aliphatic isocyanates, such as 4,4'-dicyclohexylmethane diisocyanate, isophorone diisocyanate and cyclohexanediisocyanate.
  • the polyfunctional aromatic isocyanate contains less than 15 weight percent aliphatic isocyanates and more preferably, less than 12 weight percent aliphatic isocyanate.
  • the prepolymer reaction product is reacted or cured with a curative amine such as a polyamine or polyamine-containing mixture.
  • a curative amine such as a polyamine or polyamine-containing mixture.
  • the polyamine it is possible to mix the polyamine with an alcohol amine or a monoamine.
  • polyamines include diamines and other multifunctional amines.
  • Example curative polyamines include aromatic diamines or polyamines, such as, 4,4'-methylene-bis-o-chloroaniline [MBCA], 4,4'-methylene-bis-(3-chloro-2,6-diethylaniline) [MCDEA]; dimethylthiotoluenediamine; trimethyleneglycol di-p-aminobenzoate; polytetramethyleneoxide di-p-aminobenzoate; polytetramethyleneoxide mono-p-aminobenzoate; polypropyleneoxide di-p-aminobenzoate; polypropyleneoxide mono-p-aminobenzoate; 1,2-bis(2-aminophenylthio)ethane; 4,4'-methylene-bis-aniline; diethyltoluenediamine; 5-tert-butyl-2,4- and 3-tert-butyl-2,6- toluenediamine; 5-tert-amyl-2,4- and 3-ter
  • the components of the polymer used to make the polishing pad are preferably chosen so that the resulting pad morphology is stable and easily reproducible.
  • MBCA 4,4'-methylene-bis-o-chloroaniline
  • additives such as anti-oxidizing agents, and impurities such as water for consistent manufacturing.
  • the polyurethane polymeric material is preferably formed from a prepolymer reaction product of toluene diisocyanate with polytetramethylene ether glycol and an aromatic diamine.
  • aromatic diamine is 4,4'-methylene-bis-o-chloroaniline or 4,4'-methylene-bis-(3-chloro-2,6-diethylaniline).
  • the range of unreacted prepolymer %NCO is 8.75-9.05.
  • a particular example of a suitable prepolymer within this unreacted NCO range is Adiprene® prepolymer LF750D manufactured by Chemtura.
  • LF750D represents a low-free isocyanate prepolymer that has less than 0.1 weight percent each of free 2,4 and 2,6 TDI monomers and has a more consistent prepolymer molecular weight distribution than conventional prepolymers.
  • This "low-free" prepolymer with improved prepolymer molecular weight consistency and low free isocyanate monomer facilitates a more regular polymer structure, and contributes to improved polishing pad consistency.
  • the curative and prepolymer reaction product typically has an OH or NH 2 to unreacted NCO stoichiometric ratio of 80 to 97 percent, preferably 80 to 90 percent; and most preferably, it has an OH or NH 2 to unreacted NCO stoichiometric ratio of 83 to 87 percent. It is possible to achieve this stoichiometry either directly, by providing the stoichiometric levels of the raw materials, or indirectly by reacting some of the NCO with water, either purposely or by exposure to adventitious moisture.
  • the finished polishing pad preferably has a density of 0.4 to 0.8 g/cm 3 .
  • the finished polyurethane polishing pads have a density of 0.5 to 0.75 g/cm 3 .
  • a hollow polymeric particle loading density (before casting) of 3.25 to 4.25 weight percent and preferably 3.25 to 3.6 weight percent of the nominal 20 ⁇ m pores or hollow polymeric particles based on the total pad formulation can produce the desired density with excellent polishing results.
  • the hollow polymeric particles provide a random pore distribution throughout the polymer matrix.
  • the polishing pad has a closed cell structure with the polymeric matrix forming a continuous network surrounding the closed cell structure.
  • the polishing pad typically has a Shore D hardness of 44 to 54.
  • the Shore D test includes conditioning pad samples by placing them in 50 percent relative humidity for five days at 25 °C before testing and using methodology outlined in ASTM D2240 to improve the repeatability of the hardness tests.
  • the hollow polymeric particles have a weight average diameter of 2 to 50 ⁇ m.
  • weight average diameter represents the diameter of the hollow polymeric particle before casting; and the particles may have a spherical or non-spherical shape.
  • the hollow polymeric particles have a spherical shape.
  • the hollow polymeric particles have a weight average diameter of 2 to 40 ⁇ m.
  • the hollow polymeric particles have a weight average diameter of 10 to 30 ⁇ m; these hollow polymeric particles typically have an average density of 60 grams per liter.
  • average density of the hollow polymeric particles represents the close-packed-non-crushed density of the hollow particles within a one liter volume.
  • Hollow particles with an average diameter of 35 to 50 ⁇ m typically have lower density averaging 42 grams per liter because there are fewer pores and less wall material.
  • Hollow particles of different sizes and types can be added at equivalent pore volumes by taking the mass of the hollow polymeric particles of one size and dividing by their density to determine the volume of pores. This volume can then be multiplied by the density of the other pore to determine the mass of the hollow polymeric particles of that size and type to give equivalent pore volume
  • a formulation with 3 wt% of 20 ⁇ m hollow polymeric particles with a density of 60 grams per liter would be equivalent to 2.1 wt% of 42 ⁇ m hollow polymeric particles with a density of 40 grams per liter as shown by the equation that follows.
  • density a wt ⁇ % b
  • density b wt ⁇ % b
  • density a wt ⁇ % b
  • the nominal range of expanded hollow-polymeric particles' weight average diameters is 15 to 90 ⁇ m. Furthermore, a combination of high porosity with small pore size can have particular benefits in reducing defectivity. If the porosity level becomes too high, however, the polishing pad loses mechanical integrity and strength. For example, adding hollow polymeric particles of 2 to 50 ⁇ m weight average diameter constituting 30 to 60 volume percent of the polishing layer facilitates a reduction in defectivity. Furthermore, maintaining porosity between 35 and 55 volume percent or specifically, 35 and 50 volume percent can facilitate increased removal rates.
  • volume percent porosity represents the volume percent of pores determined as follows: 1) subtracting the measured density of the formulation from the nominal density of the polymer without porosity to determine the mass of polymer "missing" from the a cm 3 of formulation; then 2) dividing the mass of "missing" polymer by the nominal density of the polymer without porosity to determine the volume of polymer missing from a cm 3 of formulation and multiplying by 100 to convert it to a porosity volume percentage.
  • the volume percent of pores in a formulation or volume percent porosity can be determined as follows: 1) subtracting the mass of hollow polymeric particles in 100 g formulation from 100 g to determine the mass of polymer matrix in 100 g of formulation; 2) dividing the mass of polymer matrix by the nominal density of the polymer to determine the volume of polymer in 100 g of formulation; 3) dividing the mass of hollow polymeric particles in 100 g of formulation by the nominal hollow polymeric particle density to determine the volume of hollow polymeric particles in 100 g of formulation; 4) adding the volume of polymer in 100 g of formulation to the volume of hollow particles or pores in 100 g of formulation, to determine the volume of 100 g of formulation; then 5) dividing the volume of hollow particles or pores in 100 g of formulation by the total volume of 100 g of formulation and multiplying by 100 to give the volume percent of pores or porosity in the formulation.
  • the two methods will produce similar values for volume percent porosity or pores, although the second method will show lower values of volume percent pores or porosity than the first method where parameters during processing, such as the reaction exotherm, can cause hollow polymeric particles or microspheres to expand beyond their nominal "expanded volume.” Because a decrease in pore size tends to increase polishing rate for a specific pore or porosity level, it is important to control the exotherm during casting to prevent further expansion of the pre-expanded hollow polymeric particles or microspheres.
  • casting into a room temperature mold limiting cake height, reducing prepolymer temperature, reducing curative amine temperature, reducing the NCO and limiting the free TDI monomer all contribute to reducing the exotherm produced by the reacting isocyanate.
  • polishing pad conditioning serves to increase removal rate and improve wafer-scale nonuniformity.
  • conditioning can function in a periodic manner, such as for 30 seconds after each wafer or in a continuous manner
  • continuous conditioning provides the advantage of establishing steady-state polishing conditions for improved control of removal rate.
  • the conditioning typically increases the polishing pad removal rate and prevents the decay in removal rate typically associated with the wear of a polishing pad's surface.
  • the abrasive conditioning forms a roughened surface that can trap fumed silica particles during polishing.
  • Figures 1 to 3 illustrate that silica particles can accumulate in the roughened surface adjacent the polishing pad's pores.
  • the polymeric pad materials were prepared by mixing various amounts of isocyanates as urethane prepolymers with 4,4'-methylene-bis-o-chloroaniline [MBCA] at 49 °C for the prepolymer and 115 °C for MBCA for examples of the invention (Comparative Examples included 43 to 63 °C for the prepolymer).
  • MBCA 4,4'-methylene-bis-o-chloroaniline
  • Comparative Examples included 43 to 63 °C for the prepolymer.
  • a certain toluene diiosocyanate [TDI] with polytetramethylene ether glycol [PTMEG] prepolymer provided polishing pads with different properties.
  • the urethane/polyfunctional amine mixture was mixed with the hollow polymeric microspheres (EXPANCEL ® 551DE20d60 or 551DE40d42 manufactured by AkzoNobel) either before or after mixing the prepolymer with the chain extender.
  • the hollow polymeric microspheres were either mixed with the prepolymer at 60 rpm before adding the polyfunctional amine, then mixing the mixture at 4500 rpm or were added to the urethane/polyfunctional amine mixture in a mixhead at 3600 rpm.
  • the microspheres had a weight average diameter of 15 to 50 ⁇ m, with a range of 5 to 200 ⁇ m
  • the final mixture was transferred to a mold and permitted to gel for about 15 minutes.
  • the mold was then placed in a curing oven and cured with a cycle as follows: thirty minutes ramped from ambient temperature to a set point of 104°C, fifteen and one half hours at 104°C and two hours with a set point reduced to 21°C. Comparative Examples F to K used a shorter cure cycle of 100°C for about eight hours.
  • the molded article was then "skived" into thin sheets and macro-channels or grooves were machined into the surface at room temperature-skiving at higher temperatures may improve surface roughness and sheet thickness uniformity. As shown in the Tables, samples 1 to 2 represent polishing pads of the invention and samples A to Z represent comparative examples.
  • Example polishing pads were tested on a Mirra® polisher from Applied Materials, Inc. using a platen rotation rate of 93 rpm, a wafer carrier head rotation rate of 87 rpm and a downforce of 5 psi to polish TEOS sheet wafers.
  • the polishing slurry was ILD3225 used as a 1:1 mixture with DI water and supplied at the polishing pad surface a rate of 150 ml/min.
  • a Diagrid® AD3BG150855 conditioning disk was used to diamond-condition the polishing pad using an in situ conditioning process.
  • TEOS sheet wafers were polished for 30 seconds or for 60 seconds and each test with example pads also included wafers polished with the IC1010 pad as a baseline.
  • Table 3 illustrates that the hollow polymeric microspheres achieve a loading level in excess of one million microspheres per cubic centimeter of pad formulation.
  • Table 4 shows prepolymer %NCO and compares mechanical strength properties of MBCA-cured elastomers, without filler or porosity, made from the prepolymers used in the example formulations as tested using methodology in ASTM D412. The tensile properties shown are defined in ASTM D1566-08A. In addition, Table 4 shows the nominal density of the prepolymer cured with MBCA as reported by the prepolymer manufacturer.
  • Table 4 illustrates that in addition to filler concentration, the polishing pad's mechanical properties also appear to impact polishing performance.
  • the polymer of Comparative Example R with LF600D appears to have inadequate stiffness, as best indicated by its 100% modulus, for high removal rates for fumed silica polishing; and Comparative Examples F to K made with Royalcast® 2505 quasi-prepolymer, which appears to be excessively stiff for high removal rates in fumed silica polishing.
  • Polyurethane materials cast from Royalcast 2505 were so brittle that they broke prior to elongation at 100%.
  • the polishing pad is effective for polishing copper, dielectric, barrier and tungsten wafers.
  • the polishing pad is useful for ILD polishing and in particular, ILD polishing applications with fumed silica.
  • the polishing pad has a rapid ramp to efficient polishing that provides a high removal rate at thirty seconds.
  • the removal rate of polishing pads of the invention at both thirty and sixty seconds can exceed the removal rate of IC1000 polishing pads at thirty seconds and at sixty seconds. This rapid polishing response of the pads of the invention facilitates high wafer throughput in comparison to conventional porous polishing pads.

Claims (10)

  1. Ein Polierpad, das zum Polieren von gemusterten Halbleitersubstraten, enthaltend mindestens eines von Kupfer, Dielektrikum, Barriere und Wolfram, geeignet ist, wobei das Polierpad Folgendes beinhaltet: eine Polymermatrix und hohle Polymerpartikel innerhalb der Polymermatrix, dadurch gekennzeichnet, dass die Polymermatrix ein Polyurethanreaktionsprodukt aus einem Vulkanisationsmittel und einem Isocyanatterminierten Polytetramethylenetherglykol mit einem stöchiometrischen Verhältnis von NH2 zu NCO von 80 bis 97 Prozent ist, wobei das Isocyanat-terminierte Polytetramethylenetherglykol einen Bereich an unreagiertem NCO von 8,75 bis 9,05 Gewichtsprozent aufweist, wobei das Vulkanisationsmittel Vulkanisationsamine, welche das Isocyanat-terminierte Polytetramethylenetherglykol vulkanisieren, um die Polymermatrix zu bilden, enthält; und wobei die hohlen Polymerpartikel Folgendes aufweisen: einen mittleren Durchmesser von 2 bis 50 µm und ein Gew.-%b und eine Dichteb von Komponenten, die auf einer Porenvolumenbasis, die zu Gew.-%a und Dichtea äquivalent ist, zugegeben werden, durch Bilden des Polierbads wie folgt: Gew . - % a * Dichte b Dichte a = Gew . - % b
    Figure imgb0005

    wobei Dichtea einer mittleren Dichte von 60 g/l gleicht,
    wobei Dichteb eine mittlere Dichte von 5 g/l bis 500 g/l ist,
    wobei Gew.-%a 3,25 bis 4,25 Gew.-% ist,
    das Polierpad eine Porosität von 30 bis 60 Volumenprozent und eine geschlossenzellige Struktur innerhalb der Polymermatrix, die ein die geschlossenzellige Struktur umgebendes durchgehendes Netzwerk bildet, aufweist.
  2. Polierpad gemäß Anspruch 1, wobei das durchgehende Netzwerk nach dem Konditionieren mit einem Abrasivmittel eine geraute Oberfläche bildet; und die geraute Oberfläche in der Lage ist, während des Polierens pyrogene Kieselsäurepartikel zu fassen.
  3. Polierpad gemäß Anspruch 1, wobei das Polierpad eine Shore-D-Härte von 44 bis 54 aufweist.
  4. Polierpad gemäß Anspruch 1, wobei das Polierpad eine Porosität von 35 bis 55 Volumenprozent aufweist.
  5. Polierpad gemäß Anspruch 1, wobei die hohlen Polymerpartikel einen mittleren Durchmesser von 10 bis 30 µm aufweisen.
  6. Polierpad gemäß Anspruch 1, wobei die Polymermatrix ein
    Polyurethanreaktionsprodukt aus einem Vulkanisationsmittel und einem Isocyanatterminierten Polytetramethylenetherglykol mit einem stöchiometrischen Verhältnis von NH2 zu NCO von 80 bis 90 Prozent ist; Dichteb eine mittlere Dichte von 10 g/l bis 300 g/l ist;
    Gew.-%a 3,25 bis 3,6 Gew.-% ist; und
    das Polierpad eine Porosität von 35 bis 55 Volumenprozent aufweist.
  7. Polierpad gemäß Anspruch 6, wobei das durchgehende Netzwerk nach dem Konditionieren mit einem Abrasivmittel eine geraute Oberfläche bildet; und die geraute Oberfläche in der Lage ist, während des Polierens pyrogene Kieselsäurepartikel zu fassen.
  8. Polierpad gemäß Anspruch 6, wobei das Polierpad eine Shore-D-Härte von 44 bis 54 aufweist.
  9. Polierpad gemäß Anspruch 6, wobei das Polierpad eine Porosität von 35 bis 50 Volumenprozent aufweist.
  10. Polierpad gemäß Anspruch 6, wobei die hohlen Polymerpartikel einen mittleren Durchmesser von 10 bis 30 µm aufweisen.
EP09154680.4A 2008-08-05 2009-03-09 Chemisch-mechanisches Polierpad Active EP2151299B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/221,581 US20100035529A1 (en) 2008-08-05 2008-08-05 Chemical mechanical polishing pad

Publications (3)

Publication Number Publication Date
EP2151299A2 EP2151299A2 (de) 2010-02-10
EP2151299A3 EP2151299A3 (de) 2013-06-19
EP2151299B1 true EP2151299B1 (de) 2014-06-11

Family

ID=41203879

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09154680.4A Active EP2151299B1 (de) 2008-08-05 2009-03-09 Chemisch-mechanisches Polierpad

Country Status (6)

Country Link
US (1) US20100035529A1 (de)
EP (1) EP2151299B1 (de)
JP (1) JP2010041056A (de)
KR (1) KR20100017064A (de)
CN (1) CN101642897B (de)
TW (1) TWI482789B (de)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8257544B2 (en) 2009-06-10 2012-09-04 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing pad having a low defect integral window
US8551201B2 (en) * 2009-08-07 2013-10-08 Praxair S.T. Technology, Inc. Polyurethane composition for CMP pads and method of manufacturing same
JP5528169B2 (ja) 2010-03-26 2014-06-25 東洋ゴム工業株式会社 研磨パッドおよびその製造方法、ならびに半導体デバイスの製造方法
JP5534907B2 (ja) * 2010-03-31 2014-07-02 富士紡ホールディングス株式会社 研磨パッドおよび研磨パッドの製造方法
US8257545B2 (en) 2010-09-29 2012-09-04 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing pad with light stable polymeric endpoint detection window and method of polishing therewith
US9211628B2 (en) 2011-01-26 2015-12-15 Nexplanar Corporation Polishing pad with concentric or approximately concentric polygon groove pattern
CN103764346B (zh) * 2011-09-22 2016-10-26 罗门哈斯电子材料Cmp控股有限公司 研磨垫及半导体器件的制造方法
JP5738729B2 (ja) * 2011-09-22 2015-06-24 東洋ゴム工業株式会社 研磨パッド
JP5738731B2 (ja) * 2011-09-22 2015-06-24 東洋ゴム工業株式会社 研磨パッド
JP5738730B2 (ja) * 2011-09-22 2015-06-24 東洋ゴム工業株式会社 研磨パッド
JP5738728B2 (ja) * 2011-09-22 2015-06-24 東洋ゴム工業株式会社 研磨パッド
US9144880B2 (en) * 2012-11-01 2015-09-29 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Soft and conditionable chemical mechanical polishing pad
US9102034B2 (en) 2013-08-30 2015-08-11 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Method of chemical mechanical polishing a substrate
US20150306731A1 (en) * 2014-04-25 2015-10-29 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing pad
TWI518176B (zh) 2015-01-12 2016-01-21 三芳化學工業股份有限公司 拋光墊及其製造方法
US10946495B2 (en) * 2015-01-30 2021-03-16 Cmc Materials, Inc. Low density polishing pad
JP2017185563A (ja) * 2016-04-01 2017-10-12 富士紡ホールディングス株式会社 研磨パッド
KR101853021B1 (ko) * 2017-01-12 2018-04-30 에스케이씨 주식회사 다공성 폴리우레탄 연마패드 및 이의 제조방법
KR102102973B1 (ko) * 2017-11-14 2020-04-22 에스케이씨 주식회사 연마패드
KR102058877B1 (ko) * 2018-04-20 2019-12-24 에스케이씨 주식회사 다공성 폴리우레탄 연마패드 및 이의 제조방법
KR102188525B1 (ko) * 2019-10-29 2020-12-08 에스케이씨 주식회사 연마패드, 이의 제조방법, 및 이를 이용한 반도체 소자의 제조방법

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY114512A (en) * 1992-08-19 2002-11-30 Rodel Inc Polymeric substrate with polymeric microelements
US6514301B1 (en) * 1998-06-02 2003-02-04 Peripheral Products Inc. Foam semiconductor polishing belts and pads
CN1099939C (zh) * 1998-11-09 2003-01-29 东丽株式会社 抛光垫及抛光装置
KR100707407B1 (ko) * 2000-06-13 2007-04-13 도요 고무 고교 가부시키가이샤 폴리우레탄 발포체의 제조방법, 폴리우레탄 발포체 및연마 시트
US20050171224A1 (en) * 2004-02-03 2005-08-04 Kulp Mary J. Polyurethane polishing pad
US7329174B2 (en) * 2004-05-20 2008-02-12 Jsr Corporation Method of manufacturing chemical mechanical polishing pad
JP4475404B2 (ja) * 2004-10-14 2010-06-09 Jsr株式会社 研磨パッド
US7169030B1 (en) * 2006-05-25 2007-01-30 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing pad
US7445847B2 (en) * 2006-05-25 2008-11-04 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing pad
US7371160B1 (en) * 2006-12-21 2008-05-13 Rohm And Haas Electronic Materials Cmp Holdings Inc. Elastomer-modified chemical mechanical polishing pad
US7569268B2 (en) * 2007-01-29 2009-08-04 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing pad

Also Published As

Publication number Publication date
KR20100017064A (ko) 2010-02-16
EP2151299A2 (de) 2010-02-10
US20100035529A1 (en) 2010-02-11
TWI482789B (zh) 2015-05-01
TW201006854A (en) 2010-02-16
JP2010041056A (ja) 2010-02-18
EP2151299A3 (de) 2013-06-19
CN101642897B (zh) 2011-08-03
CN101642897A (zh) 2010-02-10

Similar Documents

Publication Publication Date Title
EP2151299B1 (de) Chemisch-mechanisches Polierpad
TWI402334B (zh) 化學機械研磨墊
US8697239B2 (en) Multi-functional polishing pad
KR101526010B1 (ko) 화학 기계적 연마 패드
TWI589613B (zh) 聚胺酯硏磨墊
US7074115B2 (en) Polishing pad
US20050171225A1 (en) Polyurethane polishing pad
KR20160000855A (ko) 화학적 기계적 연마 방법
KR20160000856A (ko) 컨디셔닝 내성을 갖는 화학적 기계적 연마 층 배합물
JP6113331B2 (ja) 研磨パッド及びその製造方法
CN111136577B (zh) 化学机械抛光垫和抛光方法
KR102477456B1 (ko) 제어된-점도 cmp 캐스팅 방법
EP1522385B1 (de) Polierscheibe
CN111203798B (zh) 化学机械抛光垫和抛光方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090309

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIC1 Information provided on ipc code assigned before grant

Ipc: B24D 3/32 20060101ALI20130510BHEP

Ipc: B24B 37/04 20120101AFI20130510BHEP

17Q First examination report despatched

Effective date: 20130611

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B24D 3/32 20060101ALI20131011BHEP

Ipc: B24B 37/04 20120101AFI20131011BHEP

INTG Intention to grant announced

Effective date: 20131029

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

AKX Designation fees paid

Designated state(s): DE FR

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009024561

Country of ref document: DE

Effective date: 20140724

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009024561

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150312

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009024561

Country of ref document: DE

Effective date: 20150312

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230208

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230131

Year of fee payment: 15

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530