EP2145028B1 - Amalgam spheres for energy-saving lamps and the manufacture thereof - Google Patents

Amalgam spheres for energy-saving lamps and the manufacture thereof Download PDF

Info

Publication number
EP2145028B1
EP2145028B1 EP08736446A EP08736446A EP2145028B1 EP 2145028 B1 EP2145028 B1 EP 2145028B1 EP 08736446 A EP08736446 A EP 08736446A EP 08736446 A EP08736446 A EP 08736446A EP 2145028 B1 EP2145028 B1 EP 2145028B1
Authority
EP
European Patent Office
Prior art keywords
amalgam
spheres
tin
powder
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08736446A
Other languages
German (de)
French (fr)
Other versions
EP2145028A1 (en
Inventor
Georg Ptaschek
Calogero Di Vincenzo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Umicore AG and Co KG
Original Assignee
Umicore AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Umicore AG and Co KG filed Critical Umicore AG and Co KG
Priority to PL08736446T priority Critical patent/PL2145028T3/en
Priority to EP08736446A priority patent/EP2145028B1/en
Publication of EP2145028A1 publication Critical patent/EP2145028A1/en
Application granted granted Critical
Publication of EP2145028B1 publication Critical patent/EP2145028B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/18Selection of substances for gas fillings; Specified operating pressure or temperature having a metallic vapour as the principal constituent
    • H01J61/20Selection of substances for gas fillings; Specified operating pressure or temperature having a metallic vapour as the principal constituent mercury vapour
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C7/00Alloys based on mercury
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/24Means for obtaining or maintaining the desired pressure within the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/24Means for obtaining or maintaining the desired pressure within the vessel
    • H01J61/28Means for producing, introducing, or replenishing gas or vapour during operation of the lamp
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the invention relates to amalgam beads for the introduction of mercury in modern energy-saving lamps.
  • Modern energy-saving lamps of the TFL (Tube Fluorescent Lamp) or CFL (Compact Fluorescent Lamp) type belong to the low-pressure gas discharge lamps. They consist of a gas discharge flask filled with a mixture of mercury vapor and argon and internally coated with a fluorescent phosphor. The ultraviolet radiation of mercury emitted during operation is converted from fluorescence coating to visible light by the phosphor coating. The lamps are therefore also referred to as fluorescent lamps.
  • the mercury required for the operation of the lamps was formerly metered as liquid metal into the gas discharge flask.
  • the US 4,145,634 describes the use of Amalgampellets with 36 at% indium, which contain high liquid content even at room temperature because of the high mercury content.
  • the pellets tend to stick together when they get in contact with each other. By coating the pellets with suitable materials in powder form, this can be prevented.
  • Stable metal oxides titanium oxide, zirconium oxide, silicon dioxide, magnesium oxide and aluminum oxide
  • graphite glass powder
  • phosphors phosphors
  • borax antimony oxide and metal powders that do not form an amalgam with mercury (aluminum, iron and chromium) are suggested.
  • the WO 94/18692 describes the use of pellets of zinc amalgam with 5 to 60, preferably 40 to 60 wt .-%, mercury.
  • For the production of spheroid Amalgampellets is in the US 4,216,178 described method used in which the molten amalgam by a vibrated spout nozzle into small Drop is divided and cooled in a cooling medium below the solidification temperature.
  • the pellets are in accordance with WO 94/18692 not coated.
  • amalgam balls from the melt the amalgam must be heated to a temperature at which the amalgam is completely melted. This is guaranteed with a zinc amalgam only at a temperature above 420 ° C with certainty. These high processing temperatures necessitate corresponding safety precautions because of the high mercury vapor pressure due to the toxicity of the mercury.
  • the JP 2000251836 describes the use of amalgam cells of tin amalgam for the production of fluorescent lamps.
  • the tin amalgam preferably has only a low mercury content with a tin / mercury atomic ratio of between 90-80: 10-20. This corresponds to a mercury content of 15.8 to 29.7 wt .-%.
  • the JP 2000251836 Does not give any information about how the amalgam spherical pellets are made.
  • amalgam balls of a Zinnamalgam which has a mercury content between 30 and 70 wt .-%.
  • the amalgam spheres preferably have a mercury content of from 30 to 60 and in particular from 40 to 55% by weight.
  • the balls can look like one in the EP 1381485 B1 described method are prepared from a melt of the amalgam. This is completely melted Amalgam dripped into a cooling medium with a temperature below the solidification temperature of the amalgam. Preferably, the temperature of the cooling medium is 10 to 20 ° C below the liquidus temperature of the amalgam. It is advantageous here that Zinnamalgame completely melt even at temperatures below 230 ° C. The expense of ensuring job security in the production of tin amalgam balls is therefore significantly lower than in the case of zinc amalgam balls.
  • the cooling medium used is preferably a mineral, an organic or a synthetic oil.
  • Well proven has a silicone oil. After formation of the amalgam balls in the cooling medium, they are separated from the cooling medium and degreased.
  • amalgam spheres with diameters between 50 and 2000, preferably between 500 and 1500 microns are suitable.
  • the tendency of the amalgam beads to stick together can be largely suppressed if the degreased beads are coated with a metal or alloy powder which forms an amalgam with mercury. Due to the amalgamation of the metal powder, a surface layer with a low mercury content is formed on the spheres, which no longer contains any liquid phases at the usual processing temperatures of the amalgam spheres and thus prevents the adhesion tendency from the untreated spheres.
  • the metal or alloy powder used for the coating should not contain particles with a grain diameter greater than 100 ⁇ m. Particles with larger grain diameters amalgamate only incomplete and lead to a rough surface of the balls, which makes it difficult to meter the balls. Preference is given to a metal or alloy powder whose powder particles have a particle diameter of less than 80 microns. Particularly preferred are metal or alloy powders having an average particle diameter d 50 between 5 and 15 microns. Suitable metals have been found to be tin and zinc or an alloy of tin or zinc. Tin or a tin alloy are preferred. Good results have been obtained with alloys of tin with silver and copper, especially with the alloy SnAg3Cu0.5.
  • the balls can be presented for example in a rotating vessel and sprinkled with continuous circulation with the metal or alloy powder until no sticking of the balls is more detectable.
  • the amount of metal or alloy powder applied here to the amalgam beads is between 1 and 10, preferably between 2 and 4,% by weight, based on the weight of the amalgam beads.
  • a further reduction in the tendency to sticking is obtained when the amalgam spheres are additionally coated, after coating with the metal or alloy powder, with a powder of a metal oxide in an amount of 0.001 to 1, preferably 0.01 to 0.5 and in particular in an amount of 0, 1 wt .-%, based on the weight of the amalgam balls are coated.
  • a powder of a metal oxide in an amount of 0.001 to 1, preferably 0.01 to 0.5 and in particular in an amount of 0, 1 wt .-%, based on the weight of the amalgam balls are coated.
  • Suitable metal oxides for this coating are, for example, titanium oxide, zirconium oxide, silicon oxide and aluminum oxide. Preference is given to using an aluminum oxide produced by flame pyrolysis with an average particle size of less than 5, preferably less than 1 micron.
  • the applied powder layers improve the handling of the amalgam balls with dosing machines.
  • the amalgam spheres can be on average for up to three hours at room temperature before they are filled in a fluorescent lamp. It has been found that the coated with metal or alloy powder and metal oxide powder amalgam balls survive the mean residence time of 3 hours at temperatures up to 40 ° C in dosing without complaint. If only one of the two layers applied, it comes even before the average duration of residence of 3 hours to isolated separation of the applied layers.
  • the following table shows calculated values for the total mass (Sn + Hg) and the mercury mass (Hg) of tin amalgam spheres depending on the diameter of the spheres and for tin amalgams with mercury contents between 20 and 50 wt .-%.
  • the table also shows the densities p of the different amalgams used in the calculations.
  • amalgam spheres made from a SnHg50 containing 50% by weight of mercury contain about three times the mass of mercury, such as amalgam spheres made of SnHg20 with only 20% by weight of mercury.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Discharge Lamp (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Luminescent Compositions (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The spheres are made from tin amalgam with a mercury content in the range 30-70%. They are coated with a metal- or alloy powder, which forms an amalgam with mercury. The powder particle diameter is less than 100 mu m. The powder is tin, zinc or an alloy of tin or zinc. The spheres are coated with 10 wt% of the powder, based on their weight. In addition they are coated with 0.001 - 1 wt% of powdered metal oxide. The powder is tin or a tin alloy. It is alternatively an alloy of tin, silver and copper. The diameter of the spheres is 50-2000 mu m. To make them, the amalgam is completely melted and dripped into coolant, e.g. a silicon oil, at a temperature below the setting temperature of the amalgam. The spheres are then separated-out. The coolant is a mineral-, organic- or synthetic oil. Residual oil is removed from the spheres by de-greasing. At room temperature, under constant circulation, the spheres are coated with the powder, until they no longer stick together. In a further stage, they are similarly-coated with the metal oxide powder. An independent claim is included for the method of manufacturing the amalgam spheres.

Description

Die Erfindung betrifft Amalgamkugeln für die Einbringung von Quecksilber in moderne Energiesparlampen.The invention relates to amalgam beads for the introduction of mercury in modern energy-saving lamps.

Moderne Energiesparlampen vom TFL- (Tube Fluorescent Lamp) oder CFL-Typ (Compact Fluorescent Lamp) gehören zu den Niederdruck-Gasentladungslampen. Sie bestehen aus einem Gasentladungskolben, der mit einer Mischung aus Quecksilberdampf und Argon befüllt und innen mit einem fluoreszierenden Leuchtstoff beschichtet ist. Die im Betrieb emittierte Ultraviolettstrahlung des Quecksilbers wird von der Leuchtstoff-Beschichtung durch Fluoreszenz in sichtbares Licht umgewandelt. Die Lampen werden daher auch als Fluoreszenzlampen bezeichnet.Modern energy-saving lamps of the TFL (Tube Fluorescent Lamp) or CFL (Compact Fluorescent Lamp) type belong to the low-pressure gas discharge lamps. They consist of a gas discharge flask filled with a mixture of mercury vapor and argon and internally coated with a fluorescent phosphor. The ultraviolet radiation of mercury emitted during operation is converted from fluorescence coating to visible light by the phosphor coating. The lamps are therefore also referred to as fluorescent lamps.

Das für den Betrieb der Lampen benötigte Quecksilber wurde früher als flüssiges Metall in die Gasentladungskolben dosiert. Seit langem ist es jedoch bekannt, das Quecksilber in Form von Amalgamkugeln in die Gasentladungskolben einzubringen. Dies erleichtert die Handhabung des toxischen Quecksilbers und erhöht die Genauigkeit der Dosierung.The mercury required for the operation of the lamps was formerly metered as liquid metal into the gas discharge flask. For a long time, however, it has been known to introduce the mercury in the form of amalgam balls into the gas discharge pistons. This facilitates the handling of the toxic mercury and increases the accuracy of the dosage.

Die US 4,145,634 beschreibt die Verwendung von Amalgampellets mit 36 Atom-% Indium, die wegen des hohen Quecksilbergehalts schon bei Raumtemperatur hohe flüssige Anteile enthalten. Die Pellets neigen daher zum Verkleben, wenn sie untereinander Kontakt bekommen. Durch Beschichten der Pellets mit geeigneten Materialien in Pulverform kann das verhindert werden. Vorgeschlagen werden stabile Metalloxide (Titanoxid, Zirkonoxid, Siliziumdioxid, Magnesiumoxid und Aluminiumoxid), Graphit, Glaspulver, Phosphore, Borax, Antimonoxid und Metallpulver, die kein Amalgam mit Quecksilber bilden (Aluminium, Eisen und Chrom).The US 4,145,634 describes the use of Amalgampellets with 36 at% indium, which contain high liquid content even at room temperature because of the high mercury content. The pellets tend to stick together when they get in contact with each other. By coating the pellets with suitable materials in powder form, this can be prevented. Stable metal oxides (titanium oxide, zirconium oxide, silicon dioxide, magnesium oxide and aluminum oxide), graphite, glass powder, phosphors, borax, antimony oxide and metal powders that do not form an amalgam with mercury (aluminum, iron and chromium) are suggested.

Die WO 94/18692 beschreibt die Verwendung von Pellets aus Zinkamalgam mit 5 bis 60, bevorzugt 40 bis 60 Gew.-%, Quecksilber. Zur Fertigung von sphäroidalen Amalgampellets wird das in der US 4,216,178 beschriebene Verfahren verwendet, bei dem das geschmolzene Amalgam durch eine zu Vibrationen angeregte Auslaufdüse in kleine Tropfen zerteilt und in einem Kühlmedium unter die Erstarrungstemperatur abgekühlt wird. Die Pellets werden gemäß der WO 94/18692 nicht beschichtet.The WO 94/18692 describes the use of pellets of zinc amalgam with 5 to 60, preferably 40 to 60 wt .-%, mercury. For the production of spheroid Amalgampellets is in the US 4,216,178 described method used in which the molten amalgam by a vibrated spout nozzle into small Drop is divided and cooled in a cooling medium below the solidification temperature. The pellets are in accordance with WO 94/18692 not coated.

Zur Herstellung von Amalgamkugeln aus der Schmelze muß das Amalgam auf eine Temperatur erwärmt werden, bei der das Amalgam vollständig aufgeschmolzen ist. Das ist bei einem Zinkamalgam erst bei einer Temperatur oberhalb von 420 °C mit Sicherheit gewährleistet. Diese hohen Verarbeitungstemperaturen machen wegen des damit verbundenen hohen Dampfdrucks von Quecksilber entsprechende Sicherheitsvorkehrungen wegen der Toxizität des Quecksilbers notwendig.For the production of amalgam balls from the melt, the amalgam must be heated to a temperature at which the amalgam is completely melted. This is guaranteed with a zinc amalgam only at a temperature above 420 ° C with certainty. These high processing temperatures necessitate corresponding safety precautions because of the high mercury vapor pressure due to the toxicity of the mercury.

Die JP 2000251836 beschreibt für die Herstellung von Fluoreszenzlampen die Verwendung von Amalgampellets aus Zinnamalgam. Das Zinnamalgam weist bevorzugt nur einen geringen Quecksilbergehalt auf mit einem Zinn/Quecksilber-Atomverhältnis zwischen 90-80 : 10-20. Dies entspricht einem Quecksilbergehalt von 15,8 bis 29,7 Gew.-%. Die JP 2000251836 macht keine Angaben darüber, wie aus dem Amalgam kugelförmige Pellets hergestellt werden.The JP 2000251836 describes the use of amalgam cells of tin amalgam for the production of fluorescent lamps. The tin amalgam preferably has only a low mercury content with a tin / mercury atomic ratio of between 90-80: 10-20. This corresponds to a mercury content of 15.8 to 29.7 wt .-%. The JP 2000251836 Does not give any information about how the amalgam spherical pellets are made.

Nachteilig bei dem in der JP 2000251836 beschriebenen Zinnamalgam ist der geringe Quecksilbergehalt. Das macht relativ große Amalgamkugeln notwendig, wenn eine bestimmte Menge von Quecksilber in die Entladungslampen eingebracht werden soll. Wegen der auch bei Energiesparlampen zunehmenden Miniaturisierung kann dies zu Problemen bei der Konstruktion und Fertigung der Lampen führen.A disadvantage of the in the JP 2000251836 Zinnamalgam described is the low mercury content. This makes relatively large amalgam balls necessary if a certain amount of mercury is to be introduced into the discharge lamps. Because of the increasing miniaturization even in energy-saving lamps, this can lead to problems in the design and manufacture of the lamps.

Es ist daher eine Aufgabe der Erfindung, Amalgamkugeln aus Zinnamalgam zur Verfügung zu stellen, die einen hohen Quecksilbergehalt aufweisen und ohne Gefährdung der menschlichen Gesundheit sicher gelagert und bei der Herstellung von Energiesparlampcn eingesetzt werden können.It is therefore an object of the invention to provide amalgam balls of Zinnamalgam available, which have a high mercury content and can be safely stored without risk to human health and used in the production of Energiesparlampcn.

Diese Aufgabe wird gelöst durch Amalgamkugeln aus einem Zinnamalgam, welches einen Quecksilbergehalt zwischen 30 und 70 Gew.-% aufweist. Bevorzugt weisen die Amalgamkugeln einen Quecksilbergehalt von 30 bis 60 und insbesondere von 40 bis 55 Gew.-% auf.This object is achieved by amalgam balls of a Zinnamalgam, which has a mercury content between 30 and 70 wt .-%. The amalgam spheres preferably have a mercury content of from 30 to 60 and in particular from 40 to 55% by weight.

Die Kugeln können nach einem in der EP 1381485 B1 beschriebenen Verfahren aus einer Schmelze des Amalgams hergestellt werden. Hierzu wird das vollständig aufgeschmolzene Amalgam in ein Kühlmedium mit einer Temperatur unterhalb der Erstarrungstemperatur des Amalgams eingetropft. Bevorzugt liegt die Temperatur des Kühlmediums 10 bis 20 °C unterhalb der Liquidustemperatur des Amalgams. Vorteilhaft ist hierbei, daß Zinnamalgame schon bei Temperaturen unterhalb von 230 °C vollständig aufschmelzen. Der Aufwand für die Gewährleistung der Arbeitsplatzsicherheit bei der Herstellung der Zinnamalgam-Kugeln ist daher deutlich geringer als im Falle der Zinkamalgam-Kugeln.The balls can look like one in the EP 1381485 B1 described method are prepared from a melt of the amalgam. This is completely melted Amalgam dripped into a cooling medium with a temperature below the solidification temperature of the amalgam. Preferably, the temperature of the cooling medium is 10 to 20 ° C below the liquidus temperature of the amalgam. It is advantageous here that Zinnamalgame completely melt even at temperatures below 230 ° C. The expense of ensuring job security in the production of tin amalgam balls is therefore significantly lower than in the case of zinc amalgam balls.

Als Kühlmedium wird bevorzugt ein mineralisches, ein organisches oder ein synthetisches Öl verwendet. Gut bewährt hat sich ein Silikonöl. Nach Bildung der Amalgamkugeln im Kühlmedium werden sie vom Kühlmedium abgetrennt und entfettet.The cooling medium used is preferably a mineral, an organic or a synthetic oil. Well proven has a silicone oil. After formation of the amalgam balls in the cooling medium, they are separated from the cooling medium and degreased.

Für die Zwecke der Erfindung sind Amalgamkugeln mit Durchmessern zwischen 50 und 2000, bevorzugt zwischen 500 und 1500 µm geeignet.For the purposes of the invention amalgam spheres with diameters between 50 and 2000, preferably between 500 and 1500 microns are suitable.

Es hat sich gezeigt, daß auf der Oberfläche der so hergestellten Amalgamkugeln flüssige Phasen auftreten, so daß die Kugeln bei Lagerung und Handhabung miteinander verkleben, wenn keine Maßnahmen dagegen unternommen werden. Das Verkleben kann zum Beispiel verhindert werden, wenn die Amalgamkugeln bei Temperaturen unter 8 °C gelagert und verarbeitet werden. Für die Lagerung wird eine Temperatur von -18 °C bevorzugt.It has been found that liquid phases occur on the surface of the amalgam beads thus produced, so that the balls stick together during storage and handling, if no measures are taken against it. Bonding can be prevented, for example, if the amalgam balls are stored and processed at temperatures below 8 ° C. For storage, a temperature of -18 ° C is preferred.

Die Neigung der Amalgamkugeln zum Verkleben kann weitgehend unterbunden werden, wenn die entfetteten Kugeln mit einem Metall- oder einem Legierungspulver beschichtet werden, welches mit Quecksilber ein Amalgam bildet. Durch die Amalgamierung des Metallpulvers bildet sich auf den Kugeln eine Oberflächenschicht mit einem geringen Quecksilbergehalt aus, die bei den üblichen Verarbeitungstemperaturen der Amalgamkugeln keine flüssigen Phasen mehr enthält und somit die Klebeneigung gegenüber den unbehandelten Kugeln unterbindet.The tendency of the amalgam beads to stick together can be largely suppressed if the degreased beads are coated with a metal or alloy powder which forms an amalgam with mercury. Due to the amalgamation of the metal powder, a surface layer with a low mercury content is formed on the spheres, which no longer contains any liquid phases at the usual processing temperatures of the amalgam spheres and thus prevents the adhesion tendency from the untreated spheres.

Das für die Beschichtung eingesetzte Metall- oder Legierungspulver sollte keine Teilchen mit einem Korndurchmesser größer als 100 µm enthalten. Teilchen mit größeren Korndurchmessern amalgamieren nur unvollständig und führen zu einer rauhen Oberfläche der Kugeln, die eine Dosierung der Kugeln erschwert. Bevorzugt wird ein Metall- oder Legierungspulver verwendet, dessen Pulverteilchen einen Korndurchmesser von kleiner als 80 µm aufweisen. Besonders bevorzugt sind Metall- oder Legierungspulver mit einem mittleren Teilchendurchmesser d50 zwischen 5 und 15 µm. Als geeignete Metalle haben sich Zinn und Zink erwiesen oder eine Legierung des Zinns oder des Zinks. Zinn oder eine Zinnlegierung sind dabei bevorzugt. Gute Ergebnisse wurden mit Legierungen des Zinns mit Silber und Kupfer erhalten, besonders mit der Legierung SnAg3Cu0,5.The metal or alloy powder used for the coating should not contain particles with a grain diameter greater than 100 μm. Particles with larger grain diameters amalgamate only incomplete and lead to a rough surface of the balls, which makes it difficult to meter the balls. Preference is given to a metal or alloy powder whose powder particles have a particle diameter of less than 80 microns. Particularly preferred are metal or alloy powders having an average particle diameter d 50 between 5 and 15 microns. Suitable metals have been found to be tin and zinc or an alloy of tin or zinc. Tin or a tin alloy are preferred. Good results have been obtained with alloys of tin with silver and copper, especially with the alloy SnAg3Cu0.5.

Zur Beschichtung der Amalgamkugeln mit dem Metall- oder Legierungspulver können die Kugeln zum Beispiel in einem rotierenden Kessel vorgelegt und unter ständigem Umwälzen mit dem Metall- oder Legierungspulver bestreut werden, bis kein Verkleben der Kugeln mehr feststellbar ist. Die hierbei auf die Amalgamkugeln aufgebrachte Menge an Metall- oder Legierungspulver beträgt zwischen 1 und 10, bevorzugt zwischen 2 und 4 Gew.-%, bezogen auf das Gewicht der Amalgamkugeln.For coating the amalgam balls with the metal or alloy powder, the balls can be presented for example in a rotating vessel and sprinkled with continuous circulation with the metal or alloy powder until no sticking of the balls is more detectable. The amount of metal or alloy powder applied here to the amalgam beads is between 1 and 10, preferably between 2 and 4,% by weight, based on the weight of the amalgam beads.

Eine weitere Verminderung der Verklebungsneigung erhält man, wenn die Amalgamkugeln nach der Beschichtung mit dem Metall- oder Legierungspulver zusätzlich mit einem Pulver eines Metalloxids in einer Menge von 0,001 bis 1, bevorzugt 0,01 bis 0,5 und insbesondere in einer Menge von 0,1 Gew.-%, bezogen auf das Gewicht der Amalgamkugeln beschichtet werden. Zu diesem Zweck kann genauso vorgegangen werden wie bei der Aufbringung des Metall- oder Legierungspulvers. Geeignete Metalloxide für diese Beschichtung sind zum Beispiel Titanoxid, Zirkonoxid, Siliziumoxid und Aluminiumoxid. Bevorzugt wird ein durch Flammenpyrolyse hergestelltes Aluminiumoxid mit einer mittleren Korngröße von weniger als 5, bevorzugt von weniger als 1 µm verwendet.A further reduction in the tendency to sticking is obtained when the amalgam spheres are additionally coated, after coating with the metal or alloy powder, with a powder of a metal oxide in an amount of 0.001 to 1, preferably 0.01 to 0.5 and in particular in an amount of 0, 1 wt .-%, based on the weight of the amalgam balls are coated. For this purpose, the same procedure can be used as in the application of the metal or alloy powder. Suitable metal oxides for this coating are, for example, titanium oxide, zirconium oxide, silicon oxide and aluminum oxide. Preference is given to using an aluminum oxide produced by flame pyrolysis with an average particle size of less than 5, preferably less than 1 micron.

Die aufgebrachten Pulverschichten verbessern die Handhabbarkeit der Amalgamkugeln mit Dosierautomaten. In solchen Dosierautomaten können sich die Amalgamkugeln im Mittel bis zu drei Stunden bei Raumtemperatur befinden, bevor sie in eine Fluoreszenzlampe eingefüllt werden. Dabei hat sich gezeigt, das die mit Metall- oder Legierungspulver und mit Metalloxidpulver beschichteten Amalgamkugeln die mittlere Aufenthaltsdauer von 3 Stunden bei Temperaturen von bis zu 40 °C im Dosierautomaten ohne Beanstandungen überstehen. Wird nur eine der beiden Schichten aufgebracht, kommt es schon vor Ablauf der mittleren Aufenthaltsdauer von 3 Stunden zu vereinzelten Ablösungen der aufgebrachten Schichten.The applied powder layers improve the handling of the amalgam balls with dosing machines. In such dosing machines, the amalgam spheres can be on average for up to three hours at room temperature before they are filled in a fluorescent lamp. It has been found that the coated with metal or alloy powder and metal oxide powder amalgam balls survive the mean residence time of 3 hours at temperatures up to 40 ° C in dosing without complaint. If only one of the two layers applied, it comes even before the average duration of residence of 3 hours to isolated separation of the applied layers.

Zur weiteren Erläuterung der Erfindung dient die folgende Tabelle. Sie zeigt berechnete Werte für die Gesamtmasse (Sn+Hg) und die Quecksilbermasse (Hg) von Zinnamalgam-Kugeln in Abhängigkeit vom Durchmesser der Kugeln und für Zinnamalgame mit Quecksilbergehalten zwischen 20 und 50 Gew.-%. In der Tabelle sind außerdem die Dichten p der verschiedenen Amalgame angegeben, wie sie für die Berechnungen verwendet wurden.To further explain the invention, the following table is used. It shows calculated values for the total mass (Sn + Hg) and the mercury mass (Hg) of tin amalgam spheres depending on the diameter of the spheres and for tin amalgams with mercury contents between 20 and 50 wt .-%. The table also shows the densities p of the different amalgams used in the calculations.

Durch Verwendung von Zinnamalgam mit hohen Quecksilbergehalten kann mit Kugeln gleichen Durchmessers deutlich mehr Quecksilber in die Gasentladungskolben eingebracht werden als mit einem Zinnamalgam mit geringem Quecksilbergehalt von nur 20 Gew.-%. So enthalten Amalgamkugeln aus einem SnHg50 mit 50 Gew.-% Quecksilber etwa die dreifache Masse an Quecksilber wie Amalgamkugeln aus SnHg20 mit nur 20 Gew.-% Quecksilber. Tabelle: Gesamtmasse und Quecksilbermasse in Abhängigkeit vom Kugeldurchmesscr für Zinnamalgam-Kugeln mit Quecksilbergehalten zwischen 20 und 50 Gew.-% SnHg20 SnHg30 SnHg40 SnHg50 ρ = 8,05 g/cm3 ρ = 8,48 g/cm3 ρ = 8,96 g/cm3 ρ = 9,5 g/cm3 Sn+Hg Hg Sn+Hg Hg Sn+Hg Hg Sn+Hg Hg [mm] [mg] [mg] [mg] [mg] [mg] [mg] [mg] [mg] 0,70 1,45 0,29 1,5 0,46 1,6 0,64 1,7 0,85 0,80 2,16 0,43 23 0,68 2,4 0,96 2,5 1,27 0,90 3,07 0,61 3,2 0,97 3,4 1,37 3,6 1,81 1,00 4,21 0,84 4,4 1,33 4,7 1,88 5,0 2,49 1,10 5,61 1,12 5,9 1,77 6,2 2,50 6,6 3,31 1,20 7,28 1,46 7,7 2,30 8,1 3,24 8,6 4,30 1,30 9,26 1,85 9,7 2,92 10,3 4,12 10,9 5,46 1,40 11,56 2,31 12,2 3,65 12,9 5,15 13,6 6,82 1,50 14,22 2,84 15,0 4,49 15,8 6,33 16,8 8,39 By using tin amalgam with high mercury contents, significantly more mercury can be introduced into the gas discharge flask with balls of the same diameter than with a tin amalgam with a low mercury content of only 20% by weight. Thus, amalgam spheres made from a SnHg50 containing 50% by weight of mercury contain about three times the mass of mercury, such as amalgam spheres made of SnHg20 with only 20% by weight of mercury. <b><u> Table: </ u></b> Total mass and mass of mercury as a function of the ball diameter for tin amalgam spheres containing mercury between 20 and 50% w / w SnHg20 SnHg30 SnHg40 SnHg50 ρ = 8.05 g / cm 3 ρ = 8.48 g / cm 3 ρ = 8.96 g / cm 3 ρ = 9.5 g / cm 3 Sn + Hg hg Sn + Hg hg Sn + Hg hg Sn + Hg hg [Mm] [Mg] [Mg] [Mg] [Mg] [Mg] [Mg] [Mg] [Mg] 0.70 1.45 0.29 1.5 0.46 1.6 0.64 1.7 0.85 0.80 2.16 0.43 23 0.68 2.4 0.96 2.5 1.27 0.90 3.07 0.61 3.2 0.97 3.4 1.37 3.6 1.81 1.00 4.21 0.84 4.4 1.33 4.7 1.88 5.0 2.49 1.10 5.61 1.12 5.9 1.77 6.2 2.50 6.6 3.31 1.20 7.28 1.46 7.7 2.30 8.1 3.24 8.6 4.30 1.30 9.26 1.85 9.7 2.92 10.3 4.12 10.9 5.46 1.40 11.56 2.31 12.2 3.65 12.9 5.15 13.6 6.82 1.50 14.22 2.84 15.0 4.49 15.8 6.33 16.8 8.39

Claims (13)

  1. Amalgam spheres for fluorescent lamps, wherein
    the amalgam spheres contain a tin amalgam having a mercury content in the range from 30 to 70% by weight,
    characterized in that
    the spheres are coated with a metal or alloy powder which forms an amalgam with mercury.
  2. Amalgam spheres according to Claim 1,
    characterized in that
    the powder particles have a particle diameter of less than 100 µm.
  3. Amalgam spheres according to Claim 2,
    characterized in that
    the metal or alloy powder comprises tin, zinc or an alloy of tin or of zinc.
  4. Amalgam spheres according to Claim 3,
    characterized in that
    the amalgam spheres are coated with an amount of from 1 to 10% by weight, based on their weight, of the metal or alloy powder.
  5. Amalgam spheres according to Claim 4,
    characterized in that
    the amalgam spheres are additionally coated with a powder of a metal oxide in an amount of from 0.001 to 1% by weight.
  6. Amalgam spheres according to Claim 5,
    characterized in that
    the metal or alloy powder comprises tin or a tin alloy.
  7. Amalgam spheres according to Claim 6,
    characterized in that
    the metal or alloy powder comprises an alloy of tin with silver and copper.
  8. Amalgam spheres according to any of the preceding claims,
    characterized in that
    the spheres have a diameter in the range from 50 to 2000 µm.
  9. Process for producing the amalgam spheres according to any of the preceding claims,
    characterized in that
    the amalgam is melted completely and the melt is introduced dropwise into a cooling medium having a temperature below the solidification temperature of the amalgam and the amalgam spheres formed are subsequently separated off from the cooling medium.
  10. Process according to Claim 9,
    characterized in that
    a mineral oil, an organic oil or a synthetic oil is used as cooling medium.
  11. Process according to Claim 10,
    characterized in that
    the amalgam spheres are degreased after having been separated off from the cooling medium and are sprinkled at room temperature with a metal or alloy powder which forms an amalgam with mercury while being continually mixed until conglutination of the spheres can no longer be observed.
  12. Process according to Claim 11,
    characterized in that
    the amalgam spheres are additionally coated with a powder of a metal oxide while being continually mixed in a further step.
  13. Use of the amalgam spheres according to any of Claims 1 to 8 for the production of fluorescent lamps.
EP08736446A 2007-04-28 2008-04-22 Amalgam spheres for energy-saving lamps and the manufacture thereof Not-in-force EP2145028B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL08736446T PL2145028T3 (en) 2007-04-28 2008-04-22 Amalgam spheres for energy-saving lamps and the manufacture thereof
EP08736446A EP2145028B1 (en) 2007-04-28 2008-04-22 Amalgam spheres for energy-saving lamps and the manufacture thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP07008717A EP1985717B1 (en) 2007-04-28 2007-04-28 Amalgam globules for energy saving lamps and their manufacture
EP08736446A EP2145028B1 (en) 2007-04-28 2008-04-22 Amalgam spheres for energy-saving lamps and the manufacture thereof
PCT/EP2008/054839 WO2008132089A1 (en) 2007-04-28 2008-04-22 Amalgam spheres for energy-saving lamps and the manufacture thereof

Publications (2)

Publication Number Publication Date
EP2145028A1 EP2145028A1 (en) 2010-01-20
EP2145028B1 true EP2145028B1 (en) 2010-07-07

Family

ID=38535273

Family Applications (2)

Application Number Title Priority Date Filing Date
EP07008717A Not-in-force EP1985717B1 (en) 2007-04-28 2007-04-28 Amalgam globules for energy saving lamps and their manufacture
EP08736446A Not-in-force EP2145028B1 (en) 2007-04-28 2008-04-22 Amalgam spheres for energy-saving lamps and the manufacture thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP07008717A Not-in-force EP1985717B1 (en) 2007-04-28 2007-04-28 Amalgam globules for energy saving lamps and their manufacture

Country Status (8)

Country Link
US (2) US8497622B2 (en)
EP (2) EP1985717B1 (en)
JP (2) JP5193285B2 (en)
CN (2) CN103194638A (en)
AT (2) ATE514797T1 (en)
DE (1) DE502008000912D1 (en)
PL (2) PL1985717T3 (en)
WO (1) WO2008132089A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9263245B2 (en) 2011-03-09 2016-02-16 Umicore Ag & Co. Kg Amalgam balls having an alloy coating
US9324555B2 (en) 2007-04-28 2016-04-26 Umicore Ag & Co. Kg Amalgam spheres for energy-saving lamps and their production

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2556182A1 (en) * 2010-04-09 2013-02-13 Advanced Lighting Technologies, Inc. Mechanically plated pellets and method of manufacture
DE202011110608U1 (en) 2011-03-09 2015-02-23 Umicore Ag & Co. Kg alloys
CN102329979A (en) * 2011-08-13 2012-01-25 何志明 Hg-rich type Sb-Sn-Hg alloy
CN102626781B (en) * 2012-03-26 2014-04-16 上海亚尔光源有限公司 Zinc tin amalgam granule and preparation method and application thereof
CN102626783B (en) * 2012-03-26 2014-02-12 上海亚尔光源有限公司 Tin amalgam particle and preparing method and application thereof
CN102626782B (en) * 2012-03-26 2014-07-16 上海亚尔光源有限公司 Zinc amalgam particle and preparing process and usage thereof
CN104148628B (en) * 2013-05-13 2017-02-08 上海亚尔光源有限公司 Amalgam powder coating process
WO2015021183A1 (en) * 2013-08-06 2015-02-12 Advanced Lighting Technologies, Inc. Intermetallic compounds for releasing mercury
CN103730307B (en) * 2013-12-17 2016-09-07 家雄灯饰(濮阳)有限公司 Electricity-saving lamp full-automatic injecting mercury seal device
CN108998691A (en) * 2017-12-25 2018-12-14 中国地质大学(北京) A kind of method of harmless treatment liquid mercury

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4015162A (en) * 1975-07-07 1977-03-29 Westinghouse Electric Corporation Fluorescent lamp having implanted amalgamative metal for mercury vapor regulation
US4216178A (en) 1976-02-02 1980-08-05 Scott Anderson Process for producing sodium amalgam particles
US4145634A (en) * 1978-02-17 1979-03-20 Westinghouse Electric Corp. Fluorescent lamp having integral mercury-vapor pressure control means
JPS5595254A (en) * 1979-01-16 1980-07-19 Mitsubishi Electric Corp Manufacturing method of high-pressure metal vapor discharge lamp
AR223024A1 (en) 1980-01-31 1981-07-15 Macrodent Sa A PRODUCT TO BE USED IN COMPRESSED DENTAL AMALGAMAS OR DISINTEGRABLE PILLS OBTAINED BY AGGLOMERATION OF SUCH PRODUCT AND AMALGAMAS OBTAINED FROM THIS LAST
EP0136866B1 (en) * 1983-09-30 1991-12-27 Kabushiki Kaisha Toshiba Method of manufacturing a low-melting point alloy for sealing in a fluorescent lamp
JPS6210838A (en) * 1986-03-14 1987-01-19 Toshiba Corp Fluorescent lamp
DE3717048C1 (en) 1987-05-21 1988-11-03 Degussa Process for the preparation of alloy powders for dental amalgams
JP3027006B2 (en) 1993-02-12 2000-03-27 アドバンスド ライティング テクノロジーズ,インク. Fluorescent lamp containing mercury / zinc amalgam and method for producing the same
JPH07192689A (en) * 1993-12-28 1995-07-28 Toshiba Lighting & Technol Corp Mercury vapor discharge lamp and its manufacturing method and lighting system
IT1273338B (en) * 1994-02-24 1997-07-08 Getters Spa COMBINATION OF MATERIALS FOR MERCURY DISPENSING DEVICES PREPARATION METHOD AND DEVICES SO OBTAINED
US5882237A (en) 1994-09-01 1999-03-16 Advanced Lighting Technologies, Inc. Fluorescent lamp containing a mercury zinc amalgam and a method of manufacture
CA2177108C (en) * 1996-05-22 2002-10-22 Minoru Myojo Low pressure mercury vapor filled discharge lamp
JP4228046B2 (en) * 1999-02-27 2009-02-25 松垣薬品工業株式会社 Amalgam pellets for fluorescent lamps and fluorescent lamps using the same
US6312499B1 (en) * 1999-05-07 2001-11-06 Institute Of Gas Technology Method for stabilization of liquid mercury
US6427492B1 (en) 2000-03-31 2002-08-06 Owens Corning Fiberglas Technology, Inc. Bushing including a terminal ear
DE10120612A1 (en) 2001-04-26 2002-11-21 Omg Ag & Co Kg Method and device for producing spherical metal particles
CN100543922C (en) * 2003-02-17 2009-09-23 东芝照明技术株式会社 Fluorescent lamp, ball type fluorescent lamp and lighting device
JP4235720B2 (en) * 2004-04-21 2009-03-11 松垣薬品工業株式会社 Amalgam for fluorescent lamp and fluorescent lamp using the same
CN1694221A (en) * 2004-05-07 2005-11-09 东芝照明技术株式会社 Compact fluorescent lamp and luminaire using the same
ITMI20041494A1 (en) * 2004-07-23 2004-10-23 Getters Spa COMPOSITIONS FOR THE RELEASE OF MERCURY AND PROCESS FOR THEIR PRODUCTION
JP4077448B2 (en) * 2004-07-30 2008-04-16 松下電器産業株式会社 Fluorescent lamp, illumination device, and method of manufacturing fluorescent lamp
CN100383909C (en) * 2005-07-05 2008-04-23 朱升和 Low temp amalgam
CN100434552C (en) * 2006-03-13 2008-11-19 高邮高和光电器材有限公司 Solid mercury with high content
WO2007146196A2 (en) 2006-06-09 2007-12-21 Advanced Lighting Technologies, Inc. Bismuth-zinc-mercury amalgam, fluorescent lamps, and related methods
ATE514797T1 (en) 2007-04-28 2011-07-15 Umicore Ag & Co Kg AMALGAM BALLS FOR ENERGY SAVING LAMPS AND THEIR PRODUCTION
EP2556182A1 (en) 2010-04-09 2013-02-13 Advanced Lighting Technologies, Inc. Mechanically plated pellets and method of manufacture
EP2975143B1 (en) 2011-03-09 2018-12-19 SAXONIA Technical Materials GmbH Process for the manufacture of amalgamballs

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9324555B2 (en) 2007-04-28 2016-04-26 Umicore Ag & Co. Kg Amalgam spheres for energy-saving lamps and their production
US9263245B2 (en) 2011-03-09 2016-02-16 Umicore Ag & Co. Kg Amalgam balls having an alloy coating
US9659762B2 (en) 2011-03-09 2017-05-23 Umicore Ag & Co. Kg Amalgam balls having an alloy coating

Also Published As

Publication number Publication date
US8497622B2 (en) 2013-07-30
CN101960027A (en) 2011-01-26
EP1985717A1 (en) 2008-10-29
JP5193285B2 (en) 2013-05-08
JP2013069700A (en) 2013-04-18
JP2010527097A (en) 2010-08-05
JP5599449B2 (en) 2014-10-01
ATE514797T1 (en) 2011-07-15
US20100130092A1 (en) 2010-05-27
WO2008132089A1 (en) 2008-11-06
EP2145028A1 (en) 2010-01-20
ATE473307T1 (en) 2010-07-15
DE502008000912D1 (en) 2010-08-19
CN103194638A (en) 2013-07-10
CN101960027B (en) 2013-05-01
EP1985717B1 (en) 2011-06-29
US20140009059A1 (en) 2014-01-09
PL2145028T3 (en) 2010-12-31
US9324555B2 (en) 2016-04-26
PL1985717T3 (en) 2011-11-30

Similar Documents

Publication Publication Date Title
EP2145028B1 (en) Amalgam spheres for energy-saving lamps and the manufacture thereof
EP2647737B1 (en) Planar or tubular sputter target and method for producing the same
EP2497841B1 (en) Sn-Ag-Cu-Alloys
EP0115058B1 (en) Dental powder material, process for its preparation and its use
EP1720806B1 (en) X-ray opaque glass, method for the production and use thereof
DE60313222T2 (en) METHOD FOR PRODUCING A SPRAYING ARRAY
EP0228005B1 (en) Storage element for dosing and introducing liquid mercury into a discharge lamp
DE2308100C3 (en) High temperature-resistant, wear-resistant sliding material with low thermal expansion
DE3716852C1 (en) Sputtering target for the production of optically transparent layers and method for producing these targets
DE1640524A1 (en) Electrical resistance
AT9340U1 (en) METHOD FOR PRODUCING A HIGH-SEALED SEMI-FINISHED OR COMPONENT
DE3209977C2 (en) DENTAL FUEL MATERIAL
DE2457198C2 (en) Alloy for plating and soldering of over-hard materials
DE202011110608U1 (en) alloys
DE102005045046A1 (en) Tungsten shot
EP0884397A1 (en) Use of a molybdenum and/or tungsten alloy for construction elements, in contact with molten glas and/or ceramic substances
DE2526544A1 (en) Dental filling material - has embedded in amalgam filling supporting granules of hard solids with amalgam forming surface
DE2046746C3 (en) Electrical resistance made of a ceramic body and a vitreous resistance layer
DE2341731C2 (en) Material for electrical contacts and process for their manufacture
DE3017100A1 (en) Corrosion- and abrasion-resistant metal layer deposition - by heat-spraying metallic material together with silicon di:oxide-contg. vitreous material
DE3545048A1 (en) METHOD FOR PRODUCING A STORAGE ELEMENT FOR DOSING AND PUTTING MERCURY INTO A DISCHARGE LAMP
DD287591A5 (en) DOSING BODY FOR RECEIVING MERCURY AND METHOD FOR PRODUCING THEREOF
DE3247811A1 (en) Process for producing a metal powder

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091130

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502008000912

Country of ref document: DE

Date of ref document: 20100819

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100707

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E008828

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101007

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101107

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101007

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

26N No opposition filed

Effective date: 20110408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101018

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008000912

Country of ref document: DE

Effective date: 20110408

BERE Be: lapsed

Owner name: UMICORE A.G. & CO. KG

Effective date: 20110430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120422

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100707

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 473307

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130422

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20160317

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160418

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170313

Year of fee payment: 10

Ref country code: NL

Payment date: 20170320

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20170322

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008000912

Country of ref document: DE

Representative=s name: PFENNING, MEINIG & PARTNER MBB PATENTANWAELTE, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008000912

Country of ref document: DE

Owner name: SAXONIA TECHNICAL MATERIALS GMBH, DE

Free format text: FORMER OWNER: UMICORE AG & CO. KG, 63457 HANAU, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170422

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180427

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170422

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20180501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180423

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008000912

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191101