EP2139822A1 - Article en verre a resistance chimique amelioree - Google Patents

Article en verre a resistance chimique amelioree

Info

Publication number
EP2139822A1
EP2139822A1 EP08736585A EP08736585A EP2139822A1 EP 2139822 A1 EP2139822 A1 EP 2139822A1 EP 08736585 A EP08736585 A EP 08736585A EP 08736585 A EP08736585 A EP 08736585A EP 2139822 A1 EP2139822 A1 EP 2139822A1
Authority
EP
European Patent Office
Prior art keywords
glass
article according
article
nanoparticles
inorganic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08736585A
Other languages
German (de)
English (en)
Inventor
Fabian Mariage
Pierre Boulanger
Dominique Coster
François LECOLLEY
Marc Van Den Neste
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Glass Europe SA
Original Assignee
AGC Glass Europe SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AGC Glass Europe SA filed Critical AGC Glass Europe SA
Priority to EP08736585A priority Critical patent/EP2139822A1/fr
Publication of EP2139822A1 publication Critical patent/EP2139822A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/006Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of microcrystallites, e.g. of optically or electrically active material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/30Methods of making the composites

Definitions

  • the present invention relates to a glass article whose chemical resistance is high and improved over known glass articles.
  • glass when not subjected to a protective treatment, can corrode under the influence of adverse environmental conditions, especially in aqueous alkaline pH media.
  • the alkali metal cations such as Na + and, to a lesser extent, K + , when they are close to the glass surface, can leave it and dissolve in the glass. surrounding environment, for example in the presence of moisture and runoff.
  • various methods have been proposed, such as, for example, a depletion treatment of these ions in the vicinity of the surface of the glass article. This method consists in treating the surface of the glass with a chemical agent capable of eliminating or greatly reducing the sodium and / or potassium content in a thin zone close to this surface.
  • the invention overcomes these drawbacks by providing an improved chemical resistance glass which is stable under various environmental conditions, possibly in aqueous alkaline media, no longer requires special Na + and / or K + ion depletion treatment and is sustainable. for extended periods of use.
  • the invention relates to a glass article as defined in claim 1.
  • the dependent claims define other possible embodiments of the invention, some of which are preferred.
  • the glass article according to the invention is formed of an inorganic type of glass that can belong to various categories.
  • the inorganic glass may thus be a soda-lime glass, a boron glass, a lead glass, a glass comprising one or more additives homogeneously distributed in its mass, such as, for example, at least one inorganic dye, a oxidizing compound, a viscosity controlling agent and / or a melt facilitating agent.
  • the inorganic glass may also have undergone a thermal toughening intended to improve its surface hardness.
  • the glass article according to the invention is formed of a soda-lime glass clear or colored in the mass.
  • soda-lime glass is used here in its broad sense and refers to any glass that contains the following basic components (expressed as percentages by total weight of glass):
  • any glass comprising the preceding basic components which may further comprise one or more additives.
  • the glass article has not been covered by any layer prior to treatment of the present invention. invention, at least on the surface of which it is desired to improve the chemical resistance.
  • the glass article according to the invention has improved chemical resistance. By this is meant better chemical resistance than known glasses.
  • chemical agents it is understood atmospheric agents such as rainwater optionally comprising pollutants usually encountered in the atmosphere, in the dissolved or suspension state, as well as certain synthetic solutions, in particular aqueous, including chemical agents. alkalinization, acidification and / or oxidation-reduction in the possible presence of various organic or inorganic solvents.
  • the strength of the article according to the invention is manifested by an absence of corrosion or weight loss under the prolonged influence of the chemical agents for periods of time which may extend over several years or, at least, a significant reduction of this corrosion or loss of weight up to insignificant values for the use of the article.
  • the glass article comprises at least one chemical reinforcing agent.
  • This chemical reinforcing agent is a chemical composition that can contain components totally foreign to the composition of the glass mass of the article. It may also alternatively comprise, on the contrary, one or more chemical compounds already present in the composition of the glass mass of the article.
  • the chemical reinforcing agent is formed of inclusions of nanoparticles that are found under the glass surface of the article, at a close distance therefrom.
  • the inclusions according to the invention may be formed of an assembly of several nanoparticles or, on the contrary, each constitute an isolated nanoparticle.
  • the nanoparticles have dimensions which are not smaller than 2 nm and, preferably, which are not smaller than 10 nm.
  • the nanoparticles have dimensions which are not greater than 500 nm and preferably not larger than 100 nm.
  • Each nanoparticle is formed of a single chemical compound of chemical reinforcing agent. It may also, alternatively, be formed of a composition of several different chemical reinforcing agents. In the latter case, the composition is not necessarily homogeneous.
  • the inclusions consist of at least one inorganic compound.
  • each nanoparticle is constituted by at least one inorganic chemical compound of chemical reinforcing agent. Any inorganic chemical compound that cancels or decreases the corrosion or weight loss of the glass article may be suitable.
  • the inorganic chemical compound constituting the nanoparticles is chosen from oxides, nitrides, carbides and combinations of at least two oxides and and / or nitrides and / or carbides.
  • the inorganic compound is selected from magnesium oxide, calcium oxide, strontium oxide, barium oxide or among the oxides, nitrides and carbides of scandium, yttrium, lanthanum, titanium, zirconium, vanadium, niobium, tantalum, aluminum, gallium, indium, silicon, germanium, tin, and combinations of at least two of the above compounds.
  • Aluminum oxide 1 "(Al 2 O 3 ) used alone has proved to be a very interesting chemical reinforcing agent.
  • Silicon IV (SiO 2 ) used alone also provided a glass effectively reinforced with nanoparticles.
  • the inclusions of nanoparticles are at least partially crystallized, that is to say that they comprise at least a proportion of 5% of their weight constituted by crystals.
  • the crystals may belong to several different crystallization systems. Alternatively, they can all be of the same crystallization system.
  • Preferably, at least 50% of the weight of the inclusions is in a crystallized form. Most preferably, all inclusions are in the crystallized form.
  • the shape of the inclusions is almost spherical.
  • quasi-spherical is meant a three-dimensional shape whose volume is close to that of a sphere whose diameter would be equal to the largest dimension of an object having this quasi-spherical shape. It is preferred that the inclusions have a volume equal to at least 80% of that of the sphere of diameter equal to the largest dimension of the inclusions.
  • the inclusions have a size which is not smaller than 5 nm and, preferably, which is not smaller than 50 nm. In addition, the inclusions have a size not greater than 500 nm and preferably no greater than 350 nm. By size we mean the largest dimension of inclusions.
  • the concentration of inorganic compound is distributed in the depth of the glass in a profile which has a maximum peak at a distance from the surface of not less than 5 nm, preferably which is not less than 30 nm. In addition, said maximum peak is at a distance from the surface of not more than 250 nm, most often not more than 200 nm and preferably not more than 90 nm.
  • the concentration profile of inorganic compound most often, from a concentration corresponding to that of the peak and towards the core of the article, a continuous monotonous decrease which tends towards zero or towards a constant value identical to the concentration that may be present in the core from a depth of not less than 300 nm and preferably not less than 600 nm.
  • said depth is at a distance from the surface that is not greater than
  • the concentration of inorganic compound can also be distributed in the depth of the glass in a profile which continuously decreases monotonically from the surface of the glass and tends to zero or a constant value identical to the concentration possibly present in the core of the article from a depth of not less than 300 nm and preferably not less than 400 nm.
  • said depth is at a distance from the surface of not more than 2500 nm and preferably not more than 2000 nm.
  • the glass of the article consists of a sheet of soda-lime type flat glass .
  • the article according to the invention can be obtained by any method capable of generating and incorporating nanoparticles in the mass of glass close to a surface of said article, in the form of inclusions.
  • the invention relates to an article according to the foregoing descriptions which is obtained by a method which comprises (a) the production of nanoparticles, (b) the deposition of the nanoparticles on the surface of said article, and (c) the providing energy to the nanoparticles and / or said surface such that the nanoparticles diffuse / dissolve in the glass.
  • a method which comprises (a) the production of nanoparticles, (b) the deposition of the nanoparticles on the surface of said article, and (c) the providing energy to the nanoparticles and / or said surface such that the nanoparticles diffuse / dissolve in the glass.
  • the formation and deposition of nanoparticles on the surface of the glass article can be carried out in one step, simultaneously, by known methods such as
  • CVD chemical vapor deposition
  • MCVD modified chemical vapor deposition
  • wet deposition such as, for example, sol-gel deposition, or
  • flame-assisted spraying (or flame spraying) starting from a liquid, gaseous or solid precursor.
  • the nanoparticles are generated by atomizing a solution of at least one chemical precursor into an aerosol transported in a flame where combustion occurs. to form solid nanoparticles. These nanoparticles can then be deposited directly on a surface near the end of the flame. This method in particular has given good results.
  • the formation and deposition of nanoparticles on the surface of the glass article can be carried out consecutively in two steps.
  • the nanoparticles are previously generated in solid form or in the form of suspension in a liquid by vapor, wet (sol-gel, precipitation, hydrothermal synthesis, ...) or dry (mechanical grinding, mechanochemical synthesis, ).
  • An example of a method for generating nanoparticles in solid form in advance is the method known as Combustion-Vapor Combined Chemical Chilling (or CCVC). This method consists in converting into a flame a precursor solution in the vapor phase which undergoes a combustion reaction to provide nanoparticles which are finally collected.
  • the previously generated nanoparticles can be transferred to the surface of the glass article by various known methods.
  • the energy required for the diffusion / dissolution of the nanoparticles in the glass may, for example, be provided by heating the glass article to a suitable temperature.
  • the energy required for the diffusion of the nanoparticles in the glass can be provided at the time of deposition of the nanoparticles or subsequently after the deposition.
  • Example 1 (in accordance with the invention)
  • a 4mm thick, 20cm x 20cm soda-lime float glass sheet was washed consecutively with running water, deionized water and isopropyl alcohol and finally dried.
  • Hydrogen and oxygen were introduced into a spot burner to generate a flame at the outlet of said burner.
  • One of the surfaces of the previously washed glass sheet was placed near the end of the flame.
  • Aluminum oxide nanoparticles were thus generated in this flame and then collected on the surface of the glass sheet which had been preheated in an oven at a temperature of 650 ° C.
  • the burner is movable in both directions of the space in the plane of said sheet. The burner head moved continuously in one of two directions at a speed of 3 meters per minute and in the other direction perpendicular to the first, with jumps of 2 centimeters.
  • the glass sheet was cooled in a controlled manner at a rate of maximum 35 ° C per hour.
  • the glass sheet treated as described above was analyzed by scanning and transmission electron microscopy, atomic force microscopy, X-ray fluorescence spectroscopy, X-ray photoelectron spectroscopy and secondary ion mass spectrometry.
  • the analyzes carried out showed that the aluminum was incorporated in the mass of the glass close to the surface in the form of Al 2 O 3 particles of aluminum oxide.
  • Nanoparticle inclusions range in size from 10 to 100 nm. Nanoparticles are Mostly crystalline and the crystals belong to two different crystallization systems: tetragonal (5-Al 2 O 3 ) and cubic ( ⁇ -Al 2 O 3 ).
  • Figure 1 shows the atomic ratio Ai / Si as a function of the depth in the glass sheet from the treated surface. It illustrates the incorporation of aluminum into the mass of the glass sheet near a surface of the sheet. The aluminum concentration is distributed in the depth of the glass in a profile that has a maximum peak at a distance of 90 nm from the surface.
  • Climatic chamber analyzes allowing the accelerated aging of the treated glass sheet were performed to show the effect of the incorporation of aluminum oxide nanoparticles on the chemical resistance of the glass. A comparison was made with an identical but untreated glass sheet (reference).
  • the treated and reference glass sheets were exposed for up to 20 days, at a constant relative humidity of 98%, to temperature cycles between 45 ° C and 55 ° C.
  • the period of a cycle is exactly 1 hour 50 minutes and 12 cycles occur on a day.
  • the temperature decreases from 45 ° C to 25 ° C in 30 minutes and is maintained at 25 ° C for one hour. Then, the temperature rises again from 25 ° C to 45 ° C in 30 minutes and a temperature cycle begins again. After specific periods of time, the glass sheets are examined.
  • the reference glass sheet After 4 days in the climatic chamber, the reference glass sheet, untreated, shows a corrosion phenomenon. On the other hand, the glass sheet treated by the method described above still does not show any corrosion phenomenon after 20 days in the climatic chamber.
  • the presence of aluminum oxide nanoparticles in the glass mass close to one of its The surface therefore makes it possible to obtain a glass having improved chemical resistance.
  • a 4mm thick, 20cm x 20cm soda-lime float glass sheet was washed consecutively with running water, deionized water and isopropyl alcohol and finally dried.
  • a dry powder of aluminum oxide nanoparticles such as that provided by PlasmaChem, was deposited by dusting on the surface of the previously washed glass sheet.
  • the nanoparticles that have been used have a size ranging from 5 to 150 nm. They are predominantly crystallized and the crystals belong to three different crystallization systems: rhombohedral ( ⁇ -Al 2 O 3 ), tetragonal ( ⁇ -Al 2 O 3 ) and cubic ( ⁇ -Al 2 O 3 ).
  • the glass sheet was heated in an oven at a temperature of 900 ° C. for 1 h and then cooled in a controlled manner at a rate of maximum 35 ° C. per hour.
  • the glass sheet treated as described above was analyzed by the same techniques as those cited in Example 1.
  • the analyzes showed that the aluminum oxide nanoparticles were incorporated into the glass mass close to the glass. surface and the results obtained in terms of size and crystallinity are in agreement with the starting characteristics of the nanoparticles used.
  • the aluminum concentration is distributed in the depth of the glass according to a profile which has a continuous monotonous decrease towards a constant value identical to the concentration of aluminum present in the core from a depth which is equal to 700 nm.

Abstract

Article en verre à résistance chimique améliorée comprenant un agent de renforcement chimique sous forme d'inclusions de nanoparticules, notamment partiellement cristallisées, dans la masse du verre proche d'une surface de l'article.

Description

Article en verre à résistance chimique améliorée
La présente invention concerne un article en verre dont la résistance chimique est élevée et améliorée par rapport aux articles en verre connus.
Il est connu que le verre, lorsqu'il n'a pas fait l'objet d'un traitement de protection, peut se corroder sous l'influence de conditions environnementales défavorables, en particulier dans les milieux aqueux de pH alcalins. Lorsque le verre est du type sodo-calcique, les cations de métaux alcalins tels que Na+ et, dans une moindre mesure, K+, lorsqu'ils sont proches de la surface du verre, peuvent quitter celui-ci et se dissoudre dans le milieu environnant, par exemple en présence d'humidité et d'eau de ruissellement. Pour limiter ce phénomène, diverses méthodes ont été proposées, comme par exemple, un traitement de déplétion de ces ions au voisinage de la surface de l'article en verre. Cette méthode consiste à traiter la surface du verre avec un agent chimique capable d'éliminer ou de réduire fortement la teneur en sodium et/ou potassium dans une zone mince voisine de cette surface.
L'efficacité de cette technique est cependant limitée dans le temps, étant donné le phénomène de diffusion lente des ions Na+ et K+ en provenance du coeur de l'article en verre, phénomène causé par le gradient de concentration créé par le traitement de déplétion de ces ions au voisinage de la surface.
L'invention remédie à ces inconvénients en fournissant un verre à résistance chimique améliorée qui soit stable dans des conditions environnementales diverses, éventuellement en milieux aqueux alcalins, ne nécessite plus de traitement particulier de déplétion en ions Na+ et/ou K+ et soit durable pour des périodes d'utilisation prolongées.
A cet effet, l'invention concerne un article en verre tel que défini dans la revendication 1. Les revendications dépendantes définissent d'autres formes possibles de réalisation de l'invention, dont certaines sont préférées.
L'article en verre selon l'invention est formé d'un verre de type inorganique pouvant appartenir à diverses catégories. Le verre inorganique peut ainsi être un verre sodo-calcique, un verre au bore, un verre au plomb, un verre comprenant un ou plusieurs additifs répartis de manière homogène dans sa masse, tels que, par exemple, au moins un colorant inorganique, un composé oxydant, un agent régulateur de la viscosité et/ou un agent facilitant la fusion. Le verre inorganique peut aussi avoir subi une trempe thermique destinée à améliorer sa dureté en surface. De préférence, l'article en verre selon l'invention est formé d'un verre sodo-calcique clair ou coloré dans la masse. L'expression "verre sodo-calcique" est utilisée ici dans son sens large et concerne tout verre qui contient les composants de base suivants (exprimés en pourcentages en poids total de verre) :
SiO2 60 à 75 %
Na2O 10 à 20 %
CaO 0 à 16 %
K2O 0 à 10 %
MgO 0 à 10 %
Al2O3 0 à 5 %
BaO 0 à 2 %
BaO + CaO + MgO 10 à 20 %
K2O + Na2O 10 à 20 %
Elle désigne aussi tout verre comprenant les composants de base précédents qui peut comprendre en outre un ou plusieurs additifs.
Généralement, on préfère aussi que l'article en verre n'ait pas fait l'objet d'un recouvrement par une couche quelconque avant le traitement de la présente invention, tout au moins sur la surface dont on désire améliorer la résistance chimique.
L'article en verre selon l'invention possède une résistance chimique améliorée. On entend désigner par là une résistance aux agents chimiques meilleure que celle des verres connus. Par agents chimiques, on comprend les agents atmosphériques tels que l'eau de pluie comprenant éventuellement des polluants habituellement rencontrés dans l'atmosphère, à l'état dissous ou de suspension, de même que certaines solutions synthétiques, notamment aqueuses, comprenant des agents chimiques d'alcalinisation, d'acidification et/ou d'oxydoréduction en présence éventuelle de solvants organiques ou inorganiques divers. La résistance de l'article selon l'invention se manifeste par une absence de corrosion ou de perte de poids sous l'influence prolongée des agents chimiques pour des durées pouvant s'étaler sur plusieurs années ou, tout au moins, une réduction importante de cette corrosion ou perte de poids jusqu'à des valeurs insignifiantes pour l'usage de l'article.
Selon l'invention, l'article en verre comprend au moins un agent de renforcement chimique. Cet agent de renforcement chimique est une composition chimique qui peut renfermer des composants totalement étrangers à la composition de la masse du verre de l'article. Il peut aussi, en variante, comprendre au contraire, un ou plusieurs composés chimiques déjà présent(s) dans la composition de la masse du verre de l'article.
Selon l'invention, l'agent de renforcement chimique est formé d'inclusions de nanoparticules que l'on retrouve sous la surface du verre de l'article, à distance proche de celle-ci. Les inclusions conformes à l'invention peuvent être formées d'un assemblage de plusieurs nanoparticules ou, au contraire, constituer chacune une nanoparticule isolée.
Selon l'invention, les nanoparticules ont des dimensions qui ne sont pas inférieures à 2 nm et, de préférence, qui ne sont pas inférieures à 10 nm. De plus, les nanoparticules ont des dimensions qui ne sont pas supérieures à 500 nm et de préférence, qui ne sont pas supérieures à 100 nm.
Chaque nanoparticule est formée d'un seul composé chimique d'agent de renforcement chimique. Elle peut aussi, en variante, être formée d'une composition de plusieurs agents de renforcement chimique différents. Dans ce dernier cas, la composition n'est pas nécessairement homogène.
Selon une caractéristique préférée de l'article selon l'invention, les inclusions sont constituées d'au moins un composé inorganique. Selon cette caractéristique, chaque nanoparticule est constituée par au moins un composé chimique inorganique d'agent de renforcement chimique. Tout composé chimique inorganique qui annule ou diminue la corrosion ou la perte de poids de l'article en verre peut convenir.
On préfère cependant, d'une manière générale, que dans l'article en verre selon l'invention, le composé chimique inorganique constituant les nanoparticules soit choisi parmi les oxydes, les nitrures, les carbures et les associations d'au moins deux oxydes et/ou nitrures et/ou carbures.
De manière encore préférée, on sélectionne le composé inorganique parmi les oxydes de magnésium, de calcium, de strontium, de baryum ou parmi les oxydes, les nitrures et les carbures de scandium, d'yttrium, de lanthane, de titane, de zirconium, de vanadium, de niobium, de tantale, d'aluminium, de gallium, d'indium, de silicium, de germanium, d'étain, et les associations d'au moins deux des composés précités.
Parmi ces composés, l'oxyde d'aluminium et l'oxyde de silicium ont donné d'excellents résultats. L'oxyde d'aluminium1" (Al2O3) utilisé seul, s'est révélé être un agent de renforcement chimique très intéressant. De même, l'oxyde de siliciumIV (SiO2) employé seul a aussi fourni un verre efficacement renforcé par des nanoparticules.
Selon une autre caractéristique préférée de l'invention, les inclusions de nanoparticules sont au moins partiellement cristallisées, c'est-à-dire qu'elles comprennent au moins une proportion de 5 % de leur poids constituée par des cristaux. Les cristaux peuvent appartenir à plusieurs systèmes de cristallisation différents. En variante, ils peuvent aussi être tous du même système de cristallisation. De préférence, au moins 50 % du poids des inclusions est sous une forme cristallisée. De manière tout particulièrement préférée, la totalité des inclusions est sous la forme cristallisée. A titre d'exemple, dans le cas de l'utilisation d'oxyde d'aluminium1" comme agent de renforcement chimique, les résultats ont montré notamment l'obtention d'inclusions de nanoparticules majoritairement cristallisées et les cristaux appartiennent à deux systèmes de cristallisation différents : tétragonal (5-Al2O3) et cubique (η -Al2O3).
Selon une caractéristique particulière de l'article selon l'invention, la forme des inclusions est quasi sphérique. Par quasi sphérique, on désigne une forme tridimensionnelle dont le volume se rapproche de celui d'une sphère dont le diamètre serait égal à la plus grande dimension d'un objet ayant cette forme quasi sphérique. On préfère que les inclusions aient un volume égal à au moins 80 % de celui de la sphère de diamètre égal à la plus grande dimension des inclusions.
Selon une autre caractéristique particulière de l'article selon l'invention, les inclusions ont une taille qui n'est pas inférieure à 5 nm et, de préférence, qui n'est pas inférieure à 50 nm. De plus, les inclusions ont une taille qui n'est pas supérieure à 500 nm et de préférence, qui n'est pas supérieure à 350 nm. Par taille on entend désigner la plus grande dimension des inclusions. Selon une première forme de réalisation particulière de l'invention, la concentration en composé inorganique se répartit dans la profondeur du verre selon un profil qui présente un pic maximum à une distance de la surface qui n'est pas inférieure à 5 nm, de préférence, qui n'est pas inférieure à 30 nm. De plus, ledit pic maximum est à une distance de la surface qui n'est pas supérieure à 250 nm, le plus souvent qui n'est pas supérieure à 200 nm et, de préférence, qui n'est pas supérieure à 90 nm.
Selon cette première forme de réalisation, le profil de concentration en composé inorganique présente le plus souvent, à partir d'une concentration correspondant à celle du pic et en direction du coeur de l'article, une décroissance monotone continue qui tend vers zéro ou vers une valeur constante identique à la concentration éventuellement présente dans le coeur à partir d'une profondeur qui n'est pas inférieure à 300 nm et, de préférence, qui n'est pas inférieure à 600 nm. De plus, ladite profondeur est à une distance de la surface qui n'est pas supérieure à
2500 nm et de préférence, qui n'est pas supérieure à 2000 nm.
Selon une deuxième forme de réalisation particulière de l'invention, la concentration en composé inorganique peut également se répartir dans la profondeur du verre selon un profil qui décroît continûment de façon monotone à partir de la surface du verre et tend vers zéro ou une valeur constante identique à la concentration éventuellement présente dans le coeur de l'article à partir d'une profondeur qui n'est pas inférieure à 300 nm et, de préférence, qui n'est pas inférieure à 400 nm. De plus, ladite profondeur est à une distance de la surface qui n'est pas supérieure à 2500 nm et de préférence, qui n'est pas supérieure à 2000 nm.
Selon une autre forme de réalisation de l'article conforme à l'invention, qui est compatible avec toutes les formes et caractéristiques particulières décrites plus haut, le verre de l'article est constitué d'une feuille de verre plat de type sodo- calcique. L'article selon l'invention peut être obtenu par tout procédé capable de générer et d'incorporer des nanoparticules dans la masse du verre proche d'une surface dudit article, sous la forme d'inclusions.
En particulier, l'invention concerne un article conforme aux descriptions qui précède et qui est obtenu par un procédé qui comprend (a) la production de nanoparticules, (b) le dépôt des nanoparticules sur la surface dudit article, et (c) l'apport d'énergie aux nanoparticules et/ou à ladite surface de telle manière que les nanoparticules diffusent/se dissolvent dans le verre. Une telle méthode est divulguée dans la demande WO2007110482A2.
La formation et le dépôt de nanoparticules sur la surface de l'article en verre peuvent être réalisés en une étape, simultanément, par des méthodes connues telles que
- le dépôt chimique en phase vapeur (ou CVD) : un procédé de dépôt chimique en phase vapeur modifié (ou MCVD) peut être utilisé dans la présente invention. Cette méthode modifiée diffère de la voie classique en ce que le précurseur réagit en phase gazeuse plutôt que sur la surface du verre.
- le dépôt par voie humide tel que, par exemple, le dépôt sol-gel, ou
- la pulvérisation assistée par flamme (ou flame spraying) au départ d'un précurseur liquide, gazeux ou solide.
Dans la pulvérisation assistée par flamme, citée à titre d'exemple et divulguée notamment dans la demande FI20050595A, les nanoparticules sont générées par atomisation d'une solution d'au moins un précurseur chimique en un aérosol transporté dans une flamme où une combustion se produit pour former des nanoparticules solides. Ces nanoparticules peuvent ensuite être déposées directement sur une surface placée à proximité de l'extrémité de la flamme. Cette méthode en particulier a donné de bons résultats.
En variante, la formation et le dépôt de nanoparticules sur la surface de l'article en verre peuvent être réalisés consécutivement en deux étapes. Dans ce cas, les nanoparticules sont générées au préalable sous forme solide ou sous forme de suspension dans un liquide par voie vapeur, par voie humide (sol-gel, précipitation, synthèse hydrothermale,...) ou par voie sèche (broyage mécanique, synthèse mécanochimique,...). Un exemple de méthode permettant de générer au préalable des nanoparticules sous forme solide est la méthode connue sous le nom de condensation chimique en phase vapeur assistée par combustion (ou CCVC). Cette méthode consiste à convertir dans une flamme une solution de précurseur en phase vapeur qui subit une réaction de combustion pour fournir des nanoparticules qui sont finalement collectées.
Ensuite, les nanoparticules générées au préalable peuvent être transférées sur la surface de l'article de verre par différentes méthodes connues.
L'énergie nécessaire à la diffusion/dissolution des nanoparticules dans le verre peut, par exemple, être apportée en chauffant l'article en verre à une température adaptée.
Selon l'invention, l'énergie nécessaire à la diffusion des nanoparticules dans le verre peut être apportée au moment du dépôt des nanoparticules ou ultérieurement après le dépôt.
L'exemple qui suit illustre l'invention, sans intention de limiter de quelque façon sa couverture. Exemple 1 (conforme à l'invention)
Une feuille de verre flotté clair de type sodo-calcique de 4 mm d'épaisseur et de dimensions 20 cm x 20 cm a été lavée de manière consécutive à l'eau courante, à l'eau désionisée et à l'alcool isopropylique et finalement séchée.
De l'hydrogène et de l'oxygène ont été introduits dans un brûleur ponctuel afin de générer une flamme à la sortie dudit brûleur. Une des surfaces de la feuille de verre préalablement lavée a été placée à proximité de l'extrémité de la flamme. Une solution contenant du nitrate d'aluminium nonahydraté, A1(NO3)3.9H2O dissout dans le méthanol (rapport de dilution en poids aluminium/méthanol = 1/80) a été introduite dans la flamme. Des nanoparticules d'oxyde d'aluminium ont ainsi été générées dans cette flamme et ensuite collectées sur la surface de la feuille de verre qui a été chauffée au préalable dans un four à une température de 6500C. Afin de couvrir toute la surface de la feuille de verre, le brûleur est mobile dans les deux directions de l'espace comprise dans le plan de ladite feuille. La tête du brûleur s'est déplacée de manière continue dans une des deux directions à une vitesse fixée à 3 mètres par minute et, dans l'autre direction, perpendiculaire à la première, avec des sauts de 2 centimètres.
Lorsque le dépôt des nanoparticules a été réalisé, la feuille de verre a été refroidie de manière contrôlée à raison de maximum 35°C par heure.
La feuille de verre traitée comme décrit ci-dessus a été analysée par microscopie électronique à balayage et à transmission, par microscopie à forces atomiques, par spectrométrie de fluorescence X, par spectroscopie des photoélectrons X et par spectrométrie de masse des ions secondaires. Les analyses réalisées ont montré que l'aluminium a été incorporé dans la masse du verre proche de la surface sous forme de particules d'oxyde d'aluminium, Al2O3. Les inclusions de nanoparticules ont une taille qui varie de 10 à 100 nm. Les nanoparticules sont majoritairement cristallines et les cristaux appartiennent à deux systèmes de cristallisation différents : tétragonal (5-Al2O3) et cubique (η-Al2O3).
La figure 1 représente le rapport atomique Ai/Si en fonction de la profondeur dans la feuille de verre au départ de la surface traitée. Elle illustre l'incorporation de l'aluminium dans la masse de la feuille de verre proche d'une surface de la feuille. La concentration en aluminium se répartit dans la profondeur du verre selon un profil qui présente un pic maximum à une distance de 90 nm de la surface.
Des analyses en chambre climatique permettant le vieillissement accéléré de la feuille de verre traitée ont été réalisées pour montrer l'effet de l'incorporation de nanoparticules d'oxyde d'aluminium sur la résistance chimique du verre. Une comparaison a été réalisée avec une feuille de verre identique mais non traitée (référence).
Dans la chambre climatique, la feuille de verre traitée et celle de référence ont été exposées jusqu'à 20 jours, sous une humidité relative constante de 98%, à des cycles de températures entre 45°C et 55°C. La période d'un cycle est d'exactement 1 heure 50 minutes et 12 cycles se produisent sur un jour. Une fois par jour, la température diminue de 45°C à 25°C en 30 minutes et elle est maintenue à 25°C pendant une heure. Ensuite, la température augmente à nouveau de 25°C à 45°C en 30 minutes et un cycle de températures recommence. Après des périodes de temps précises, les feuilles de verre sont examinées.
Après 4 jours dans la chambre climatique, la feuille de verre de référence, non traitée, montre un phénomène de corrosion. Par contre, la feuille de verre traitée par la méthode décrite ci-dessus ne montre toujours pas de phénomène de corrosion après 20 jours dans la chambre climatique. La présence de nanoparticules d'oxyde d'aluminium dans la masse du verre proche de l'une de ses surface permet dès lors d'obtenir un verre possédant une résistance chimique améliorée.
Exemple 2 (conforme à l'invention)
Une feuille de verre flotté clair de type sodo-calcique de 4 mm d'épaisseur et de dimensions 20 cm x 20 cm a été lavée de manière consécutive à l'eau courante, à l'eau désionisée et à l'alcool isopropylique et finalement séchée.
Une poudre sèche de nanoparticules d'oxyde d'aluminium, telle que celle fournie par PlasmaChem, a été déposée par saupoudrage sur la surface de la feuille de verre préalablement lavée. Les nanoparticules qui ont été utilisées ont une taille qui varie de 5 à 150 nm. Elles sont majoritairement cristallisées et les cristaux appartiennent à trois systèmes de cristallisation différents : rhombohedral (α-Al2O3), tétragonal (β- Al2O3) et cubique (γ- Al2O3).
Lorsque le dépôt des nanoparticules a été réalisé, la feuille de verre a été chauffée dans un four à une température de 9000C pendant Ih et ensuite refroidie de manière contrôlée à raison de maximum 35°C par heure.
La feuille de verre traitée comme décrit ci-dessus a été analysée par les mêmes techniques que celles citées dans l'exemple 1. Les analyses ont montré que les nanoparticules d'oxyde d'aluminium ont été incorporées dans la masse du verre proche de la surface et les résultats obtenus en termes de taille et de cristallinité sont en accord avec les caractéristiques de départ des nanoparticules utilisées. De plus, la concentration en aluminium se répartit dans la profondeur du verre selon un profil qui présente une décroissance monotone continue vers une valeur constante identique à la concentration en aluminium présente dans le coeur à partir d'une profondeur qui est égale à 700 nm.

Claims

REVENDICATIONS
1. Article en verre comprenant au moins un agent de renforcement chimique dans la masse du verre proche d'une surface de l'article, caractérisé en ce que l'agent de renforcement chimique est formé d'inclusions de nanoparticules.
2. Article selon la revendication précédente, caractérisé en ce que les inclusions de nanoparticules sont au moins partiellement cristallisées.
3. Article selon la revendication précédente, caractérisé en ce que les inclusions de nanoparticules sont totalement cristallisées.
4. Article selon une quelconque des revendications précédentes, caractérisé en ce que les inclusions sont constituées d'au moins un composé inorganique.
5. Article selon la revendication précédente, caractérisé en ce que le composé inorganique est sélectionné parmi les oxydes, les nitrures, les carbures et les associations d'au moins deux oxydes et/ou nitrures et/ou carbures.
6. Article selon la revendication précédente, caractérisé en ce que le composé inorganique est sélectionné parmi les oxydes de magnésium, de calcium, de strontium, de baryum, d'yttrium, de titane, de zirconium, de vanadium, de niobium, de tantale, d'aluminium, de gallium, d'indium, de silicium, de germanium, d'étain, de lanthane, et les associations d'au moins deux de ces composés.
7. Article selon la revendication précédente, caractérisé en ce que le composé inorganique est un oxyde d'aluminium1".
8. Article selon la revendication 6, caractérisé en ce que le composé inorganique est un oxyde de siliciumIv.
9. Article selon une quelconque des revendications précédentes, caractérisé en ce que la forme des inclusions est quasi sphérique.
10. Article selon une quelconque des revendications précédentes, caractérisé en ce que la taille des inclusions est comprise entre 5 et 500 nm.
11. Article selon une quelconque des revendications précédentes, caractérisé en ce que la concentration en composé inorganique se répartit dans la profondeur du verre selon un profil qui présente un pic maximum à une distance de la surface comprise entre 5 et 250 nm.
12. Article selon la revendication précédente, caractérisé en ce que le pic maximum en composé inorganique est situé à une distance comprise entre 30 et
200 nm de la surface.
13. Article selon une quelconque des revendications 11 et 12, caractérisé en ce que le profil de concentration en composé inorganique présente, à partir d'une concentration correspondant à celle du pic en direction du coeur de l'article, une décroissance monotone continue qui tend vers zéro ou vers une valeur constante identique à la concentration éventuellement présente dans le coeur à partir d'une profondeur comprise entre une distance de 300 à 2500 nm de la surface.
14. Article selon une quelconque des revendications 1 à 10, caractérisé en ce que la concentration en composé inorganique se répartit dans la profondeur du verre selon un profil qui décroît continûment de façon monotone à partir de la surface du verre et tend vers zéro ou vers une valeur constante identique à la concentration éventuellement présente dans le coeur de l'article à partir d'une profondeur comprise entre une distance de 300 à 2500 nm de la surface.
15. Article selon une quelconque des revendications précédentes, caractérisé en ce qu'il est obtenu par un procédé dans lequel les nanoparticules sont générées dans une flamme à partir d'au moins un précurseur.
16. Article selon une quelconque des revendications précédentes, caractérisé en ce que le verre de l'article est constitué d'une feuille de verre plat de type sodo-calcique.
EP08736585A 2007-04-26 2008-04-25 Article en verre a resistance chimique amelioree Withdrawn EP2139822A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08736585A EP2139822A1 (fr) 2007-04-26 2008-04-25 Article en verre a resistance chimique amelioree

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP07107026A EP1985592A1 (fr) 2007-04-26 2007-04-26 Article en verre à résistance chimique améliorée
EP08736585A EP2139822A1 (fr) 2007-04-26 2008-04-25 Article en verre a resistance chimique amelioree
PCT/EP2008/055086 WO2008132173A1 (fr) 2007-04-26 2008-04-25 Article en verre à résistance chimique améliorée

Publications (1)

Publication Number Publication Date
EP2139822A1 true EP2139822A1 (fr) 2010-01-06

Family

ID=38924435

Family Applications (2)

Application Number Title Priority Date Filing Date
EP07107026A Withdrawn EP1985592A1 (fr) 2007-04-26 2007-04-26 Article en verre à résistance chimique améliorée
EP08736585A Withdrawn EP2139822A1 (fr) 2007-04-26 2008-04-25 Article en verre a resistance chimique amelioree

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP07107026A Withdrawn EP1985592A1 (fr) 2007-04-26 2007-04-26 Article en verre à résistance chimique améliorée

Country Status (8)

Country Link
US (1) US20100137121A1 (fr)
EP (2) EP1985592A1 (fr)
JP (1) JP2010524835A (fr)
CN (1) CN101784496A (fr)
BR (1) BRPI0810564A2 (fr)
CA (1) CA2685032A1 (fr)
EA (1) EA200901446A1 (fr)
WO (1) WO2008132173A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012505817A (ja) * 2008-10-20 2012-03-08 エージーシー グラス ユーロップ 改良された耐薬品性を有するガラス物品
EP2598452A1 (fr) * 2010-07-27 2013-06-05 AGC Glass Europe Article en verre a proprietes antimicrobiennes
EP2415725B1 (fr) * 2010-07-27 2014-03-26 Beneq Oy Article en verre à propriétés antimicrobiennes
EP2598451A1 (fr) 2010-07-27 2013-06-05 AGC Glass Europe Article en verre a proprietes antimicrobiennes
WO2013050363A1 (fr) 2011-10-04 2013-04-11 Agc Glass Europe Article en verre présentant une résistance chimique améliorée

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0598472B1 (fr) * 1992-08-20 1997-06-18 Mitsuboshi Belting Ltd. Matériau vitreux contenant les particules très fines et méthode pour sa production
US5308804A (en) * 1992-12-15 1994-05-03 Lee Huai Chuan Moving disks made of semiconductor nanocrystallite embedded glass
US5541142A (en) * 1995-07-31 1996-07-30 Corning Incorporated Method of making a color filter by precipitation of Cu2 O from a glass matrix
US6456423B1 (en) * 1999-10-22 2002-09-24 The Board Of Trustees Of The University Of Illinois Silicon nanoparticle microcrystal nonlinear optical devices
US7066998B2 (en) * 2000-06-14 2006-06-27 The Procter & Gamble Company Coatings for modifying hard surfaces and processes for applying the same
EP1546056B1 (fr) * 2002-07-19 2013-12-11 PPG Industries Ohio, Inc. Article a structure nano-proportionnee et procede de fabrication associe
EP1541620A1 (fr) * 2003-12-12 2005-06-15 DSM IP Assets B.V. Procédé pour produire un matériau polymérique nano-poreux, une composition polymérique comprenant des nanoparticules d'un agent de gonflage chimique, nanoparticules d'un agent de gonflage chimique et un materiau nanoporeux polymérique
DE10359659A1 (de) * 2003-12-18 2005-07-21 Institut für Neue Materialien Gemeinnützige GmbH Verwendung von nanoskaligen ZrO2-Teilchen
US7700152B2 (en) * 2004-02-27 2010-04-20 The Regents Of The University Of Michigan Liquid feed flame spray modification of nanoparticles
US20060037062A1 (en) * 2004-08-09 2006-02-16 International Business Machines Corporation Method, system and program product for securing resources in a distributed system
US7907347B2 (en) * 2005-02-23 2011-03-15 Carl Zeiss Smt Ag Optical composite material and method for its production
FI20060288A0 (fi) * 2006-03-27 2006-03-27 Abr Innova Oy Pinnoitusmenetelmä

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008132173A1 *

Also Published As

Publication number Publication date
WO2008132173A1 (fr) 2008-11-06
EA200901446A1 (ru) 2010-04-30
BRPI0810564A2 (pt) 2014-10-21
JP2010524835A (ja) 2010-07-22
CA2685032A1 (fr) 2008-11-06
US20100137121A1 (en) 2010-06-03
EP1985592A1 (fr) 2008-10-29
CN101784496A (zh) 2010-07-21

Similar Documents

Publication Publication Date Title
EP2611749B1 (fr) Substrat verrier revêtu d'une couche anti-réfléchissante
EP0927144B1 (fr) Substrat a proprietes hydrophiles ou hydrophobes ameliorees, comportant des irregularites
EP2385932B1 (fr) SUBSTRAT HYDROPHOBE COMPRENANT UN PRIMAGE DU TYPE OXYCARBURE DE SILICIUM ACTIVE PAR PLASMA, PROCéDé DE FABRICATION ET APPLICATION DE CE SUBSTRAT
EP1720808B1 (fr) Substrat, notamment verrier, a surface hydrophobe, avec une durabilite amelioree des proprietes hydrophobes.
CA2806251C (fr) Vitrage a proprietes antisolaires
WO2008132173A1 (fr) Article en verre à résistance chimique améliorée
EP2507183A1 (fr) Procede de structuration de surface par abrasion ionique, surface structuree et utilisations
WO2009136110A2 (fr) Procede de dépôt de couche mince
EP3649091B1 (fr) Procede d'obtention d'un substrat de verre texture revetu d'un revetement de type sol-gel antireflet
EP2598452A1 (fr) Article en verre a proprietes antimicrobiennes
WO2007099208A1 (fr) Tôle en acier inoxydable revêtue par un revêtement auto-nettoyant.
WO2010046336A1 (fr) Article en verre a resistance chimique amelioree
EP3066228B1 (fr) Procede d'obtention d'un materiau photocatalytique
CH675416A5 (fr)
WO1997032823A2 (fr) Procede de depot sur du verre d'une couche reflechissante et produits obtenus
EP2415725B1 (fr) Article en verre à propriétés antimicrobiennes
WO2018073226A1 (fr) Procede de generation d'un jet de nanoparticules
BE1024950B1 (fr) Substrat verrier revêtu d'une couche anti-réfléchissante
WO2012013695A1 (fr) Article en verre a proprietes antimicrobiennes
EP1281672A1 (fr) Elaboration par voie chimique d'une solution pour depots a effets photo-catalytiques

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091023

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20100604

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AGC GLASS EUROPE

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AGC GLASS EUROPE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20160316