EP2139809A1 - Processus d'adsorption pour éliminer des constituants inorganiques d'un flux gazeux contenant du chlorure d'hydrogène - Google Patents

Processus d'adsorption pour éliminer des constituants inorganiques d'un flux gazeux contenant du chlorure d'hydrogène

Info

Publication number
EP2139809A1
EP2139809A1 EP08735019A EP08735019A EP2139809A1 EP 2139809 A1 EP2139809 A1 EP 2139809A1 EP 08735019 A EP08735019 A EP 08735019A EP 08735019 A EP08735019 A EP 08735019A EP 2139809 A1 EP2139809 A1 EP 2139809A1
Authority
EP
European Patent Office
Prior art keywords
hydrogen chloride
gas
bed
hydrochloric acid
hcl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08735019A
Other languages
German (de)
English (en)
Inventor
Wolf Aurel
Oliver Felix-Karl SCHLÜTER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Bayer MaterialScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer MaterialScience AG filed Critical Bayer MaterialScience AG
Publication of EP2139809A1 publication Critical patent/EP2139809A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/07Purification ; Separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/07Purification ; Separation
    • C01B7/0706Purification ; Separation of hydrogen chloride
    • C01B7/0718Purification ; Separation of hydrogen chloride by adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/104Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/306Surface area, e.g. BET-specific surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/26Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/60Heavy metals or heavy metal compounds

Definitions

  • the invention relates to a process for the treatment of hydrogen chloride-containing gas streams which are contaminated with inorganic compounds, by means of adsorption.
  • the invention relates to the purification of hydrogen chloride-containing process gases of hydrogen chloride oxidation, in particular of the catalyzed hydrogen chloride oxidation.
  • phosgene is removed by washing with dichloroethane (DE-A 11 07 18), which is not particularly attractive due to the use of organic halogenated solvents.
  • ion exchangers are used to remove traces of chromium, molybdenum and tungsten.
  • a disadvantage is the low long-term stability of the ion exchanger in comparison to inorganic oxides (Al, Si) and their relatively poor regenerability.
  • the object of the invention is to provide an improved purification process for a crude gas stream containing hydrogen chloride.
  • this is effected by the inorganic impurities are removed at high temperatures (> 120 ° C normal pressure), in particular at more than 190 0 C, by passing the raw gas through an adsorbent bed.
  • Hydrochloric acid which can be obtained from the thus purified hydrogen chloride, contains only traces of inorganic impurities and can be used, for example, in electrolysis processes or as a neutralizing agent or as a catalyst in chemical processes.
  • the present invention also has the particular aim of reducing the loss of valuable components such as ruthenium in the process gas purification of contaminated with inorganic compounds hydrogen chloride gas streams. This can be achieved by working up the adsorption bed.
  • the invention relates to a process for removing inorganic components from a hot crude gas stream containing hydrogen chloride, comprising the steps of:
  • Inorganic impurities in the context of the invention are understood to mean titanium compounds, in particular titanium chloride, titanium oxides, titanium oxide chlorides,
  • Ruthenium compounds in particular ruthenium oxides, ruthenium chlorides, ruthenium oxide chlorides, chromium compounds, in particular chromium oxides, chromium chlorides or chromium oxide chlorides, tin compounds, in particular tin oxides, tin chlorides, tin oxide chlorides, copper compounds, in particular copper oxides, copper chlorides or copper oxide chlorides, zirconium compounds, zirconium oxides, zirconium chlorides, zirconium oxide chlorides, furthermore silicon, aluminum oxides , Gold, silver, bismuth, cobalt, iron, manganese, molybdenum, nickel, magnesium and vanadium compounds, in particular in the form of oxide, chlorides or oxide chlorides.
  • Tin compounds, ruthenium compounds or titanium compounds of the aforementioned type are preferably removed by the process.
  • Adso ⁇ tion B As an adsorbent for Adso ⁇ tion B) here are usually zeolites, alumina, (especially as organometallic complex), SiO 2 (especially in the form of silica gel), aluminum silicalites (in particular in the form of bentonite) and other metal oxides are used. Preferred is gamma-alumina.
  • the BET surface area of the adsorbent, in particular of the aluminum oxide, is preferably in the range of 10-1000 rnVg, more preferably in the range of> 25 m 2 / g.
  • the highly purified HCl is suitable for use in HCl electrolysis, in particular by means of an oxygen-consuming cathode, as a catalyst and as a neutralizing agent for chemical synthesis without further aftertreatment.
  • tetravalent cations eg tin or titanium compounds
  • the method is particularly preferably used when the hydrogen chloride-containing purified gas stream originates from a production process for the production of chlorine from hydrogen chloride and oxygen, in particular a catalyzed gas phase oxidation of hydrogen chloride with oxygen or a non-thermal reaction of hydrogen chloride and oxygen.
  • the coupling with the catalyzed gas phase oxidation of hydrogen chloride with oxygen is particularly preferred.
  • the catalytic process known as the Deacon process is particularly preferably used in combination with the process according to the invention.
  • hydrogen chloride is oxidized with oxygen in an exothermic equilibrium reaction to chlorine, whereby water vapor is obtained.
  • the reaction temperature is usually 150 to 500 0 C, the usual reaction pressure is 1 to 25 bar. Since it is an equilibrium reaction, it is expedient to work at the lowest possible temperatures at which the catalyst still has sufficient activity.
  • oxygen in superstoichiometric Use quantities of hydrogen chloride. For example, a two- to four-fold excess of oxygen is customary. Since no loss of selectivity is to be feared, it may be economically advantageous to work at relatively high pressure and, accordingly, longer residence time than normal pressure.
  • Suitable preferred catalysts for the Deacon process include ruthenium oxide, ruthenium chloride or other ruthenium compounds on tin oxide, silica, alumina, titania or zirconia as a carrier.
  • Suitable catalysts can be obtained, for example, by applying ruthenium chloride to the support and then drying or drying and calcining.
  • Suitable catalysts may, in addition to or instead of a ruthenium compound, also contain compounds of other noble metals, for example gold, palladium, platinum, osmium, iridium, silver, copper or rhenium.
  • Suitable catalysts may further contain chromium oxide.
  • the catalytic hydrogen chloride oxidation may be adiabatic or preferably isothermal or approximately isothermal, batchwise, but preferably continuously or as a fixed bed process, preferably as a fixed bed process, more preferably in tube bundle reactors to heterogeneous catalysts at a reactor temperature of 180 to 500 0 C, preferably 200 to 400 0th C, more preferably 220 to 350 0 C and a pressure of 1 to 25 bar (1000 to 25000 hPa), preferably 1.2 to 20 bar, more preferably 1.5 to 17 bar and in particular 2.0 to 15 bar are performed ,
  • Typical reactors in which the catalytic hydrogen chloride oxidation is carried out are fixed bed or fluidized bed reactors.
  • the catalytic hydrogen chloride oxidation can preferably also be carried out in several stages.
  • a further preferred embodiment of a device suitable for the method consists in using a structured catalyst bed in which the catalyst activity increases in the flow direction.
  • Such structuring of the catalyst bed can be done by different impregnation of the catalyst support with active material or by different dilution of the catalyst with an inert material.
  • an inert material for example, rings, cylinders or balls of titanium dioxide, zirconium dioxide or mixtures thereof, Alumina, steatite, ceramic, glass, graphite, stainless steel or nickel alloys can be used.
  • the inert material should preferably have similar external dimensions.
  • Suitable shaped catalyst bodies are shaped bodies with any desired shapes, preference being given to tablets, rings, cylinders, stars, carriage wheels or spheres, particular preference being given to rings, cylinders or star strands as molds.
  • Ruthenium compounds or copper compounds on support materials are particularly suitable as heterogeneous catalysts, preference being given to optionally doped ruthenium catalysts.
  • Suitable support materials are, for example, silicon dioxide, graphite, rutile or anatase titanium dioxide, tin dioxide, zirconium dioxide, aluminum oxide or mixtures thereof, preferably titanium dioxide, zirconium dioxide, aluminum oxide, tin dioxide or mixtures thereof, particularly preferably ⁇ - or ⁇ -aluminum oxide, tin dioxide or their mixtures.
  • the copper or ruthenium-supported catalysts can be obtained, for example, by impregnation of the support material with aqueous solutions of CuCl 2 or RuCl 3 and optionally a promoter for doping, preferably in the form of their chlorides.
  • the shaping of the catalyst can take place after or preferably before the impregnation of the support material.
  • the catalysts are suitable as promoters alkali metals such as lithium, sodium, potassium, rubidium and cesium, preferably lithium, sodium and potassium, more preferably potassium, alkaline earth metals such as magnesium, calcium, strontium and barium, preferably magnesium and calcium, particularly preferably magnesium, Rare earth metals such as scandium, yttrium, lanthanum, cerium, praseodymium and neodymium, preferably scandium, yttrium, lanthanum and cerium, more preferably lanthanum and cerium, or mixtures thereof.
  • alkali metals such as lithium, sodium, potassium, rubidium and cesium, preferably lithium, sodium and potassium, more preferably potassium, alkaline earth metals such as magnesium, calcium, strontium and barium, preferably magnesium and calcium, particularly preferably magnesium, Rare earth metals such as scandium, yttrium, lanthanum, cerium, praseodymium and neodymium, preferably scandium, yt
  • the moldings can then be dried at a temperature of 100 to 400 0 C, preferably 100 to 300 0 C, for example, under a nitrogen, argon or air atmosphere and optionally calcined.
  • the moldings are first dried at 100 to 150 0 C and then calcined at 200 to 400 0 C.
  • the conversion of hydrogen chloride in a single pass can preferably be limited to 15 to 95%, preferably 40 to 90%, particularly preferably 50 to 90%.
  • unreacted hydrogen chloride can be partly or completely recycled to the catalytic hydrogen chloride oxidation.
  • the volume ratio of hydrogen chloride to oxygen at the reactor inlet is preferably 1: 1 to 20: 1, preferably 1: 1 to 8: 1, particularly preferably 1: 1 to 5: 1.
  • the heat of reaction of the catalytic hydrogen chloride oxidation can be used advantageously for the production of high-pressure steam. This can be used to operate a Phosgeniemngsreaktors and or distillation columns, in particular of isocyanate distillation columns.
  • the chlorine formed is separated off.
  • the separation step usually comprises several stages, namely the separation and optionally recycling of unreacted hydrogen chloride from the product gas stream of the catalytic hydrogen chloride oxidation, the drying of the obtained, substantially chlorine and oxygen-containing stream and the separation of chlorine from the dried stream.
  • the separation of unreacted hydrogen chloride and water vapor formed can be carried out by condensation of aqueous hydrochloric acid from the product gas stream of hydrogen chloride oxidation by cooling. Hydrogen chloride can also be absorbed in dilute hydrochloric acid or water.
  • the loaded with inorganic impurities adsorbent material is replaced at appropriate intervals by fresh adsorbent.
  • the valuable metal compounds present in the asorption agent in particular ruthenium or other noble metal compounds
  • suitable basically known digestion processes and fed to reuse are removed from the adsorbent by suitable basically known digestion processes and fed to reuse.
  • Example 2 hi a fixed bed reactor 50 g of catalyst are diluted with 150 g of glass body and at 4 bar and 350 0 C with 40.5 l / h of hydrogen chloride, 315 l / h of oxygen and 252 l / h of nitrogen flowed through.
  • the conversion of hydrogen chloride is> 95%.
  • the hot product gas stream (195 0 C) is passed through an adsorber ( ⁇ - Al 2 O 3 , manufacturer Saint-Gobain, type SA3177, 3 mm pellets) to a condenser. From the product stream, which consists in addition to unreacted educts and nitrogen in equal parts of chlorine and water, the water and the unreacted hydrogen chloride are separated in a condenser.
  • the condensate is then analyzed by ICP-OES.
  • the result is a tin content of on average ⁇ 1 mg Sn per kg of condensate.
  • the ruthenium content is below the detection limit.
  • the measured values are shown under A to C in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

L'invention concerne un procédé servant à éliminer des constituants inorganiques d'un flux de gaz brut chaud contenant du chlorure d'hydrogène. Le procédé selon l'invention comprend les étapes suivantes : A) introduction du gaz brut impur chaud contenant du HCl dans un lit d'adsorbant, B) adsorption des constituants inorganiques du gaz brut contenant du HCl au niveau d'un adsorbant, C) extraction du gaz HCl purifié du lit d'adsorbant.
EP08735019A 2007-04-17 2008-04-04 Processus d'adsorption pour éliminer des constituants inorganiques d'un flux gazeux contenant du chlorure d'hydrogène Withdrawn EP2139809A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007018016A DE102007018016A1 (de) 2007-04-17 2007-04-17 Absorptionsprozess zur Entfernung anorganischer Komponenten aus einem Chlorwasserstoff enthaltenden Gasstrom
PCT/EP2008/002687 WO2008125235A1 (fr) 2007-04-17 2008-04-04 Processus d'adsorption pour éliminer des constituants inorganiques d'un flux gazeux contenant du chlorure d'hydrogène

Publications (1)

Publication Number Publication Date
EP2139809A1 true EP2139809A1 (fr) 2010-01-06

Family

ID=39684160

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08735019A Withdrawn EP2139809A1 (fr) 2007-04-17 2008-04-04 Processus d'adsorption pour éliminer des constituants inorganiques d'un flux gazeux contenant du chlorure d'hydrogène

Country Status (7)

Country Link
US (1) US20080257150A1 (fr)
EP (1) EP2139809A1 (fr)
JP (1) JP2010524814A (fr)
KR (1) KR20090129476A (fr)
CN (1) CN101657380A (fr)
DE (1) DE102007018016A1 (fr)
WO (1) WO2008125235A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109678114A (zh) * 2019-02-19 2019-04-26 苏州晶瑞化学股份有限公司 一种电子级盐酸中杂质砷的去除方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101935020B (zh) * 2010-09-15 2012-01-25 重庆天原化工有限公司 甲烷氯化物副产氯化氢的提纯方法
WO2012142084A1 (fr) 2011-04-11 2012-10-18 ADA-ES, Inc. Méthode par lit fluidisé et système de capture de composant gazeux
CN102602892B (zh) * 2012-04-11 2015-04-01 万华化学集团股份有限公司 通过氯化氢的催化氧化制备氯气的方法
AU2013317997B2 (en) 2012-09-20 2016-04-07 ADA-ES, Inc. Method and system to reclaim functional sites on a sorbent contaminated by heat stable salts
WO2014185499A1 (fr) * 2013-05-15 2014-11-20 旭硝子株式会社 Procédé de purification du chlorure d'hydrogène
WO2014203276A2 (fr) * 2013-06-17 2014-12-24 Reliance Industries Limited Procédé d'élimination de contaminants métalliques contenus dans des fluides
CN104689782A (zh) * 2013-12-05 2015-06-10 无锡钻石地毯制造有限公司 一种生态地毯氯化氢吸附剂
CN106145039B (zh) * 2015-04-01 2020-09-11 上海氯碱化工股份有限公司 氯化氢制氯工艺中原料预处理的方法
CN106422656A (zh) * 2016-11-30 2017-02-22 广东广山新材料有限公司 一种氯化氢气体的纯化方法
CN112678775B (zh) * 2019-10-17 2022-12-06 新疆晶硕新材料有限公司 一种白炭黑尾气净化回收的方法及装置
CN114212757B (zh) * 2021-12-24 2023-03-17 昆山市年沙助剂有限公司 一种试剂级化工助剂的生产工艺

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1936078A (en) * 1926-12-09 1933-11-21 Gen Chemical Corp Process of purifying hydrochloric acid gas

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE730177C (de) * 1939-09-16 1943-01-07 Metallgesellschaft Ag Verfahren zur laufenden Herstellung von selenfreier Salzsaeure
US3029575A (en) * 1958-11-03 1962-04-17 Exxon Research Engineering Co Chlorine separation process
GB1090521A (en) 1965-11-04 1967-11-08 Ici Ltd Purification of hydrogen chloride
GB1186941A (en) * 1966-04-02 1970-04-08 Sir Soc Italiana Resine Spa Method of Manufacturing Useful Intermediates in the Synthesis of Biologically Degradable Detergents
CA991822A (en) * 1971-06-16 1976-06-29 Dhirendra R. Merchant Purification of gaseous hydrogen chloride
DE2413043A1 (de) 1974-03-19 1975-09-25 Bayer Ag Verfahren zur reinigung von salzsaeure
US4009214A (en) * 1975-04-25 1977-02-22 The Lummus Company Separation of hydrogen fluoride from hydrogen chloride gas
US4053558A (en) * 1975-07-14 1977-10-11 Stauffer Chemical Company Purification of gas streams containing ferric chloride
US4639259A (en) * 1985-10-09 1987-01-27 Kaiser Aluminum & Chemical Corporation Promoted scavenger for purifying HCl-contaminated gases
US4663052A (en) * 1985-12-12 1987-05-05 Union Carbide Corporation Drying process using chabazite-type adsorbents
US5316998A (en) * 1992-05-05 1994-05-31 Discovery Chemicals, Inc. HCl adsorbent and method for making and using same
US5284638A (en) * 1992-08-05 1994-02-08 Corning Incorporated System and method for removing hydrocarbons from gaseous mixtures using multiple adsorbing agents
US5958356A (en) * 1997-11-05 1999-09-28 Air Products And Chemicals, Inc. Method for removal of moisture from gaseous HCl
US6395070B1 (en) * 1998-10-06 2002-05-28 Matheson Tri-Gas, Inc. Methods for removal of impurity metals from gases using low metal zeolites
US6110258A (en) * 1998-10-06 2000-08-29 Matheson Tri-Gas, Inc. Methods for removal of water from gases using superheated zeolites
US6221132B1 (en) * 1999-10-14 2001-04-24 Air Products And Chemicals, Inc. Vacuum preparation of hydrogen halide drier
US6547861B2 (en) * 2000-12-26 2003-04-15 Matheson Tri-Gas,, Inc. Method and materials for purifying reactive gases using preconditioned ultra-low emission carbon material
GB0103762D0 (en) * 2001-02-15 2001-04-04 Air Prod & Chem A gas purification unit
US7175696B2 (en) * 2002-02-19 2007-02-13 American Air Liquide, Inc. Method and apparatus for corrosive gas purification
US7101415B2 (en) * 2002-08-30 2006-09-05 Matheson Tri-Gas, Inc. Methods for regenerating process gas purifier materials
US6709487B1 (en) * 2002-10-22 2004-03-23 Air Products And Chemicals, Inc. Adsorbent for moisture removal from fluorine-containing fluids
EP1799329A1 (fr) * 2004-07-20 2007-06-27 Entegris, Inc. Enlèvement de contaminants métalliques à partir de gaz de très grande pureté
US7314506B2 (en) * 2004-10-25 2008-01-01 Matheson Tri-Gas, Inc. Fluid purification system with low temperature purifier

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1936078A (en) * 1926-12-09 1933-11-21 Gen Chemical Corp Process of purifying hydrochloric acid gas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2008125235A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109678114A (zh) * 2019-02-19 2019-04-26 苏州晶瑞化学股份有限公司 一种电子级盐酸中杂质砷的去除方法
CN109678114B (zh) * 2019-02-19 2021-04-02 苏州晶瑞化学股份有限公司 一种电子级盐酸中杂质砷的去除方法

Also Published As

Publication number Publication date
US20080257150A1 (en) 2008-10-23
CN101657380A (zh) 2010-02-24
DE102007018016A1 (de) 2008-10-30
WO2008125235A1 (fr) 2008-10-23
KR20090129476A (ko) 2009-12-16
JP2010524814A (ja) 2010-07-22

Similar Documents

Publication Publication Date Title
EP2139809A1 (fr) Processus d'adsorption pour éliminer des constituants inorganiques d'un flux gazeux contenant du chlorure d'hydrogène
EP2142470B1 (fr) Procédé d'élimination par condensation-adsorption de composants organiques d'un flux de gaz contenant du chlorure d'hydrogène
EP1529033B1 (fr) Procede integre de production d'isocyanates
EP1866239B1 (fr) Procede pour produire du chlore
EP1981619B1 (fr) Procédé pour obtenir du chlorure d'hydrogène exempt d'hydrocarbures (chlorés) et des hydrocarbures (chlorés) exempts de phosgène à partir d'un flux de chlorure d'hydrogène contenant des hydrocarbures (chlorés) et du phosgène
EP1558521B1 (fr) Procede de preparation de chlore a partir d'acide chlorhydrique
EP1981806B1 (fr) Procédé de production de chlore
EP2257372A2 (fr) Procédé de régénération d'un catalyseur contenant du ruthénium ou des composés de ruthénium contaminés par du soufre sous forme de composés de soufre
EP2608879B1 (fr) Catalyseur et procédé pour produire du chlore par une oxydation catalytique en phase gazeuse de chlorure d'hydrogène
EP1542923B1 (fr) Procede a lit fixe pour produire du chlore par oxydation catalytique en phase gazeuse de chlorure d'hydrogene
DE102007020142A1 (de) Verfahren zur Rückgewinnung von Ruthenium aus einem rutheniumhaltigen geträgerten Katalysatormaterial
WO2010076262A1 (fr) Catalyseur pour l'oxydation de chlorure d'hydrogène contenant du ruthénium et du nickel
EP2384239A1 (fr) Procédé de régénération d'un catalyseur contenant de l'oxyde de ruthénium pour l'oxydation du chlorure d'hydrogène
WO2018210770A1 (fr) Procédé de régénération d'un catalyseur contenant un ruthénium ou des composés de ruthénium, contaminé
DE10252859A1 (de) Verfahren zur Herstellung von 1,2-Dichlorethan und von Vinylchlorid
WO2008122363A1 (fr) Procédé régénératif pour éliminer, par condensation et adsorption, des composants organiques d'un courant gazeux
EP2177268A1 (fr) Catalyseur et procédé de fabrication de chlore par oxydation en phase gazeuse
WO2008131869A1 (fr) Procédé de purification et d'oxydation d'un gaz contenant du chlorure d'hydrogène
WO2007134723A2 (fr) Procédé de production de chlore par oxydation en phase gazeuse
DE10234908B4 (de) Verfahren zur Herstellung von Chlor aus einem (Chlor)kohlenwasserstoffe enthaltenden Chlorwasserstoffstrom

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091117

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130610

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20131022