EP2126482A2 - Meuble de réfrigération pourvu d'au moins deux compartiments thermiquement séparés l'un de l'autre - Google Patents

Meuble de réfrigération pourvu d'au moins deux compartiments thermiquement séparés l'un de l'autre

Info

Publication number
EP2126482A2
EP2126482A2 EP07847278A EP07847278A EP2126482A2 EP 2126482 A2 EP2126482 A2 EP 2126482A2 EP 07847278 A EP07847278 A EP 07847278A EP 07847278 A EP07847278 A EP 07847278A EP 2126482 A2 EP2126482 A2 EP 2126482A2
Authority
EP
European Patent Office
Prior art keywords
expansion valve
refrigerant
compartments
evaporator
refrigeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07847278A
Other languages
German (de)
English (en)
Other versions
EP2126482B1 (fr
Inventor
Peter Bauer
Matthias Mrzyglod
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BSH Hausgeraete GmbH
Original Assignee
BSH Bosch und Siemens Hausgeraete GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Bosch und Siemens Hausgeraete GmbH filed Critical BSH Bosch und Siemens Hausgeraete GmbH
Priority to EP11190861A priority Critical patent/EP2426434A1/fr
Publication of EP2126482A2 publication Critical patent/EP2126482A2/fr
Application granted granted Critical
Publication of EP2126482B1 publication Critical patent/EP2126482B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/37Capillary tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • F25D11/022Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures with two or more evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/062Capillary expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature
    • F25D2700/122Sensors measuring the inside temperature of freezer compartments

Definitions

  • the invention relates to a refrigerator with at least two thermally separated compartments, the evaporator are together with a compressor and a condenser in a refrigeration circuit and are acted upon by the compressor at a signaling of a refrigeration demand in the subjects with liquid refrigerant, wherein the contribution to refrigeration refrigerant amount is controllable. Furthermore, the invention relates to a method suitable for operating this refrigerated appliance.
  • a reservoir for temporary storage of liquid refrigerant is provided in the refrigerant circuit in front of a branch leading to the evaporators. From this it is possible to introduce additional refrigerant into the refrigerant circuit in a targeted manner by heating the reservoir in the event of an increased demand for refrigerant, in particular during simultaneous operation of both evaporators.
  • the refrigerant to be introduced into the evaporator is withdrawn from the condenser in accordance with its need for one or at the same time at several removal points.
  • variable amount of refrigerant energy-consuming storage means or inefficiently used condenser can be used.
  • the parallel arrangement of several evaporators due to the dual design of the injection system (valve, throttle capillary, injection point) leads to significant additional costs compared to single circuits.
  • the object of the invention is to find a cost-effective refrigerated cabinets with at least two thermally separated compartments and a suitable method for operating this cabinet in which a subject-specific temperature control using only a single common refrigeration cycle and given a uniform, modular production of the evaporator components is possible ,
  • each of these compartments is associated with an evaporator.
  • an expansion valve and these evaporators are connected in series in a refrigerant circuit.
  • at least two states with different non-vanishing flow coefficients can be set on the expansion valve.
  • the invention is thus based on a targeted change in the flow coefficient of an expansion valve in the refrigerant circuit of a refrigerated cabinet.
  • the refrigerant flow through the evaporator of the refrigerator can be changed specifically.
  • this causes a change in the ratio of liquid to gaseous refrigerant in the individual evaporators, and thus a change in the cooling capacity available in the evaporators.
  • the dimensions of the individual evaporators no longer exist, as was previously the case with refrigerated cabinets connected in series Evaporators usual, is determined by the expected ratio of the cooling capacities required in the individual subjects.
  • the evaporators can therefore be sized large in terms of optimum energy efficiency.
  • the evaporator of the cabinet by the invention can be independent of the refrigeration demand in the individual subjects free / dimension, opens up the potential profitable Mehrzonenkühl conjug produce whose components (especially evaporator) can be used uniformly (modular) in large quantities and In this case, the advantages of known from the prior art cooling furniture opens in terms of energy efficiency and controllability of the subjects.
  • the expansion valve In order to enable a targeted control or regulation of the refrigerant flow through the evaporator, it is conceivable on the one hand to design the expansion valve such that its flow coefficient is infinitely adjustable. On the other hand, it is also very possible to carry out the expansion valve with switchable discrete flow coefficients. Such a discrete switchability is particularly useful in embodiments of refrigerated furniture, which have a few thermally separated compartments.
  • thermoly separated compartments of the refrigerator temperature sensor are connected to an evaluation circuit for signaling a refrigeration demand in the individual compartments, this evaluation circuit forming part of a temperature control. If this Temperature control is signaled by one of the temperature sensor in at least one of the compartments of the refrigerator furniture a refrigeration demand, is set by the flow coefficient of the expansion valve so that the refrigerant flowing through it is preferably evaporated in the compartment in which the refrigeration demand was detected.
  • Fig. 1 is a refrigerated cabinet with an expansion valve according to the present invention
  • Fig. 2 possible embodiments of a usable in the refrigerator, three-stage switchable expansion valve.
  • FIG. 1 a refrigeration cabinet with only two compartments was used to simplify the illustration.
  • the invention is not limited to such an embodiment, but can be transferred by expert action thereof on cooling furniture with any number of subjects.
  • Fig. 1 shows a cooling cabinet 20, which has two compartments 21, 21 ', which are to be regulated to different temperatures. Each of the compartments 21, 21 'is associated with an evaporator 2, 2'. These evaporators 2, 2 'lie in a refrigerant circuit 1 through which refrigerant flows in series behind a compressor 3, a condenser 4 and an expansion valve 5.
  • Each of the compartments 21, 21 ' is associated with a temperature sensor 12, 12'.
  • These temperature sensors 12, 12 ' are connected to an evaluation circuit 1 1 for signaling a refrigeration demand, which forms part of a temperature control 10.
  • the temperature control 10 turns on a control line 14, the compressor 3 when in one of the subjects refrigeration demand is detected, and off again when no more refrigeration demand is detected.
  • the temperature control 10 controls in the signaling of a refrigeration demand in at least one compartment 12, 12 'via a control line 13, the expansion valve 5 to set depending on the detected refrigeration demand whose flow coefficient.
  • the temperature control 10 at the expansion valve 5 will enter one of two discrete non-zero values of the flow coefficient, namely a low refrigeration requirement in the compartment 21' and a high value Refrigeration demand in compartment 21.
  • the passage coefficient of the expansion valve 5 is set small by the temperature control 10, more refrigerant is sucked through the compressor 3 from the evaporators 2, 2 ', as is introduced via the expansion valve 5 in the evaporator 2, 2'.
  • the pressure in the evaporators is low, the evaporation temperature accordingly low. In this way, the refrigerant evaporates only in the vicinity of its exit point from the expansion valve 5, in the evaporator 2 ', and essentially only the compartment 21' is cooled.
  • the passage coefficient of the expansion valve 5 is made large by the temperature control 10. Because of the Compressor 3 less refrigerant is sucked, as is introduced via the expansion valve 5 in the evaporator 2, 2 ', the pressure in the evaporator and, accordingly, the boiling point of the refrigerant increases. If it is higher than the temperature of the compartment 21 ', the refrigerant passes through the evaporator 2' without evaporating, and first evaporates in the evaporator 2 of the warmer compartment 21. In this way, substantially only the compartment 21 'is cooled.
  • a mean transmission coefficient can be selected if there is a simultaneous need for refrigeration in both compartments 21, 21 '. Then in each case a part of the refrigerant evaporates in the evaporator 21 'and the rest in the evaporator 21st
  • the same average transmission coefficient can be selected if the compartment 21 'has an unusually high refrigeration demand, for example during rapid freezing of newly stored refrigerated goods.
  • a refrigerator has three or more fans cooled by series-connected evaporators, and an expansion valve upstream of the evaporators in a refrigerant circuit is switchable between at least as many values of the transmission coefficient as there are compartments.
  • the values are each chosen such that, when one of these values is set, the evaporation of the refrigerant takes place predominantly in an evaporator assigned to this value.
  • the value of the passage coefficient assigned to an evaporator is the higher the further downstream the associated evaporator lies in the refrigerant circuit.
  • an expansion valve with continuously variable transmission coefficient can be used. Particularly simple and sufficient for most applications are expansion valves where only a small number of discrete values of the transmission coefficient are adjustable.
  • FIG. 2 In the case of the refrigerated cabinet 20 outlined in FIG. 1, which only has two compartments 21, 21 'to be cooled, it is sufficient if two different non-vanishing transmission coefficients of the expansion valve 5 are adjustable. In this way, a very cost-effective temperature control can be realized profitably.
  • Fig. 2 three possible embodiments of this suitable expansion valve 5 are shown. All embodiments are the same splitting (for example by means of T-piece) of the main line 31 of the refrigerant circuit at the entrance to the expansion valve 5 in two parallel conduit paths. After this splitting, these two conduction paths are fed to a blocking member 30. This locking member 30, z. B.
  • a directional control valve has a first switching stage, in which both conduction paths are shut off, a second switching stage, in which one of the two conduction paths open and the other is shut off, and a third switching stage, in which the other conduction path is open, wherein the a conduction path in this third switching stage may be open or disabled.
  • a capillary tube 34 At the exit of the locking member 30 is a capillary tube 34, which opens in a conventional manner directly into the evaporator 21 '.
  • the above-mentioned parallel-guided line paths comprise capillary tubes 32, 33 of different lengths and the same cross-section, which are connected upstream of the inputs of the blocking element 30.
  • the refrigerant flows through the capillary tube 32, the capillary tube 33 or through both parallel, resulting in each case different flow coefficients of the expansion valve 5.
  • a capillary tube 52 is provided on only one of the two line branches; the other leg 53 does not have a substantial one due to its short length or large cross-section
  • Line branch 53 this corresponds to a direct switching of the main line 31 to the capillary located at the output of the locking member 30 capillary 34.
  • the line branch 53 thus forms a bypass around the capillary tube 52nd
  • a multi-stage controllable expansion valve is not limited to the embodiments shown in FIG. 2.
  • Capillary tubes can be used in screens in an otherwise spacious refrigerant line.
  • More than two non-zero values of the flow coefficient can be realized by providing a four-position directional control valve corresponding to the four possible combinations of "open” and “locked” of the two branches, or by making the main line 31 in the expansion valve 5 more than two parallel, individually switchable line branches is split.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
EP07847278A 2006-12-22 2007-11-22 Meuble de réfrigération comprenant deux compartiments thermiquement séparés l'un de l'autre Active EP2126482B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11190861A EP2426434A1 (fr) 2006-12-22 2007-11-22 Meuble de réfrigération comprenant deux compartiments thermiquement séparés l'un de l'autre

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006061091A DE102006061091A1 (de) 2006-12-22 2006-12-22 Kühlmöbel mit wenigstens zwei thermisch voneinander getrennten Fächern
PCT/EP2007/062709 WO2008077697A2 (fr) 2006-12-22 2007-11-22 Meuble de réfrigération pourvu d'au moins deux compartiments thermiquement séparés l'un de l'autre

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP11190861.2 Division-Into 2011-11-28

Publications (2)

Publication Number Publication Date
EP2126482A2 true EP2126482A2 (fr) 2009-12-02
EP2126482B1 EP2126482B1 (fr) 2012-03-14

Family

ID=39431661

Family Applications (2)

Application Number Title Priority Date Filing Date
EP11190861A Withdrawn EP2426434A1 (fr) 2006-12-22 2007-11-22 Meuble de réfrigération comprenant deux compartiments thermiquement séparés l'un de l'autre
EP07847278A Active EP2126482B1 (fr) 2006-12-22 2007-11-22 Meuble de réfrigération comprenant deux compartiments thermiquement séparés l'un de l'autre

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP11190861A Withdrawn EP2426434A1 (fr) 2006-12-22 2007-11-22 Meuble de réfrigération comprenant deux compartiments thermiquement séparés l'un de l'autre

Country Status (8)

Country Link
US (1) US20100089079A1 (fr)
EP (2) EP2426434A1 (fr)
CN (1) CN101568773B (fr)
AT (1) ATE549585T1 (fr)
DE (1) DE102006061091A1 (fr)
ES (1) ES2381655T3 (fr)
RU (1) RU2009126091A (fr)
WO (1) WO2008077697A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012211270A1 (de) 2012-06-29 2014-01-02 BSH Bosch und Siemens Hausgeräte GmbH Kältegerät mit einer verstellbaren Drosselung

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011004107A1 (de) * 2011-02-15 2012-08-16 BSH Bosch und Siemens Hausgeräte GmbH Haushaltskältegerät mit ungeregelten Expansionsventilen
DE102011006856A1 (de) * 2011-04-06 2012-10-11 BSH Bosch und Siemens Hausgeräte GmbH Haushaltskältegerät mit Kältemittelrohrleitungen
CH704974A1 (de) * 2011-05-18 2012-11-30 Bs2 Ag Expansionsapparat für Wärmepumpen.
US10266034B2 (en) * 2011-06-16 2019-04-23 Hamilton Sundstrand Corporation Heat pump for supplemental heat
DE102011079206A1 (de) * 2011-07-14 2013-01-17 BSH Bosch und Siemens Hausgeräte GmbH Kältegerät mit mehreren Kammern
DE102012020896A1 (de) * 2011-10-26 2013-05-02 Liebherr-Hausgeräte Ochsenhausen GmbH Kühl- und/oder Gefriergerät
DE102012201079A1 (de) * 2012-01-25 2013-07-25 Binder Gmbh Kälteschrank
US20150075212A1 (en) * 2013-09-16 2015-03-19 The Coca-Cola Company Carbon Dioxide Refrigeration System with a Multi-Way Valve
DE102013223737A1 (de) * 2013-11-20 2015-05-21 BSH Hausgeräte GmbH Einkreis-Kältegerät
US9791188B2 (en) * 2014-02-07 2017-10-17 Pdx Technologies Llc Refrigeration system with separate feedstreams to multiple evaporator zones
CN105202838B (zh) * 2015-10-19 2017-07-28 广东美的暖通设备有限公司 多联机系统及其中间压力控制方法
DE102016224283A1 (de) * 2016-12-06 2018-06-07 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Expansionsventil
WO2019044661A1 (fr) * 2017-08-29 2019-03-07 東芝キヤリア株式会社 Système de climatisation de type multiple et unité intérieure
DE102018202008A1 (de) * 2018-02-08 2019-08-08 BSH Hausgeräte GmbH Kombinationskältegerät
BR102018011553A2 (pt) * 2018-06-07 2019-12-10 Embraco Ind De Compressores E Solucoes Em Refrigeracao Ltda método e sistema de controle de um sistema de refrigeração e equipamento de refrigeração
DE102019112093A1 (de) * 2018-07-12 2020-01-16 Liebherr-Hausgeräte Ochsenhausen GmbH Kühl- und/oder Gefriergerät
DE102019202649A1 (de) * 2019-02-27 2020-08-27 BSH Hausgeräte GmbH Kältegerät
DE102019218352A1 (de) * 2019-11-27 2021-05-27 BSH Hausgeräte GmbH Kältegerät mit variabel nutzbarem Fach
CN112944775A (zh) * 2021-02-10 2021-06-11 西安交通大学 一种低温冰箱

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2667756A (en) * 1952-01-10 1954-02-02 Gen Electric Two-temperature refrigerating system
AT325644B (de) * 1973-10-11 1975-10-27 Bosch Hausgeraete Gmbh Kühlmöbel, insbesondere zweitemperaturen-kühlschrank
DE3508805A1 (de) 1985-03-12 1986-09-18 Bosch Siemens Hausgeraete Kuehlmoebel, insbesondere zweitemperaturen-kuehlschrank
DE4020537A1 (de) 1990-06-28 1992-01-02 Bauknecht Hausgeraete Mehrtemperaturen-kuehlmoebel, z.b. kuehl-gefrierkombination
JPH06159817A (ja) * 1992-11-19 1994-06-07 Toshiba Corp 車両用空調装置
US5431026A (en) * 1994-03-03 1995-07-11 General Electric Company Refrigerant flow rate control based on liquid level in dual evaporator two-stage refrigeration cycles
DE4433712A1 (de) 1994-09-21 1996-03-28 Bosch Siemens Hausgeraete Kühlmöbel mit wenigstens zwei Fächern unterschiedlicher Temperatur
BR9405086A (pt) * 1994-12-21 1996-12-10 Multibras Eletrodomesticos Sa Sistema de refrigeração para aparelho de refrigeração
KR100195440B1 (ko) * 1996-09-25 1999-06-15 윤종용 개도조절수단을 구비한 냉장고 및 그 제어방법
CN1177724A (zh) * 1996-09-25 1998-04-01 三星电子株式会社 具有开度控制装置的电冰箱及其控制方法
DE19756860A1 (de) * 1997-12-19 1999-06-24 Bosch Siemens Hausgeraete Kältegerät
DE19852127B4 (de) * 1998-11-12 2008-09-11 Behr Gmbh & Co. Kg Expansionsorgan und hierfür verwendbare Ventileinheit
JP2001065713A (ja) * 1999-08-30 2001-03-16 Toshiba Kyaria Kk 空調機用冷媒流量制御弁
ITPN20000074A1 (it) * 2000-12-04 2002-06-04 Zanussi Elettromecc Apparecchio frigorifero con una pluralita' di scomparti
JP2003207248A (ja) * 2002-01-15 2003-07-25 Toshiba Corp 冷蔵庫
TWI315383B (en) * 2003-03-24 2009-10-01 Sanyo Electric Co Refrigerant cycle apparatus
FR2868830B1 (fr) * 2004-04-09 2012-11-30 Valeo Climatisation Dispositif de detente ameliore pour circuit de climatisation
US7178362B2 (en) * 2005-01-24 2007-02-20 Tecumseh Products Cormpany Expansion device arrangement for vapor compression system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008077697A2 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012211270A1 (de) 2012-06-29 2014-01-02 BSH Bosch und Siemens Hausgeräte GmbH Kältegerät mit einer verstellbaren Drosselung

Also Published As

Publication number Publication date
US20100089079A1 (en) 2010-04-15
ATE549585T1 (de) 2012-03-15
CN101568773A (zh) 2009-10-28
RU2009126091A (ru) 2011-01-27
EP2426434A1 (fr) 2012-03-07
WO2008077697A3 (fr) 2008-09-04
WO2008077697A2 (fr) 2008-07-03
CN101568773B (zh) 2012-07-25
ES2381655T3 (es) 2012-05-30
DE102006061091A1 (de) 2008-06-26
EP2126482B1 (fr) 2012-03-14

Similar Documents

Publication Publication Date Title
EP2126482B1 (fr) Meuble de réfrigération comprenant deux compartiments thermiquement séparés l'un de l'autre
DE102013005476A1 (de) Kühl- und/oder Gefriergerät
DE102013223737A1 (de) Einkreis-Kältegerät
EP3417213A1 (fr) Appareil de froid pourvu d'une pluralité de compartiments de stockage
DE102012211270A1 (de) Kältegerät mit einer verstellbaren Drosselung
EP3601902B1 (fr) Appareil frigorifique et procédé de fonctionnement associé
DE102008047818A1 (de) Kühl-und/oder Gefriergerät sowie Verfahren zum Betreiben eines Kühl-und/oder Gefriergerätes
EP1350068B1 (fr) Procede pour reguler un appareil de refroidissement
WO2016034461A1 (fr) Appareil de froid comprenant plusieurs compartiments de stockage
DE102009030041A1 (de) Fahrzeug-Klimasystem
WO2014023689A1 (fr) Appareil frigorifique et procédé permettant de faire fonctionner ledit appareil
WO2017025270A1 (fr) Appareil frigorifique à circuit unique
DE102009017765A1 (de) Kühl- und/oder Gefriergerät
DE102015211963A1 (de) Kältegerät
WO2016034443A1 (fr) Appareil frigorifique et machine frigorifique destinée audit appareil
EP2796812A1 (fr) Appareil de réfrigération et/ou de congélation
EP4168723B1 (fr) Dispositif de refroidissement doté d'un échangeur de chaleur à tube d'aspiration et procédé d'actionnement d'un dispositif de refroidissement doté d'un échangeur de chaleur à tube d'aspiration
DE102011004107A1 (de) Haushaltskältegerät mit ungeregelten Expansionsventilen
DE102013210904B4 (de) Kältemittelkreislauf-Anlage sowie Verfahren zum Betrieb einer Kältemittelkreislauf-Anlage
EP2587190A2 (fr) Appareil de réfrigération et/ou de congélation
EP2363665B1 (fr) Appareil de réfrigération et/ou de congélation
EP2110622A2 (fr) Appareil de réfrigération et/ou de refroidissement
DE102014211133A1 (de) Kältegerät und Kältemaschine dafür
DE102018216635A1 (de) Kältegerät mit zwei Temperaturzonen
DE102019129294A1 (de) Kühl- und/oder Gefriergerät

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090722

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20100126

DAX Request for extension of the european patent (deleted)
RTI1 Title (correction)

Free format text: COOLING FURNITURE COMPRISING TWO THERMALLY SEPARATE COMPARTMENTS

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 549585

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120315

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007009495

Country of ref document: DE

Effective date: 20120510

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2381655

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120530

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120714

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120716

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

26N No opposition filed

Effective date: 20121217

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007009495

Country of ref document: DE

Effective date: 20121217

BERE Be: lapsed

Owner name: BSH BOSCH UND SIEMENS HAUSGERATE G.M.B.H.

Effective date: 20121130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120614

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121122

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121122

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 549585

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121123

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121122

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071122

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007009495

Country of ref document: DE

Owner name: BSH HAUSGERAETE GMBH, DE

Free format text: FORMER OWNER: BSH BOSCH UND SIEMENS HAUSGERAETE GMBH, 81739 MUENCHEN, DE

Effective date: 20150408

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221130

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502007009495

Country of ref document: DE