EP2126190B1 - Verfahren zur herstellung von metallisierten textilen oberflächen mit strom erzeugenden oder strom verbrauchenden artikeln - Google Patents

Verfahren zur herstellung von metallisierten textilen oberflächen mit strom erzeugenden oder strom verbrauchenden artikeln Download PDF

Info

Publication number
EP2126190B1
EP2126190B1 EP08716930A EP08716930A EP2126190B1 EP 2126190 B1 EP2126190 B1 EP 2126190B1 EP 08716930 A EP08716930 A EP 08716930A EP 08716930 A EP08716930 A EP 08716930A EP 2126190 B1 EP2126190 B1 EP 2126190B1
Authority
EP
European Patent Office
Prior art keywords
textile
process according
metal
metal powder
formulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08716930A
Other languages
English (en)
French (fr)
Other versions
EP2126190A1 (de
Inventor
Rene Lochtman
Norbert Wagner
Jürgen Kaczun
Jürgen PFISTER
Antonino Raffaele Addamo
Ralf NÖRENBERG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39437682&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2126190(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by BASF SE filed Critical BASF SE
Priority to EP08716930A priority Critical patent/EP2126190B1/de
Publication of EP2126190A1 publication Critical patent/EP2126190A1/de
Application granted granted Critical
Publication of EP2126190B1 publication Critical patent/EP2126190B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/74Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon or graphite; with carbides; with graphitic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/52Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment combined with mechanical treatment
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/227Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated
    • D06M15/233Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated aromatic, e.g. styrene
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/285Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acid amides or imides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/08Processes in which the treating agent is applied in powder or granular form
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/16Processes for the non-uniform application of treating agents, e.g. one-sided treatment; Differential treatment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/34Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
    • H05B3/342Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs heaters used in textiles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/026Heaters specially adapted for floor heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/029Heaters specially adapted for seat warmers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/036Heaters specially adapted for garment heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/04Heating means manufactured by using nanotechnology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component

Definitions

  • the present invention relates to metallized textile surfaces produced by the process according to the invention and to the use of metallized textile surfaces.
  • metallized textile surfaces find numerous fields of application.
  • metallized textile surfaces can be used, for example, as heating jackets, furthermore as fashion articles, for example for luminous textiles, or for the production of textiles which can be used in medicine including prophylaxis, for example for monitoring organs and their function.
  • metallized textile surfaces for shielding electromagnetic radiation.
  • electrically conductive polymer fibers has the additional disadvantage that many electrically conductive polymers such as, for example, oxidized polypyrrole are air- and / or moisture-sensitive.
  • the method defined at the outset starts from a textile surface, for example a knitted fabric, a knitted fabric or preferably a woven fabric or a nonwoven fabric (non-woven).
  • Textile surfaces in the sense of the present invention may be stiff or preferably flexible.
  • these are textile surfaces which can be bent one or more times manually, for example, without it being possible to visually detect a difference between before bending and after recovery from the bent state.
  • Textile surfaces are preferably constituents of textile fabrics or three-dimensionally configured textile material. Textile surfaces in the sense of the present invention may be natural fibers or synthetic fibers or mixtures of natural fibers and synthetic fibers. Examples of natural fibers are wool, flax and, preferably, cotton. Examples of synthetic fibers include polyamide, polyester, modified polyester, polyester blends, polyamide blends, polyacrylonitrile, triacetate, acetate, polycarbonate, polypropylene, polyvinyl chloride, polyester microfibers, preferably polyester and blends of cotton with synthetic fibers, especially blends of cotton and polyester. In another embodiment, glass fibers and carbon fibers are suitable.
  • textile surfaces are parts of a composite.
  • a textile material can be connected to another textile material, for example glued, laminated, sewn or needled. It is also possible that one textile material with another Material is connected, the textile surface, which is assumed to be laminated on a film, for example a polyester film, a polyolefin film, in particular a polyethylene film or a polypropylene film, further a polyamide film or a polyurethane film.
  • the textile surface may be a coated textile surface coated, for example, with binders such as polyurethane binder, polyacrylate binder or styrene-butadiene latex.
  • binders such as polyurethane binder, polyacrylate binder or styrene-butadiene latex.
  • the textile surface may be a surface onto which a film is laminated or laminated, for example a polypropylene film, a polyester film, a polyethylene film or a polyurethane film, in particular a thermoplastic polyurethane film.
  • step (A) a formulation is applied to the textile surface which contains at least one metal powder (a).
  • the application can be done, for example, by knife coating, spraying, roll coating, dipping and in particular by printing or printing.
  • the formulation containing at least one metal powder (a) may preferably be aqueous formulations, in particular aqueous liquors or, more preferably, a printing formulation.
  • printing formulations are printing inks, e.g. As gravure inks, offset inks, flexographic inks, screen inks, printing inks such.
  • Metal powder (a) is powdered metal, pure or as a mixture or alloy, excluding the alkali metals and the alkaline earth metals Be, Ca, Sr and Ba. Likewise, of course, the radioactive metals are excluded. Metal powder (a) may be selected, for example, from powdered Al, Zn, Ni, Cu, Ag, Sn, Co, Mn, Fe, Mg, Pb, Cr and Bi, for example, pure or as mixtures or in the form of powdered alloys of said metals with each other or with other metals. Examples of suitable alloys are CuZn, CuSn, CuNi, SnPb, SnBi, SnCu, NiP, ZnFe, ZnNi, ZnCo and ZnMn. Preferably usable metal powders (a) are iron powder and / or copper powder, most preferably iron powder.
  • the metal powder selected is (a) carbon, in the modification as graphite in particulate form, carbon black or carbon nanotubes.
  • This variant is particularly preferred when operating in step (C) described below with external voltage source.
  • Carbon in the modification Graphite in particulate form, carbon black or carbon nanotubes is included in the scope of the present invention under the term metal powder (a).
  • the metal powder (a) selected is a mixture of powdered Al, Zn, Ni, Cu, Ag, Sn, Co, Mn, Fe, Mg, Pb, Cr and Bi, in particular iron powder on the one hand and carbon in the modification graphite in particulate form, carbon black or carbon nanotubes on the other hand.
  • metal powder (a) has an average particle diameter of from 0.01 to 100 ⁇ m, preferably from 0.1 to 50 ⁇ m, particularly preferably from 1 to 10 ⁇ m (determined by laser diffraction measurement, for example on a Microtrac X100 device).
  • metal powder (a) is characterized by its particle diameter distribution.
  • the value d 10 can be in the range of 0.01 to 5 ⁇ m, the value for d 50 in the range of 1 to 10 ⁇ m and the value for d 90 in the range of 3 to 100 ⁇ m, where d 10 ⁇ d 50 ⁇ d 90 .
  • no particle has a larger diameter than 100 microns.
  • Metal powder (a) can be used in passivated form, for example in an at least partially coated (“coated") form.
  • Suitable coatings include, for example, inorganic layers such as oxide of the metal in question, SiO 2 or SiO 2 .aq or phosphates, for example, of the metal in question.
  • the particles of metal powder (a) can in principle have any desired shape, for example acicular, cylindrical, plate-shaped or spherical particles can be used; spherical and plate-shaped particles are preferred. It can be the terms acicular, cylindrical, plate-shaped and spherical refer to idealized shapes, respectively.
  • metal powders (a) with spherical particles are used, preferably predominantly with spherical (spherical) particles, very particularly preferably so-called carbonyl iron powders with spherical particles.
  • metal powders (a) are used, which are a mixture of spherical (spherical) particles, most preferably so-called carbonyl iron powder with spherical particles, and platelet-shaped particles, in particular platelet-shaped copper particles.
  • Metal powder (a) can, in one embodiment of step (A), be applied and preferably printed so that the particles of metal powder are so close that they are already capable of conducting electrical current. In another embodiment of step (A), metal powder (a) may be applied, preferably by printing, that the particles of metal powder (a) are so far apart that they are not capable of conducting the electrical current.
  • metal powders (a) are known per se. It is possible, for example, to use common commercial goods or metal powder (a) prepared by processes known per se, for example by electrolytic deposition or chemical reduction from solutions of salts of the metals concerned or by reduction of an oxidic powder, for example by means of hydrogen, by spraying or atomizing a molten metal, in particular in cooling media, for example gases or water.
  • metal powder (a) which has been prepared by thermal decomposition of iron pentacarbonyl, also called carbonyl iron powder in the context of the present invention.
  • the preparation of carbonyl iron powder by thermal decomposition of, in particular iron pentacarbonyl Fe (CO) 5 is, for example, in Ullmann's Encyclopedia of Industrial Chemistry, 5th Edition, Volume A14, page 599 , described.
  • the decomposition of iron pentacarbonyl can be carried out, for example, at atmospheric pressure and, for example, at elevated temperatures, eg. B. in the range of 200 to 300 ° C, z. B. in a heatable decomposer, which comprises a tube made of a heat-resistant material such as quartz glass or V2A steel in a preferably vertical position, which is surrounded by a heater, for example consisting of heating bands, heating wires or from a heating medium through which flows heating jacket.
  • a heatable decomposer which comprises a tube made of a heat-resistant material such as quartz glass or V2A steel in a preferably vertical position, which is surrounded by a heater, for example consisting of heating bands, heating wires or from a heating medium
  • the mean particle diameter of carbonyl iron powder can be controlled by the process parameters and reaction behavior in the decomposition in wide ranges and is (number average) usually from 0.01 to 100 .mu.m, preferably from 0.1 to 50 .mu.m, more preferably from 1 to 8 microns.
  • Formulations used according to the invention may contain at least one binder (b), also called binder (b), preferably at least one aqueous dispersion of at least one film-forming polymer, for example polyacrylate, polybutadiene, copolymers of at least one vinylaromatic with at least one conjugated diene and optionally other comonomers, for example styrene-butadiene binders.
  • binder (b) preferably at least one aqueous dispersion of at least one film-forming polymer, for example polyacrylate, polybutadiene, copolymers of at least one vinylaromatic with at least one conjugated diene and optionally other comonomers, for example styrene-butadiene binders.
  • Other suitable binders (b) are selected from polyurethane, preferably anionic polyurethane, or ethylene (meth) acrylic acid copolymer. Binder (b) can also be referred to as binder (b) in
  • Suitable polyacrylates for the purposes of the present invention as binders (b) are obtainable, for example, by copolymerization of at least one (meth) acrylic acid C 1 -C 10 -alkyl ester, for example methyl acrylate, ethyl acrylate, n-butyl acrylate, n-butyl methacrylate, 2-ethylhexyl acrylate, with at least one further comonomer, for example a further (meth) acrylic C 1 -C 10 -alkyl ester, (meth) acrylic acid, (meth) acrylamide, N-methylol (meth) acrylamide, glycidyl (meth) acrylate or a vinyl aromatic compound such as styrene.
  • at least one (meth) acrylic acid C 1 -C 10 -alkyl ester for example methyl acrylate, ethyl acrylate, n-butyl acrylate, n-buty
  • suitable preferably anionic polyurethanes in the context of the present invention are obtainable, for example, by reacting one or more aromatic or preferably aliphatic or cycloaliphatic diisocyanate with one or more polyester diols and preferably one or more hydroxycarboxylic acids, eg. B hydroxyacetic acid, or preferably dihydroxycarboxylic acids, for example 1,1-dimethylolpropionic acid, 1,1-dimethylolbutyric acid or 1,1-dimethylolethanoic acid.
  • hydroxycarboxylic acids eg. B hydroxyacetic acid
  • dihydroxycarboxylic acids for example 1,1-dimethylolpropionic acid, 1,1-dimethylolbutyric acid or 1,1-dimethylolethanoic acid.
  • Ethylene (meth) acrylic acid copolymers particularly suitable as binders (b) are, for example, by copolymerization of ethylene, (meth) acrylic acid and optionally at least one further comonomer such as (meth) acrylic acid C 1 -C 10 alkyl ester, maleic anhydride, isobutene or vinyl acetate, preferably by copolymerization at temperatures in the range of 190 to 350 ° C and pressures in the range of 1500 to 3500, preferably 2000 up to 2500 bar.
  • Ethylene (meth) acrylic acid copolymers which are particularly suitable as binders (b) may contain, for example, up to 90% by weight of ethylene in copolymerized form and have a kinematic melt viscosity in the range from 60 mm 2 / s to 10,000 mm 2 / s, preferably 100 mm 2 / s to 5,000 mm 2 / s, measured at 120 ° C.
  • Ethylene (meth) acrylic acid copolymers which are particularly suitable as binder (b) may comprise, for example, up to 90% by weight of ethylene in copolymerized form and have a melt flow rate (MFR) in the range from 1 to 50 g / 10 min, preferably 5 to 20 g / 10 min, more preferably 7 to 15 g / 10 min, measured at 160 ° C and a load of 325 g according to EN ISO 1133.
  • MFR melt flow rate
  • binders (b) are copolymers of at least one vinylaromatic with at least one conjugated diene and optionally further comonomers, for example styrene-butadiene binders, at least one ethylenically unsaturated carboxylic acid or dicarboxylic acid or a suitable derivative, for example the corresponding anhydride, in copolymerized form.
  • Particularly suitable vinylaromatics are para-methylstyrene, .alpha.-methylstyrene and in particular styrene.
  • Particularly suitable conjugated dienes are isoprene, chloroprene and in particular 1,3-butadiene.
  • Particularly suitable ethylenically unsaturated carboxylic acids or dicarboxylic acids or suitable derivatives thereof are exemplified by (meth) acrylic acid, maleic acid, itaconic acid, maleic anhydride or itaconic anhydride.
  • binders (b) particularly suitable copolymers of at least one vinylaromatic copolymerized with at least one conjugated diene and optionally further comonomers are copolymerized: from 19.9 to 80% by weight of vinylaromatic, 19.9 to 80% by weight of conjugated diene, 0.1 to 10% by weight of ethylenically unsaturated carboxylic acid or dicarboxylic acid or a suitable derivative, for example the corresponding anhydride.
  • binder (b) has a dynamic viscosity at 23 ° C in the range of 10 to 100 dPa ⁇ s, preferably 20 to 30 dPa ⁇ s, determined, for example, by rotational viscometry, for example with a Haake viscometer.
  • emulsifier (c) it is possible to use anionic, cationic or preferably nonionic surface-active substances.
  • Suitable cationic emulsifiers (c) are, for example, C 6 -C 18 -alkyl-, aralkyl- or heterocyclic radical-containing primary, secondary, tertiary or quaternary ammonium salts, alkanolammonium salts, pyridinium salts, imidazolinium salts, oxazolinium salts, morpholinium salts, thiazolinium salts and salts of Amine oxides, quinolinium salts, isoquinolinium salts, tropylium salts, sulfonium salts and phosphonium salts.
  • Examples include dodecylammonium acetate or the corresponding hydrochloride, the chlorides or acetates of the various 2- (N, N, N-trimethylammonium) ethylparaffinklareester, N-cetylpyridinium chloride, N-Laurylpyridiniumsulfat and N-cetyl-N, N, N-trimethylammonium bromide, N- Dodecyl-N, N, N-trimethylammonium bromide, N, N-distearyl-N, N-dimethylammonium chloride and the gemini surfactant N, N '- (lauryldimethyl) ethylenediamine dibromide.
  • Suitable anionic emulsifiers (c) are alkali metal and ammonium salts of alkyl sulfates (alkyl radical: C 8 to C 12 ), of sulfuric monoesters of ethoxylated alkanols (degree of ethoxylation: from 4 to 30, alkyl radical: C 12 -C 18 ) and ethoxylated alkylphenols (degree of ethoxylation: 3 to 50, alkyl radical: C 4 -C 12 ), of alkylsulfonic acids (alkyl radical: C 12 -C 18 ), of alkylarylsulfonic acids (alkyl radical: C 9 -C 18 ) and of sulfosuccinates, such as, for example, sulfosuccinic mono- or diesters.
  • alkyl sulfates alkyl radical: C 8 to C 12
  • sulfuric monoesters of ethoxylated alkanols degree of ethoxy
  • aryl- or alkyl-substituted polyglycol ethers Preference is given to aryl- or alkyl-substituted polyglycol ethers, furthermore substances which are known in US 4,218,218 and homologues with y (from the formulas US 4,218,218 ) in the range of 10 to 37.
  • nonionic emulsifiers (c) such as, for example, mono- or preferably polyalkoxylated C 10 -C 30 -alkanols, preferably with three to one hundred mol of C 2 -C 4 -alkylene oxide, in particular ethylene oxide alkoxylated oxo or fatty alcohols.
  • formulations used in step (A), in particular printing formulations may comprise at least one rheology modifier (d) selected from thickeners (d1), which may also be referred to as thickeners, and viscosity-reducing agents (d2).
  • rheology modifier selected from thickeners (d1), which may also be referred to as thickeners, and viscosity-reducing agents (d2).
  • Suitable thickeners (d1) are, for example, natural thickeners or preferably synthetic thickeners.
  • Natural thickeners are those thickeners which are natural products or can be obtained by work-up such as, for example, cleaning operations, in particular extraction of natural products.
  • inorganic natural thickeners are phyllosilicates such as bentonite.
  • organic natural thickeners are preferably proteins such as casein or preferably polysaccharides.
  • Particularly preferred natural thickening agents are selected from agar-agar, carrageenan, gum arabic, alginates such as sodium alginate, potassium alginate, ammonium alginate, calcium alginate and propylene glycol alginate, pectins, polyoses, carob bean gum and dextrins.
  • Synthetic thickening agents which are selected from generally liquid solutions of synthetic polymers, in particular acrylates, in, for example, white oil or as aqueous solutions, and of synthetic polymers in dried form, for example as a powder prepared by spray-drying.
  • Synthetic polymers used as thickeners (d1) contain acid groups that are completely or partially neutralized with ammonia. Ammonia is released during the fixation process, which lowers the pH and starts the fixation process. The necessary for the fixation Lowering the pH can alternatively be done by adding non-volatile acids such as citric acid, succinic acid, glutaric acid or malic acid.
  • Very particularly preferred synthetic thickeners are selected from copolymers of 85 to 95% by weight of acrylic acid, 4 to 14% by weight of acrylamide and 0.01 to at most 1% by weight of the (meth) acrylamide derivative of the formula I. with molecular weights M w in the range of 100,000 to 2,000,000 g / mol, in which the radicals R 1 may be identical or different and may denote methyl or hydrogen.
  • thickeners (d1) are selected from reaction products of aliphatic diisocyanates such as trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate or dodecane-1,12-diisocyanate with preferably 2 equivalents of polyalkoxylated fatty alcohol or oxo alcohol, for example 10 to 150-fold ethoxylated C 10 -C 30 Fatty alcohol or C 11 -C 31 oxo alcohol.
  • aliphatic diisocyanates such as trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate or dodecane-1,12-diisocyanate with preferably 2 equivalents of polyalkoxylated fatty alcohol or oxo alcohol, for example 10 to 150-fold ethoxylated C 10 -C 30 Fatty alcohol or C 11 -C 31 oxo alcohol.
  • Suitable viscosity lowering agents (d2) are, for example, organic solvents such as dimethylsulfoxide (DMSO), N-methylpyrrolidone (NMP), N-ethylpyrrolidone (NEP), ethylene glycol, diethylene glycol, butyl glycol, dibutyl glycol, and, for example, residual alcohol-free alkoxylated nC 4 -C 8 -alkanol, preferably residual alcohol-free one to 10-fold, more preferably 3 to 6-fold ethoxylated nC 4 -C 8 -alkanol. In this case, residual alcohol is to be understood as meaning the respective non-alkoxylated nC 4 -C 8 -alkanol.
  • organic solvents such as dimethylsulfoxide (DMSO), N-methylpyrrolidone (NMP), N-ethylpyrrolidone (NEP), ethylene glycol, diethylene glycol, butyl glycol, dibutyl glycol, and
  • step (A) contains formulation used in step (A), in particular printing formulation in the range from 10 to 90% by weight, preferably from 50 to 85% by weight, particularly preferably from 60 to 80% by weight, of metal powder (a), in the range of 1 to 20% by weight, preferably 2 to 15% by weight of binder (b), in the range from 0.1 to 4% by weight, preferably up to 2% by weight, of emulsifier (c), in the range from 0 to 5 wt .-%, preferably 0.2 to 1 wt .-% rheology modifier (d), wherein in wt .-% are in each case based on the total used in step (A) formulation or printing formulation, and in which statements in% by weight of binder (b) relate to the solids content of the particular binder (b).
  • step (A) of the process according to the invention can be printed with a formulation, in particular printing formulation, in addition to metal powder (a) and optionally binder (b), emulsifier (c) and optionally rheology modifier (d) at least one Aid (s) contains.
  • Aid e
  • Auxiliaries (e) which may be mentioned by way of example are handle improvers, defoamers, wetting agents, leveling agents, urea, corrosion inhibitors, active substances such as, for example, biocides or flameproofing agents.
  • Suitable defoamers are, for example, silicone-containing defoamers such as, for example, those of the formula HO- (CH 2 ) 3 -Si (CH 3 ) [OSi (CH 3 ) 3 ] 2 and HO- (CH 2 ) 3 -Si (CH 3 ) [OSi ( CH 3 ) 3 ] [OSi (CH 3 ) 2 OSi (CH 3 ) 3 ], not alkoxylated or alkoxylated with up to 20 equivalents of alkylene oxide and in particular ethylene oxide.
  • Silicone-free antifoams are also suitable, for example polyalkoxylated alcohols, for example fatty alcohol alkoxylates, preferably 2 to 50-times ethoxylated preferably unbranched C 10 -C 20 -alkanols, unbranched C 10 -C 20 -alkanols and 2-ethylhexan-1-ol.
  • Further suitable defoamers are fatty acid C 8 -C 20 -alkyl esters, preferably C 10 -C 20 -alkyl stearates, in which C 8 -C 20 -alkyl, preferably C 10 -C 20 -alkyl, may be unbranched or branched.
  • suitable wetting agents are nonionic, anionic or cationic surfactants, in particular ethoxylation and / or propoxylation products of fatty alcohols or propylene oxide-ethylene oxide block copolymers, ethoxylated or propoxylated fatty or oxo alcohols, furthermore ethoxylates of oleic acid or alkylphenols, alkylphenol ether sulfates, alkylpolyglycosides, alkylphosphonates, alkylphenylphosphonates, Alkyl phosphates, or alkylphenyl phosphates.
  • nonionic, anionic or cationic surfactants in particular ethoxylation and / or propoxylation products of fatty alcohols or propylene oxide-ethylene oxide block copolymers, ethoxylated or propoxylated fatty or oxo alcohols, furthermore ethoxylates of oleic acid or alkylphenols, alkylphenol ether s
  • Suitable leveling agents are, for example, block copolymers of ethylene oxide and propylene oxide with molecular weights M n in the range from 500 to 5000 g / mol, preferably 800 to 2000 g / mol.
  • block copolymers of propylene oxide / ethylene oxide for example of the formula EO 8 PO 7 EO 8 , where EO is ethylene oxide and PO is propylene oxide.
  • Suitable biocides are, for example, commercially available as Proxel brands. Examples include: 1,2-Benzisothiazolin-3-one (“BIT”) (commercially available as Proxel® brands from. Avecia Lim.) And its alkali metal salts; other suitable biocides are 2-methyl-2H-isothiazol-3-one (“MIT”) and 5-chloro-2-methyl-2H-isothiazol-3-one (“CIT”).
  • BIT 1,2-Benzisothiazolin-3-one
  • MIT 2-methyl-2H-isothiazol-3-one
  • CIT 5-chloro-2-methyl-2H-isothiazol-3-one
  • formulation used in step (A), in particular printing formulation comprises auxiliaries (e) up to 30% by weight, based on the sum of metal powder (a), binder (b), emulsifier (c) and optionally Rheology modifier (d).
  • step (A) it is possible to apply a formulation containing metal powder (a), for example by spraying, knife coating or dipping. It is preferred to carry out the application as printing or printing.
  • step (A) such patterns are applied, in particular by printing, in which metal powders (a) are arranged in the form of straight or preferably curved stripe patterns or line patterns on textile, said lines having, for example, a width and Thickness in each case in the range of 0.1 .mu.m to 5 mm and said strips can have a width in the range of 5.1 mm to, for example, 10 cm or optionally more and a thickness of 0.1 .mu.m to 5 mm.
  • step (A) such stripe patterns or line patterns of metal powder (a) are applied, in particular by printing, in which the stripes do not touch or intersect.
  • step (A) such stripe patterns or line patterns of metal powder (a) are applied, in particular by printing, in which the stripes branch or unite, for example, when printed Wants to produce circuits.
  • step (A) various methods are known which are known per se.
  • a stencil is used by means of which the formulation, in particular printing formulation, containing metal powders (a) is pressed with a doctor blade.
  • the method described above belongs to the screen printing method.
  • Other suitable printing processes are gravure printing and flexographic printing.
  • Another suitable printing method is selected from valve jet method. Valve-jet processes use such a printing formulation, which preferably contains no thickening agent (d1).
  • Formulations used in the process according to the invention comprise in one embodiment of the present invention in the range from 10 to 90% by weight, preferably from 50 to 80% by weight, of metal powder (a), in particular carbonyl iron powder, in the range of 5 to 30% by weight, preferably 10 to 15% by weight of binder (b), in the range from 0.1 to 4% by weight, preferably up to 2% by weight, of emulsifier (c), in the range of 0 to 5% by weight, preferably 0.2 to 1% by weight of rheology modifier (d), wherein in wt .-% are in each case based on the entire formulation used in step (A) or printing formulation.
  • formulation used in the process according to the invention contains up to 30% by weight of auxiliary agent (s), based on the sum of metal powder (a), binder (b), emulsifier (c) and rheology modifier (i.e. ).
  • one or more handle enhancers may be added, for example, one or more silicone emulsions.
  • one or more binders (b) and finally optionally one or more rheology modifiers (d) can be added and homogenized with further mixing, for example stirring. It usually comes with relatively short stirring times, for example, 5 seconds to 5 minutes, preferably 20 seconds to 1 minute at stirring speeds in the range of 1000 to 3000 U / min.
  • the finished formulation according to the invention in particular printing formulation can, if it is to be used as a printing paste, 30 to 70 wt .-% white oil.
  • Aqueous synthetic thickeners (d1) preferably contain up to 25% by weight of synthetic polymer suitable as thickener (d1). If it is desired to use thickeners (d1) in aqueous formulations, this is generally done aqueous ammonia too.
  • the use of granular, solid formulations thickener (c) are applicable to produce emissions-free prints.
  • step (B) at least two points are fixed where in step (A) formulation containing metal powder (a) has at least one article which requires or generates electrical current.
  • Such articles are referred to in the context of the present invention as article (B).
  • At least two sites are to be understood as meaning those sites of the pattern from step (A) which have metal powders (a).
  • two of the printed areas in step (A) on which one fixes in step (B) at least one article which requires or generates electric current belong to different parts, for example, strips of the material prepared in step (A). printed pattern.
  • two of the points mentioned in step (B) are close to one another, for example in the range from 0.1 to 5 mm, preferably to 2 mm.
  • the articles that require or generate electrical power in step (B) are relatively small, for example, with a mean diameter in the range of 1 to 5 mm or smaller.
  • article (B) has at least two electrical connections, one of which is fixed at the above-mentioned location.
  • Article (B) may be different or similar.
  • articles (B) are selected from light emitting diodes, liquid crystal display elements, Peltier elements, transistors, electrochromic dyes, chips (integrated electronic components), resistive elements, capacitive elements, inductive elements, diodes, transistors, actuators, electromechanical Elements and solar cells.
  • Light emitting diodes liquid crystal display elements, Peltier elements, transistors, electrochromic dyes, chips (integrated electronic components), resistive elements, capacitive elements, inductive elements, diodes, transistors, actuators, electromechanical elements and solar cells are known as such and commercially available.
  • the fixing of articles (B) is carried out in known assembly processes and installations.
  • assembly methods and equipment are known, for example, from printed circuit board manufacturing (surface mount technology).
  • Pick and place machines place, for example, one or more articles (B) at the respective desired location of the textile surface processed after step (A).
  • the starting point is articles (B) wrapped in cardboard or plastic straps.
  • the straps there are pockets containing the articles (B).
  • the top of the bag is closed, for example, by a film which can be pulled off to remove article (B).
  • the straps themselves are wound up on a roll.
  • These rolls are fed to the placement machine by means of feed modules, so-called feeders.
  • the articles (B) are removed, for example, with vacuum tweezers or grippers and then placed on the target position of the textile substrate. This process is repeated for all articles (B) to be fixed.
  • step (C) of the process according to the invention a further metal is deposited on the textile surface.
  • step (C) it is possible in step (C) to deposit one or more further metals, preferably one deposits only one further metal.
  • a further metal is deposited on the textile surface in step (C).
  • the textile surface is meant the textile surfaces which have previously been processed according to steps (A) to (C) and optionally further steps such as (D).
  • step (C) It is possible to deposit a plurality of further metals in step (C), but it is preferred to deposit only one more metal.
  • metal powder (a) in step (A) carbonyl iron powder is selected and as further metal in step (C) silver, gold or in particular copper.
  • step (C1) the procedure is to operate in step (C1) without an external voltage source and that the additional metal in step (C1) in the electrochemical series of the elements, in alkaline or preferably in acidic solution, has a more positive normal potential than metal, which is based on metal powder (a), and as hydrogen.
  • step (A) and in step (B) thermally treated textile surface with a basic, neutral or preferably acidic preferably aqueous solution of salt of further metal and optionally one or more reducing agents, for example by inserting it in the solution in question.
  • step (C1) in the range of 0.5 minutes, up to 12 hours, preferably up to 30 minutes, are treated.
  • step (C1) in step (C1), it is treated in the range of 10 seconds to 30 seconds.
  • step (C1) a basic, neutral or preferably acidic solution of further metal salt is treated which has a temperature in the range of 0 to 100 ° C, preferably 10 to 80 ° C.
  • alkali hypophosphite in particular NaH 2 PO 2 .2H 2 O
  • boranates in particular NaBH 4
  • step (C2) the present invention is carried out by operating in step (C2) with external voltage source and that the additional metal in step (C2) in the electrochemical series of the elements in acidic or alkaline solution may have a stronger or weaker positive normal potential than metal, the metal powder (a) is based.
  • the metal powder (a) is based.
  • the further metal in step (C2) has a more positive normal potential in the electrochemical series of the elements than hydrogen, and the metal which is based on metal powder (a) is that additional metal is used in analogy to step (2).
  • C1 is deposited.
  • step (C2) it is possible, for example, to apply a current having a strength in the range from 10 to 100 A, preferably 12 to 50 A.
  • step (C2) it is possible to operate, for example, over a period of 1 to 160 hours using an external power source.
  • step (C1) and step (C2) are combined by operating first with and without external voltage source and the further metal in step (C) in the electrochemical series of the elements being more positive Normal potential may have as a metal, the metal powder (a) is based.
  • auxiliaries are added to the solution of further metal.
  • adjuvants include buffers, surfactants, polymers, in particular particulate polymers whose particle diameter is in the range from 10 nm to 10 ⁇ m, defoamers, one or more organic solvents, one or more complexing agents.
  • Particularly suitable buffers are acetic acid / acetate buffer.
  • Particularly suitable surfactants are selected from cationic, anionic and in particular nonionic surfactants.
  • cationic surfactants are: primary, secondary, tertiary or quaternary ammonium salts containing C 6 -C 18 -alkyl, aralkyl or heterocyclic, alkanolammonium salts, pyridinium salts, imidazolinium salts, oxazolinium salts, morpholinium salts, thiazolinium salts and salts of amine oxides, quinolinium salts , Isoquinolinium salts, tropylium salts, sulfonium salts and phosphonium salts.
  • Examples include dodecylammonium acetate or the corresponding hydrochloride, the chlorides or acetates of the various 2- (N, N, N-trimethylammonium) ethylparaffinklareester, N-cetylpyridinium chloride, N-Laurylpyridiniumsulfat and N-cetyl-N, N, N-trimethylammonium bromide, N- Dodecyl-N, N, N-trimethylammonium bromide, N, N-distearyl-N, N-dimethylammonium chloride and the gemini surfactant N, N '- (lauryldimethyl) ethylenediamine dibromide.
  • Suitable anionic surfactants are alkali metal and ammonium salts of alkyl sulfates (alkyl radical: C 8 to C 12 ), of sulfuric acid monoesters of ethoxylated alkanols (degree of ethoxylation: 4 to 30, alkyl radical: C 12 -C 18 ) and ethoxylated alkylphenols (degree of ethoxylation: 3 to 50 , Alkyl radical: C 4 -C 12 ), of alkylsulfonic acids (alkyl radical: C 12 -C 18 ), of alkylarylsulfonic acids (alkyl radical: C 9 -C 18 ) and of sulfosuccinates, such as, for example, sulfosuccinic mono- or diesters.
  • alkyl sulfates alkyl radical: C 8 to C 12
  • sulfuric acid monoesters of ethoxylated alkanols degree of ethoxylation: 4 to
  • aryl- or alkyl-substituted polyglycol ethers Preference is given to aryl- or alkyl-substituted polyglycol ethers, furthermore substances which are known in US 4,218,218 and homologues with y (from the formulas US 4,218,218 ) in the range of 10 to 37.
  • nonionic surfactants such as, for example, mono- or preferably polyalkoxylated C 10 -C 30 alkanols, preferably with three to one hundred moles of C 2 -C 4 -alkylene oxide, in particular ethylene oxide alkoxylated oxo or fatty alcohols.
  • Suitable defoamers are, for example, silicone-containing defoamers such as, for example, those of the formula HO- (CH 2 ) 3 -Si (CH 3 ) [OSi (CH 3 ) 3 ] 2 and HO- (CH 2 ) 3 -Si (CH 3 ) [OSi ( CH 3 ) 3 ] [OSi (CH 3 ) 2 OSi (CH 3 ) 3 ], not alkoxylated or alkoxylated with up to 20 equivalents of alkylene oxide and in particular ethylene oxide.
  • Silicone-free antifoams are also suitable, for example polyalkoxylated alcohols, for example fatty alcohol alkoxylates, preferably 2 to 50-times ethoxylated preferably unbranched C 10 -C 20 -alkanols, unbranched C 10 -C 20 -alkanols and 2-ethylhexan-1-ol.
  • Further suitable defoamers are fatty acid C 8 -C 20 -alkyl esters, preferably C 10 -C 20 -alkyl stearates, in which C 8 -C 20 -alkyl, preferably C 10 -C 20 -alkyl, may be unbranched or branched.
  • Suitable complexing agents are those compounds which form chelates. Preference is given to those complexing agents which are selected from amines, diamines and triamines which carry at least one carboxylic acid group. Examples include nitrilotriacetic acid, ethylenediaminetetraacetic acid and Diethylenpentaaminpentaessigklare and the corresponding alkali metal salts mentioned.
  • metal is deposited so much further that a layer thickness in the range from 100 nm to 500 ⁇ m, preferably from 1 ⁇ m to 100 ⁇ m, particularly preferably 2 ⁇ m to 50 ⁇ m, is produced.
  • metal powder (a) is in most cases partially or completely replaced by further metal, wherein the morphology of further deposited metal need not be identical to the morphology of metal powder (a).
  • metallized textile surfaces according to the invention are obtained.
  • Metallized textile surfaces according to the invention can be rinsed one or more times, for example with water.
  • one or more thermal treatment steps (D) may be performed following step (A), step (B), or step (C).
  • thermal treatment steps carried out immediately after step (A) are also referred to as thermal treatment steps (D1)
  • thermal treatment steps carried out immediately after step (B) also as thermal treatment steps (D2)
  • thermal treatment steps carried out after step (C) also as thermal treatment steps (D3).
  • thermal treatment steps If one wishes to carry out several thermal treatment steps, one can carry out the various thermal treatment steps at the same or preferably at different temperatures.
  • step (D) or each individual step (D) can be treated, for example, at temperatures in the range of 50 to 200 ° C. Care must be taken to ensure that the thermal treatment according to step (D) does not allow the material from which the textile surface used as starting material softens or even melts. It remains in any case with the temperature below the softening or melting point of the textile material in question, or one chooses the duration of the thermal treatment so short that a softening or even melting does not take place.
  • step (D) or each individual step (D) can be treated, for example, over a period of 10 seconds to 15 minutes, preferably 30 seconds to 10 minutes.
  • a first step (D1) at temperatures in the range of, for example, 50 to 110 ° C over a period of 30 seconds to 3 minutes and in a second step (D2) then at temperatures in the range of 130 ° C to 200 ° C over a period of 30 seconds to 15 minutes.
  • step (D) or each individual step (D) in devices known per se, for example in drying cabinets, tenter frames or vacuum drying cabinets.
  • a further step (E) is carried out before step (B).
  • step (E) at some points on the textile surface provided with metal powder (a) after step (A), a mixture which likewise contains a metal in preferably powder form, which may be different from metal powder (a), is deposited is preferably the same.
  • a mixture which also contains metal powder (a) is precipitated in step (E) at at least two printed areas.
  • the mixture, which likewise contains metal powder (a) can be a further printing formulation and in particular printing paste, as used in step (A), or else a mixture which contains further constituents.
  • step (E) is at the mixture, which also contains metal powder (a), to a preparation containing solder.
  • step (E) so much mixture containing metal is deposited that the layer thickness of metal is in the range of 2 to 200 times as thick as the layer thickness of metal powder (a) of step (A).
  • step (E) there is deposited so much mixture containing metal powder (a) that the layer thickness of metal powder (a) on the textile surface is in the range of 0.1 to 5 mm.
  • metal powder (a) differs from step (A) of metal powder (a) from step (E), preferably by the mean particle diameter.
  • metal powders (a) from step (A) and step (E) are the same.
  • a so-called "dot printing" is performed.
  • step (D) can be repeated. However, it is preferable to dispense with a thermal treatment (D) immediately after performing step (E) and immediately perform step (B).
  • corrosion-inhibiting layers are layers of one or more of the following materials: waxes, in particular polyethylene waxes, lacquers, for example aqueous base lacquers, 1,2,3-benzotriazole and salts, in particular sulfates and methosulfates of quaternized fatty amines, for example lauryl / myristyltrimethylammonium methosulfate ,
  • films for example, films, in particular polymer films, for example of polyester, polyvinyl chloride, thermoplastic polyurethane (TPU) or in particular polyolefins such as polyethylene or polypropylene under polyethylene and polypropylene in each case also copolymers of ethylene or propylene are to be understood.
  • TPU thermoplastic polyurethane
  • polyolefins such as polyethylene or polypropylene under polyethylene and polypropylene in each case also copolymers of ethylene or propylene are to be understood.
  • a flexible layer is a binder (b2) which may be the same or different from optionally printed binder (b1) from step (A).
  • the application can be carried out in each case by lamination, gluing, welding, doctoring, printing, spraying or pouring.
  • step (G) If a binder has been applied in step (G), it is then possible to re-treat it thermally according to step (D).
  • metallized textile surfaces printed with a line or stripe pattern have a resistivity in the range of 1 m ⁇ / cm 2 to 1 M ⁇ / cm 2 and in the range of 1 ⁇ / cm to 1 M ⁇ / cm, respectively , measured at room temperature and along the respective strips or lines.
  • metallized textile surfaces printed with a line or stripe pattern according to the present invention comprise at least two cables fixed to the respective ends of lines or strips in a manner known per se, for example soldered.
  • Another object of the present invention is the use of metallized textile surfaces according to the invention as textiles that convert electricity into heat, as textiles that can shield electrical fields, as textile integrated Electronics, as display devices, as a headliner of vehicles and as textiles that can generate electricity, for example by photovoltaics.
  • Another object of the present invention is the use of metallised textile surfaces as described above for producing textiles that convert electricity into heat, textiles that can shield electrical fields, textile-integrated electronics, display devices, vehicle headliners and vehicles Textiles that can generate electricity, for example through photovoltaics.
  • Another object of the present invention are textiles that convert electricity to heat, textiles that can shield electrical fields, textile-integrated electronics, displays, headliners of vehicles, and textiles that can generate electricity, such as photovoltaics, manufactured using articles with inventive metallized surface.
  • textile-integrated electronics are textile-integrated sensors, transistors, chips, LEDs (light-emitting diodes), solar modules, solar cells and Peltier elements.
  • textiles such as in particular textile-integrated sensors are suitable for monitoring the bodily functions of babies or older people.
  • Suitable applications are still warning clothing such.
  • Further applications include antennas for example in transponders that can be incorporated in RFID tags, textile-integrated chip card modules, use as flat cables, seat heaters, foil conductors, for the production of LCD or plasma screens or for the production of single- or double-sided metal-clad textiles, floor , Wall or ceiling lighting or as decorative applications of all kinds (eg in the textile or packaging sector, but also for the decoration of eg fabric bags or shoes.
  • the present invention furthermore relates to processes for the production of such textiles which convert electricity into heat, and furthermore to such textile-integrated electronics using metallized textile surfaces according to the invention.
  • Processes according to the invention for the production of such textiles which convert electricity into heat using metallized textile surfaces according to the invention can be carried out, for example, by fabricating textiles having surfaces metallized according to the invention.
  • the mixture was stirred at 5000 rpm for a period of 20 minutes (Ultra-Thurrax).
  • I printed with printing paste of I. a polyester fleece, basis weight 90 g / m 2 - with a sieve, mesh 80 with a stripe pattern.
  • the pattern is shown in Fig. 1 as a schematic illustration.
  • step (B) Provided with a mixture containing metal powder (a1), step (E), and fixing articles requiring electric power, step (B)
  • I again printed printing paste from I., in the form of small circles with a diameter of 2 mm on the under II printed pattern.
  • light-emitting diodes of the type Everlight model 67-22SURSYGC S530-A2 / TR8 device number: DSE-672-025 from Everlight Electronics Co., Ltd. in red and green were distributed by hand (SUR type AlGalnP for red Light-emitting diodes, SYR type AlGalnP for yellow light-emitting diodes), format: 3.2 mm, 2.7 mm.
  • polyester fleece was removed, rinsed twice under running water and dried at 90 ° C. over a period of one hour.
  • the mixture was stirred at 5000 rpm for a period of 20 minutes (Ultra-Thurrax).
  • the metallized textile surfaces of IV. was coated using an air knife, application speed 20 m / min, with a recording of 300 g / m 2 .

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung einer metallisierten textilen Oberfläche, die einen oder mehrere Artikel aufweist, die elektrischen Strom benötigen oder erzeugen, dadurch gekennzeichnet, dass man
    1. (A) auf eine textile Oberfläche musterförmig oder flächig eine Formulierung aufbringt, die als Komponente mindestens ein Metallpulver (a) enthält,
    2. (B) an mindestens zwei Stellen, an denen in Schritt (A) Formulierung aufgebracht wurde, mindestens einen Artikel fixiert, der elektrischen Strom benötigt oder erzeugt,
    3. (C) ein weiteres Metall auf der textilen Oberfläche abscheidet.
  • Weiterhin betrifft die vorliegende Erfindung nach dem erfindungsgemäßen Verfahren hergestellte metallisierte textile Oberflächen und Verwendung von metallisierten textilen Oberflächen.
  • Die Herstellung von metallisierten textilen Flächengebilden ist ein Arbeitsgebiet mit großem Wachstumspotenzial. Metallisierte textile Oberflächen finden zahlreiche Anwendungsgebiete. Insbesondere metallisierte textile Oberflächen lassen sich beispielsweise als Heizmäntel einsetzen, weiterhin als Modeartikel, beispielsweise für leuchtende Textilien, oder zur Herstellung von Textilien, die in der Medizin einschließlich der Prophylaxe eingesetzt werden können, beispielsweise zur Überwachung von Organen und ihrer Funktion. Weiterhin kann man metallisierte textile Oberflächen zur Abschirmung von elektromagnetischer Strahlung einsetzen.
  • Es ist wünschenswert, Textilien mit Artikeln zu versehen, die elektrischen Strom benötigen oder erzeugen, beispielsweise Transistoren oder Fotozellen. Bei dem Versuch, derartige Artikel so auf Flächengebilden zu fixieren, dass sie einen Kontakt mit elektrischem Strom erhalten, gibt es jedoch Schwierigkeiten. Versucht man, elektrisch leitende Drähte in Folien einzuarbeiten, so sind spezielle Apparate erforderlich.
  • Insbesondere bisherige Verfahren zur Herstellung von derartigen metallisierten textilen Oberflächen sind jedoch noch sehr aufwändig und nicht flexibel. Man benötigt spezielle Geräte und kann herkömmliche Apparaturen wie beispielsweise konventionelle Webstühle nicht verwenden. So ist es beispielsweise bekannt, Metallfäden in Textil einzuarbeiten. Es ist jedoch in vielen Fällen nicht möglich, beispielsweise Kupferfäden und Polyesterfäden in einer befriedigenden Weise miteinander zu Geweben kombinieren, weil man spezielle Webstühle benötigt.
  • Man kann versuchen, den vorstehend geschilderten Nachteil dadurch zu umgehen, dass man Metallfäden in ein fertig konfektioniertes Textil einarbeitet. Eine derartige Vorgehensweise erfordert aber in der Regel viel Handarbeit und ist teuer.
  • Die Verwendung von elektrisch leitfähigen Polymerfasern birgt den zusätzlichen Nachteil, dass viele elektrisch leitfähige Polymere wie beispielsweise anoxidiertes Polypyrrol luft- und/oder feuchtigkeitsempfindlich sind.
  • Es bestand also die Aufgabe, ein Verfahren zur Herstellung von metallisierten textilen Oberflächen bereit zu stellen, die mit Artikeln versehen sind, die elektrischen Strom benötigen oder erzeugen, wobei das Verfahren die vorstehend beschriebenen Nachteile vermeidet. Weiterhin bestand die Aufgabe, metallisierte textile Oberflächen die mit Artikeln versehen sind, die elektrischen Strom benötigen oder erzeugen, bereit zu stellen. Weiterhin bestand die Aufgabe, Verwendungen für neue metallisierte textile Oberflächen, die mit Artikeln versehen sind, die elektrischen Strom benötigen oder erzeugen, bereit zu stellen.
  • Dementsprechend wurde das eingangs definierte Verfahren gefunden.
  • Das eingangs definierte Verfahren geht aus von einer textilen Oberfläche, beispielsweise einem Gewirke, einer Strickware oder bevorzugt einem Gewebe oder einem Vliesstoff (Non-Woven). Textile Oberflächen im Sinne der vorliegenden Erfindung können steif oder vorzugsweise flexibel sein. Vorzugsweise handelt es sich um solche textile Oberflächen, die man ein- oder mehrmals beispielsweise manuell biegen kann, ohne dass man visuell einen Unterschied zwischen vor dem Biegen und nach der Rückstellung aus dem gebogenen Zustand feststellen kann.
  • Vorzugsweise handelt es sich bei textilen Oberflächen um Bestandteile von textilen Flächengebilden oder dreidimensional ausgestaltetem textilem Material. Textile Oberflächen im Sinne der vorliegenden Erfindung können aus Naturfasern oder synthetischen Fasern oder Gemischen von Naturfasern und synthetischen Fasern sein. An Naturfasern seien beispielsweise Wolle, Flachs und bevorzugt Baumwolle zu nennen. An synthetischen Fasern seien beispielsweise Polyamid, Polyester, modifiziertes Polyester, Polyestermischgewebe, Polyamidmischgewebe, Polyacrylnitril, Triacetat, Acetat, Polycarbonat, Polypropylen, Polyvinylchlorid, Polyestermikrofasern genannt, bevorzugt sind Polyester und Mischungen von Baumwolle mit synthetischen Fasern, insbesondere Mischungen von Baumwolle und Polyester. Geeignet sind in einer anderen Ausführungsform Glasfasern und Kohlefasern.
  • In einer Ausführungsform der vorliegenden Erfindung handelt es sich bei textilen Oberflächen um Teile eines Verbundes. So kann beispielsweise ein textiles Material mit einem anderen textilen Material verbunden, beispielsweise verklebt, kaschiert, vernäht oder genadelt sein. Auch ist es möglich, dass ein textiles Material mit einem anderen Material verbunden ist, so kann die textile Oberfläche, von der man ausgeht, auf eine Folie auflaminiert sein, beispielsweise eine Polyesterfolie, eine Polyolefinfolie, insbesondere eine Polyethylenfolie oder eine Polypropylenfolie, weiterhin eine Polyamidfolie oder eine Polyurethanfolie.
  • In einer Ausführungsform der vorliegenden Erfindung kann es sich bei der textilen Oberfläche um eine beschichtete textile Oberfläche handeln, die beispielsweise mit Bindemittel wie Polyurethanbinder, Polyacrylatbinder oder Styrol-Butadien-Latex beschichtet ist.
  • In einer Ausführungsform der vorliegenden Erfindung kann es sich bei der textilen Oberfläche um eine Oberfläche handeln, auf die eine Folie auflaminiert oder aufkaschiert ist, beispielsweise eine Polypropylenfolie, eine Polyesterfolie, eine Polyethylenfolie oder eine Polyurethanfolie, insbesondere eine thermoplastische Polyurethanfolie.
  • Insbesondere dann, wenn man textile Oberflächen, gewählt aus weitmaschigen Gestricken und lockeren Geweben erfindungsgemäß zu bearbeiten wünscht, kann es von Vorteil sein, wenn man das betreffende weitmaschige Gestrick oder das betreffende weitmaschige Gewebe in beschichteter Form einsetzt oder auf eine Folie laminiert.
  • Zur Durchführung des erfindungsgemäßen Verfahrens bringt man in Schritt (A) eine Formulierung auf die textile Oberfläche auf, die mindestens ein Metallpulver (a) enthält. Das Aufbringen kann beispielsweise durch Aufrakeln, Aufsprühen, Walzenbeschichten, Tauchen und insbesondere durch Auf- oder Verdrucken erfolgen.
  • Bei der Formulierung, die mindestens ein Metallpulver (a) enthält, kann es sich um vorzugsweise wässrige Formulierungen, insbesondere wässrige Flotten oder besonders bevorzugt um eine Druckformulierung handeln.
  • In einer bevorzugten Ausführungsform der vorliegenden Erfindung bedruckt man in Schritt (A) eine textile Oberfläche mit einer Druckformulierung, vorzugsweise einer wässrigen Druckformulierung, die mindestens ein Metallpulver (a) enthält.
  • Beispiele für Druckformulierungen sind Druckfarben, z. B. Tiefdruckfarben, Offsetdruckfarben, Flexodruckfarben, Siebdruckfarben, Drucktinten wie z. B. Tinten für das Valvolineverfahren und bevorzugt Druckpasten, vorzugsweise wässrige Druckpasten.
  • Bei Metallpulver (a) handelt es sich um pulverförmiges Metall, rein oder als Gemisch oder Legierung, wobei die Alkalimetalle und die Erdalkalimetalle Be, Ca, Sr und Ba ausgeschlossen sind. Ebenso sind natürlich die radioaktiven Metalle ausgeschlossen. Metallpulver (a) kann beispielsweise gewählt werden aus pulverförmigem Al, Zn, Ni, Cu, Ag, Sn, Co, Mn, Fe, Mg, Pb, Cr und Bi, beispielsweise rein oder als Gemische oder in Form von pulverförmigen Legierungen der genannten Metalle untereinander oder mit anderen Metallen. Geeignete Legierungen sind beispielsweise CuZn, CuSn, CuNi, SnPb, SnBi, SnCu, NiP, ZnFe, ZnNi, ZnCo und ZnMn. Bevorzugt einsetzbare Metallpulver (a) sind Eisenpulver und/oder Kupferpulver, ganz besonders bevorzugt Eisenpulver.
  • In einer speziellen Variante wählt man als Metallpulver (a) Kohlenstoff, und zwar in der Modifikation als Graphit in partikulärer Form, Ruß oder Kohlenstoff-Nanoröhrchen (engl. Carbon nanotubes). Diese Variante ist insbesondere dann bevorzugt, wenn man im unten beschriebenen Schritt (C) mit externer Spannungsquelle arbeitet. Kohlenstoff in der Modifikation Graphit in partikulärer Form, Ruß oder Kohlenstoff-Nanoröhrchen wird im Rahmen der vorliegenden Erfindung unter dem Begriff Metallpulver (a) mit umfasst.
  • In einer speziellen Variante wählt man als Metallpulver (a) eine Mischung von pulverförmigem Al, Zn, Ni, Cu, Ag, Sn, Co, Mn, Fe, Mg, Pb, Cr und Bi, insbesondere Eisenpulver einerseits
    und Kohlenstoff in der Modifikation Graphit in partikulärer Form, Ruß oder Kohlenstoff-Nanoröhrchen andererseits.
  • In einer Ausführungsform der vorliegenden Erfindung hat Metallpulver (a) einen mittleren Teilchendurchmesser von 0,01 bis 100 µm, bevorzugt von 0,1 bis 50 µm, besonders bevorzugt von 1 bis 10 µm (bestimmt durch Laserbeugungsmessung, beispielsweise an einem Gerät Microtrac X100).
  • In einer Ausführungsform ist Metallpulver (a) durch seine Partikeldurchmesserverteilung gekennzeichnet. Beispielsweise kann der Wert d10 im Bereich von 0,01 bis 5 µm liegen, der Wert für d50 im Bereich von 1 bis 10 µm und der Wert für d90 im Bereich von 3 bis 100 µm, wobei gilt: d10 < d50 < d90. Dabei hat vorzugsweise kein Partikel einen größeren Durchmesser als 100 µm.
  • Metallpulver (a) kann man in passivierter Form einsetzen, beispielsweise in einer zumindest partiell beschichteten ("gecoateten") Form. Als geeignete Beschichtungen seien beispielsweise anorganische Schichten wie Oxid des betreffenden Metalls, SiO2 bzw. SiO2.aq oder Phosphate beispielsweise des betreffenden Metalls genannt.
  • Die Partikel von Metallpulver (a) können grundsätzlich jede beliebige Form aufweisen, beispielsweise sind nadelförmige, zylindrische, plattenförmige oder kugelförmige Partikel einsetzbar, bevorzugt sind kugel- und plattenförmige Partikel. Dabei können sich die Ausdrücke nadelförmig, zylindrisch, plattenförmig und kugelförmig jeweils auf idealisierte Formen beziehen.
  • In besonders bevorzugter Weise werden Metallpulver (a) mit kugelförmigen Partikeln verwendet, bevorzugt überwiegend mit kugelförmigen (sphärischen) Partikeln, ganz besonders bevorzugt sogenannte Carbonyleisenpulver mit kugelförmigen Partikeln.
  • In einer anderen besonders bevorzugten Ausführungsform werden Metallpulver (a) verwendet, die eine Mischung von kugelförmigen (sphärischen) Partikeln, ganz besonders bevorzugt sogenannte Carbonyleisenpulver mit kugelförmigen Partikeln, und plättchenförmigen Partikeln sind, insbesondere plättchenförmigen Kupferpartikeln.
  • Metallpulver (a) kann man in einer Ausführungsform von Schritt (A) so aufbringen und bevorzugt verdrucken, dass die Partikel von Metallpulver so dicht liegen, dass sie bereits zum Leiten von elektrischem Strom in der Lage sind. In einer anderen Ausführungsform von Schritt (A) kann man Metallpulver (a) so aufbringen, bevorzugt verdrucken, dass die Partikel von Metallpulver (a) so weit voneinander entfernt sind, dass sie nicht zum Leiten des elektrischen Stroms in der Lage sind.
  • Die Herstellung von Metallpulvern (a) ist an sich bekannt. Man kann beispielsweise gängige Handelswaren oder nach an sich bekannten Verfahren hergestelltes Metallpulver (a) einsetzen, beispielsweise durch elektrolytische Abscheidung oder chemische Reduktion aus Lösungen von Salzen der betreffenden Metalle oder durch Reduktion eines oxidischen Pulvers beispielsweise mittels Wasserstoff, durch Versprühen oder Verdüsen einer Metallschmelze, insbesondere in Kühlmedien, beispielsweise Gasen oder Wasser.
  • Besonders bevorzugt verwendet man solches Metallpulver (a), das durch thermische Zersetzung von Eisenpentacarbonyl hergestellt wurde, im Rahmen der vorliegenden Erfindung auch Carbonyleisenpulver genannt.
  • Die Herstellung von Carbonyleisenpulver durch thermische Zersetzung von insbesondere Eisenpentacarbonyl Fe(CO)5 wird beispielsweise in Ullmann's Encyclopedia of Industrial Chemistry, 5th Edition, Volume A14, Seite 599, beschrieben. Die Zersetzung des Eisenpentacarbonyls kann beispielsweise bei Normaldruck und beispielsweise bei erhöhten Temperaturen, z. B. im Bereich von 200 bis 300°C, z. B. in einem beheizbaren Zersetzer erfolgen, der ein Rohr aus einem hitzebeständigen Material wie Quarzglas oder V2A-Stahl in vorzugsweise vertikaler Position umfasst, das von einer Heizeinrichtung, beispielsweise bestehend aus Heizbändern, Heizdrähten oder aus einem von einem Heizmedium durchströmten Heizmantel, umgeben ist.
  • Der mittlere Teilchendurchmesser von Carbonyleisenpulver kann durch die Verfahrensparameter und Reaktionsführung bei der Zersetzung in weiten Bereichen gesteuert werden und liegt (Zahlenmittel) in der Regel bei 0,01 bis 100 µm, bevorzugt von 0,1 bis 50 µm, besonders bevorzugt von 1 bis 8 µm.
  • In einer Ausführungsform der vorliegenden Erfindung setzt man in Schritt (A) eine Formulierung, bevorzugt eine Druckformulierung ein, die enthält:
    1. (a) mindestens ein Metallpulver, bevorzugt ist Carbonyleisenpulver,
    2. (b) mindestens ein Bindemittel,
    3. (c) mindestens einen Emulgator, der anionisch, kationisch oder bevorzugt nichtionisch sein kann,
    4. (d) gegebenenfalls mindestens einen Rheologiemodifizierer.
  • Erfindungsgemäß eingesetzte Formulierungen, insbesondere Druckformulierungen können mindestens ein Bindemittel (b) enthalten, auch Binder (b) genannt, bevorzugt mindestens eine wässrige Dispersion von mindestens einem filmbildenden Polymer, beispielsweise Polyacrylat, Polybutadien, Copolymere von mindestens einem Vinylaromaten mit mindestens einem konjugierten Dien und gegebenenfalls weiteren Comonomeren, beispielsweise Styrol-Butadien-Bindemittel. Weitere geeignete Bindemittel (b) sind gewählt aus Polyurethan, vorzugsweise anionischem Polyurethan, oder Ethylen-(Meth)acrylsäure-Copolymer. Bindemittel (b) können im Rahmen der vorliegenden Erfindung auch als Binder (b) bezeichnet werden.
  • Als Bindemittel (b) geeignete Polyacrylate im Sinne der vorliegenden Erfindung sind beispielsweise erhältlich durch Copolymerisation von mindestens einem (Meth)acrylsäure-C1-C10-Alkylester, beispielsweise Acrylsäuremethylester, Acrylsäureethylester, Acrylsäure-n-Butylester, Methacrylsäure-n-butylester, Acrylsäure-2-ethylhexylester, mit mindestens einem weiteren Comonomer, beispielsweise einem weiteren (Meth)acrylsäure-C1-C10-Alkylester, (Meth)acrylsäure, (Meth)acrylamid, N-Methylol(meth)acrylamid, Glycidyl(meth)acrylat oder einer vinylaromatischen Verbindung wie beispielsweise Styrol.
  • Als Bindemittel (b) geeignete vorzugsweise anionische Polyurethane im Sinne der vorliegenden Erfindung sind beispielsweise erhältlich durch Umsetzung von einem oder mehreren aromatischen oder vorzugsweise aliphatischen oder cycloaliphatischen Diisocyanat mit einem oder mehreren Polyesterdiolen und vorzugsweise einer oder mehreren Hydroxycarbonsäuren, z. B Hydroxyessigsäure, oder vorzugsweise Dihydroxycarbonsäuren, beispielsweise 1,1-Dimethylolpropionsäure, 1,1-Dimethylolbuttersäure oder 1,1-Dimethylolethansäure.
  • Als Bindemittel (b) besonders geeignete Ethylen-(Meth)acrylsäure-Copolymere sind beispielsweise durch Copolymerisation von Ethylen, (Meth)acrylsäure und gegebenenfalls mindestens einem weiteren Comonomer wie beispielsweise (Meth)acrylsäure-C1-C10-Alkylester, Maleinsäureanhydrid, Isobuten oder Vinylacetat erhältlich, vorzugsweise durch Copolymerisation bei Temperaturen im Bereich von 190 bis 350°C und Drücken im Bereich von 1500 bis 3500, bevorzugt 2000 bis 2500 bar.
  • Als Bindemittel (b) besonders geeignete Ethylen-(Meth)acrylsäure-Copolymere können beispielsweise bis zu 90 Gew.-% Ethylen einpolymerisiert enthalten und eine kinematische Schmelzeviskosität im Bereich von 60 mm2/s bis 10.000 mm2/s auf, bevorzugt 100 mm2/s bis 5.000 mm2/s aufweisen, gemessen bei 120°C.
  • Als Bindemittel (b) besonders geeignete Ethylen-(Meth)acrylsäure-Copolymere können beispielsweise bis zu 90 Gew.-% Ethylen einpolymerisiert enthalten und eine Schmelzemassefließrate (MFR) im Bereich von 1 bis 50 g/10 min, bevorzugt 5 bis 20 g/10 min, besonders bevorzugt 7 bis 15 g/10 min aufweisen, gemessen bei 160°C und einer Belastung von 325 g nach EN ISO 1133.
  • Als Bindemittel (b) besonders geeignete Copolymere von mindestens einem Vinylaromaten mit mindestens einem konjugierten Dien und gegebenenfalls weiteren Comonomeren, beispielsweise Styrol-Butadien-Bindemittel, enthalten mindestens eine ethylenisch ungesättigte Carbonsäure oder Dicarbonsäure oder ein geeignetes Derivat, beispielsweise das entsprechende Anhydrid, einpolymerisiert. Besonders geeignete Vinylaromaten sind para-Methylstyrol, α-Methylstyrol und insbesondere Styrol. Besonders geeignete konjugierte Diene sind Isopren, Chloropren und insbesondere 1,3-Butadien. Als besonders geeignete ethylenisch ungesättigte Carbonsäuren oder Dicarbonsäuren oder geeignete Derivate davon seien (Meth)acrylsäure, Maleinsäure, Itaconsäure, Maleinsäureanhydrid bzw. Itaconsäureanhydrid beispielhaft genannt.
  • In einer Ausführungsform der vorliegenden Erfindung enthalten als Bindemittel (b) besonders geeignete Copolymere von mindestens einem Vinylaromaten mit mindestens einem konjugierten Dien und gegebenenfalls weiteren Comonomeren einpolymerisiert: 19,9 bis 80 Gew.-% Vinylaromat,
    19,9 bis 80 Gew.-% konjugiertes Dien,
    0,1 bis 10 Gew.-% ethylenisch ungesättigte Carbonsäure oder Dicarbonsäure oder ein geeignetes Derivat, beispielsweise das entsprechende Anhydrid.
  • In einer Ausführungsform der vorliegenden Erfindung hat Bindemittel (b) bei 23°C eine dynamische Viskosität im Bereich von 10 bis 100 dPa·s, bevorzugt 20 bis 30 dPa·s, bestimmt beispielsweise durch Rotationsviskosimetrie, beispielsweise mit einem Haake-Viskosimeter.
  • Als Emulgator (c) kann man anionische, kationische oder vorzugsweise nicht-ionische oberflächenaktive Substanzen verwenden.
  • Beispiele für geeignete kationische Emulgatoren (c) sind beispielsweise einen C6-C18-Alkyl-, -Aralkyl- oder heterocyclischen Rest aufweisende primäre, sekundäre, tertiäre oder quartäre Ammoniumsalze, Alkanolammoniumsalze, Pyridiniumsalze, Imidazoliniumsalze, Oxazoliniumsalze, Morpholiniumsalze, Thiazoliniumsalze sowie Salze von Aminoxiden, Chinoliniumsalze, Isochinoliniumsalze, Tropyliumsalze, Sulfoniumsalze und Phosphoniumsalze. Beispielhaft genannt seien Dodecylammoniumacetat oder das entsprechende Hydrochlorid, die Chloride oder Acetate der verschiedenen 2-(N,N,N-Trimethylammonium)ethylparaffinsäureester, N-Cetylpyridiniumchlorid, N-Laurylpyridiniumsulfat sowie N-Cetyl-N,N,N-trimethylammoniumbromid, N-Dodecyl-N,N,N-trimethylammoniumbromid, N,N-Distearyl-N,N-dimethylammoniumchlorid sowie das Gemini-Tensid N,N'-(Lauryldimethyl)ethylendiamindibromid.
  • Beispiele für geeignete anionische Emulgatoren (c) sind Alkalimetall- und Ammoniumsalze von Alkylsulfaten (Alkylrest: C8 bis C12), von Schwefelsäurehalbestern ethoxylierter Alkanole (Ethoxylierungsgrad: 4 bis 30, Alkylrest: C12-C18) und ethoxylierter Alkylphenole (Ethoxylierungsgrad: 3 bis 50, Alkylrest: C4-C12), von Alkylsulfonsäuren (Alkylrest: C12-C18), von Alkylarylsulfonsäuren (Alkylrest: C9-C18) und von Sulfosuccinaten wie beispielsweise Sulfobernsteinsäuremono- oder diestern. Bevorzugt sind aryl- oder alkylsubstituierte Polyglykolether, weiterhin Substanzen, die in US 4,218,218 beschrieben sind, und Homologe mit y (aus den Formeln aus US 4,218,218 ) im Bereich von 10 bis 37.
  • Besonders bevorzugt sind nichtionische Emulgatoren (c) wie beispielsweise ein- oder vorzugsweise mehrfach alkoxylierte C10-C30-Alkanole, bevorzugt mit drei bis hundert Mol C2-C4-Alkylenoxid, insbesondere Ethylenoxid alkoxylierte Oxo- oder Fettalkohole.
  • Beispiele für besonders geeignete mehrfach alkoxylierte Fettalkohole und Oxoalkohole sind

            n-C18H37O-(CH2CH2O)80-H,

            n-C18H37O-(CH2CH2O)70-H,

            n-C18H37O-(CH2CH2O)60-H,

            n-C18H37O-(CH2CH2O)50-H,

            n-C18H37O-(CH2CH2O)25-H,

            n-C18H37O-(CH2CH2O)12-H,

            n-C16H33O-(CH2CH2O)80-H,

            n-C16H33O-(CH2CH2O)70-H,

            n-C16H33O-(CH2CH2O)60-H,

            n-C16H33O-(CH2CH2O)50-H,

            n-C16H33O-(CH2CH2O)25-H,

            n-C16H33O-(CH2CH2O)12-H,

            n-C12H25O-(CH2CH2O)11-H,

            n-C12H25O-(CH2CH2O)18-H,

            n-C12H25O-(CH2CH2O)25-H,

            n-C12H25O-(CH2CH2O)50-H,

            n-C12H25O-(CH2CH2O)80-H,

            n-C30H61O-(CH2CH2O)8-H,

            n-C10H21O-(CH2CH2O)9-H,

            n-C10H21O-(CH2CH2O)7-H,

            n-C10H21O-(CH2CH2O)5-H,

            n-C10H21O-(CH2CH2O)3-H,

    und Mischungen der vorstehend genannten Emulgatoren, beispielsweise Mischungen von n-C18H37O-(CH2CH2O)5O-H und n-C16H33O-(CH2CH2O)50-H,
    wobei die Indices jeweils als Mittelwerte (Zahlenmittel) aufzufassen sind.
  • In einer Ausführungsform der vorliegenden Erfindung können in Schritt (A) eingesetzte Formulierungen, insbesondere Druckformulierungen mindestens einen Rheologiemodifizierer (d) enthalten, ausgewählt aus Verdickungsmitteln (d1), die auch als Verdicker bezeichnet werden können, und die Viskosität senkenden Mitteln (d2).
  • Geeignete Verdickungsmittel (d1) sind beispielsweise natürliche Verdickungsmittel oder vorzugsweise synthetische Verdickungsmittel. Natürliche Verdickungsmittel sind solche Verdickungsmittel, die Naturprodukte sind oder durch Aufarbeitung wie beispielsweise Reinigungsoperationen, insbesondere Extraktion von Naturprodukten erhalten werden können. Beispiele für anorganische natürliche Verdickungsmittel sind Schichtsilikate wie beispielsweise Bentonit. Beispiele für organische natürliche Verdickungsmittel sind vorzugsweise Proteine wie beispielsweise Casein oder bevorzugt Polysaccharide. Besonders bevorzugte natürliche Verdickungsmittel sind gewählt aus Agar-Agar, Carrageen, Gummi arabicum, Alginaten wie beispielsweise Natriumalginat, Kaliumalginat, Ammoniumalginat, Calciumalginat und Propylengycolalginat, Pektinen, Polyosen, Johannisbrotbaum-Kernmehl (Carubin) und Dextrinen.
  • Bevorzugt ist der Einsatz von synthetischen Verdickungsmitteln, die gewählt sind aus im Allgemeinen flüssigen Lösungen von synthetischen Polymeren, insbesondere Acrylaten, in beispielsweise Weißöl oder als wässrige Lösungen, und aus synthetischen Polymeren in getrockneter Form, beispielsweise als durch Sprühtrocknung hergestelltem Pulver. Als Verdickungsmittel (d1) eingesetzte synthetische Polymere enthalten Säuregruppen, die vollständig oder zu einem gewissen Prozentsatz mit Ammoniak neutralisiert werden. Beim Fixierprozess wird Ammoniak freigesetzt, wodurch der pH-Wert gesenkt wird und die eigentliche Fixierung beginnt. Das für die Fixierung notwendige Absenken des pH-Wertes kann alternativ durch Zusatz von nichtflüchtigen Säuren wie z.B. Zitronensäure, Bernsteinsäure, Glutarsäure oder Äpfelsäure erfolgen.
  • Ganz besonders bevorzugte synthetische Verdickungsmittel sind gewählt aus Copolymeren von 85 bis 95 Gew.-% Acrylsäure, 4 bis 14 Gew.-% Acrylamid und 0,01 bis maximal 1 Gew.-% des (Meth)acrylamidderivats der Formel I
    Figure imgb0001
    mit Molekulargewichten Mw im Bereich von 100.000 bis 2.000.000 g/mol, in denen die Reste R1 gleich oder verschieden sein können und Methyl oder Wasserstoff bedeuten können.
  • Weitere geeignete Verdickungsmittel (d1) sind gewählt aus Reaktionsprodukten von aliphatischen Diisocyanaten wie beispielsweise Trimethylendiisocyanat, Tetramethylendiisocyanat, Hexamethylendiisocyanat oder Dodecan-1,12-diisocyanat mit vorzugsweise 2 Äquivalenten mehrfach alkoxyliertem Fettalkohol oder Oxoalkohol, beispielsweise 10 bis 150-fach ethoxyliertem C10-C30-Fettalkohol oder C11-C31-Oxoalkohol.
  • Geeignete die Viskosität senkende Mittel (d2) sind beispielsweise organische Lösungsmittel wie Dimethylsulfoxid (DMSO), N-Methylpyrrolidon (NMP), N-Ethylpyrrolidon (NEP), Ethylenglykol, Diethylenglykol, Butylglykol, Dibutylglykol, und beispielsweise Restalkohol-freiem alkoxyliertem n-C4-C8-Alkanol, bevorzugt Restalkohol-freiem ein- bis 10-fach, besonders bevorzugt 3- bis 6-fach ethoxyliertem n-C4-C8-Alkanol. Dabei ist unter Restalkohol das jeweils nicht alkoxylierte n-C4-C8-Alkanol zu verstehen.
  • In einer Ausführungsform der vorliegenden Erfindung enthält in Schritt (A) eingesetzte Formulierung, insbesondere Druckformulierung
    im Bereich von 10 bis 90 Gew.-%, bevorzugt 50 bis 85 Gew.-%, besonders bevorzugt 60 bis 80 Gew.-% Metallpulver (a),
    im Bereich von 1 bis 20 Gew.-%, bevorzugt 2 bis 15 Gew.-% Bindemittel (b),
    im Bereich von 0,1 bis 4 Gew.-%, bevorzugt bis 2 Gew.-% Emulgator (c),
    im Bereich von 0 bis 5 Gew.-%, bevorzugt 0,2 bis 1 Gew.-% Rheologiemodifizierer (d), wobei Angaben in Gew.-% jeweils auf die gesamte in Schritt (A) eingesetzte Formulierung bzw. Druckformulierung bezogen sind und sich wobei Angaben in Gew.-% bei Bindemittel (b) auf den Feststoffgehalt des jeweiligen Bindemittels (b) beziehen.
  • In einer Ausführungsform der vorliegenden Erfindung kann man in Schritt (A) des erfindungsgemäßen Verfahrens mit einer Formulierung, insbesondere Druckformulierung bedrucken, die zusätzlich zu Metallpulver (a) und gegebenenfalls Bindemittel (b), Emulgator (c) und gegebenenfalls Rheologiemodifizierer (d) mindestens ein Hilfsmittel (e) enthält. Als Hilfsmittel (e) seien Griffverbesserer, Entschäumer, Netzmittel, Egalisiermittel, Harnstoff, Korrosionsinhibitoren, Wirkstoffe wie beispielsweise Biozide oder Flammfestmittel, beispielhaft genannt.
  • Geeignete Entschäumer sind beispielsweise silikonhaltige Entschäumer wie beispielsweise solche der Formel HO-(CH2)3-Si(CH3)[OSi(CH3)3]2 und HO-(CH2)3-Si(CH3)[OSi(CH3)3][OSi(CH3)2OSi(CH3)3], nicht alkoxyliert oder mit bis zu 20 Äquivalenten Alkylenoxid und insbesondere Ethylenoxid alkoxyliert. Auch Silikon-freie Entschäumer sind geeignet wie beispielsweise mehrfach alkoxylierte Alkohole, z.B. Fettalkoholalkoxylate, bevorzugt 2 bis 50-fach ethoxylierte vorzugsweise unverzweigte C10-C20-Alkanole, unverzweigte C10-C20-Alkanole und 2-Ethylhexan-1-ol. Weitere geeignete Entschäumer sind Fettsäure-C8-C20-alkylester, bevorzugt Stearinsäure-C10-C20-alkylester, bei denen C8-C20-Alkyl, bevorzugt C10-C20-Alkyl unverzweigt oder verzweigt sein kann.
  • Geeignete Netzmittel sind beispielsweise nichtionische, anionische oder kationische Tenside, insbesondere Ethoxylierungs- und/oder Propoxylierungsprodukte von Fettalkoholen oder Propylenoxid-Ethylenoxid-Blockcopolymere, ethoxylierte oder propoxylierte Fett- oder Oxoalkohole, weiterhin Ethoxylate von Ölsäure oder Alkylphenolen, Alkylphenolethersulfate, Alkylpolyglycoside, Alkylphosphonate, Alkylphenylphosphonate, Alkylphosphate, oder Alkylphenylphosphate.
  • Geeignete Egalisiermittel sind beispielsweise Blockcopolymerisate von Ethylenoxid und Propylenoxid mit Molekulargewichten Mn im Bereich von 500 bis 5000 g/mol, bevorzugt 800 bis 2000 g/mol. Ganz besonders besonders bevorzugt sind Blockcopolymerisate aus Propylenoxid/Ethylenoxid beispielsweise der Formel EO8PO7EO8, wobei EO für Ethylenoxid und PO für Propylenoxid steht.
  • Geeignete Biozide sind beispielsweise als Proxel-Marken im Handel befindlich. Beispielhaft seien genannt: 1,2-Benzisothiazolin-3-on ("BIT") (kommerziell erhältlich als Proxel®-Marken der Fa. Avecia Lim.) und dessen Alkalimetallsalze; andere geeignete Biozide sind 2-Methyl-2H-isothiazol-3-on ("MIT") und 5-Chlor-2-methyl-2H-isothiazol-3-on ("CIT").
  • In einer Ausführungsform der vorliegenden Erfindung enthält in Schritt (A) eingesetzte Formulierung, insbesondere Druckformulierung bis zu 30 Gew.-% Hilfsmittel (e), bezogen auf die Summe aus Metallpulver (a), Bindemittel (b), Emulgator (c) und gegebenenfalls Rheologiemodifizierer (d).
  • In Schritt (A) kann man eine Formulierung aufbringen, die Metallpulver (a) enthält, beispielsweise durch Aufsprühen, Aufrakeln oder Tauchen. Bevorzugt ist es, das Aufbringen als Auf- oder Verdrucken auszuführen.
  • In einer Ausführungsform der vorliegenden Erfindung bringt man in Schritt (A) solche Muster auf, insbesondere durch Verdrucken, bei denen Metallpulver (a) in Form von geraden oder vorzugsweise gebogenen Streifenmustern oder Linienmustern auf Textil angeordnet sind, wobei die genannten Linien beispielsweise eine Breite und Dicke jeweils im Bereich von 0,1 µm bis 5 mm und die genannten Streifen eine Breite im Bereich von 5,1 mm bis beispielsweise 10 cm oder gegebenenfalls mehr und eine Dicke von 0,1 µm bis 5 mm haben können.
  • In einer speziellen Ausführungsform der vorliegenden Erfindung bringt man in Schritt (A) solche Streifenmuster oder Linienmuster von Metallpulver (a) auf, insbesondere durch Verdrucken, bei denen sich die Streifen bzw. Linien weder berühren noch schneiden.
  • In einer anderen speziellen Ausführungsform der vorliegenden Erfindung bringt man in Schritt (A) solche Streifenmuster oder Linienmuster von Metallpulver (a) auf, insbesondere durch Verdrucken, bei denen die Streifen bzw. Linien voneinander abzweigen oder sich miteinander vereinigen, beispielsweise dann, wenn man aufgedruckte Schaltkreise herstellen will.
  • In einer Ausführungsform der vorliegenden Erfindung bedruckt man in Schritt (A) nach verschiedenen Verfahren, die an sich bekannt sind. In einer Ausführungsform der vorliegenden Erfindung verwendet man eine Schablone, durch die man die Formulierung, insbesondere Druckformulierung, die Metallpulver (a) enthält, mit einer Rakel presst. Das vorstehend beschriebene Verfahren gehört zu den Siebdruckverfahren. Weitere geeignete Druckverfahren sind Tiefdruckverfahren und Flexodruckverfahren. Ein weiteres geeignetes Druckverfahren ist gewählt aus Valve-Jet-Verfahren. Bei Valve-Jet-Verfahren verwendet man solche Druckformulierung, die vorzugsweise keine Verdickungsmittel (d1) enthält.
  • Im erfindungsgemäßen Verfahren eingesetzte Formulierungen, insbesondere Druckformulierungen, besonders bevorzugt Druckpasten, enthalten in einer Ausführungsform der vorliegenden Erfindung
    im Bereich von 10 bis 90 Gew.-%, bevorzugt 50 bis 80 Gew.-% Metallpulver (a), insbesondere Carbonyleisenpulver,
    im Bereich von 5 bis 30 Gew.-%, bevorzugt 10 bis 15 Gew.-% Bindemittel (b),
    im Bereich von 0,1 bis 4 Gew.-%, bevorzugt bis 2 Gew.-% Emulgator (c),
    im Bereich von 0 bis 5 Gew.-%, bevorzugt 0,2 bis 1 Gew.-% Rheologiemodifizierer (d),
    wobei Angaben in Gew.-% jeweils auf die gesamte in Schritt (A) eingesetzte Formulierung bzw. Druckformulierung bezogen sind.
  • In einer Ausführungsform der vorliegenden Erfindung enthält im erfindungsgemäßen Verfahren eingesetzte Formulierung, insbesondere Druckformulierung bis zu 30 Gew.-% Hilfsmittel (e), bezogen auf die Summe aus Metallpulver (a), Bindemittel (b), Emulgator (c) und Rheologiemodifizierer (d).
  • Zur Herstellung von im erfindungsgemäßen Verfahren eingesetzten Formulierungen, insbesondere Druckformulierungen kann man so vorgehen, indem man
    1. (a) mindestens ein Metallpulver, besonders bevorzugt ist Carbonyleisenpulver,
    2. (b) mindestens ein Bindemittel,
    3. (c) mindestens einen Emulgator und
    4. (d) gegebenenfalls mindestens einen Rheologiemodifizierer,
    sowie gegebenenfalls ein oder mehrere Hilfsmittel (e) in beliebiger Reihenfolge miteinander vermischt.
  • Zur Herstellung von im erfindungsgemäßen Verfahren eingesetzter Formulierung, insbesondere Druckformulierung kann man beispielsweise so vorgehen, dass man Wasser und gegebenenfalls ein oder mehrere Hilfsmittel, beispielsweise einen Entschäumer, beispielsweise einen Entschäumer auf Silikonbasis, verrührt. Danach kann man einen oder mehrere Emulgatoren zugeben.
  • Als nächstes kann man einen oder mehrere Griffverbesserer zugeben, beispielsweise eine oder mehrere Silikonemulsionen.
  • Danach kann man einen oder mehrere Emulgatoren (c) und das oder die Metallpulver (a) zugeben.
  • Anschließend kann man ein oder mehrere Bindemittel (b) und schließlich gegebenenfalls einen oder mehrere Rheologiemodifizierer (d) hinzufügen und unter weiterem Vermischen, beispielsweise Rühren, homogenisieren. Man kommt üblicherweise mit verhältnismäßig kurzen Rührzeiten aus, beispielsweise 5 Sekunden bis 5 Minuten, bevorzugt 20 Sekunden bis 1 Minute bei Rührgeschwindigkeiten im Bereich von 1000 bis 3000 U/min.
  • Die erfindungsgemäße fertige Formulierung, insbesondere Druckformulierung kann, wenn sie als Druckpaste eingesetzt werden soll, 30 bis 70 Gew.-% Weißöl enthalten. Wässrige synthetische Verdickungsmittel (d1) enthalten vorzugsweise bis zu 25 Gew.-% als Verdickungsmittel (d1) geeignetes synthetisches Polymer. Wünscht man wässrige Formulierungen Verdickungsmittel (d1) einzusetzen, so setzt man im Allgemeinen wässriges Ammoniak zu. Auch der Einsatz granulärer, fester Formulierungen Verdickungsmittel (c) sind anwendbar, um Emissions-frei Drucke herstellen zu können.
  • Zur Durchführung des erfindungsgemäßen Verfahrens fixiert man in Schritt (B) an mindestens zwei Stellen, an denen in Schritt (A) Formulierung aufgebracht wurde, die Metallpulver (a) enthält, mindestens einen Artikel, der elektrischen Strom benötigt oder erzeugt. Derartige Artikel werden im Rahmen der vorliegenden Erfindung auch als Artikel (B) bezeichnet.
  • Unter "mindestens zwei Stellen" seien im Rahmen der vorliegenden Erfindung solche Stellen des Musters aus Schritt (A) zu verstehen, die Metallpulver (a) aufweisen.
  • In einer Ausführungsform der vorliegenden Erfindung gehören jeweils zwei der in Schritt (A) bedruckten Stellen, auf denen man in Schritt (B) mindestens einen Artikel fixiert, der elektrischen Strom benötigt oder erzeugt, zu unterschiedlichen Teilen, beispielsweise Streifen des in Schritt (A) aufgedruckten Musters.
  • Vorzugsweise liegen jeweils zwei der in Schritt (B) genannten Stellen dicht beieinander, beispielsweise im Bereich von 0,1 bis 5 mm, bevorzugt bis 2 mm.
  • In einer Ausführungsform der vorliegenden Erfindung sind die in Schritt (B) fixierten Artikel, die elektrischen Strom benötigen oder erzeugen, relativ klein, beispielsweise mit einem mittleren Durchmesser im Bereich von 1 bis 5 mm oder kleiner.
  • In einer Ausführungsform der vorliegenden Erfindung haben Artikel (B) mindestens zwei Stromanschlüsse, von denen je einer an der oben genannten Stelle fixiert wird.
  • Artikel (B) können unterschiedlicher Natur sein oder gleichartig.
  • In einer Ausführungsform der vorliegenden Erfindung wählt man Artikel (B) aus Licht emittierenden Dioden, flüssigkristallinen Anzeigeelementen, Peltierelementen, Transistoren, elektrochromen Farbstoffen, Chips (integrierten elektronischen Bauteilen), resistiven Elementen, kapazitiven Elementen, induktiven Elementen, Dioden, Transistoren, Aktuatoren, elektromechanischen Elementen und Solarzellen.
  • Licht emittierenden Dioden, flüssigkristalline Anzeigeelemente, Peltierelemente, Transistoren, elektrochrome Farbstoffe, Chips (integrierte elektronische Bauteile), resistive Elemente, kapazitive Elemente, induktive Elemente, Dioden, Transistoren, Aktuatoren, elektromechanische Elemente und Solarzellen sind als solche bekannt und kommerziell erhältlich.
  • In einer Ausführungsform der vorliegenden Erfindung führt man das Fixieren von Artikeln (B) in an sich bekannten Montageverfahren und -anlagen durch. Beispiele für Montageverfahren und -anlagen sind zum Beispiel aus der Leiterplattenfertigung bekannt (Surface-Mount-Technologie). Bestückungsautomaten platzieren zum Beispiel einen oder mehrere Artikel (B) an der jeweils gewünschten Stelle der nach Schritt (A) bearbeiteten textilen Oberfläche.
  • In einer Ausführungsform der vorliegenden Erfindung, in der hinreichend kleine Artikel (B) fixiert werden sollen, geht man von in Gurten aus Karton oder Kunststoff verpackten Artikeln (B) aus. In den Gurten befinden sich Taschen, in welchen die Artikel (B) liegen. Die Oberseite der Tasche ist zum Beispiel durch eine Folie verschlossen, welche abgezogen werden kann, um Artikel (B) zu entnehmen. Die Gurte selbst werden auf einer Rolle aufgewickelt. Auf zumindest einer Seite hat die Rolle in regelmäßigen Abständen Löcher, über die der Gurt vom Bestückungsautomaten bewegt werden kann. Diese Rollen werden mit Hilfe von Zufuhrmodulen, sogenannten Feedern, dem Bestückungsautomaten zugeführt. Die Artikel (B) werden zum Beispiel mit Vakuumpinzetten oder Greifern entnommen und dann auf der Sollposition des textilen Substrates aufgesetzt. Dieser Vorgang wird für alle zu fixierenden Artikel (B) wiederholt.
  • In Schritt (C) des erfindungsgemäßen Verfahrens scheidet man ein weiteres Metall auf der textilen Oberfläche ab. Dabei ist es in Schritt (C) möglich, ein oder mehrere weitere Metalle abzuscheiden, bevorzugt scheidet man nur ein weiteres Metall ab.
  • Zur Durchführung des erfindungsgemäßen Verfahrens scheidet man in Schritt (C) ein weiteres Metall auf der textilen Oberfläche ab. Unter "der textilen Oberfläche" ist dabei die textile Oberflächen zu verstehen, das man zuvor nach den Schritten (A) bis (C) und gegebenenfalls weiteren Schritten wie beispielsweise (D) bearbeitet hat.
  • Man kann in Schritt (C) mehrere weitere Metalle abscheiden, bevorzugt ist es jedoch, nur ein weiteres Metall abzuscheiden.
  • In einer Ausführungsform der vorliegenden Erfindung wählt man als Metallpulver (a) in Schritt (A) Carbonyleisenpulver und als weiteres Metall in Schritt (C) Silber, Gold oder insbesondere Kupfer.
  • In einer Ausführungsform der vorliegenden Erfindung, im Folgenden auch als Schritt (C1) bezeichnet, geht man so vor, dass man in Schritt (C1) ohne externe Spannungsquelle arbeitet und dass das weitere Metall in Schritt (C1) in der elektrochemischen Spannungsreihe der Elemente, in alkalischer oder vorzugsweise in saurer Lösung, ein stärker positives Normalpotenzial aufweist als Metall, das Metallpulver (a) zugrunde liegt, und als Wasserstoff.
  • Dazu kann man beispielsweise so vorgehen, dass man in Schritt (A) bedrucktes und in Schritt (B) thermisch behandelte textile Oberfläche mit einer basischen, neutralen oder vorzugsweise sauren vorzugsweise wässrigen Lösung von Salz von weiterem Metall und gegebenenfalls einem oder mehreren Reduktionsmitteln behandelt, beispielsweise indem man es in die betreffende Lösung einlegt.
  • In einer Ausführungsform der vorliegenden Erfindung behandelt man in Schritt (C1) im Bereich von 0,5 Minuten bis zu 12 Stunden, bevorzugt bis zu 30 Minuten.
  • In einer anderen Ausführungsform der vorliegenden Erfindung behandelt man in Schritt (C1) im Bereich von 10 Sekunden bis 30 Sekunden.
  • In einer Ausführungsform der vorliegenden Erfindung behandelt man in Schritt (C1) mit einer basischen, neutralen oder vorzugsweise sauren Lösung von Salz von weiterem Metall, die eine Temperatur im Bereich von 0 bis 100°C, bevorzugt 10 bis 80°C aufweist.
  • Zusätzlich kann man in Schritt (C1) ein oder mehrere Reduktionsmittel zusetzen. Wählt man beispielsweise Kupfer als weiteres Metall, so kann man als Reduktionsmittel beispielsweise Aldehyde, insbesondere reduzierende Zucker oder Formaldehyd als Reduktionsmittel zusetzen. Wählt man beispielsweise Nickel als weiteres Metall, so kann man beispielsweise Alkalihypophosphit, insbesondere NaH2PO2.2H2O, oder Boranate, insbesondere NaBH4, als Reduktionsmittel zusetzen.
  • In einer anderen Ausführungsform, im Folgenden auch als Schritt (C2) bezeichnet, der vorliegenden Erfindung geht man so vor, dass man in Schritt (C2) mit externer Spannungsquelle arbeitet und dass das weitere Metall in Schritt (C2) in der elektrochemischen Spannungsreihe der Elemente in saurer oder alkalischer Lösung ein stärker oder schwächer positives Normalpotenzial aufweisen kann als Metall, das Metallpulver (a) zugrunde liegt. Vorzugsweise kann man dazu als Metallpulver (a) Carbonyleisenpulver und als weiteres Metall Nickel, Zink oder insbesondere Kupfer wählen. Dabei beobachtet man für den Fall, dass das weitere Metall in Schritt (C2) in der elektrochemischen Spannungsreihe der Elemente ein stärker positives Normalpotenzial aufweist als Wasserstoff und als Metall, das Metallpulver (a) zugrunde liegt, dass zusätzlich weiteres Metall in Analogie zu Schritt (C1) abgeschieden wird.
  • Zur Durchführung von Schritt (C2) kann man beispielsweise einen Strom mit einer Stärke im Bereich von 10 bis 100 A, bevorzugt 12 bis 50 A anlegen.
  • Zur Durchführung von Schritt (C2) kann man beispielsweise über einen Zeitraum von 1 bis 160 Stunden unter Verwendung einer externen Spannungsquelle arbeiten.
  • In einer Ausführungsform der vorliegenden Erfindung kombiniert man Schritt (C1) und Schritt (C2) in der Weise, dass man zunächst ohne und danach mit externer Spannungsquelle arbeitet und dass das weitere Metall in Schritt (C) in der elektrochemischen Spannungsreihe der Elemente ein stärker positives Normalpotenzial aufweist kann als Metall, das Metallpulver (a) zugrunde liegt.
  • In einer Ausführungsform der vorliegenden Erfindung setzt man der Lösung von weiterem Metall einen oder mehrere Hilfsstoffe zu. Als Hilfsstoffe seien beispielhaft genannt: Puffer, Tenside, Polymere, insbesondere partikelförmige Polymere, deren Partikeldurchmesser im Bereich von 10 nm bis 10 µm liegt, Entschäumer, ein oder mehrere organische Lösungsmittel, ein oder mehrere Komplexbildner.
  • Besonders geeignete Puffer sind Essigsäure/Acetat-Puffer.
  • Besonders geeignete Tenside sind gewählt aus kationischen, anionischen und insbesondere nicht-ionischen Tensiden.
  • Als kationische Tenside seien beispielhaft genannt: einen C6-C18-Alkyl-, -Aralkyl- oder heterocyclischen Rest aufweisende primäre, sekundäre, tertiäre oder quartäre Ammoniumsalze, Alkanolammoniumsalze, Pyridiniumsalze, Imidazoliniumsalze, Oxazoliniumsalze, Morpholiniumsalze, Thiazoliniumsalze sowie Salze von Aminoxiden, Chinoliniumsalze, Isochinoliniumsalze, Tropyliumsalze, Sulfoniumsalze und Phosphoniumsalze. Beispielhaft genannt seien Dodecylammoniumacetat oder das entsprechende Hydrochlorid, die Chloride oder Acetate der verschiedenen 2-(N,N,N-Trimethylammonium)ethylparaffinsäureester, N-Cetylpyridiniumchlorid, N-Laurylpyridiniumsulfat sowie N-Cetyl-N,N,N-trimethylammoniumbromid, N-Dodecyl-N,N,N-trimethylammoniumbromid, N,N-Distearyl-N,N-dimethylammoniumchlorid sowie das Gemini-Tensid N,N'-(Lauryldimethyl)ethylendiamindibromid.
  • Beispiele für geeignete anionische Tenside sind Alkalimetall- und Ammoniumsalze von Alkylsulfaten (Alkylrest: C8 bis C12), von Schwefelsäurehalbestern ethoxylierter Alkanole (Ethoxylierungsgrad: 4 bis 30, Alkylrest: C12-C18) und ethoxylierter Alkylphenole (Ethoxylierungsgrad: 3 bis 50, Alkylrest: C4-C12), von Alkylsulfonsäuren (Alkylrest: C12-C18), von Alkylarylsulfonsäuren (Alkylrest: C9-C18) und von Sulfosuccinaten wie beispielsweise Sulfobernsteinsäuremono- oder diestern. Bevorzugt sind aryl- oder alkylsubstituierte Polyglykolether, weiterhin Substanzen, die in US 4,218,218 beschrieben sind, und Homologe mit y (aus den Formeln aus US 4,218,218 ) im Bereich von 10 bis 37.
  • Besonders bevorzugt sind nichtionische Tenside wie beispielsweise ein- oder vorzugsweise mehrfach alkoxylierte C10-C30-Alkanole, bevorzugt mit drei bis hundert Mol C2-C4-Alkylenoxid, insbesondere Ethylenoxid alkoxylierte Oxo- oder Fettalkohole.
  • Geeignete Entschäumer sind beispielsweise silikonhaltige Entschäumer wie beispielsweise solche der Formel HO-(CH2)3-Si(CH3)[OSi(CH3)3]2 und HO-(CH2)3-Si(CH3)[OSi(CH3)3][OSi(CH3)2OSi(CH3)3], nicht alkoxyliert oder mit bis zu 20 Äquivalenten Alkylenoxid und insbesondere Ethylenoxid alkoxyliert. Auch Silikon-freie Entschäumer sind geeignet wie beispielsweise mehrfach alkoxylierte Alkohole, z.B. Fettalkoholalkoxylate, bevorzugt 2 bis 50-fach ethoxylierte vorzugsweise unverzweigte C10-C20-Alkanole, unverzweigte C10-C20-Alkanole und 2-Ethylhexan-1-ol. Weitere geeignete Entschäumer sind Fettsäure-C8-C20-alkylester, bevorzugt Stearinsäure-C10-C20-alkylester, bei denen C8-C20-Alkyl, bevorzugt C10-C20-Alkyl unverzweigt oder verzweigt sein kann.
  • Geeignete Komplexbildner sind solche Verbindungen, die Chelate bilden. Bevorzugt sind solche Komplexbildner, die gewählt sind aus Aminen, Diaminen und Triaminen, die mindestens eine Carbonsäuregruppe tragen. Beispielhaft seien Nitrilotriessigsäure, Ethylendiamintetraessigsäure und Diethylenpentaaminpentaessigsäure sowie die korrespondierenden Alkalimetallsalze genannt.
  • In einer Ausführungsform der vorliegenden Erfindung scheidet man so viel weiteres Metall ab, dass man eine Schichtdicke im Bereich von 100 nm bis 500 µm, bevorzugt von 1 µm bis 100 µm, besonders bevorzugt 2 µm bis 50 µm erzeugt.
  • Bei der Durchführung von Schritt (C) wird Metallpulver (a) in den meisten Fällen partiell oder vollständig durch weiteres Metall ersetzt, wobei die Morphologie von weiterem abgeschiedenen Metall nicht identisch mit der Morphologie von Metallpulver (a) zu sein braucht.
  • Nach der Beendigung des Abscheidens von weiterem Metall (C) erhält man erfindungsgemäße metallisierte textile Oberflächen. Man kann erfindungsgemäße metallisierte textile Oberflächen noch ein- oder mehrmals spülen, beispielsweise mit Wasser.
  • Zur Herstellung von beispielsweise solchen erfindungsgemäßen metallisierten textilen Oberflächen, die zur Herstellung von Anzeigeeinrichtungen verwendet werden sollen, kann man noch an den Enden auf an sich bekannte Weise Stromkabel befestigen, beispielsweise anlöten.
  • In einer Ausführungsform der vorliegenden Erfindung kann man einen oder mehrere thermische Behandlungsschritte (D) im Anschluss an Schritt (A), an Schritt (B) oder an Schritt (C) durchführen. Dabei werden im Rahmen der vorliegenden Erfindung unmittelbar nach Schritt (A) durchgeführte thermische Behandlungsschritte auch als thermische Behandlungsschritte (D1) bezeichnet, unmittelbar nach Schritt (B) durchgeführte thermische Behandlungsschritte auch als thermische Behandlungsschritte (D2) und nach Schritt (C) durchgeführte thermische Behandlungsschritte auch als thermische Behandlungsschritte (D3).
  • Wünscht man mehrere thermische Behandlungsschritte durchzuführen, so kann man die verschiedenen thermischen Behandlungsschritte bei der gleichen oder vorzugsweise bei verschiedenen Temperaturen durchführen.
  • In Schritt (D) bzw. jedem einzelnen Schritt (D) kann man beispielsweise bei Temperaturen im Bereich von 50 bis 200°C behandeln. Dabei ist darauf zu achten, dass durch die thermische Behandlung nach Schritt (D) das Material, aus dem die als Ausgangsmaterial eingesetzte textile Oberfläche besteht, nicht erweichen oder gar schmelzen darf. Man bleibt also in jedem Falle mit der Temperatur unter dem Erweichungs- oder Schmelzpunkt des betreffenden textilen Materials, oder man wählt die Dauer der thermischen Behandlung so kurz, dass ein Erweichen oder gar Schmelzen noch nicht stattfindet.
  • In Schritt (D) bzw. jedem einzelnen Schritt (D) kann man beispielsweise über einen Zeitraum von 10 Sekunden bis 15 Minuten, bevorzugt 30 Sekunden bis 10 Minuten behandeln.
  • Besonders bevorzugt behandelt man in einem ersten Schritt (D1) bei Temperaturen im Bereich von beispielsweise 50 bis 110°C über einen Zeitraum von 30 Sekunden bis 3 Minuten und in einem zweiten Schritt (D2) anschließend bei Temperaturen im Bereich von 130°C bis 200°C über einen Zeitraum von 30 Sekunden bis 15 Minuten.
  • Man kann Schritt (D) bzw. jeden einzelnen Schritt (D) in an sich bekannten Geräten durchführen, zum Beispiel in Trockenschränken, Spannrahmen oder Vakuumtrockenschränken.
  • In einer bevorzugten Ausführungsform der vorliegenden Erfindung führt man vor Schritt (B) einen weiteren Schritt (E) durch. Zur Durchführung von Schritt (E) scheidet man an einigen Stellen auf der nach Schritt (A) mit Metallpulver (a) versehenen textilen Oberfläche eine Mischung ab, die ebenfalls ein Metall in vorzugsweise Pulverform enthält, das verschieden von Metallpulver (a) sein kann oder vorzugsweise gleich ist.
  • In einer Ausführungsform des erfindungsgemäßen Verfahrens scheidet man in Schritt (E) an mindestens zwei bedruckten Stellen eine Mischung ab, die ebenfalls Metallpulver (a) enthält. Dabei kann es sich bei der Mischung, die ebenfalls Metallpulver (a) enthält, um weitere Druckformulierung und insbesondere Druckpaste handeln, wie sie auch in Schritt (A) eingesetzt wurde, oder aber um eine Mischung, die weitere Bestandteile enthält. In einer dritten Ausführungsform von Schritt (E) handelt es sich bei der Mischung, die ebenfalls Metallpulver (a) enthält, um eine Zubereitung, die Lötzinn enthält.
  • In einer Ausführungsform der vorliegenden Erfindung scheidet man in Schritt (E) so viel Mischung ab, die Metall enthält, dass die Schichtdicke von Metall im Bereich von 2 bis 200 mal so dick ist wie die Schichtdicke von Metallpulver (a) aus Schritt (A).
  • In einer Ausführungsform der vorliegenden Erfindung scheidet man in Schritt (E) so viel Mischung ab, die Metallpulver (a) enthält, dass die Schichtdicke von Metallpulver (a) auf der textilen Oberfläche im Bereich von 0,1 bis 5 mm beträgt.
  • In einer Ausführungsform der vorliegenden Erfindung unterscheidet sich Metallpulver (a) aus Schritt (A) von Metallpulver (a) aus Schritt (E), vorzugsweise durch den mittleren Partikeldurchmesser.
  • In einer bevorzugten Ausführungsform der vorliegenden Erfindung sind Metallpulver (a) aus Schritt (A) und Schritt (E) jeweils gleich.
  • In einer Ausführungsform der vorliegenden Erfindung führt man ein so genanntes "dot printing" durch.
  • Nach der Durchführung von Schritt (E) kann man Schritt (D) wiederholen. Es ist jedoch bevorzugt, unmittelbar nach der Durchführung von Schritt (E) auf eine thermische Behandlung (D) zu verzichten und sofort Schritt (B) durchzuführen.
  • In einer speziellen Ausführungsform der vorliegenden Erfindung führt man nach Schritt (C) mindestens einen weiteren Schritt aus, gewählt aus
    • (F) Aufbringen einer korrosionsinhibierenden Schicht oder
    • (G) Aufbringen einer flexiblen Schicht,
    wobei die korrosionsinhibierende Schicht starr, beispielsweise nicht biegsam, oder flexibel sein kann.
  • Als korrosionsinhibierende Schichten sind beispielsweise Schichten aus einem oder mehreren der folgenden Materialien zu nennen: Wachse, insbesondere Polyethylenwachse, Lacke, beispielsweise Wasserbasislacke, 1,2,3-Benzotriazol und Salze, insbesondere Sulfate und Methosulfate von quaternierten Fettaminen, beispielsweise Lauryl/Myristyl-trimethylammoniummethosulfat.
  • Als flexible Schichten sind beispielsweise Folien, insbesondere Polymerfolien, beispielsweise aus Polyester, Polyvinylchlorid, thermoplastischem Polyurethan (TPU) oder insbesondere Polyolefinen wie beispielsweise Polyethylen oder Polypropylen zu nennen, wobei unter Polyethylen und Polypropylen jeweils auch Copolymere von Ethylen bzw. Propylen zu verstehen sind.
  • In einer anderen Ausführungsform der vorliegenden Erfindung bringt man als flexible Schicht ein Bindemittel (b2) auf, das gleich oder verschieden von gegebenenfalls aufgedrucktem Bindemittel (b1) aus Schritt (A) sein kann.
  • Das Aufbringen kann jeweils erfolgen durch Auflaminieren, Aufkleben, Verschweißen, Aufrakeln, Drucken, Sprühen oder Gießen.
  • Wenn man in Schritt (G) ein Bindemittel aufgebracht hat, so kann man danach erneut gemäß Schritt (D) thermisch behandeln.
  • Ein weiterer Gegenstand der vorliegenden Erfindung sind metallisierte textile Oberflächen, erhältlich nach dem vorstehend beschriebenen Verfahren. Erfindungsgemäße metallisierte textile Oberflächen lassen sich nicht nur gut und gezielt herstellen, so kann man beispielsweise durch die Art des aufgedruckten Musters von Metallpulver (a) und durch die Menge an abgeschiedenem weiteren Metall beispielsweise die Flexibilität und die elektrische Leitfähigkeit gezielt beeinflussen. Erfindungsgemäße metallisierte textile Oberflächen sind vielseitig einsetzbar, beispielsweise als Bestandteil bzw. zur Herstellung
    • von Textilien, die Strom in Wärme umwandeln,
    • von Textilien, die elektrische Felder abschirmen können,
    • von Textil-integrierter Elektronik,
    • von Anzeigeeinrichtungen,
    • von Dachhimmeln von Fahrzeugen, insbesondere von Automobilen, und
    • von Textilien, die durch Photovoltaik Strom erzeugen können.
  • In einer Ausführungsform der vorliegenden Erfindung weisen erfindungsgemäße mit einem Linien- oder Streifenmuster bedruckte metallisierte textile Oberflächen einen spezifischen Widerstand im Bereich von 1 mΩ/cm2 bis 1 MΩ/cm2 bzw. im Bereich von 1 µΩ/cm bis 1 MΩ/cm auf, gemessen bei Zimmertemperatur und entlang der betreffenden Streifen bzw. Linien.
  • In einer Ausführungsform der vorliegenden Erfindung umfassen erfindungsgemäße mit einem Linien- oder Streifenmuster bedruckte metallisierte textile Oberflächen mindestens zwei Kabel, die an den jeweiligen Enden von Linien oder Streifen auf an sich bekannte Weise befestigt sind, beispielsweise angelötet.
  • Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung von erfindungsgemäßen metallisierten textilen Oberflächen als Textilien, die Strom in Wärme umwandeln, als Textilien, die elektrische Felder abschirmen können, als Textilintegrierte Elektronik, als Anzeigeeinrichtungen, als Dachhimmel von Fahrzeugen und als Textilien, die Strom erzeugen können, beispielsweise durch Photovoltaik.
  • Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung von vorstehend beschriebenen metallisierten textilen Oberflächen zur Herstellung von Textilien, die Strom in Wärme umwandeln, von Textilien, die elektrische Felder abschirmen können, von Textil-integrierter Elektronik, von Anzeigeeinrichtungen, von Dachhimmein von Fahrzeugen und von Textilien, die Strom erzeugen können, beispielsweise durch Photovoltaik.
  • Ein weiterer Gegenstand der vorliegenden Erfindung sind Textilien, die Strom in Wärme umwandeln, Textilien, die elektrische Felder abschirmen können, Textil-integrierte Elektronik, Anzeigeeinrichtungen, Dachhimmel von Fahrzeugen und Textilien, die Strom erzeugen können, beispielsweise durch Photovoltaik, hergestellt unter Verwendung von Gegenständen mit erfindungsgemäßer metallisierter Oberfläche.
  • Beispiele für Textil-integrierte Elektronik sind mit Textil integrierte Sensoren, Transistoren, Chips, LED's (Licht-emittierende Dioden, englisch: light emitting diodes), Solarmodule, Solarzellen und Peltier-Elemente. So sind Textilien wie insbesondere Textil integrierte Sensoren beispielsweise geeignet, um die Körperfunktionen von Säuglingen oder älteren Menschen zu überwachen. Geeignete Anwendungen sind weiterhin Warnbekleidung wie z. B. Warnwesten. Weitere Anwendungen sind Antennen zum Beispiel in Transpondern, die in RFID-Etiketten eingebaut sein können, textilintegrierte Chipkartenmodule, die Verwendung als Flachkabel, Sitzheizungen, Folienleiter, zur Herstellung von LCD- bzw. Plasmabildschirmen oder zur Herstellung von ein- oder zweiseitig metallkaschierten Textilien, Fußboden, Wand- oder Deckenbeleuchtung oder als dekorative Anwendungen aller Art (z.B. im Textil- oder Verpackungsbereich, aber auch zur Dekoration von z.B. Stofftaschen oder Schuhen.
  • Gegenstand der vorliegenden Erfindung sind weiterhin Verfahren zur Herstellung von solchen Textilien, die Strom in Wärme umwandeln, weiterhin von solchen Textil-integrierter Elektronik unter Verwendung von erfindungsgemäßen metallisierten textilen Oberflächen. Erfindungsgemäße Verfahren zur Herstellung von solchen Textilien, die Strom in Wärme umwandeln, unter Verwendung von erfindungsgemäßen metallisierten textilen Oberflächen kann man beispielsweise so durchführen, dass man Textilien mit erfindungsgemäß metallisierten Oberflächen konfektioniert.
  • Die Erfindung wird durch Arbeitsbeispiele erläutert.
  • I. Herstellung einer Druckpaste
  • Man verrührte miteinander:
    • 54 g Wasser
    • 750 g Carbonyleisenpulver, d10 3 µ, d50 4,5 µm, d90 9 µm, passiviert mit einer mikroskopisch dünnen Eisenoxidschicht.
    • 125 g einer wässrigen Dispersion, pH-Wert 6,6, Feststoffgehalt 39,3 Gew.-%, eines statistischen Emulsionscopolymerisats von
    • 1 Gew.-Teil N-Methylolacrylamid, 1 Gew.-Teil Acrylsäure, 28,3 Gew.-Teile Styrol, 69,7 Gew.-Teilen n-Butylacrylat, Angaben in Gew.-Teilen sind jeweils bezogen auf gesamten Feststoff, mittlerer Partikeldurchmesser (Gewichtsmittel) 172 nm, bestimmt durch Coulter Counter, Tg: - 19°C (Bindemittel b.1)
      dynamische Viskosität (23°C) 70 mPa·s,
    • 20 g Verbindung der Formel
      Figure imgb0002
    • 20 g einer 51 Gew.-% Lösung eines Umsetzungsprodukts von Hexamethylendiisocyanat mit n-C18H37(OCH2CH2)15OH in Isopropanol/Wasser (Volumenanteile 2:3)
  • Man rührte über einen Zeitraum von 20 Minuten mit 5000 U/min (Ultra-Thurrax). Man erhielt eine Druckpaste mit einer dynamischen Viskosität von 30 dPa·s bei 23°C, gemessen mit einem Rotationsvikosimeter nach Haake.
  • II. Bedrucken von Textil, Schritt (A), und thermische Behandlung, Schritt (D1)
  • Man bedruckte mit Druckpaste aus I. ein Polyestervlies, Flächengewicht 90 g/m2 - mit einem Sieb, mesh 80 mit einem Streifenmuster. Das Muster findet sich in Abb. 1 als schematische Abbildung.
  • Anschließend trocknete man in einem Trockenschrank über einen Zeitraum von 10 Minuten bei 100°C. Man erhielt bedrucktes und thermisch behandeltes Polyestervlies.
  • III. Versehen mit einer Mischung, die Metallpulver (a1) enthält, Schritt (E), und Fixieren von Artikeln, die elektrischen Strom benötigen, Schritt (B)
  • Man verdruckte erneut Druckpaste aus I., und zwar in Form von kleinen Kreisen mit einem Durchmesser von 2 mm auf das unter II. gedruckte Muster.
  • Anschließend verteilte man per Hand licht-emittierende Dioden des Typs "Everlight model 67-22SURSYGC S530-A2/TR8 device number: DSE-672-025 der Fa. Everlight Electronics Co., Ltd. in rot und grün (SUR Typ AlGalnP für rote Licht-emittierende Dioden, SYR Typ AlGalnP für gelbe Licht-emittierende Dioden), Format: 3,2 mm . 2,7 mm.
  • IV. Abscheiden eines weiteren Metalls, Schritt (C) IV.1 Abscheiden von Kupfer ohne externe Spannungsquelle
  • Bedrucktes und thermisch behandeltes Polyestervlies aus III. wurde über einen Zeitraum von 10 Minuten in einem Bad (Zimmertemperatur) behandelt, das wie folgt zusammengesetzt war:
    • 1,47 kg CuSO4·5 H2O
    • 382 g H2SO4
    • 5,1 I destilliertes Wasser
    • 1,1 g NaCl
    • 5 g C13/C15-Alkyl-O-(EO)10(PO)5-CH3
    • (EO: CH2-CH2-O, PO: CH2-CH(CH3)-O)
  • Man entnahm das Polyestervlies, spülte zweimal unter fließendem Wasser und trocknete bei 90°C über einen Zeitraum von einer Stunde.
  • Man erhielt erfindungsgemäßes metallisiertes Polyestervlies PES-1.
  • V. Beschichten mit einer flexiblen Schicht
  • Man verrührte miteinander:
    • 260 g Wasser
    • 700 g einer wässrigen Dispersion, pH-Wert 7,0, Feststoffgehalt 55 Gew.-%, eines statistischen Emulsionscopolymerisats von
    • 1 Gew.-Teil N-Methylolacrylamid, 1 Gew.-Teil Acrylsäure, 28,3 Gew.-Teile Styrol, 69,7 Gew.-Teile n-Butylacrylat, Angaben in Gew.-Teilen sind jeweils bezogen auf gesamten Feststoff, mittlerer Partikeldurchmesser (Gewichtsmittel) 172 nm, bestimmt durch Coulter Counter, Tg: - 19°C (Bindemittel b.2)
      dynamische Viskosität (23°C) 70 mPa·s,
    • 20 g Verbindung der Formel
      Figure imgb0003
    • 20 g einer 51 Gew.-% Lösung eines Umsetzungsprodukts von Hexamethylendiisocyanat mit n-C18H37(OCH2CH2)15OH in Isopropanol/Wasser (Volumenanteile 2:3)
  • Man rührte über einen Zeitraum von 20 Minuten mit 5000 U/min (Ultra-Thurrax). Man erhielt eine Druckpaste mit einer dynamischen Viskosität von 30 dPa·s bei 23°C, gemessen mit einem Rotationsvikosimeter nach Haake.
  • Die metallisierte textile Oberflächen aus IV. wurde mit Hilfe einer Luftrakel, Auftraggeschwindigkeit 20 m/min, mit einer Aufnahme von 300 g/m2 beschichtet.

Claims (13)

  1. Verfahren zur Herstellung einer metallisierten textilen Oberfläche, die einen oder mehrere Artikel aufweist, die elektrischen Strom benötigen oder erzeugen, dadurch gekennzeichnet, dass man
    (A) auf eine textile Oberfläche musterförmig oder flächig eine Formulierung aufbringt, die als Komponente mindestens ein Metallpulver (a) enthält,
    (B) an mindestens zwei Stellen, an denen in Schritt (A) Formulierung aufgebracht wurde, mindestens einen Artikel fixiert, der elektrischen Strom benötigt oder erzeugt,
    (C) ein weiteres Metall auf der textilen Oberfläche abscheidet.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die in Schritt (A) eingesetzte Formulierung enthält:
    (a) mindestens ein Metallpulver,
    (b) mindestens ein Bindemittel,
    (c) mindestens einen Emulgator,
    (d) gegebenenfalls mindestens einen Rheologiemodifizierer.
  3. Verfahren nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass man in Schritt (A) eine Druckformulierung aufdruckt, die mindestens ein Metallpulver (a) enthält.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass man einen oder mehrere thermische Behandlungsschritte (D) im Anschluss an Schritt (A), (B) oder (C) durchführt.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass es sich bei Metallpulver (a) um solches handelt, dass man durch thermische Zersetzung von Eisenpentacarbonyl gewonnen hat.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass man in Schritt (C) ohne externe Spannungsquelle arbeitet und dass das weitere Metall in Schritt (C) in der elektrochemischen Spannungsreihe der Elemente ein stärker positives Normalpotenzial aufweist als Metall, das Metallpulver (a) zugrunde liegt.
  7. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass man in Schritt (C) mit externer Spannungsquelle arbeitet und dass das weitere Metall in Schritt (C) in der elektrochemischen Spannungsreihe der Elemente ein stärker oder schwächer positives Normalpotenzial aufweist als Metall, das Metallpulver (a) zugrunde liegt.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass man Artikel, die elektrischen Strom benötigen oder erzeugen, wählt aus Licht emittierenden Dioden, flüssigkristallinen Anzeigeelementen, Peltierelementen, Transistoren, elektrochromen Farbstoffen, elektromechanischen Elementen und Solarzellen.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass man Emulgator (c) wählt aus nichtionischen Emulgatoren.
  10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass man nach Schritt (C) mindestens einen weiteren Schritt ausführt, gewählt aus (F) eine korrosionsinhibierende Schicht aufbringt,
    (G) eine flexible Schicht aufbringt,
    wobei die korrosionshemmende Schicht flexibel oder starr sein kann.
  11. Metallisierte textile Oberflächen, erhältlich nach einem Verfahren nach einem der Ansprüche 1 bis 10.
  12. Verwendung von metallisierten textilen Oberflächen nach Anspruch 11 als oder zur Herstellung von Textilien, die Strom in Wärme umwandeln, von Textilien, die elektrische Felder abschirmen können, von Textil-integrierter Elektronik, von Anzeigeeinrichtungen, von Dachhimmeln von Fahrzeugen und von Textilien, die Strom erzeugen können.
  13. Textilien, die Strom in Wärme umwandeln, Textilien, die elektrische Felder abschirmen können, Textil-integrierte Elektronik, Anzeigeeinrichtungen, Dachhimmel von Fahrzeugen und Textilien, die Strom erzeugen können, hergestellt unter Verwendung von metallisierten textilen Oberflächen nach Anspruch 11.
EP08716930A 2007-02-20 2008-02-19 Verfahren zur herstellung von metallisierten textilen oberflächen mit strom erzeugenden oder strom verbrauchenden artikeln Not-in-force EP2126190B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08716930A EP2126190B1 (de) 2007-02-20 2008-02-19 Verfahren zur herstellung von metallisierten textilen oberflächen mit strom erzeugenden oder strom verbrauchenden artikeln

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP07102689 2007-02-20
EP08716930A EP2126190B1 (de) 2007-02-20 2008-02-19 Verfahren zur herstellung von metallisierten textilen oberflächen mit strom erzeugenden oder strom verbrauchenden artikeln
PCT/EP2008/051979 WO2008101917A1 (de) 2007-02-20 2008-02-19 Verfahren zur herstellung von metallisierten textilen oberflächen mit strom erzeugenden oder strom verbrauchenden artikeln

Publications (2)

Publication Number Publication Date
EP2126190A1 EP2126190A1 (de) 2009-12-02
EP2126190B1 true EP2126190B1 (de) 2010-07-14

Family

ID=39437682

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08716930A Not-in-force EP2126190B1 (de) 2007-02-20 2008-02-19 Verfahren zur herstellung von metallisierten textilen oberflächen mit strom erzeugenden oder strom verbrauchenden artikeln

Country Status (8)

Country Link
US (1) US8637789B2 (de)
EP (1) EP2126190B1 (de)
CN (1) CN101617079B (de)
AT (1) ATE474080T1 (de)
DE (1) DE502008000952D1 (de)
ES (1) ES2347734T3 (de)
TW (1) TWI377278B (de)
WO (1) WO2008101917A1 (de)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007055725A1 (de) * 2007-12-06 2009-06-10 Basf Se Mehrlagiges Material, umfassend mindestens zwei metallisierte Schichten auf mindestens einem Textil, und Verfahren zu seiner Herstellung
ES2556334T3 (es) * 2009-12-14 2016-01-15 Basf Se Procedimiento para la producción de superficies metalizadas, superficie metalizada y su uso
US8882285B2 (en) * 2011-01-18 2014-11-11 Desmond Walsh Illuminating safety glove
US8854275B2 (en) 2011-03-03 2014-10-07 Tangitek, Llc Antenna apparatus and method for reducing background noise and increasing reception sensitivity
US9055667B2 (en) 2011-06-29 2015-06-09 Tangitek, Llc Noise dampening energy efficient tape and gasket material
DE102011104868A1 (de) * 2011-06-22 2012-12-27 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Arbeitshandschuh und Werkzeug mit optischer Gefährdungsanzeige
US8658897B2 (en) * 2011-07-11 2014-02-25 Tangitek, Llc Energy efficient noise dampening cables
KR20140050393A (ko) 2012-10-19 2014-04-29 삼성전자주식회사 직물 기반의 신축성있는 에너지 제너레이터
KR101321017B1 (ko) * 2013-05-08 2013-10-23 고경찬 광발열 섬유시트
CN103485171B (zh) * 2013-09-22 2015-06-24 武汉纺织大学 一种织物化学镀的无钯喷雾活化方法
US10299520B1 (en) * 2014-08-12 2019-05-28 Apple Inc. Fabric-based items with environmental control elements
WO2016126212A1 (en) * 2015-02-04 2016-08-11 Agency For Science, Technology And Research A process for plating a metal on a textile fiber
US10201194B2 (en) 2015-05-11 2019-02-12 Te Connectivity Corporation Process of applying a conductive composite, transfer assembly having a conductive composite, and a garment with a conductive composite
US20170021380A1 (en) 2015-07-21 2017-01-26 Tangitek, Llc Electromagnetic energy absorbing three dimensional flocked carbon fiber composite materials
US11028506B2 (en) 2017-12-26 2021-06-08 GM Global Technology Operations LLC Active textile structures with selectively variable surface friction characteristics
US10883205B2 (en) 2017-12-26 2021-01-05 GM Global Technology Operations LLC Technical knit archtectures for comfort seating
US10518080B2 (en) 2017-12-26 2019-12-31 GM Global Technology Operations LLC Motion sickness mitigation device
US10982358B2 (en) 2017-12-26 2021-04-20 GM Global Technology Operations LLC Multi-functional knitted textiles
US10556556B2 (en) 2017-12-26 2020-02-11 GM Global Technology Operations LLC Deployable textile structures with multiple-stable-state characteristics
US10808339B2 (en) 2017-12-26 2020-10-20 GM Global Technology Operations LLC Knitted structures for heat generation and distribution
US10695565B2 (en) 2018-10-16 2020-06-30 GM Global Technology Operations LLC System and method to mitigate motion sickness or emesis in a vehicle
TR201919903A1 (tr) * 2019-12-11 2021-06-21 Almaxtex Tekstil Sanayi Ve Ticaret Anonim Sirketi Elektri̇ksel i̇letkenli̇k sağlayan bi̇r baski pati

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2640971A1 (de) * 1976-09-11 1978-03-16 Philips Patentverwaltung Verfahren zur richtungserkennung und -anzeige von streckengebundenen fahrzeugen
US4218218A (en) 1977-10-08 1980-08-19 Basf Aktiengesellschaft Stable finely dispersed aqueous formulations of disperse dyes and optical brighteners, and their use
JPS58142842A (ja) 1982-02-19 1983-08-25 アイコ−株式会社 電解メツキ層を有する非電導体
US4480061A (en) 1982-12-28 1984-10-30 E. I. Du Pont De Nemours And Company Wood-like articles made from cellulosic filler loaded ethylene interpolymers
DE3433437A1 (de) 1984-09-12 1986-03-20 Girmes-Werke Ag, 4155 Grefrath Elektrisch beheizbares flaechengebilde
JPH0237117B2 (ja) 1986-01-14 1990-08-22 Asahi Kagaku Kenkyusho Kibannidodenkairookeiseisuruhoho
US4670351A (en) * 1986-02-12 1987-06-02 General Electric Company Flexible printed circuits, prepared by augmentation replacement process
US4863995A (en) 1987-07-16 1989-09-05 Showa Denko Kabushiki Kaisha Propylene polymer composition
KR900005308B1 (ko) 1987-12-31 1990-07-27 정풍물산 주식회사 인쇄회로기판과 그의 제조방법
DE3912298A1 (de) * 1989-04-14 1990-10-18 Basf Ag Verfahren zum entwachsen und zur verbesserung der eigenschaften spritzgegossener metallteile
US5574629A (en) * 1989-06-09 1996-11-12 Sullivan; Kenneth W. Solderless printed wiring devices
JP3528924B2 (ja) 1993-01-22 2004-05-24 ソニー株式会社 プリント配線板及びその製造方法
US5455749A (en) * 1993-05-28 1995-10-03 Ferber; Andrew R. Light, audio and current related assemblies, attachments and devices with conductive compositions
EP0702768B1 (de) * 1993-05-28 2002-11-06 FERBER, Andrew R. Licht, audio und stromähnliche zusammensetzungen, befestigungen und vorrichtungen mit leitbaren zusammensetzungen
AR001122A1 (es) 1995-03-06 1997-09-24 Akzo Nobel Nv Procedimiento de polímerizacion que utiliza una composición de peróxidos (co)polímero funcionalizadoobtenido por el proceso y uso de una composición de peróxidos
JP2764159B2 (ja) 1995-09-08 1998-06-11 株式会社ダイワ工業 メッキ層の被着方法
CN1058538C (zh) * 1995-09-15 2000-11-15 上海市纺织科学研究院 织物表面金属化处理的方法及其设备与产品
GB2320728A (en) 1996-12-30 1998-07-01 Coates Brothers Plc Depositing a metallic film involving pretreatment
US6194692B1 (en) * 1998-10-02 2001-02-27 Engelhard Corporation Electric heating sheet and method of making the same
US6093910A (en) * 1998-10-30 2000-07-25 Tachi-S Engineering, Usa Inc. Electric seat heater
US7053344B1 (en) * 2000-01-24 2006-05-30 Illinois Tool Works Inc Self regulating flexible heater
US6311350B1 (en) * 1999-08-12 2001-11-06 Ferber Technologies, L.L.C. Interactive fabric article
AU2001273816A1 (en) * 2000-03-30 2001-10-08 Aurentum Innovationstechnologien Gmbh Method of printing and corresponding print machine
DE10051850A1 (de) 2000-03-30 2001-10-11 Aurentum Innovationstechnologi Druckverfahren und Druckmaschine hierfür
SE0103740D0 (sv) * 2001-11-08 2001-11-08 Forskarpatent I Vaest Ab Photovoltaic element and production methods
US20060005876A1 (en) * 2000-04-27 2006-01-12 Russell Gaudiana Mobile photovoltaic communication facilities
WO2002064670A1 (en) 2001-02-09 2002-08-22 Forskningscenter Risø Polymer composite product, a process for the manufacture thereof and use of the product
DE10145749A1 (de) 2001-09-17 2003-04-24 Infineon Technologies Ag Verfahren zur Herstellung einer strukturierten Metallschicht auf einem Trägerkörper und Trägerkörper mit einer strukturierten Metallschicht
US6815642B2 (en) * 2001-12-19 2004-11-09 Delphi Technologies, Inc. Apparatus and method for heating a steering wheel
WO2004001775A1 (ja) 2002-06-19 2003-12-31 Matsushita Electric Industrial Co., Ltd. 柔軟性ptc発熱体とその製造方法
US6939903B2 (en) 2002-10-09 2005-09-06 Crompton Corporation Natural fiber-filled polyolefin composites
US7354656B2 (en) 2002-11-26 2008-04-08 Michigan State University, Board Of Trustees Floor covering made from an environmentally friendly polylactide-based composite formulation
US7781500B2 (en) 2003-04-14 2010-08-24 Crompton Corporation Coupling agents for natural fiber-filled polyolefins
DE10337253A1 (de) * 2003-08-13 2005-03-10 Fritz Blanke Gmbh & Co Kg Herstellung elektrisch leitfähiger, flexibler Flächengebilde
TW200521171A (en) * 2003-12-26 2005-07-01 Toshiba Kk Resin particles and resin layer containing metal micro particles, its forming method and circuit base board
US8455574B2 (en) 2004-02-19 2013-06-04 E I Du Pont De Nemours And Company Composite compositions comprising cellulose and polymeric components
WO2006131785A2 (en) * 2004-03-22 2006-12-14 W.E.T. Automotive Systems Ag Heater for an automotive vehicle and method of forming same
WO2007015448A1 (ja) 2005-08-04 2007-02-08 Toray Industries, Inc. 樹脂組成物およびそれからなる成形品
DE102005043242A1 (de) 2005-09-09 2007-03-15 Basf Ag Dispersion zum Aufbringen einer Metallschicht
DE102005062028A1 (de) * 2005-12-22 2007-06-28 Basf Ag Verfahren zur Herstellung von metallisiertem textilem Flächengebilde, metallisiertes textiles Flächengebilde und Verwendung des so hergestellten metallisierten textilen Flächengebildes
WO2007095670A1 (en) 2006-02-20 2007-08-30 Commonwealth Scientific And Industrial Research Organisation Method and composition for priming wood and natural fibres
WO2007144322A1 (de) 2006-06-14 2007-12-21 Basf Se Verfahren zur herstellung von elektrisch leitfähigen oberflächen auf einem träger
US20090321123A1 (en) 2006-08-03 2009-12-31 BASF SE Patents, Trademarks and Lincenses Method for producing structured electrically conductive surfaces
EP2108239A1 (de) 2007-01-05 2009-10-14 Basf Se Verfahren zur herstellung von elektrisch leitfähigen oberflächen
WO2008101884A2 (de) 2007-02-20 2008-08-28 Basf Se Verfahren zur kontaktierung elektrischer bauelemente

Also Published As

Publication number Publication date
TW200900554A (en) 2009-01-01
US20110062134A1 (en) 2011-03-17
ES2347734T3 (es) 2010-11-03
CN101617079B (zh) 2012-06-27
ATE474080T1 (de) 2010-07-15
CN101617079A (zh) 2009-12-30
DE502008000952D1 (de) 2010-08-26
EP2126190A1 (de) 2009-12-02
TWI377278B (en) 2012-11-21
US8637789B2 (en) 2014-01-28
WO2008101917A1 (de) 2008-08-28

Similar Documents

Publication Publication Date Title
EP2126190B1 (de) Verfahren zur herstellung von metallisierten textilen oberflächen mit strom erzeugenden oder strom verbrauchenden artikeln
EP1966431B1 (de) Verfahren zur herstellung von metallisiertem textilem flächengebilde, metallisiertes textiles flächengebilde und verwendung des so hergestellten metallisierten textilen flächengebildes
EP2513369B1 (de) Verfahren zur herstellung von metallisierten oberflächen, metallisierte oberfläche und ihre verwendung
EP2220287B1 (de) Mehrlagiges material, umfassend mindestens zwei metallisierte schichten auf mindestens einem textil, und verfahren zu seiner herstellung
EP2191060B1 (de) Elektrisch leitfähiges, flexibles flächengebilde
EP2313265B1 (de) Mehrschichtige körper, ihre herstellung und verwendung
EP2160490B1 (de) Verfahren zur herstellung von metallisiertem textilem flächengebilde, metallisiertes textiles flächengebilde und verwendung des so hergestellten metallisierten textilen flächengebildes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090921

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502008000952

Country of ref document: DE

Date of ref document: 20100826

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2347734

Country of ref document: ES

Kind code of ref document: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101014

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100714

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100714

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100714

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100714

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101114

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100714

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100714

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101015

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100714

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100714

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100714

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: W.E.T AUTOMOTIVE SYSTEMS AG

Effective date: 20110414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100714

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100714

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100714

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100714

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502008000952

Country of ref document: DE

Effective date: 20110414

BERE Be: lapsed

Owner name: BASF SE

Effective date: 20110228

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100714

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100714

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20131015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502008000952

Country of ref document: DE

Effective date: 20131015

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160225

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160226

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170227

Year of fee payment: 10

Ref country code: SE

Payment date: 20170223

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20170224

Year of fee payment: 10

Ref country code: AT

Payment date: 20170227

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170221

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170428

Year of fee payment: 10

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 474080

Country of ref document: AT

Kind code of ref document: T

Owner name: ARCHROMA IP GMBH, CH

Effective date: 20170619

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20170331

Year of fee payment: 10

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170219

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008000952

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20180301

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 474080

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180219

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180219

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180220