EP2115815A1 - Procede de fabrication d'un cable de raccordement de poles de batterie, l'installation de mise en oeuvre et le cable obtenu - Google Patents

Procede de fabrication d'un cable de raccordement de poles de batterie, l'installation de mise en oeuvre et le cable obtenu

Info

Publication number
EP2115815A1
EP2115815A1 EP08762022A EP08762022A EP2115815A1 EP 2115815 A1 EP2115815 A1 EP 2115815A1 EP 08762022 A EP08762022 A EP 08762022A EP 08762022 A EP08762022 A EP 08762022A EP 2115815 A1 EP2115815 A1 EP 2115815A1
Authority
EP
European Patent Office
Prior art keywords
connector
bundle
diameter
cable
nominal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08762022A
Other languages
German (de)
English (en)
Inventor
Lucien Weis
Eric Mandel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Powerconn
Pulsar Ltd
Original Assignee
Powerconn
Pulsar Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Powerconn, Pulsar Ltd filed Critical Powerconn
Publication of EP2115815A1 publication Critical patent/EP2115815A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/02Soldered or welded connections
    • H01R4/023Soldered or welded connections between cables or wires and terminals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/14Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces applying magnetic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/06Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of high energy impulses, e.g. magnetic energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/02Soldered or welded connections
    • H01R4/029Welded connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/02Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for soldered or welded connections
    • H01R43/0207Ultrasonic-, H.F.-, cold- or impact welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/38Conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/11End pieces or tapping pieces for wires, supported by the wire and for facilitating electrical connection to some other wire, terminal or conductive member
    • H01R11/28End pieces consisting of a ferrule or sleeve
    • H01R11/281End pieces consisting of a ferrule or sleeve for connections to batteries

Definitions

  • the present invention relates to battery pole connecting cables which are intended to interconnect galvanic cells.
  • Such connection cables also called “cables” are intended to conduct relatively large currents (of the order of 300 Ah to 1800 Ah) and must have a low electrical resistance.
  • These cables comprise a bundle consisting of a plurality of electrical conductors son whose two ends are secured to a connector provided with an orifice, allowing the connection with one of the poles of the battery, the assembly being completely surrounded by a insulation material.
  • these connection cables have a distance between 75 and 300 mm (distance between the axis of the orifices of the two end connectors); for terminal equipment, these lengths can be between 800 mm and 1500 mm.
  • the section of the bundle of conductive wires is relatively large, between 16 mm 2 and 150 mm 2 . In particular, for stationary batteries, this section is generally between 70 and 120 mm 2 ; for traction batteries, for example forklift batteries, this section is generally between 16 and 70 mm 2 .
  • These battery pole connecting cables are special cables for the conduction of high currents. For security reasons, they need to be completely covered with an insulating material. On the other hand, the connection between the end connectors and the ends of the cable harness must be as perfect as possible in order to limit the electrical resistance and ensure good mechanical strength.
  • US-4,049,335 discloses a conventional technique for making such a battery pole connecting cable.
  • connection cable comprises a beam composed of a multiplicity of fine wires equipped at both ends with a connector provided with an orifice.
  • each connector here consists of a tubular copper sheath into which is introduced a portion of the previously partially stripped beam. Then, the copper sheath is compressed and flattened with the beam so as to assemble the two elements.
  • connection cable is then formed in the flattened zone of the copper sheath. Finally, the periphery of the orifice receives a brazing material in order to improve the assembly of the elements and the electrical conductivity.
  • the ends of the connection cable thus produced are then covered with an insulating material by a molding-injection technique.
  • the hole in the connector allows the latter to be positioned on a screw formed in the battery pole and to be pressed by means of a clamping nut.
  • the assembly between the reported connector and the fine wire bundle is not optimal.
  • the flattened portion of the cable consists of two outer material layers sandwiching the wire bundle and this non-homogeneous structure can cause loosening of the nut, particularly on non-stationary accumulators arranged in vehicles. , subjected to repetitive shaking. The end of the cable is then no longer effectively connected to the accumulator pole which leads to electrical conduction defects, and to heating sometimes up to the formation of sparks.
  • document EP-1 101 255 proposes a connection cable whose connectors are in the form of plates assembled by ultrasonic welding with the ends of the bundle son. Conventionally, the stripped ends of the fine wire bundle are then wrapped with an insulating material.
  • This technology provides different advantages over the previous one described above, in particular in terms of reduction of material, strength, electrical conductivity quality, mechanical strength over time and speed of manufacture.
  • the weld type bond by an energy supply action in the form of heat, causes the liquefaction of the two materials to be assembled, at their joint plane; and during cooling, the molten materials mix and assemble by molecular bonding.
  • this modified area is called ZAT (Zone Affectée Thermiquement).
  • ZAT Zero Affectée Thermiquement
  • the perverse effect of this ZAT is, through the modification of the metallography of the materials in this zone, to create in particular microcracks, pollution and a third type of material, resulting in: - a lowering of the mechanical characteristics the connection to the characteristics of the base material, to no longer allow any durability of these mechanical characteristics over time, by the presence of microcracks which, under the action of the stresses of the assembled components, will develop in time until they break,
  • connection cables currently on the market include a bundle of thin copper wires, associated with end connectors also in copper, because of the good electrical conductivity of this material, but what makes these connection cables relatively expensive, because of the price of copper on the market.
  • the document WO-2005/055371 describes a technical solution derived from the two aforementioned documents WO-97/22426 and WO-98/23400, applied in particular to battery cables, consisting in coating the end of the cable with a "fuse” material. conductor of electricity, before inserting this end "coated” in the cylindrical housing of the connector and implement the electromagnetic assembly technique.
  • the fuse material used eliminates the presence of air pockets and optimizes the electrical conductivity of the connection.
  • this coating consists of an additional technical operation that is costly (in terms of material cost and in terms of implementation time) that is difficult to comply with industrial requirements.
  • the method in question is characterized in that it consists of:
  • a connector which comprises a first tube-shaped portion of constant internal and external cross-section for securing it to one of said beam ends, and a second flat portion provided with an orifice adapted to be secured to the battery pole, the nominal internal diameter (d) of said tubular portion being between 1, 10 and 1, 20 times the nominal diameter (a) of said end of the wire bundle, and the nominal external diameter ( ⁇ ) of said tubular portion being between 1.45 and 1.65 times the nominal diameter (a) of said end,
  • annular electromagnetic field whose energy level is between 6 and 8 kJ, at a voltage of 5 to 7.5 kV, applied between 8 and 100 ⁇ s, so as to create magnetic forces causing the high velocity shrinkage of the diameter of at least a portion of the length of said tubular portion, by plastic deformation, to obtain the desired assembly
  • Magnetic Dispose Welding provides a very efficient connection both mechanically and electrically, very suitable for battery cables.
  • MPW Magnetic Inclusive
  • the magnetic field implemented around the parts to be assembled is specially defined and constructed for the present specific application. This field causes the creation of forces that will ensure the percussion parts to assemble at very high speed; the impact caused by this encounter leads, by its power, the atomic decohesion of the atoms of the molecules of the contact surfaces.
  • the electrons of each nucleus are torn from their orbit and reposition themselves in orbits different from those of origin. After recombination, the equilibrium and stability of the material are assured again.
  • the application time of the electromagnetic field is of the order of 80 ⁇ s.
  • the method consists in implementing an electromagnetic field by means of an installation comprising capacitors, a transformer and a solid block generating said electromagnetic field in which is formed an insertion opening of the tube of said connector; said capacitors are charged by a current of between 500 and 600 kA, to generate a current whose frequency is between 10 and 15 kH, discharged into said solid block via the transformer.
  • the electromagnetic field is generated in the opening of a solid Beryllium Copper block, its electromagnetic field application aperture having a length of between 8 and 20 mm and a circular shape with a diameter of a few tenths of a millimeter larger than the nominal outside diameter ( ⁇ ) of the tubular connector portion.
  • the invention also relates to the installation for implementing the method defined above, this installation comprising capacitors, a transformer and a solid electromagnetic field generating block, which solid block comprises a circular opening whose length is between 8 and 20 mm and which presents a circular shape whose diameter is a few tenths of a mm greater than the nominal external diameter ( ⁇ ) of said tubular connector portion.
  • the installation comprises means for discharging into the solid Beryllium Copper block, via the transformer, a frequency current of between 10 and 15 kH and generating in said massive block an electromagnetic field whose energy level is between 6 and 8 kJ under a voltage of 5 to 7.5 Kv.
  • the invention further relates to the battery pole connecting cable for connecting galvanic cells, obtained by the method defined above.
  • This cable comprises a bundle consisting of a plurality of electrical conductors son whose two ends are each secured to a connector for connection with one of the poles of the battery, which connector, also made of conductive material, comprises a first part for its attachment to the corresponding end of said beam, and a second portion, flat, provided with a hole adapted for its attachment to said battery pole, said beam and said connectors being completely surrounded by an insulating material.
  • Said first connector portion is in the general shape of a tube delimiting a cylindrical orifice in which said beam end is housed, the nominal internal diameter (d), before assembly, of the tubular part of the connector being between 1, 10 and 1 , 20 times the nominal diameter (a) of the end of the bundle of wires, the nominal external diameter ( ⁇ ) of said tubular portion being between 1.45 and 1.65 times the nominal diameter (a) of said end of beam, the wall thickness (b) of said tubular portion being of the order of 1.8 mm, and said tube being secured to said beam end by an electromagnetic assembly technique of "Magnetic Fre Welding" type - MPW.
  • This specific technique of electromagnetic assembly also very advantageously makes it possible to bond between them materials different from copper, traditionally used in the present application, and also materials of different nature.
  • the battery cable according to the invention comprises a bundle consisting of aluminum wires, associated with end connectors also made of aluminum.
  • the beam is made of copper wires, and the end connectors are made of aluminum.
  • FIG. 1 is a general perspective view of a plurality of batteries connected to each other in parallel by means of connecting cables according to the invention
  • FIG. 2 is a perspective view of one end of a connecting cable according to the invention, during manufacture, before assembling the end connector with the stripped end of the son of conductor bundle;
  • Figure 3 is a sectional view along 3-3 of Figure 2;
  • FIG. 4 is a schematic view illustrating the application of the electromagnetic field to assemble the connector and the end of the bundle of conductive wires
  • FIG. 5 is a perspective view of the end of the connection cable shown in FIG. 2, after implementation of the electromagnetic field and assembly of the connector with the end of the bundle of conductive wires;
  • Figure 6 is a sectional view along 6-6 of Figure 5;
  • FIG. 7 is a perspective view of the connection cable consisting of the bundle of conductive wires at the stripped ends of which the two connectors are fixed, before coating of the latter with an insulating material;
  • FIG. 8 is a perspective view of the connecting cable of Figure 7, after embedding the end connectors by the insulating material.
  • FIG. 1 shows a plurality of batteries 1 connected in parallel by connection cables 2 (or cables) according to the present invention, each consisting of a bundle of conducting wires 3 at both ends of which connector members 4 are fixed.
  • the connector members 4 are provided with an orifice 5 enabling them to be connected to the poles in the form of threaded holes in the batteries 1, by means of screws 7.
  • connection cables 2 The manufacture of the connection cables 2 according to the invention is described below in conjunction with FIGS. 2 to 8.
  • an insulating material 9 for example a plastic PVC or rubber
  • each of these stripped ends 8 is introduced into the tubular portion 10 of a previously prepared end connector 4; the bundle end 8 / tubular connector 10 4 is then subjected to the action of a annular electromagnetic field adapted to assemble them (FIGS. 4, 5 and 6); and finally the ends of cables thus obtained are coated with an insulating material ( Figures 7 and 8).
  • the insulated beam 3 comprises a multiplicity of fine wires of conductive material, for example copper or aluminum.
  • the beam 3 may consist of a multiplicity of purposes son each having a diameter of between 20/100 and 60/100 th of th mm.
  • a multiplicity of purposes son each having a diameter of between 20/100 and 60/100 th of th mm.
  • wires having a diameter of 20/100 th of mm approximately:
  • Each connector 4 is also made of conductive material, for example copper or aluminum.
  • This connector 4 comprises a first tubular portion 10 delimiting a cylindrical orifice 1 1, for its attachment to one of the stripped ends of the bundle 3, and a second flat portion 12, integrally formed with the first part 1 1, provided with the orifice 5 for its attachment to the pole of the battery 1.
  • the nominal internal diameter d of the tubular portion 10 of the connector 4, before assembly with the stripped end 8 of the bundle of conductive wires 3 is between 1, 10 and 1, 20 times the nominal diameter a of the denuded end 8 said bundle of wires 3 (FIG. 3);
  • the nominal external diameter p of said tubular connector portion 4 is between 1.45 and 1.65 times the nominal diameter a of said beam 3, and
  • the thickness of the tubular portion 10 of the connector 4 is of the order of 1.8 mm, regardless of the section of said bundle of conductive wires 3.
  • the stripped end 8 of the bundle 3 is driven as far as possible into the cylindrical orifice 1 1 of the tubular portion 10 of the connector 4, the length of which is between 5 and 20 mm (advantageously of the order of 8 to 10 mm). , and the electromagnetic assembly field is applied annularly over all or substantially the entire length of the tubular portion 10 of the connector 4 ( Figure 4).
  • the assembly technique by "Magnetic Inc. Welding - MPW" uses a solid block pierced, producing a very powerful and very short electromagnetic field to generate mechanical forces capable of causing a cold deformation of a metallic material
  • an "MPW” machine essentially comprises a generator 13 associated with a set of capacitors 14, a transformer (not shown) and a solid block 15 in which an opening for insertion is provided. of the tubular piece 10 to be deformed.
  • the charging current of the capacitors 14 may be 540 kA; the inductance measurement of these capacitances 14 may be 120 nH.
  • These capacitors 14 are capable of generating a specific current whose frequency is between 10 and 15 kH which is discharged into the solid block 15 to create a specific magnetic field whose energy level is between 6 and 8 kJ under a voltage from 5 to 7.5 kV (depending on the diameter of the wire harness 3).
  • the electromagnetic field is applied for a time of 8 to 100 microseconds (preferably close to 80 ⁇ s) to achieve the assembly. For example, it is possible to implement an energy of the order of 7 kJ for a 25 mm 2 cable, and 7.5 kJ for a 70 mm 2 cable.
  • the solid block 15 is advantageously made of Beryllium Copper with a cylindrical insertion opening.
  • the circular section of this opening is a few tenths of a millimeter larger than the external nominal diameter (p_) of the tube 10; its length can be of the order of 10 to 15 mm, depending on the maximum assembly length that is desired.
  • connection cable is obtained after assembly, one of the ends of which is illustrated in FIGS. 5 and 6. Following this assembly, the external diameter ç of the tubular portion 10 of the connector 4 is substantially reduced with respect to its nominal diameter. before assembly. Similarly, because of the compression realized, the diameter of the end 8 of the beam 3 is also reduced relative to the nominal diameter a.
  • Such an assembly is very efficient and shows on examination a lack of ZAT at the connection zone between the wire bundle 3 and the tubular portion 10 connector.
  • the mechanical strength and conductivity tests performed are very positive.
  • this type of fastening technique allows the assembly of difficult or non-weldable materials, such as aluminum / aluminum or copper / aluminum.
  • connection cables comprising a bundle of copper conductor wires 3, associated with aluminum end connectors 4, or else a bundle of aluminum conductive wires associated with aluminum end connectors 4. .
  • the ends of the connecting cable are placed in an injection mold to receive a coating 16 of insulating material like PVC or rubber for example.
  • the fully insulated connecting cable 2 illustrated in FIG. 8 is obtained and suitable for use in connecting battery poles as shown in FIG. 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Manufacturing & Machinery (AREA)
  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

La présente invention concerne un procédé de fabrication d'un câble de raccordement de pôles de batterie, destiné à relier des cellules galvaniques, lequel câble comprend un faisceau constitué d'une pluralité de fils conducteurs électriques dont la section est comprise entre 16 mm2 et 150 mm2, et dont les deux extrémités sont solidarisées avec un connecteur. Conformément à l'invention, ce procédé consiste : - à préparer un faisceau de câbles entouré d'un matériau d'isolation, avec des extrémités dénudées, - à préparer un connecteur qui comporte une première partie en forme de tube pour sa solidarisation avec l'une des extrémités du faisceau, et une seconde partie plane munie d'un orifice, - à insérer l'une des extrémités dénudées du faisceau de câbles dans la partie tubulaire dudit connecteur, - à mettre en oeuvre autour de ladite partie tubulaire un champ électromagnétique annulaire dont le niveau d'énergie est compris entre 6 et 8 kJ, sous une tension de 5 à 7,5 kV, appliqué entre 8 et 100 µs, de manière à créer des forces magnétiques provoquant le rétreint à grande vitesse du diamètre d'une partie au moins de la longueur de ladite partie tubulaire, par déformation plastique, pour obtenir l'assemblage recherché, - à effectuer la même opération d'assemblage au niveau de l'autre extrémité dénudée du faisceau, avec un autre connecteur, puis - à enrober d'un matériau isolant les deux connecteurs et les éventuelles parties dudit faisceau de câble non isolées.

Description

PROCEDE DE FABRICATION D'UN CABLE DE RACCORDEMENT DE POLES DE BATTERIE, L'INSTALLATION DE MISE EN ŒUVRE ET LE CABLE OBTENU
La présente invention concerne les câbles de raccordement de pôles de batteries qui sont destinés à relier entre elles des cellules galvaniques. De tels câbles de raccordement, encore appelés « câblots » sont destinés à conduire des courants relativement importants (de l'ordre de 300 Ah à 1800 Ah) et doivent présenter une faible résistance électrique.
Ces câbles comprennent un faisceau constitué d'une pluralité de fils conducteurs électriques dont les deux extrémités sont solidarisées avec un connecteur muni d'un orifice, permettant la connexion avec l'un des pôles de la batterie, l'ensemble étant complètement entouré par un matériau d'isolation. D'une manière générale, ces câbles de raccordement ont un entraxe de 75 à 300 mm (distance entre l'axe des orifices des deux connecteurs d'extrémités) ; pour l'équipement de terminaux, ces longueurs peuvent être comprises entre 800 mm et 1500 mm. D'autre part, la section du faisceau de fils conducteurs est relativement importante, comprise entre 16 mm2 et 150 mm2. En particulier, pour des batteries fixes, cette section est généralement comprise entre 70 et 120 mm2 ; pour des batteries de traction, par exemple des batteries de chariots élévateurs, cette section est généralement comprise entre 16 et 70 mm2.
Ces câbles de raccordement de pôles de batteries sont des câbles spéciaux destinés à la conduction de courants forts. Pour des raisons de sécurité, ils nécessitent d'être intégralement recouverts d'un matériau d'isolation. D'autre part, la liaison entre les connecteurs d'extrémités et les extrémités du faisceau de câble doit être aussi parfaite que possible afin de limiter la résistance électrique et assurer une bonne résistance mécanique.
Le document US-4 049 335 décrit une technique classique pour fabriquer un tel câble de raccordement de pôles de batteries.
Dans ce document, le câble de raccordement comporte un faisceau composé d'une multiplicité de fils fins équipé, à ses deux extrémités, d'un connecteur muni d'un orifice. Pour la fabrication du câble, chaque connecteur est ici constitué d'une gaine tubulaire en cuivre dans laquelle est introduite une partie du faisceau partiellement dénudée au préalable. Ensuite, la gaine de cuivre est comprimée et aplatie avec le faisceau de manière à réaliser l'assemblage des deux éléments.
Un orifice est alors ménagé dans la zone aplatie de la gaine de cuivre. Enfin, le pourtour de l'orifice reçoit une matière de brasage afin d'améliorer l'assemblage des éléments et la conductivité électrique. Les extrémités du câble de raccordement ainsi réalisées sont ensuite recouvertes d'une matière isolante par une technique de moulage-injection.
L'orifice réalisé dans le connecteur permet à ce dernier de venir se positionner sur une vis ménagée dans le pôle d'accumulateur et d'être pressé au moyen d'un écrou de serrage.
Cependant, l'assemblage entre le connecteur rapporté et le faisceau de fils fins n'est pas optimal. De plus, la partie aplatie du câble est constituée de deux couches de matière extérieures prenant en sandwich le faisceau de fils et cette structure, non homogène, peut provoquer des desserrements de l'écrou, en particulier sur les accumulateurs non stationnaires disposés dans des véhicules, soumis à des secousses en répétition. L'extrémité du câble n'est alors plus raccordée efficacement au pôle d'accumulateur ce qui conduit à des défauts de conduction électrique, et à des échauffements allant parfois jusqu'à la formation d'étincelles.
Pour remédier à ces inconvénients, le document EP-1 101 255 propose un câble de raccordement dont les connecteurs se présentent sous la forme de plaques assemblées par soudage aux ultra-sons avec les extrémités du faisceau de fils. De manière classique, les extrémités dénudées du faisceau de fils fins sont ensuite enveloppées par un matériau d'isolation.
Cette technologie apporte différents avantages par rapport à la précédente décrite ci-dessus, en particulier en terme de réduction de matière, de résistance, de qualité de conductivité électrique, de tenue mécanique dans le temps et de rapidité de fabrication.
Cependant, la liaison de type soudage, par une action d'apport d'énergie sous forme de chaleur, provoque la liquéfaction des deux matériaux à assembler, au niveau de leur plan de joint ; et au cours du refroidissement, les matériaux fondus se mixtent et s'assemblent par liaison moléculaire.
Or, cette opération de recristallisation engendre fatalement, après refroidissement, une structure moléculaire et métallographique différente de celle d'origine des deux composants à assembler.
Dans la pratique, cette zone modifiée est dénommée ZAT (Zone Affectée Thermiquement). L'effet pervers de cette ZAT a pour caractéristique, de par la modification de la métallographie des matériaux dans cette zone, de créer notamment des microfissures, de la pollution et un troisième type de matériau, ce qui entraîne : - un abaissement des caractéristiques mécaniques de la liaison par rapport aux caractéristiques du matériau de base, - de ne plus permettre aucune pérennité de ces caractéristiques mécaniques dans le temps, par la présence des microfissures qui, sous l'action des sollicitations des composants assemblés, vont se développer dans le temps jusqu'à la rupture,
- d'abaisser dans la zone de liaison les caractéristiques électriques et diélectriques des matériaux de base, et
- de créer des destructions chimiques par effet de pile entre le troisième matériau et le matériau de base dans l'environnement d'utilisation.
De plus, il est très difficile de souder ensemble deux matériaux différents, si bien que d'une manière très générale, les câbles de raccordement actuellement sur le marché comportent un faisceau de fils fins en cuivre, associé à des connecteurs d'extrémités également en cuivre, du fait de la bonne conductivité électrique de ce matériau, mais ce qui rend ces câbles de raccordement relativement onéreux, du fait du prix du cuivre sur le marché.
Dans le domaine général des câbles avec connecteur(s) d'extrémité, on connaît aussi, par les documents WO-97/22426 ou encore WO-98/23400, la possibilité de venir introduire l'une des extrémités dénudées du câble dans un logement tubulaire du connecteur et d'utiliser une technique de magnétoformage « puise magnetic forming - PMF » pour réaliser l'assemblage recherché.
Cependant, les conditions de mise en œuvre de cette technique, si elles conviennent bien à la liaison de connecteurs d'extrémité avec des câbles électriques de faible section, ne permettent pas d'obtenir un assemblage de qualité suffisante pour des câblots de batterie.
Il persiste en effet alors des poches d'air microscopiques entre le connecteur et les fils fins périphériques du câble et/ou entre les fils fins du câble entre eux, qui dégradent les performances mécaniques et électriques de l'assemblage et qui sont source de corrosion possible dans le temps.
Le document WO-2005/055371 décrit une solution technique dérivée des deux documents précités WO-97/22426 et WO-98/23400, appliquée en particulier aux câblots de batterie, consistant à enrober l'extrémité du câble par une matière « fusible » conductrice de l'électricité, avant d'insérer cette extrémité « enrobée » dans le logement cylindrique du connecteur et de mettre en œuvre la technique d'assemblage électromagnétique.
Le matériau fusible utilisé supprime la présence de poches d'air et il optimise la conductivité électrique de la liaison. Cependant, cet enrobage consiste en une opération technique supplémentaire coûteuse (en terme de coût matière et en terme de temps de mise en œuvre) difficilement compatible avec les exigences industrielles.
Les demanderesses ont développé un nouveau procédé de fabrication de tels câbles de raccordement de pôles de batteries ayant pour but de remédier à ces inconvénients.
Conformément à la présente invention, le procédé en question est caractérisé en ce qu'il consiste :
-à préparer un faisceau entouré d'un matériau d'isolation avec des extrémités dénudées qui ont un diamètre nominal (a),
- à préparer un connecteur qui comporte une première partie en forme de tube, de section interne et externe constante, pour sa solidarisation avec l'une desdites extrémités de faisceau, et une seconde partie plane munie d'un orifice adapté pour sa solidarisation avec le pôle de batterie, le diamètre interne nominal (d) de ladite partie tubulaire étant compris entre 1 ,10 et 1 ,20 fois le diamètre nominal (a) de ladite extrémité du faisceau de fils, et le diamètre externe nominal (β) de ladite partie tubulaire étant compris entre 1 ,45 et 1 ,65 fois le diamètre nominal (a) de ladite extrémité,
- à insérer l'une des extrémités dénudées du faisceau dans ladite première partie en forme de tube dudit connecteur,
- à mettre en œuvre autour de ladite partie tubulaire un champ électromagnétique annulaire dont le niveau d'énergie est compris entre 6 et 8 kJ, sous une tension de 5 à 7,5 kV, appliqué entre 8 et 100 μs, de manière à créer des forces magnétiques provoquant le rétreint à grande vitesse du diamètre d'une partie au moins de la longueur de ladite partie tubulaire, par déformation plastique, pour obtenir l'assemblage recherché,
- à effectuer la même opération d'assemblage au niveau de l'autre extrémité dénudée du faisceau avec un autre connecteur, puis
- à enrober d'un matériau isolant, les deux connecteurs et les éventuelles parties dudit faisceau non isolées.
La mise en œuvre d'une telle technique d'assemblage appelée « Magnetic Puise Welding (MPW) » permet d'obtenir une liaison très efficace tant mécaniquement qu'électriquement, convenant très bien pour des câblots de batterie. Au niveau de l'assemblage, on obtient une masse métallique quasiment monobloc qui ne permet plus d'individualiser les multiples fils du faisceau ni la partie tubulaire du connecteur. Le champ magnétique mis en œuvre autour des pièces à assembler est spécialement défini et construit pour la présente application spécifique. Ce champ provoque la création de forces qui vont assurer la percussion des pièces à assembler, à très haute vitesse ; l'impact provoqué par cette rencontre entraîne, par sa puissance, la décohésion atomique des atomes des molécules des surfaces de contact. Les électrons de chaque noyau sont arrachés de leur orbite et viennent se repositionner sur des orbites différentes de celles d'origine. Après recombinaison, l'équilibre et la stabilité de la matière sont à nouveau assurés.
On arrive ainsi à obtenir un assemblage de grande qualité entre l'extrémité du faisceau de fils conducteurs et les connecteurs d'extrémité, de nature totalement différente des assemblages classiques. L'assemblage en question est en particulier dépourvu de ZAT ; il limite grandement, voire supprime, la présence de poches d'air internes. Il n'entraîne pas ou peu de microfissures, ni de pollution ; il permet aussi d'obtenir une excellente conductibilité et d'excellents résultats de comportement au passage du courant, ainsi que d'excellents résultats en terme de tenue mécanique. L'assemblage correspondant peut d'autre part être réalisé très rapidement, ce qui permet d'obtenir des cadences de fabrication très élevées.
De préférence, le temps d'application du champ électromagnétique est de l'ordre de 80 μs.
Selon une autre particularité, le procédé consiste à mettre en œuvre un champ électromagnétique au moyen d'une installation comportant des capacités, un transformateur et un bloc massif générateur dudit champ électromagnétique dans lequel est ménagée une ouverture d'insertion du tube dudit connecteur ; lesdites capacités sont chargées par un courant compris entre 500 et 600 kA, pour générer un courant dont la fréquence est comprise entre 10 et 15 kH, déchargé dans ledit bloc massif par l'intermédiaire du transformateur.
Encore de préférence, le champ électromagnétique est généré dans l'ouverture d'un bloc massif en Cuivre au Béryllium, son ouverture d'application du champ électromagnétique ayant une longueur comprise entre 8 et 20 mm et une forme circulaire dont le diamètre est de quelques dixièmes de mm supérieur au diamètre externe nominal (β) de la partie tubulaire de connecteur.
L'invention concerne aussi l'installation pour la mise en œuvre du procédé défini ci-dessus, cette installation comprenant des capacités, un transformateur et un bloc massif générateur de champ électromagnétique, lequel bloc massif comporte une ouverture circulaire dont la longueur est comprise entre 8 et 20 mm et qui présente une forme circulaire dont le diamètre est de quelques dixièmes de mm supérieur au diamètre externe nominal (Ë) de ladite partie tubulaire de connecteur.
Selon une forme de réalisation particulière, l'installation comporte des moyens qui permettent de décharger dans le bloc massif en Cuivre au Béryllium, par l'intermédiaire du transformateur, un courant de fréquence comprise entre 10 et 15 kH et de générer dans ledit bloc massif un champ électromagnétique dont le niveau d'énergie est compris entre 6 et 8 kJ sous une tension de 5 à 7,5 Kv.
L'invention concerne encore le câble de raccordement de pôles de batterie destiné à relier des cellules galvaniques, obtenu par le procédé défini ci-dessus. Ce câble comprend un faisceau constitué d'une pluralité de fils conducteurs électriques dont les deux extrémités sont chacune solidarisées avec un connecteur permettant la connexion avec l'un des pôles de la batterie, lequel connecteur, également réalisé en matériau conducteur, comporte une première partie pour sa solidarisation avec l'extrémité correspondante dudit faisceau, et une seconde partie, plane, munie d'un orifice adapté pour sa solidarisation avec ledit pôle de batterie, ledit faisceau et lesdits connecteurs étant complètement entourés par un matériau d'isolation. Ladite première partie de connecteur est en forme générale de tube délimitant un orifice cylindrique au sein duquel est logée ladite extrémité de faisceau, le diamètre interne nominal (d), avant assemblage, de la partie tubulaire du connecteur étant compris entre 1 ,10 et 1 ,20 fois le diamètre nominal (a) de l'extrémité du faisceau de fils, le diamètre externe nominal (β) de ladite partie tubulaire étant compris entre 1 ,45 et 1 ,65 fois le diamètre nominal (a) de ladite extrémité de faisceau, l'épaisseur (b) de paroi de ladite partie tubulaire étant de l'ordre de 1 ,8 mm, et ledit tube étant solidarisé avec ladite extrémité de faisceau par une technique d'assemblage électromagnétique de type « Magnetic Puise Welding » - MPW.
Cette technique spécifique d'assemblage électromagnétique permet également très avantageusement de solidariser entre eux des matériaux différents du cuivre, traditionnellement utilisé dans la présente application, et également des matériaux de nature différente.
En particulier, selon une première forme de réalisation possible, le câble de batterie conforme à l'invention comprend un faisceau constitué de fils en aluminium, associé à des connecteurs d'extrémité également en aluminium.
Dans une seconde forme de réalisation intéressante, le faisceau est constitué de fils en cuivre, et les connecteurs d'extrémité sont en aluminium. L'invention sera encore illustrée, sans être aucunement limitée, par la description suivante en association avec les dessins annexés dans lesquels :
- la figure 1 est une vue générale en perspective d'une pluralité de batteries reliées les unes aux autres en parallèle au moyen de câbles de raccordement conformes à l'invention ;
- la figure 2 est une vue en perspective de l'une des extrémités d'un câble de raccordement conforme à l'invention, en cours de fabrication, avant assemblage du connecteur d'extrémité avec l'extrémité dénudée du faisceau de fils conducteurs ;
- la figure 3 est une vue en coupe selon 3-3 de la figure 2 ;
- la figure 4 est une vue schématique illustrant l'application du champ électromagnétique pour assembler le connecteur et l'extrémité du faisceau de fils conducteurs ;
- la figure 5 est une vue en perspective de l'extrémité du câble de raccordement montré figure 2, après mise en œuvre du champ électromagnétique et assemblage du connecteur avec l'extrémité du faisceau de fils conducteurs ;
- la figure 6 est une vue en coupe selon 6-6 de la figure 5 ;
- la figure 7 est une vue en perspective du câble de raccordement constitué du faisceau de fils conducteurs aux extrémités dénudées duquel sont fixés les deux connecteurs, avant enrobage de ces derniers par un matériau d'isolation ;
- la figure 8 est une vue en perspective du câble de raccordement de la figure 7, après enrobage des connecteurs d'extrémités par le matériau d'isolation.
La figure 1 montre une pluralité de batteries 1 reliées en parallèle par des câbles de raccordement 2 (ou câblots) conformes à la présente invention, constitués chacun d'un faisceau de fils conducteurs 3 aux deux extrémités duquel sont fixés des organes connecteurs 4.
Les organes connecteurs 4 sont munis d'un orifice 5 permettant leur raccordement sur les pôles en forme de trous taraudés des batteries 1 , par l'intermédiaire de vis 7.
La fabrication des câbles de raccordement 2 conformes à l'invention est décrite ci-après en liaison avec les figures 2 à 8. Pour réaliser un tel câble 2, on dénude les deux extrémités 8 d'un faisceau de fils conducteurs 3 revêtu d'un matériau d'isolation 9 (par exemple une matière plastique de type PVC ou du caoutchouc) ; tel qu'illustré sur les figures 2 et 3, on introduit chacune de ces extrémités dénudées 8 dans la partie tubulaire 10 d'un connecteur d'extrémité 4 préalablement préparé ; on soumet ensuite l'ensemble extrémité 8 de faisceau 3/partie tubulaire 10 de connecteur 4 à l'action d'un champ électromagnétique annulaire adapté pour assurer leur assemblage (figures 4, 5 et 6) ; et enfin les extrémités de câbles ainsi obtenues sont enrobées par un matériau d'isolation (figures 7 et 8).
Le faisceau isolé 3 comprend une multiplicité de fils fins en matériau conducteur, par exemple en cuivre ou en aluminium.
En particulier, ce faisceau 3 peut être constitué d'une multiplicité de fils fins ayant chacun un diamètre compris entre 20/100eme et 60/100eme de mm. Par exemple, pour des fils ayant un diamètre de 20/100eme de mm, on peut utiliser environ :
- 780 fils pour fabriquer un faisceau 3 ayant une section de 25 mm2,
- 1 100 fils pour fabriquer un faisceau 3 ayant une section de 35 mm2, - 1550 fils pour fabriquer un faisceau 3 ayant une section de 50 mm2,
- 2200 fils pour fabriquer un faisceau 3 ayant une section de 70 mm2,
- 2950 fils pour fabriquer un faisceau 3 ayant une section de 95 mm2.
Chaque connecteur 4 est également réalisé en matériau conducteur, par exemple en cuivre ou en aluminium. Ce connecteur 4 comporte une première partie tubulaire 10, délimitant un orifice cylindrique 1 1 , pour sa solidarisation avec l'une des extrémités dénudées du faisceau 3, et une seconde partie plane 12, réalisée monobloc avec la première partie 1 1 , munie de l'orifice 5 pour sa solidarisation avec le pôle de la batterie 1 .
Pour obtenir un assemblage optimal :
- le diamètre interne nominal d de la partie tubulaire 10 du connecteur 4, avant assemblage avec l'extrémité dénudée 8 du faisceau de fils conducteurs 3 est compris entre 1 ,10 et 1 ,20 fois le diamètre nominal a de l'extrémité 8 dénudée dudit faisceau de fils 3 (figure 3) ;
- le diamètre externe nominal p_ de ladite partie tubulaire 10 de connecteur 4 est compris entre 1 ,45 et 1 ,65 fois le diamètre nominal a dudit faisceau 3, et
- l'épaisseur de la partie tubulaire 10 du connecteur 4 est de l'ordre de 1 ,8 mm, ceci quelle que soit la section dudit faisceau de fils conducteurs 3.
L'extrémité dénudée 8 du faisceau 3 est enfoncée au maximum dans l'orifice cylindrique 1 1 de la partie tubulaire 10 du connecteur 4, dont la longueur est comprise entre 5 et 20 mm (avantageusement de l'ordre de 8 à 10 mm), et le champ électromagnétique d'assemblage est appliqué annulairement, sur toute ou pratiquement toute la longueur de la partie tubulaire 10 du connecteur 4 (figure 4). La technique d'assemblage par « Magnétic Puise Welding - MPW » utilise un bloc massif percé, produisant un champ électromagnétique très puissant et très bref pour générer des forces mécaniques aptes à provoquer une déformation à froid d'un matériau métallique
Comme illustré schématiquement sur la figure 4, une machine de « MPW » comprend essentiellement un générateur 13 associé à un ensemble de capacités 14, à un transformateur (non représenté) et à un bloc massif 15 dans lequel est ménagée une ouverture pour l'insertion de la pièce tubulaire 10 à déformer.
Par décharge des capacités 14 à travers le bloc massif 15 en quelques microsecondes, il est produit une brève impulsion magnétique intense qui induit des courants dans la pièce placée dans la bobine. Le courant induit circulant en surface de la pièce 10, et celui du bloc massif 15, génèrent des forces de répulsion radiales qui provoquent la déformation du métal à très grande vitesse.
Le courant de charge des capacités 14 peut être de 540 kA ; la mesure d'inductance de ces capacités 14 peut être de 120 nH.
Ces capacités 14 sont aptes à générer un courant spécifique dont la fréquence est comprise entre 10 et 15 kH qui est déchargé dans le bloc massif 15 pour créer un champ magnétique spécifique dont le niveau d'énergie est compris entre 6 et 8 kJ sous une tension de 5 à 7,5 kV (selon le diamètre du faisceau de fils 3).
Le champ électromagnétique est appliqué pendant un temps de 8 à 100 microsecondes (de préférence voisin de 80 μs) pour réaliser l'assemblage. Par exemple, on peut mettre en œuvre une énergie de l'ordre de 7 kJ pour un câble de 25 mm2, et de 7,5 kJ pour un câble de 70 mm2.
Le bloc massif 15 est avantageusement réalisé en Cuivre au Béryllium avec une ouverture d'insertion cylindrique. La section circulaire de cette ouverture est de quelques dixièmes de mm supérieure au diamètre nominal externe (p_) du tube 10 ; sa longueur peut être de l'ordre de 10 à 15 mm, fonction de la longueur d'assemblage maximale dont on souhaite disposer.
On peut pour cela utiliser une machine de magnétoformage de type MPW30 proposée par la Société PULSAR WELDING LTD.
On obtient après assemblage un câble de raccordement dont l'une des extrémités est illustrée sur les figures 5 et 6. Suite à cet assemblage, le diamètre externe ç de la partie tubulaire 10 du connecteur 4 est sensiblement réduit par rapport à son diamètre nominal Q avant assemblage. De même, du fait de la compression réalisée, le diamètre de l'extrémité 8 du faisceau 3 est également réduit par rapport au diamètre nominal a.
Un tel assemblage s'avère très performant et montre à l'examen une absence de ZAT au niveau de la zone de liaison entre le faisceau de fils 3 et la partie tubulaire 10 de connecteur. Les tests de résistance mécanique et de conductivité réalisés s'avèrent très positifs.
En outre, ce type de technique de fixation autorise l'assemblage de matériaux difficilement ou non soudables, du genre aluminium/aluminium ou cuivre/aluminium.
On peut donc envisager de réaliser des câbles de raccordement comportant un faisceau de fils conducteurs 3 en cuivre, associé à des connecteurs d'extrémités 4 en aluminium, ou encore un faisceau de fils conducteurs en aluminium associé à des connecteurs d'extrémités 4 en aluminium.
Après assemblage, les extrémités du câble de raccordement sont placées dans un moule d'injection pour recevoir un enrobage 16 de matière isolante genre PVC ou caoutchouc par exemple.
On obtient le câble de raccordement 2 totalement isolé illustré sur la figure 8 et apte à être utilisé pour le raccordement de pôles de batteries tel qu'illustré sur la figure 1.

Claims

- REVENDICATIONS -
1.- Procédé de fabrication d'un câble de raccordement de pôles de batterie comprenant un faisceau (3) constitué d'une pluralité de fils conducteurs électriques dont la section est comprise entre 16 mm2 et 150 mm2, et dont les deux extrémités (8) sont solidarisées avec un connecteur (4), également réalisé en matériau conducteur, permettant la connexion à l'un des pôles de la batterie (1 ), ledit faisceau (3) et lesdits connecteurs (4) étant complètement entourés par un matériau d'isolation (9, 16), caractérisé en ce qu'il consiste :
-à préparer un faisceau (3) entouré d'un matériau d'isolation (9) avec des extrémités dénudées qui ont un diamètre nominal (a),
- à préparer un connecteur (4) qui comporte une première partie (10) en forme de tube, de section interne et externe constante, pour sa solidarisation avec l'une desdites extrémités (8) de faisceau (3), et une seconde partie plane (12) munie d'un orifice (5) adapté pour sa solidarisation avec ledit pôle de batterie, le diamètre interne nominal (d) de ladite partie tubulaire (10) étant compris entre 1 ,10 et 1 ,20 fois le diamètre nominal (a) de ladite extrémité (8) du faisceau de fils (3), et le diamètre externe nominal (Q) de ladite partie tubulaire (10) étant compris entre 1 ,45 et 1 ,65 fois le diamètre nominal (a) de ladite extrémité (8),
- à insérer l'une des extrémités dénudées (8) du faisceau (3) dans ladite première partie en forme de tube (10) dudit connecteur (4),
- à mettre en œuvre autour de ladite partie tubulaire (10) un champ électromagnétique annulaire dont le niveau d'énergie est compris entre 6 et 8 kJ, sous une tension de 5 à 7,5 kV, appliqué entre 8 et 100 μs, de manière à créer des forces magnétiques provoquant le rétreint à grande vitesse du diamètre d'une partie au moins de la longueur de ladite partie tubulaire (10), par déformation plastique, pour obtenir l'assemblage recherché,
- à effectuer la même opération d'assemblage au niveau de l'autre extrémité dénudée du faisceau (3) avec un autre connecteur (4), puis
- à enrober d'un matériau isolant (16), les deux connecteurs (4) et les éventuelles parties dudit faisceau (3) non isolées.
2.- Procédé selon la revendication 1 , caractérisé en ce que le temps d'application du champ électromagnétique est de l'ordre de 80 μs.
3.- Procédé selon l'une quelconque des revendications 1 ou 2, caractérisé en ce qu'il consiste à mettre en œuvre un champ électromagnétique au moyen d'une installation comportant des capacités (14), un transformateur et un bloc massif (15) générateur dudit champ électromagnétique dans lequel est ménagée une ouverture d'insertion du tube (10) dudit connecteur (4), lesdites capacités (14) étant chargées par un courant compris entre 500 et 600 kA, pour générer un courant dont la fréquence est comprise entre 10 et 15 kH, déchargé dans ledit bloc massif (15), par l'intermédiaire du transformateur.
4.- Procédé selon la revendication 3, caractérisé en ce que le champ électromagnétique est généré dans l'ouverture d'un bloc massif (15) en Cuivre au Béryllium, ladite ouverture ayant une longueur comprise entre 8 et 20 mm et une forme circulaire dont le diamètre est de quelques dixièmes de mm supérieur au diamètre externe nominal (β) de ladite partie tubulaire (10) de connecteur (4).
5.- Installation pour la mise en œuvre du procédé selon l'une quelconque des revendications 1 à 4, caractérisée en ce qu'elle comprend des capacités (14), un transformateur et un bloc massif (15) générateur de champ électromagnétique, lequel bloc massif (15) comporte une ouverture circulaire dont la longueur est comprise entre 8 et 20 mm et qui présente une forme circulaire dont le diamètre est de quelques dixièmes de mm supérieur au diamètre externe nominal (β) de ladite partie tubulaire (10) de connecteur (4).
6.- Installation selon la revendication 5, caractérisée en ce qu'elle comporte des moyens qui permettent de décharger dans le bloc massif en Cuivre au Béryllium (15), par l'intermédiaire du transformateur, un courant de fréquence comprise entre 10 et 15 kH et de générer dans ledit bloc massif (15) un champ électromagnétique dont le niveau d'énergie est compris entre 6 et 8 kJ sous une tension de 5 à 7,5 kV.
7.- Câble de raccordement de pôles de batterie destiné à relier des cellules galvaniques, obtenu par le procédé selon l'une quelconque des revendications 1 à 4, lequel câble (2) comprend un faisceau (3) constitué d'une pluralité de fils conducteurs électriques dont les deux extrémités (8) sont chacune solidarisées avec un connecteur (4) permettant la connexion avec l'un des pôles de la batterie (1 ), lequel connecteur (4), également réalisé en matériau conducteur, comporte une première partie (10) pour sa solidarisation avec l'extrémité (8) correspondante dudit faisceau (3), et une seconde partie (12), plane, munie d'un orifice (5) adapté pour sa solidarisation avec ledit pôle de batterie, ledit faisceau (3) et lesdits connecteurs (4) étant complètement entourés par un matériau d'isolation (9, 16), ladite première partie (10) de connecteur (4) étant en forme générale de tube délimitant un orifice cylindrique (1 1 ) au sein duquel est logée ladite extrémité (8) de faisceau (3), le diamètre interne nominal (d), avant assemblage, de la partie tubulaire (10) du connecteur (4) étant compris entre 1 ,10 et 1 ,20 fois le diamètre nominal (a) de l'extrémité (8) du faisceau de fils (3), le diamètre externe nominal (β) de ladite partie tubulaire (10) étant compris entre 1 ,45 et 1 ,65 fois le diamètre nominal (a) de ladite extrémité (8) de faisceau (3), l'épaisseur (b) de paroi de ladite partie tubulaire (10) étant de l'ordre de 1 ,8 mm, et ledit tube (10) étant solidarisé avec ladite extrémité (8) de faisceau (3) par une technique d'assemblage électromagnétique de type « Magnetic Puise Welding » - MPW.
8.- Câble de batterie selon la revendication 7, caractérisé en ce qu'il comprend un faisceau (3) constitué de fils en aluminium, associé à des connecteurs (4) également en aluminium.
9.- Câble de batterie selon la revendication 7, caractérisé en ce qu'il comprend un faisceau (3) constitué de fils en cuivre, associé à des connecteurs (4) en aluminium.
EP08762022A 2007-01-31 2008-01-31 Procede de fabrication d'un cable de raccordement de poles de batterie, l'installation de mise en oeuvre et le cable obtenu Withdrawn EP2115815A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0700658A FR2912000A1 (fr) 2007-01-31 2007-01-31 Cable de raccordement de poles de batterie
PCT/FR2008/050162 WO2008104668A1 (fr) 2007-01-31 2008-01-31 Procede de fabrication d'un cable de raccordement de poles de batterie, l'installation de mise en oeuvre et le cable obtenu

Publications (1)

Publication Number Publication Date
EP2115815A1 true EP2115815A1 (fr) 2009-11-11

Family

ID=38171212

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08762022A Withdrawn EP2115815A1 (fr) 2007-01-31 2008-01-31 Procede de fabrication d'un cable de raccordement de poles de batterie, l'installation de mise en oeuvre et le cable obtenu

Country Status (3)

Country Link
EP (1) EP2115815A1 (fr)
FR (1) FR2912000A1 (fr)
WO (1) WO2008104668A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010003599A1 (de) * 2010-04-01 2011-10-06 Lisa Dräxlmaier GmbH Verfahren zur Kabelkonfektionierung sowie konfektioniertes Kabel
DE102010038780A1 (de) * 2010-08-02 2012-02-02 Robert Bosch Gmbh Verfahren zur elektrischen Kontaktierung von Drähten
DE102011077886B4 (de) * 2011-06-21 2016-10-13 Lisa Dräxlmaier GmbH Verfahren zur Leitungskonfektionierung
DE102011077888B4 (de) * 2011-06-21 2016-10-13 Lisa Dräxlmaier GmbH Verfahren zur Konfektionierung einer Leitung
DE102011051643B3 (de) * 2011-07-07 2012-10-31 Amphenol-Tuchel Electronics Gmbh Verfahren zum Verbinden eines Steckers mit einem Litzenkabel
JP5885226B2 (ja) 2011-10-10 2016-03-15 ダナ オートモーティブ システムズ グループ、エルエルシー プレートのための磁気パルス溶接および成形
DE102013015302B4 (de) 2013-09-14 2017-02-09 Audi Ag Verfahren zum Konditionieren der Endlitzen eines stromleitenden, flexiblen Kabels
CN104201535B (zh) * 2014-08-04 2018-10-16 重庆市光学机械研究所 电缆线导体与接线端子焊接的方法
CN108270139A (zh) * 2018-02-07 2018-07-10 金杯电工股份有限公司 一种铝合金线束与铜端子的连接装置和方法
CN108281815A (zh) * 2018-03-07 2018-07-13 金杯电工股份有限公司 一种新能源汽车应用铝合金线束连接结构
CN108711685A (zh) * 2018-06-05 2018-10-26 吴开源 新型汽车线束产品及电磁脉冲焊接方法及应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2236254A1 (en) * 1973-07-04 1975-01-31 Kh Polt I Im V I Lenina Removable magnetic concentrator - in 2 parts and having bore containing workpiece
EP0868233B1 (fr) * 1995-12-20 2002-04-17 Pulsar Welding Ltd Soudage ou assemblage electromagnetique d'objects metalliques
US5824998A (en) * 1995-12-20 1998-10-20 Pulsar Welding Ltd. Joining or welding of metal objects by a pulsed magnetic force
IL119679A (en) * 1996-11-24 2001-08-08 Pulsar Welding Ltd Electromagnetic forming apparatus
US6557252B2 (en) * 2000-12-14 2003-05-06 Fuel Cell Components And Integrators, Inc. Cable splicing method and apparatus
IL163974A0 (en) * 2003-09-10 2005-12-18 Dana Corp Method for monitoring the performance of a magnetic pulse forming or welding process
DE10357048A1 (de) * 2003-12-04 2005-07-21 Leoni Bordnetz-Systeme Gmbh & Co Kg Verfahren zum Herstellen einer elektrischen Verbindung zwischen einem Aluminiumleiter und einem Kontaktelement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008104668A1 *

Also Published As

Publication number Publication date
FR2912000A1 (fr) 2008-08-01
WO2008104668A1 (fr) 2008-09-04

Similar Documents

Publication Publication Date Title
EP2115815A1 (fr) Procede de fabrication d'un cable de raccordement de poles de batterie, l'installation de mise en oeuvre et le cable obtenu
EP1653530B1 (fr) Accumulateur présentant deux bornes de sortie de courant sur une paroi de son conteneur
FR2951032B1 (fr) Chemin de cable evolutif pour aeronef a structure en materiau composite
FR3056022B1 (fr) Dispositif d'interconnexion electrique d'elements de batterie et batterie d'accumulateurs pourvue d'un tel dispositif
FR2989836A1 (fr) Traversee formant borne pour accumulateur electrochimique au lithium et accumulateur associe.
EP3089836B1 (fr) Procédé de fixation d'une bague metallique dans un cadre et bobine d'induction obtenue par ce procédé
FR3065663A1 (fr) Procede d'assemblage de deux pieces de materiaux differents et ensemble issu du procede d'assemblage
EP0130923B1 (fr) Procédé pour réaliser une connexion entre fils supraconducteurs
EP1205947B1 (fr) Dispositif de traversée de cloison pour câble électrique haute tension
FR2987288A1 (fr) Tete d'un dispositif de decharge electrohydraulique par fil explose
EP2439808B1 (fr) Dispositif de connexion électrique de modules d'accumulateurs d'une batterie
FR2726118A1 (fr) Dispositif parafoudre
EP3878081A1 (fr) Rotor a cage d'ecureuil et machine electrique asynchrone comprotant un tel rotor
EP2456014B1 (fr) Borne de connexion entre une machine électrique tournante d'un véhicule automobile et un câble du circuit électrique dudit véhicule
EP0043523A1 (fr) Bobine électrique d'inductance shunt pour ligne de transport d'énergie électrique et procédé de réalisation d'une telle bobine
EP3510652A1 (fr) Traversée formant borne pour accumulateur électrochimique métal-ion et accumulateur associé
EP3109948B1 (fr) Procede de fabrication de contact electrique, et contact electrique
EP1225672B1 (fr) Dispositif de contrôle d'arc interne pour module de raccordement d'une ligne haute tension à isolation gazeuse
FR2942079A1 (fr) Borne de sortie de courant pour accumulateur.
FR3083026A1 (fr) Procede de connexion de fils sur un collecteur de moteur electrique
EP2272135B1 (fr) Dispositif pour prévenir l'établissement d'un arc électrique entre deux éléments conducteurs
FR3109013A1 (fr) Câble d’alimentation electrique comprenant un fusible et un element surmoule de protection du fusible a surepaisseur
FR2667438A1 (fr) Commutateur pyrotechnique a fonctionnement rapide.
EP1565963A1 (fr) Connecteur pour traversee electrique a fort amperage
FR2487129A1 (fr) Element d'accumulateur a oxyde de nickel-hydrogene

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090827

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150801