EP2110881B1 - Circulateur radiofréquence a base de mems - Google Patents
Circulateur radiofréquence a base de mems Download PDFInfo
- Publication number
- EP2110881B1 EP2110881B1 EP09157873.2A EP09157873A EP2110881B1 EP 2110881 B1 EP2110881 B1 EP 2110881B1 EP 09157873 A EP09157873 A EP 09157873A EP 2110881 B1 EP2110881 B1 EP 2110881B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- microswitch
- signal
- circulator
- membrane
- mems1
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012528 membrane Substances 0.000 claims description 49
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 4
- 239000011810 insulating material Substances 0.000 claims description 4
- 239000000758 substrate Substances 0.000 claims description 4
- 230000004913 activation Effects 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 239000010931 gold Substances 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 2
- 229910001069 Ti alloy Inorganic materials 0.000 claims description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- 229910001080 W alloy Inorganic materials 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 239000010936 titanium Substances 0.000 claims description 2
- 239000003990 capacitor Substances 0.000 claims 1
- 239000011800 void material Substances 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 description 9
- 235000021183 entrée Nutrition 0.000 description 3
- 241000287107 Passer Species 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 244000045947 parasite Species 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/32—Non-reciprocal transmission devices
- H01P1/38—Circulators
- H01P1/383—Junction circulators, e.g. Y-circulators
- H01P1/387—Strip line circulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/10—Auxiliary devices for switching or interrupting
- H01P1/12—Auxiliary devices for switching or interrupting by mechanical chopper
- H01P1/127—Strip line switches
Definitions
- the field of the invention is that of RF radio frequency circulators and their applications in radiofrequency or microwave telecommunication systems such as radar systems, or wireless telephony systems.
- An RF circulator is a n port device, allowing an RF signal to flow in a single direction.
- a circulator with three ports p1, p2, p3.
- a signal injected into a port p1 is transmitted to port p2 and isolated from port p3, while a signal entering via port p2 is transmitted to port p3 and isolated from port p1.
- a corresponding symbolic illustration of such a circulator whose port p2 is connected to an antenna is given on the Figures 1a and 1b . If the circulator receives on impedance port p1 a radiofrequency signal, there is a path with low insertion losses in the direction of clockwise and we observe high losses in the opposite direction.
- the power is directed almost without losses to the port p2 and radiated by the antenna. The same applies from port p2 to port p3, and port p3 to port p1.
- the circulator thus has the essential qualities of transmitting without losses in a given direction and of attenuating very strongly the reflected waves.
- Circulators are particularly used in telecommunication systems or radars, according to the principle illustrated on the figure 2 .
- the figure 2 schematically an exemplary system for transmitting and receiving electromagnetic signals for applications including radar type, commonly referred to as the T / R module consisting essentially of three stages as described below.
- the first stage the heart of the CA system is used to manage and process the signals received and transmitted.
- the second stage is composed of the power amplifier elements. These elements are distributed in two functions, the high power amplifier commonly called HPA, 11 which is used to give power to the output signal of the first stage to be emitted by the antenna and the low noise power amplifier commonly called LNA , 16 which serves to amplify the power of the signal received by the antenna while limiting as much as possible the parasites. These two components are very sensitive to the power received by the antenna.
- the LNA to the extent that the power that enters the latter must not exceed a certain threshold otherwise the component is damaged and destroyed.
- the HPA which in so far as it is always connected with a feedback loop on the output must in no case receive power on its output if we do not want to degrade or destroy it. It is for this reason that there are in the third stage elements called limiters 12 and 15 which are electronic components whose function is to cut the microwave signal if the power thereof exceeds a certain threshold. There are also in this third stage elements called circulators 13 and 14. These are so-called active components that direct an incoming flow to an output specific to the input used. For example from port 1 to port 2, from port 2 to port 3 ... hence this name of circulator. This physically implies that regardless of the output circuit impedance, there is virtually no feedback on the circulator input. If there is reflection, the energy is considered as a flow entering through the first output and is therefore directed to the next output, isolating the input almost perfectly.
- this type of transmission / reception chains comprises circulators based on ferromagnetic materials and diode-based limiters.
- Circulators commonly used being ferrite-based components are by nature active components and consume energy, they are also very bulky (about 70% mass versus volume of the T / R module) and because of their difficulty of reproducibility are very expensive.
- diodes As for the diodes, they are components with high costs and the losses generated by these components are of the order of 1 dB. In addition, diodes occupy an important part of the place in telecommunication systems and thus represent an additional brake on miniaturization.
- microswitch microwaves also called RF MEMS switch.
- the capacitive type micro-switches are particularly appreciated in microwave applications, especially for their low response times combined with low control voltages ranging from a few volts to a few tens of volts. They are advantageously very small, of millimeter size (2 to 10 mm 2 ), which is on average ten times smaller than a ferromagnetic circulator and much lighter. They consume very little. They are inexpensive to produce because they use the usual fabrication techniques in microelectronics, from a substrate generally silicon and are very easily reproducible. Their insertion losses are very low, generally of the order of 0.1 to 0.2 dB over a very wide frequency band, 18 to 19 GigaHertz.
- series-type microswitches an input signal line and an output signal line in the extension of one another, separated by a switching zone, and isolated electrically, and above the switching zone, a flexible membrane, resting on pillars.
- the switching zone is covered with a dielectric.
- the membrane is either in the rest position, high, the capacity formed by the switching zone, the dielectric and the membrane having a low Coff value, so that the two signal lines are isolated, or in the low position so that the two line portions are capacitively coupled, the capacitance formed by the switching zone, the dielectric and the membrane having a high Con value, allowing the transmission of a radiofrequency or microwave signal.
- the membrane control is a voltage control suitably applied in the switching zone, the membrane being brought to a reference potential (electrical ground) by the pillars.
- the switching performance depend in particular on the Con on Coff report which must be as high as possible.
- the circulator includes at least first and second contact pads for applying on or off control voltages to at least one of the control electrode portions of the first micro-switch and the second micro-switch.
- the activation voltages are of the order of volts to a few tens of volts.
- the microswitches can be simultaneously controlled in the off state, or one in the on state and the other in the off state.
- the present invention proposes a new type of circulator comprising self-actuated components.
- the main signal line is a discontinuous line.
- the secondary signal line is a continuous line.
- the secondary line comprises a ground element separated by a distance of the order of a quarter of the wavelength corresponding to the frequency of the signal.
- the main and secondary lines are made of gold and / or copper and / or titanium / tungsten alloy.
- the main and secondary lines further comprise an upper layer of insulating material at the level of refined parts located under the membranes.
- the insulating material is PZT or ZrO2 or Si3N4 or any other dielectric whose relative permittivity will be adapted to the working frequency of the element
- the subject of the invention is also a module for transmitting / receiving microwave signals comprising an antenna, a first stage for processing the microwave signals transmitted and received, a second stage for amplifying said signals and an intermediate stage comprising at least one circulator according to the invention.
- the intermediate stage further comprises at least one power limiter.
- the transmission / reception module comprises a power limiter on the output port towards the receiver or the load and / or a second power limiter on the antenna port.
- the power limiter or limiters comprise a main line with an input for receiving an incident power and an output, their main line comprising a condenser-type electrostatic actuation microswitch comprising two armatures, the first of which is a flexible membrane and the second comprises at least one zone of the main line, the two armatures being separated by a thickness of vacuum or gas, said micro-switch further comprising two ground planes connected by said membrane.
- the microswitch of the limiter or limiters is self-actuating by an incident power greater than a threshold value so as to bring the said zone of the main line into contact with the two ground planes and thus block the microwave signal.
- the figure 3 represents a top view of an example of a circulator according to the invention.
- a RF main line, Lp has the output port p3 to a receiver or load and the antenna port p2 to a transmit / receive antenna.
- This main line, Lp forms a cross with a discontinuous secondary line Rf Ls, said secondary line having the input port p1 capable of receiving a radio frequency signal.
- a first micro-switch MEMS1 is located at the intersection of the main and secondary lines.
- a second micro-switch MEMS2 is also positioned at the main line towards the port p3 and makes it possible to short-circuit said main line in the lowered position of the membrane of said second micro-switch.
- ground plans PM1 and PM2 are located on either side of the secondary line.
- the two microswitches are separated by a distance equal to a quarter of the wavelength ⁇ corresponding to the frequency of the operating signal of said circulator and the secondary line further comprises an EM mass element (for electromagnetic masses, similar to a mass for the direct current, these masses EM correspond to a reference potential for the central line) situated at a distance equal to also a quarter of the wavelength ⁇ .
- an EM mass element for electromagnetic masses, similar to a mass for the direct current, these masses EM correspond to a reference potential for the central line
- a signal received from the antenna can propagate along the main line towards port p3 and not flow towards ports p1. and the EM mass element.
- the MEMS2 is in position to short circuit the signal, the signal travels a go on a distance of ⁇ / 4 and a return in phase opposition of said forward signal.
- the signal portion towards the ground element EM also travels a distance to a distance of ⁇ / 4 in phase opposition with a return signal on said same branch of the cross.
- the great advantage of this type of circulator is that it operates thanks to the presence of two micro-switches self-actuating and therefore without operating voltage to consume.
- any radio frequency signal has an associated power which is equivalent to a voltage and an effective intensity. If the effective signal voltage exceeds a certain threshold, there is a phenomenon of self-activation of the membrane which bypasses the microwave signal to ground, protecting the downstream components.
- V r 2 k boy Wut 0 - t d t d 2 ⁇ ' ⁇ 0 w W ⁇ r 2
- t d is the dielectric thickness separating the line of the membrane and ⁇ r the permittivity of the dielectric.
- the figure 6 illustrates the intermediate stage of a transmission / reception chain comprising power limiters and a circulator according to the invention, such a chain can typically be that illustrated in FIG. figure 2 .
- the third stage of this transmission / reception chain comprises, at the output of the amplifier of the transmission signal 11, a circulator composed of the two micro-switches MEMS1 and MEMS2 according to the invention, this third stage also comprises for the microwave reception signal a first limiter 12 between the circulator and the antenna port p2 and a second limiter 15 whose main line is connected at the input to the circulator comprising the two micro-switches MEMS1 and MEMS2 and output to an amplifier 16, LNA.
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Transceivers (AREA)
- Micromachines (AREA)
Description
- Le domaine de l'invention est celui des circulateurs radiofréquence RF et de leurs applications dans des systèmes de télécommunication radiofréquence ou hyperfréquence tel que les systèmes radars, ou de téléphonie sans fil.
- Un circulateur RF est un dispositif à n ports, permettant à un signal RF de circuler dans une seule direction. On considère un circulateur avec trois ports p1, p2, p3. Un signal injecté dans un port p1 est transmis au port p2 et isolé du port p3, tandis qu'un signal entrant via le port p2 est transmis au port p3 et isolé du port p1. On a ainsi un découplage des signaux émis et reçus. Une illustration symbolique correspondante d'un tel circulateur dont le port p2 est relié à une antenne est donnée sur les
figures 1a et 1b . Si le circulateur reçoit sur le port p1 adapté en impédance un signal radiofréquence, on a un chemin à faible pertes d'insertion dans le sens des aiguilles d'une montre et l'on observe de fortes pertes dans le sens opposé. La puissance est donc dirigée quasiment sans pertes vers le port p2 et rayonnée par l'antenne. La même chose s'applique du port p2 vers le port p3, et du port p3 vers le port p1. Le circulateur a ainsi pour qualités essentielles de transmettre sans pertes dans un sens donné et d'atténuer très fortement les ondes réfléchies. - Les circulateurs sont notamment utilisés dans les systèmes de télécommunication ou radars, selon le principe illustré sur la
figure 2 . Lafigure 2 schématise un exemple de système d'émission et de réception de signaux électromagnétiques pour applications notamment de type radars, couramment désigné sous le nom de T/R module composé essentiellement de trois étages comme décrit ci-après. - Le premier étage, le coeur du système CA sert à gérer et à traiter les signaux reçus et émis. Le second étage est composé des éléments amplificateur de puissance. Ces éléments se distribuent en deux fonctionnalités, l'amplificateur de forte puissance couramment dénommé HPA, 11 qui sert à donner de la puissance au signal sortant du premier étage pour être émis par l'antenne et l'amplificateur de puissance faible bruit couramment dénommé LNA, 16 qui sert à amplifier la puissance du signal reçu par l'antenne tout en limitant au maximum les parasites. Ces deux composants sont très sensibles à la puissance reçue par l'antenne. Le LNA dans la mesure où la puissance qui entre dans ce dernier ne doit pas excéder un certain seuil sans quoi le composant est mis à mal et détruit. Le HPA qui dans la mesure où il est toujours branché avec une boucle de retour sur la sortie ne doit en aucun cas recevoir de puissance sur sa sortie si l'on ne veut pas le dégrader voir le détruire. C'est pour cette raison que l'on trouve dans le troisième étage des éléments appelés limiteurs 12 et 15 qui sont des composants électroniques dont la fonction est de couper le signal hyperfréquence si la puissance de celui-ci dépasse un certain seuil. On trouve aussi dans ce troisième étage des éléments appelés circulateurs 13 et 14. Ce sont des composants dits actifs qui dirigent un flux entrant vers une sortie spécifique à l'entrée utilisée. Par exemple du port 1 vers le port 2, du port 2 vers le port 3... d'où ce nom de circulateur. Cela implique physiquement que quelle que soit l'impédance du circuit en sortie, il n'y a pratiquement aucun retour sur l'entrée du circulateur. S'il doit y avoir une réflexion, l'énergie est considérée comme un flux entrant par la première sortie et est donc dirigée vers la sortie suivante, isolant presque parfaitement l'entrée.
- A l'heure actuelle ce type de chaînes de transmission/réception comporte des circulateurs à base de matériaux ferromagnétiques et des limiteurs à base de diodes.
- Les défauts existants sont principalement :
- le coût élevé de ces composants qui ne sont pas facilement reproductibles car ils nécessitent une intervention humaine pour être réglés correctement ;
- les pertes engendrées par ces composants de l'ordre de 4 à 8 dB dans leur bande de fréquence elle même très étroite (0.2 à 2 GHz) pour les circulateurs et de l'ordre de 1 dB pour les limiteurs à base de diodes de puissance.
- Ces composants occupent actuellement 80% de la place dans un système de télécommunication et sont un frein supplémentaire à la miniaturisation. Les circulateurs couramment employés étant des composants à base de ferrites sont par nature des composants actifs et consomment de l'énergie, ils sont aussi très volumineux (de l'ordre de 70% de la masse par rapport au volume du T/R module) et du fait de leur difficulté de reproductibilité sont très chers.
- Les diodes quant à elles sont des composants présentant des coûts importants et les pertes engendrées par ces composants sont de l'ordre de 1 dB. Par ailleurs les diodes occupent une part importante de la place dans les systèmes de télécommunication et représentent par la même un frein supplémentaire à la miniaturisation .
- Il a déjà été proposé dans l'art antérieur d'utiliser des micro-commutateurs hyperfréquences encore dénommés switch MEMS RF. Il s'agit de micro-dispositifs de type capacitif, fonctionnant comme des commutateurs, micro-dispositifs que l'on appelle micro-commutateurs dans la suite.
- Les micro-commutateurs de type capacitif sont particulièrement appréciés dans les applications hyperfréquence, notamment pour leurs faibles temps de réponse alliés à des tensions de commande peu élevées allant de quelques volts à quelques dizaines de volts. Ils sont avantageusement très petits, de taille millimétrique (2 à 10 mm2), soit en moyenne dix fois plus petits qu'un circulateur ferromagnétique et beaucoup plus léger. Ils consomment très peu. Ils sont peu coûteux à produire car ils utilisent les techniques de fabrication usuelles en microélectronique, depuis un substrat généralement silicium et sont très facilement reproductibles. Leurs pertes par insertion sont très faibles, généralement de l'ordre de 0.1 à 0.2 dB sur une très large bande de fréquence, 18 à 19 GigaHertz. Selon cette solution il est proposé plus précisément des micro-commutateurs de type série : une ligne de signal d'entrée et une ligne de signal de sortie dans le prolongement l'une de l'autre, séparées par une zone de commutation, et isolées électriquement, et au-dessus de la zone de commutation, une membrane flexible, reposant sur des piliers. La zone de commutation est recouverte d'un diélectrique. La membrane est soit en position de repos, haute, la capacité formée par la zone de commutation, le diélectrique et la membrane ayant une valeur Coff faible, de sorte que les deux lignes de signal sont isolées, soit en position basse de sorte que les deux portions de ligne sont couplées de façon capacitive, la capacité formée par la zone de commutation, le diélectrique et la membrane ayant une valeur Con élevée, permettant la transmission d'un signal radiofréquence ou hyperfréquence. La commande de la membrane est une commande en tension appliquée de manière appropriée dans la zone de commutation, la membrane étant portée à un potentiel de référence (masse électrique) par les piliers. Les performances de commutation (transmission, isolation) dépendent notamment du rapport Con sur Coff qui doit être le plus élevé possible.
- Le circulateur comprend au moins un premier et un deuxième plots de contact pour appliquer des tensions de commande à l'état on ou off sur au moins une des parties de l'électrode de commande du premier micro-commutateur et du deuxième micro-commutateur. Les tensions d'activation sont de l'ordre du volt à quelques dizaines de volts. Les micro-commutateurs peuvent être commandés simultanément à l'état off, ou l'un à l'état on et l'autre à l'état off.
- Il est notamment connu de la demande de brevet français
FR 2 901 917 - En parallèle, pour d'autres problématiques, il est connu de la demande de brevet
JP 9 186 508 - Afin de réduire encore les coûts de ce type de circulateur, la présente invention propose un nouveau type de circulateur comportant des composants auto-actionnés.
- Plus précisément la présente invention a pour objet un circulateur à au moins trois ports, un port d'entrée pour recevoir un signal radiofréquence à transmettre vers un port destiné à être connecté à une antenne d'émission/réception appelée port d'antenne, un port de sortie apte à être connecté à un dispositif récepteur ou une charge, caractérisé en ce qu'il comprend :
- un premier et un second micro-commutateurs à actionnement électrostatique de type condensateur formés sur un même substrat et comportant chacun deux armatures dont la première est une membrane flexible et la seconde comporte au moins une zone d'une ligne signal, les deux armatures étant séparées par une épaisseur de vide ou de gaz ;
- les ports d'antenne et de sortie étant disposés sur une ligne signal principale, le port d'entrée étant situé sur une ligne signal secondaire ;
- le premier micro-commutateur étant disposé de manière à relier la ligne signal principale et la ligne signal secondaire par auto-actionnement de la membrane sous l'effet d'une puissance de signal d'entrée ;
- le second micro-commutateur ayant une membrane permettant de relier la ligne principale à des plans de masse par auto-actionnement de la membrane sous l'effet d'une puissance de signal d'entrée ;
- les micro-commutateurs étant séparés d'une distance de l'ordre du quart de la longueur d'onde correspondant à la fréquence du signal.
- Selon une variante de l'invention, la ligne signal principale est une ligne discontinue.
- Selon une variante de l'invention, la ligne signal secondaire est une ligne continue.
- Selon une variante de l'invention, la ligne secondaire comporte un élément de masse séparé d'une distance de l'ordre du quart de la longueur d'onde correspondant à la fréquence du signal.
- Selon une variante de l'invention, les lignes principale et secondaire sont en or et/ou en cuivre et/ou en alliage de titane/tungstène.
- Selon une variante de l'invention, les lignes principale et secondaire comportent en outre une couche supérieure en matériau isolant au niveau de parties affinées situées sous les membranes.
- Selon une variante de l'invention, le matériau isolant est en PZT ou en ZrO2 ou en Si3N4 ou en tout autre diélectrique dont la permittivité relative sera adapté à la fréquence de travail de l'élément
- L'invention a aussi pour objet un module de transmission/réception de signaux hyperfréquences comportant une antenne, un premier étage de traitement des signaux hyperfréquence émis et réçus, un deuxième étage d'amplification desdits signaux et un étage intermédiaire comportant au moins un circulateur selon l'invention.
- Selon une variante de l'invention, l'étage intermédiaire comporte en outre au moins un limiteur de puissance.
- Selon une variante de l'invention, le module de transmission/réception comporte un limiteur de puissance sur le port de sortie en direction du récepteur ou de la charge et/ou un second limiteur de puissance sur le port d'antenne.
- Selon une variante de l'invention, le ou les limiteurs de puissance comportent une ligne principale avec une entrée pour recevoir une puissance incidente et une sortie, leur ligne principale comprenant un micro-commutateur à actuation électrostatique de type condensateur comportant deux armatures dont la première est une membrane flexible et la seconde comporte au moins une zone de la ligne principale, les deux armatures étant séparées par une épaisseur de vide ou de gaz, ledit micro-commutateur comportant en outre deux plans de masse reliés par ladite membrane.
- Selon une variante de l'invention, le micro-commutateur du ou des limiteurs est auto-actionnable par une puissance incidente supérieure à une valeur seuil de manière à mettre en contact ladite zone de la ligne principale et les deux plans de masse et ainsi bloquer le signal hyperfréquence.
- L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description qui va suivre donnée à titre non limitatif et grâce aux figures annexées parmi lesquelles :
- les
figures 1a et 1b illustrent les modes de fonctionnement classique d'un circulateur ; - la
figure 2 illustre un exemple de système d'émission et de réception de signaux électromagnétiques pour applications notamment de type radars selon l'art connu ; - la
figure 3 illustre un exemple de circulateur selon l'invention ; - les
figures 4a et 4b illustrent respectivement l'évolution du gap séparant la membrane de la zone de ligne coplanaire en fonction de la tension d'actionnement de ladite membrane et le cycle pouvant être effectué par la membrane sous l'action d'une tension de commande; - les
figures 5a, 5b, 5c et 5d illustrent différentes vues d'un micro-commutateur utilisé dans un circulateur selon l'invention ; - la
figure 6 illustre l'étage intermédiaire d'une chaîne de transmission/réception intégrant un circulateur selon l'invention. - De manière générale, le circulateur faisant l'objet de la présente invention comporte deux micro-commutateurs à base de composants MEMS RF, à activation électrostatique.
- La
figure 3 représente une vue de dessus d'un exemple de circulateur selon l'invention. Une ligne principale continue RF, Lp, comporte le port de sortie p3 en direction d'un récepteur ou d'une charge et le port d'antenne p2 en direction d'une antenne d'émission/réception. Cette ligne principale, Lp, forme une croix avec une ligne Rf secondaire discontinue Ls, ladite ligne secondaire comportant le port d'entrée p1 susceptible de recevoir un signal radiofréquence. Un premier micro-commutateur MEMS1 est situé à la croisée des lignes principale et secondaire. Par ailleurs un second micro-commutateur MEMS2 est positionné également au niveau de la ligne principale en direction du port p3 et permet de court-circuiter à la masse ladite ligne principale, en position abaissée de la membrane dudit second micro-commutateur. En effet des plans de masse PM1 et PM2 sont situés de part et d'autre de la ligne secondaire. - Les deux micro-commutateurs sont séparés d'une distance égale au quart de la longueur d'onde λ correspondant à la fréquence du signal de fonctionnement dudit circulateur et la ligne secondaire comporte en outre un élément de masse EM (pour masses électromagnétiques, similaires à une masse pour le courant continu, ces masses EM correspondent à un potentiel de référence pour la ligne centrale) situé à une distance égale également au quart de la longueur d'onde λ.
- Ainsi lorsque les deux micro-commutateurs sont en position état 1, correspondant à des membranes non abaissées, un signal reçu depuis l'antenne peut se propager le long de la ligne principale en direction du port p3 et ne pas circuler en direction des ports p1 et de l'élément de masse EM.
- Lorsque les deux micro-commutateurs sont en position état 2, correspondant à des membranes abaissées, un signal en provenance du port p1, peut circuler dans chacune des quatre branches de la croix formée.
- En effet une partie du signal transite en direction du port p3, néanmoins le MEMS2 est en position de court-circuiter le signal, le signal parcourt un aller sur une distance de λ/4 et un retour en opposition de phase dudit signal aller. De même, la partie de signal en direction de l'élément de masse EM parcourt également une distance aller sur une distance de λ/4 en opposition de phase avec un signal retour sur ladite même branche de la croix.
- En sommant les différents signaux en opposition de phase, seul demeure un signal en direction du port p2 de l'antenne.
- On peut ainsi résumer les deux états du circulateur :
- état 1 : les MEMS1 et MEMS2 sont en position haute, le circulateur fonctionne de p2 vers p3.
- état 2: les MEMS1 et MEMS2 sont en position basse, le circulateur fonctionne de p1 vers p2.
- Selon l'invention, le grand intérêt de ce type de circulateur est qu'il fonctionne grâce à la présence de deux micro-commutateurs auto-actionnables et donc sans tension de fonctionnement à consommer. En effet, tout signal radiofréquence possède une puissance associée qui de fait équivaut à une tension et une intensité efficace. Si la tension efficace du signal dépasse un certain seuil, il se produit un phénomène d'auto-activation de la membrane qui court-circuite le signal hyperfréquence vers la masse, protégeant les composants situés en aval.
- Le mouvement de la membrane de ce switch RF MEMS lors de l'actionnement suit le parcours illustré en
figure 4a qui fournit la distance de la membrane surplombant la zone de ligne coplanaire en fonction de la tension d'actionnement de ladite membrane appelée hauteur. -
-
- On obtient le cycle montré en
figure 4b pour le mouvement de la membrane en fonction de la tension appliquée. - A la puissance du signal traversant le MEMS RF correspond une tension moyenne Veq. Trois cas de configurations sont possibles :
- Premier cas : la tension Veq engendrée par le signal est supérieure à la tension Vp, on se trouve dans le cas de l'auto-actionnement pour un switch de cette sorte. Cela signifie que le simple fait de faire passer le signal à travers le MEMS RF provoque son actionnement.
- Second cas : la tension Veq est comprise entre les tensions Vr et Vp, on se trouve dans le cas de l'auto maintient. Cela signifie que le simple fait de faire passer le signal à travers le MEMS RF empêche la membrane de remonter après actionnement, auto-maintient, mais sans pour autant provoquer d'auto-actionnement.
- Troisième cas : la tension Veq est inférieure à la tension Vr, le MEMS fonctionne de manière simple, le signal ne perturbe pas le fonctionnement du MEMS RF.
- Nous allons décrire ci-après plus en détails, un exemple de micro-commutateur utilisé dans un circulateur selon l'invention, et notamment le MEMS2 qui dans une position abaissée permet de relier la ligne centrale à des plans de masse :
Lesfigures 5a, 5b, 5c et 5d illustrent respectivement une vue en perspective, une vue en coupe, une vue de dessus avant réalisation de la membrane et une vue de dessus après réalisation de la membrane. Sur un susbtrat de silicium 20, recouvert d'une couche 21 de diélectrique de type SiO2, une ligne hyperfréquence 22 est réalisée typiquement en or, recouverte selon l'art connu d'une couche de diélectrique 23 de type PZT. Des piliers 24a et 24b permettent de relier des lignes de masse 24 et supportent la membrane constituée d'une couche de matériau conducteur 25. Lafigure 5c met en évidence la ligne hyperfréquence 22 recouverte d'une couche de matériau piézoélectrique 23, alors que lafigure 5d met en évidence la membrane 25 surplombant ladite ligne hyperfréquence 22 recouverte de la couche diélectrique 23. Typiquement les épaisseurs des couches sont respectivement : - couche 21 : de l'ordre de 1 à 2 microns ;
- couche 22 : de l'ordre de 0,5 à 0,7 microns dans la partie affinée, et d'environ 5 µm dans les parties non-affinées sous la membrane ;
- couche 23 : de l'ordre de 0,2 à 0.4 microns ;
- membrane 25 : de l'ordre de 500 à 700 nanomètres.
- La
figure 6 illustre l'étage intermédiaire d'une chaîne de transmission/réception comportant des limiteurs de puissance et un circulateur selon l'invention, une telle chaîne pouvant typiquement être celle illustrée enfigure 2 . - Ainsi selon l'invention, le troisième étage de cette chaîne d'émission/réception comporte en sortie de l'amplificateur du signal d'émission 11, un circulateur composé des deux micro-commutateurs MEMS1 et MEMS2 selon l'invention, ce troisième étage comporte également pour le signal hyperfréquence de réception un premier limiteur 12 entre le circulateur et le port d'antenne p2 et un second limiteur 15 dont la ligne principale est reliée en entrée au circulateur comportant les deux micro-commutateurs MEMS1 et MEMS2 et en sortie à un amplificateur 16, LNA.
- L'intérêt du circulateur et des limiteurs à base de switchs MEMS RF est qu'ils ne consomment pas ou très peu d'énergie en mode auto-actionnable, qu'ils sont très petits donc permettent un gain de place et de masse très important, le circulateur et les limiteurs à base de switchs MEMS RF sont par ailleurs très facilement reproductibles et donc très peut coûteux.
Claims (10)
- Circulateur à au moins trois ports (p1, p2, P3), un port d'entrée (p1) pour recevoir un signal radiofréquence à transmettre vers un port (p2) destiné à être connecté à une antenne d'émission/réception (A) appelé port d'antenne, un port de sortie (p3) apte à être connecté à un dispositif récepteur ou une charge, caractérisé en ce qu'il comprend :- un premier et un second micro-commutateurs (MEMS1, MEMS2) à actionnement électrostatique de type condensateur formés sur un même substrat et comportant chacun deux armatures dont la première est une membrane flexible et la seconde comporte au moins une zone d'une ligne signal, les deux armatures étant séparées par une épaisseur de vide ou de gaz, l'activation d'un micro-commutateur (MEMS1, MEMS2) permettant la transmission d'un signal hyperfréquence entre sa zone de ligne signal et sa membrane par abaissement de ladite membrane vers ladite zone ;- une ligne principale, de type coplanaire, comprenant deux branches et reliant ledit port d'antenne (p2) audit port de sortie (p3) ;- une ligne secondaire, de type coplanaire, comprenant deux branches et reliant ledit port d'entrée (p1) à un élément de masse (EM) ;ladite ligne secondaire croisant la dite ligne principale au moyen du premier micro-commutateur (MEMS1) de telle façon que la zone de ligne signal dudit micro-commutateur (MEMS1) relie les deux branches de la dite ligne principale et que la membrane dudit micro-commutateur (MEMS1) relie les deux branches de ladite ligne secondaire
ladite ligne principale étant reliée à des plans de masses (PM1, PM2) au moyen du deuxième micro-commutateur (MEMS2) de telle façon que la zone de ligne signal dudit micro-commutateur (MEMS2) soit reliée à ladite ligne principale et que la membrane dudit micro-commmutateur (MEMS2) soit reliée auxdits plans de masses (PM1, PM2), ledit micro-commutateur (MEMS2) étant situé en direction dudit port de sortie (p3), à une distance du premier micro-commutateur (MEMS1) égale au quart de la longueur d'onde (λ/4) du signal hyperfréquence circulant dans ledit circulateur
ledit élément de masse (EM) étant situé à une distance du premier micro-commutateur (MEMS1) égale au quart de ladite longueur d'onde ;
lesdits micro-commutateurs (MEMS1, MEMS2) étant activés lorsque la puissance du signal sur ledit port d'entrée (p1) engendre une tension (Veq) entre leur membrane et leur ligne de signal supérieure à une tension donnée (Vp). - Circulateur selon la revendication 1, caractérisé en ce que les lignes principale et secondaire sont en or et/ou en cuivre et/ou en alliage de titane/tungstène.
- Circulateur selon l'une des revendications 1 ou 2, caractérisé en ce que les lignes principale et secondaire comportent en outre une couche supérieure en matériau isolant au niveau de parties affinées situées sous les membranes.
- Circulateur selon l'une des revendications 1 à 3, caractérisé en ce que le matériau isolant est en PZT ou en ZrO2 ou en Si3N4.
- Module de transmission/réception de signaux radiofréquence comportant une antenne, un premier étage de traitement des signaux radiofréquence émis et reçus, un deuxième étage d'amplification desdits signaux et un étage intermédiaire comportant au moins un circulateur selon l'une des revendications 1 à 4.
- Module de transmission/réception selon la revendication 5, caractérisé en ce que l'étage intermédiaire comporte en outre au moins un limiteur de puissance.
- Module de transmission/réception selon la revendication 6, caractérisé en ce qu'il comporte un premier limiteur de puissance (12) situé entre ledit circulateur et un port de sortie d'antenne (p2) en direction du récepteur ou de la charge et/ou un second limiteur de puissance (15) relié en entrée audit circulateur.
- Module de transmission/réception selon l'une des revendications 6 ou 7, caractérisé en ce que le ou les limiteurs de puissance (12, 15) sont réalisés à base de micro-commutateurs MEMS coupant le signal hyperfréquence si la puissance de celui-ci est supérieure à un seuil donné.
- Module de transmission/réception selon la revendication 8, caractérisé en ce que ledit micro-commutateur du ou des limiteurs est actionnable par une tension.
- Module de transmission/réception selon la revendication 8, caractérisé en ce que le micro-commutateur du ou des limiteurs est auto-actionnable par une puissance incidente supérieure à une valeur seuil de manière à mettre en contact ladite zone de la ligne principale et les deux plans de masse et bloquer le signal radiofréquence.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0802175A FR2930374B1 (fr) | 2008-04-18 | 2008-04-18 | Circulateur radiofrequence a base de mems. |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2110881A1 EP2110881A1 (fr) | 2009-10-21 |
EP2110881B1 true EP2110881B1 (fr) | 2018-08-22 |
Family
ID=39864898
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09157873.2A Active EP2110881B1 (fr) | 2008-04-18 | 2009-04-14 | Circulateur radiofréquence a base de mems |
Country Status (3)
Country | Link |
---|---|
US (1) | US8155602B2 (fr) |
EP (1) | EP2110881B1 (fr) |
FR (1) | FR2930374B1 (fr) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2952048B1 (fr) * | 2009-11-03 | 2011-11-18 | Thales Sa | Micro-commutateur capacitif comportant un drain de charges a base de nanotubes orientes sur l'electrode basse et procede de fabrication |
PL2506282T3 (pl) * | 2011-03-28 | 2014-02-28 | Delfmems | Przełącznik krzyżowy RF MEMS i matryca przełączników krzyżowych zawierająca przełączniki krzyżowe RF MEMS |
FR2989214B1 (fr) | 2012-04-05 | 2014-03-28 | Thales Sa | Limiteur de puissance hyperfrequence a commutateurs mems radiofrequences capacitifs |
FR2993713B1 (fr) | 2012-07-23 | 2018-06-15 | Thales | Composants micro-electroniques, aptes a laisser circuler un signal radiofrequence ou hyperfrequence selon une seule direction |
US10090585B2 (en) | 2015-08-23 | 2018-10-02 | The Trustees Of Columbia University In The City Of New York | Circuits and methods for antenna-based self-interference cancellation |
US10581135B2 (en) | 2015-12-07 | 2020-03-03 | The Trustees Of Columbia University In The City Of New York | Circuits and methods for non-reciprocal circulators and transceivers using same |
US9887862B2 (en) | 2015-12-07 | 2018-02-06 | The Trustees Of Columbia University In The City Of New York | Circuits and methods for performing self-interference cancelation in full-duplex transceivers |
CN110073556A (zh) | 2016-07-21 | 2019-07-30 | 哥伦比亚大学(纽约)理事会 | 基于次谐波时空电导调制的无磁非互易电路 |
CN114976607B (zh) | 2021-02-24 | 2024-03-12 | 北京京东方技术开发有限公司 | 天线和通信设备 |
CN114976562B (zh) * | 2021-07-23 | 2024-04-16 | 苏州华勤源微电子科技有限公司 | 一种基于mems工艺的硅基微带环形器及其应用 |
CN115037322B (zh) * | 2022-03-28 | 2023-11-28 | 深圳市国电科技通信有限公司 | 射频能量收集装置和方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09186508A (ja) * | 1995-12-27 | 1997-07-15 | Fujitsu Ltd | ストリップライン回路構造 |
US6043727A (en) * | 1998-05-15 | 2000-03-28 | Hughes Electronics Corporation | Reconfigurable millimeterwave filter using stubs and stub extensions selectively coupled using voltage actuated micro-electro-mechanical switches |
US6580337B1 (en) * | 1999-07-19 | 2003-06-17 | California Institute Of Technology | MEMS switch |
FR2841389B1 (fr) * | 2002-06-21 | 2004-09-24 | Thales Sa | Cellule dephaseuse pour reseau reflecteur d'antenne |
US6624720B1 (en) * | 2002-08-15 | 2003-09-23 | Raytheon Company | Micro electro-mechanical system (MEMS) transfer switch for wideband device |
FR2845075B1 (fr) * | 2002-09-27 | 2005-08-05 | Thales Sa | Microcommutateurs a actuation electrostatique a faible temps de reponse et commutation de puissance et procede de realisation associe |
US6992629B2 (en) * | 2003-09-03 | 2006-01-31 | Raytheon Company | Embedded RF vertical interconnect for flexible conformal antenna |
KR100684148B1 (ko) * | 2005-11-03 | 2007-02-20 | 한국전자통신연구원 | 디지털 방식으로 제어되는 서큘레이터 및 그를 구비하는무선주파수 식별 리더 |
FR2901917B1 (fr) * | 2006-05-31 | 2008-12-19 | Thales Sa | Circulateur radiofrequence ou hyperfrequence |
-
2008
- 2008-04-18 FR FR0802175A patent/FR2930374B1/fr not_active Expired - Fee Related
-
2009
- 2009-04-14 EP EP09157873.2A patent/EP2110881B1/fr active Active
- 2009-04-16 US US12/425,070 patent/US8155602B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
FR2930374B1 (fr) | 2011-08-26 |
US20090286491A1 (en) | 2009-11-19 |
EP2110881A1 (fr) | 2009-10-21 |
US8155602B2 (en) | 2012-04-10 |
FR2930374A1 (fr) | 2009-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2110881B1 (fr) | Circulateur radiofréquence a base de mems | |
EP2022129B1 (fr) | Circulateur radiofrequence ou hyperfrequence | |
EP1427053B1 (fr) | Coupleur directif | |
FR2908931A1 (fr) | Antenne et emetteur/recepteur terahertz integres,et procede pour leur fabrication. | |
FR2850792A1 (fr) | Filtre compact en guide d'onde | |
EP2202838B1 (fr) | Condensateur commuté compact mems | |
EP1543535B1 (fr) | Procédé de réalisation des microcommutateurs a actuation electrostatique a faible temps de reponse et a commutation de puissance | |
EP0957534A1 (fr) | Dispositif d'émission et de réception d'ondes hyperfréquences polarisées circulairement | |
EP0545809A1 (fr) | Dispositif de montage de circuits intégrés monolithiques hyperfréquences à très large bande | |
EP0978949B1 (fr) | Dispositif de commutation de signaux radio-fréquences | |
EP0596568B1 (fr) | Dispositif semiconducteur comprenant un circuit amplificateur distribué monolithiquement intégré, à large bande et fort gain | |
EP2024986A1 (fr) | Structure de micro-commutateurs radiofrequence ou hyperfrequence et procede de fabrication d'une telle structure | |
EP0015610A1 (fr) | Filtre de réflexion de fréquence image en hyperfréquence et récepteur hyperfréquence comprenant un tel filtre | |
FR2930373A1 (fr) | Limiteur de puissance a base de mems. | |
FR2871951A1 (fr) | Dispositif de transition rntre un guide d'ondes et deux circuits redondants chacun couple a une ligne coplanaire | |
EP1565922B1 (fr) | Micro-commutateur electrostatique pour composant a faible tension d'actionnement | |
FR2965991A1 (fr) | Dispositif acoustique d'isolation galvanique | |
EP1387409B1 (fr) | Commutateur optoélectronique ultra rapide à grand pouvoir d'isolement et large bande passante | |
EP2648335B1 (fr) | Limiteur de puissance hyperfréquence à commutateurs MEMS radiofréquences capacitifs | |
FR3129037A1 (fr) | Dispositif de filtrage reconfigurable et système d'acquisition de signaux radiofréquences intégrant un tel dispositif de filtrage | |
EP1431772B1 (fr) | Limiteur de puissance pour radar | |
EP0040567A1 (fr) | Elément résistif en technique microbande | |
WO2024133569A1 (fr) | Composant de connexion radiofrequence supraconducteur | |
WO1999060717A1 (fr) | Circuit et procede de reception ou d'emission d'ondes hyperfrequences | |
FR2718890A1 (fr) | Agencement limiteur de puissance microonde. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
17P | Request for examination filed |
Effective date: 20100304 |
|
17Q | First examination report despatched |
Effective date: 20100331 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180313 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: THALES |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602009053972 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1033525 Country of ref document: AT Kind code of ref document: T Effective date: 20180915 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180822 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180822 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180822 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181122 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180822 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180822 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181222 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181123 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181122 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1033525 Country of ref document: AT Kind code of ref document: T Effective date: 20180822 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180822 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180822 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180822 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180822 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180822 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180822 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180822 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180822 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180822 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602009053972 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180822 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180822 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20190523 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180822 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180822 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190414 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190430 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180822 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190414 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180822 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20090414 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180822 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180822 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240314 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240321 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240319 Year of fee payment: 16 |