EP0957534A1 - Dispositif d'émission et de réception d'ondes hyperfréquences polarisées circulairement - Google Patents

Dispositif d'émission et de réception d'ondes hyperfréquences polarisées circulairement Download PDF

Info

Publication number
EP0957534A1
EP0957534A1 EP99401148A EP99401148A EP0957534A1 EP 0957534 A1 EP0957534 A1 EP 0957534A1 EP 99401148 A EP99401148 A EP 99401148A EP 99401148 A EP99401148 A EP 99401148A EP 0957534 A1 EP0957534 A1 EP 0957534A1
Authority
EP
European Patent Office
Prior art keywords
reception
cavity
transmission
frequencies
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99401148A
Other languages
German (de)
English (en)
Inventor
Gérard Caille
Michel Gomez-Henry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
Original Assignee
Alcatel CIT SA
Alcatel SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel CIT SA, Alcatel SA filed Critical Alcatel CIT SA
Publication of EP0957534A1 publication Critical patent/EP0957534A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0025Modular arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/247Supports; Mounting means by structural association with other equipment or articles with receiving set with frequency mixer, e.g. for direct satellite reception or Doppler radar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Definitions

  • the invention relates to a device for transmitting and receiving waves circularly polarized microwave.
  • Devices of this kind are commonly used in monitoring systems. telecommunication. These transmitting and receiving devices are usually intended for emit large powers and receive weak powers. This is so, by example, telecommunication systems in which signals are relayed by geostationary satellites.
  • the transmission frequencies and the reception frequencies are separate to prevent reception signals from being disturbed by signals resignation. It is also necessary to provide filtering means so that, in each channel, you can receive or transmit the desired frequency and eliminate the frequency of the other way. Separation between signals must be particularly careful when transmission and reception are simultaneous.
  • These devices most often include a waveguide source and a high rejection duplexer in the respective transmit and receive bands. They therefore have a large size which may not be suitable for all applications, in particular for telecommunications system terminals in which each subscriber must have a transmitter and a receiver.
  • wave transmitting and receiving devices microwave can be used routinely, for both domestic uses than professionals, in satellite telecommunication systems.
  • telecommunication systems of this type are developed for so-called "multimedia” applications.
  • the orbits are called “low or medium” as opposed to geostationary satellites whose altitude is 36,000 km. Satellites are intended to ensure communication between land users.
  • the communications thus transmitted are multimedia in nature, that is to say that they relate to television, audio, video signals, digital data of any kind, programs, telephone or fax signals.
  • the low altitude of the satellites reduces the communication distance and therefore delays due to propagation, which facilitates the interactivity of these systems.
  • we can optimize the coverage for example by favoring areas with high population density, while a geostationary orbit favors areas close to the equator.
  • a terrestrial user can only communicate with a satellite during the time during which this satellite is "in sight" of the user; this duration is generally from about twenty minutes. It is therefore necessary that, on the one hand, the antenna of the user can follow the satellite on its trajectory and, on the other hand, the user can instantly switch communication to the next satellite, which enters its field of vision, while the previous satellite is leaving its field of vision. Instant switching is especially necessary for interactive communications for which an interruption of service, even for a short period, cannot be envisaged.
  • a transmission and reception device is generally provided. Two antennas, one of which moves to follow the satellite with which the user communicates and the other is on hold and pointed to the start of the satellite viewing area following.
  • Transmitting and receiving devices and, in particular their antennas, intended for such telecommunications systems must be particularly light and reduced dimensions to facilitate movement and installation on the roof of a building (in particular an individual house) and, thus, to preserve the esthetics.
  • document JP 10 022728 describes a polarized antenna circular using such technology and used for a single type of transmission, namely transmission or reception and therefore for a single frequency band.
  • a transmission and reception device must include two antennas of this type with a hybrid coupler since the same type of polarization is used for both frequency bands.
  • Document JP 06 140835 relates to a circularly polarized antenna comprising a patch for transmission and a patch for reception. So there is a frequency band access, which means oversizing the antenna.
  • the invention provides a particularly transmitting and receiving device compact which allows simultaneous transmission and reception and ensures disturbance minimized signal received by transmitted signal, low loss transmission and reception with a low noise factor, i.e. with a high signal-to-noise ratio.
  • the transmitting and receiving device is characterized in that the transmit and receive signals have circular polarizations of opposite directions and in that the antenna of the device comprises a radiating element with two access, or lines, orthogonal, one for transmission, and the other for reception.
  • the radiating element comprises at minus a planar dot.
  • the radiating element planar should not have a circular shape, but a deformed circular shape, for example according to chamfers.
  • the technology selected minimizes the size and the weight of the antenna.
  • the number of elements of the device is minimized since it is not necessary to provide either a circulator, which would prevent the use of two reverse polarizations, i.e. a hybrid coupler 90 ° which transforms orthogonal linear polarizations into circular polarizations of reverse directions.
  • the minimization of the number of components contributes to the minimization of the cost of the device.
  • the radiating element Since the transmit and receive frequency bands are separate, the radiating element must be able to operate over a relatively wide band including the two useful bands. To optimize this broadband operation, in one embodiment, two superimposed planar radiating elements of dimensions are provided different, one resonating on a frequency corresponding to the emission band, and the other resonating at a frequency in the reception band.
  • the two radiating elements are, for example arranged in a cavity, this which optimizes the directivity of the radiating element. Indeed, the cavity prevents a rear and lateral radiation and limits the radiation to a useful cone, directed towards the source transmission and reception with which the device communicates, in particular a satellite scrolling, as explained above.
  • the access are preferably under the lower radiating element.
  • a set of satellites 10, 12 circulates in an orbit 14 at an altitude of about 1000 to 1500 km above the surface 16 of the earth.
  • Each satellite has means transmission and reception to relay communication between land users and access stations to specific services, such as databases.
  • a user terminal 18 which establishes interactive communication with another user or a land station (not shown) via the satellite 12.
  • the interactive character of communication is symbolized by a double arrow 20 on the path of the electromagnetic waves between the antenna 22 of the satellite 12 and antenna 24 of subscriber 18.
  • the antenna 24 is, for example, arranged on the roof of a detached house. It has a focusing surface 26, for example spherical, as shown in the Figure 2, and two radiating elements 28 and 30 movable on the focal surface 26 of antenna 24.
  • the radiating element 28 is controlled to follow the satellite 12 with which the user is in view, while the radiating element 30 is in a waiting position. This the latter remains pointed towards the area of appearance of the next satellite.
  • the radiating element 30 replaces the element 28 used to perform the communication. The switching from element 28 to element 30 can be carried out so instant.
  • the user 18 is provided with a device 32 for tracking satellites, controlling transmission and reception of signals and possibly decrypt those signals.
  • This control device is connected to a microcomputer 34 or similar memory device in which are recorded information relating to the positions of the satellites, so that at all times can control the motors ensuring the movement of the radiating elements 28 and 30 so that they are pointed precisely at the satellites.
  • microcomputer If a microcomputer is used, it can also be used for receive or transmit programs.
  • FIG. 2 shows a more detailed example of antenna 24 with radiating elements 28 and 30.
  • a fixed lens 42 is provided to receive microwave radiation over a solid angle of value sufficient to collect signals from satellites traveling in the viewing area of the user. This lens focuses the radiation received on a spherical surface on which move the radiating elements 28 and 30. This lens 42 is supported by two uprights of which only one, with reference 44, is visible in FIG. 2.
  • the radiating elements 28 and 30 are movable on the spherical surface 26 focusing.
  • two motors and two arms are provided for each of these elements. To simplify, we will only describe the motors and arms of the radiating element 28.
  • a first motor 46 is provided. secured to a lower support 48 and the shaft of which allows an arm 50 to rotate the end of which is the second motor 52 itself driving a forearm 54 to the end of which is the radiating element 28.
  • the motors 46 and 52 are controlled by information supplied by microcomputer 34 or the like.
  • Each radiating element 28, 30 is associated with a transmission circuit and a reception circuit which will be described later in relation to FIG. 5.
  • terminals 18 are mass-market devices, it is essential that they are compact, light in weight and minimized cost.
  • the need for a small footprint and low weight is further enhanced by the fact that the devices transmission and reception are mobile and are associated in a reduced volume, that of antenna 24.
  • the reception band Rx is 1 1.7 to 12.45 GHz (which can be extended to 12.55 GHz), while the Tx transmission band is from 14 to 14.3 GHz.
  • the transmitting power is a few watts, of the order of 2 to 3.
  • the radiating element according to the invention is of the compact type and has, for the transmission and for the reception, substantially orthogonal accesses, the phase shift of the emission and reception signals and the shape of the radiating element being such that the transmit and receive signals with different frequencies are polarized circularly in opposite directions.
  • the three short-circuit, intermediate and adaptation cavities allow adjust the adaptation of the accesses in relation to the desired frequency bands.
  • an access 224 is provided between the short-circuit cavity and the cavity intermediate, the other access 225 being formed between the intermediate cavity and the cavity adaptation.
  • the single-band or dual-band aspects are managed by the three cavities of short-circuit, intermediate and adaptation.
  • the radiative interface formed by the rectangular waveguide section polarizing 223 makes it possible to propagate two modes TE01 and TE10 orthogonal in the desired bands. Due to the rectangular section, the group speed of the TE01 modes and TE10 differs slightly which makes it possible to create a phase shift between these two modes.
  • the phase quadrature between the two modes is obtained when the boundary conditions of the rectangular section 223 and its length (about ⁇ g / 4) are adequate: the antenna generates circular polarization.
  • the orthogonality of accesses 224 and 225 allows isolation between accesses and the superimposed excitation of two pairs of modes TE01 and TE10 with conditions of opposite quadrature for each pair to obtain a double polarization circular.
  • the cavity formed by the rectangular section 223 and the access part on the one hand and the radiative part on the other hand allows the obtaining of a quadrature condition of phase of TE01 and TE10 modes over large bandwidths.
  • the stack comprising the short-circuit cavity 220, the intermediate cavity 221 and the adaptation cavity 222 constitutes a cavity which is shown circular on the Figure 7.
  • This cavity can also be of substantially square shape. Its sides are then substantially perpendicular to the excitation lines 224a and 225a which constitute the access respectively 224 and 225 and therefore inclined by about 45 ° with respect to the rectangular section 223.
  • the engravings may be double-sided with metallized holes. This last solution is justified in particular for applications in bands of frequencies above 6 GHz (C band).
  • the radiating element is of the type planar and includes a patch or "patch" 60 (FIG. 3) having the shape of a circle truncated by parallel chamfers 62 and 64.
  • a patch or "patch" 60 (FIG. 3) having the shape of a circle truncated by parallel chamfers 62 and 64.
  • To this patch 60 are associated two accesses 66 and 68 in microstrip lines forming an angle of 90 °. These two accesses 66 and 68 are excited by 90 ° phase shifted signals.
  • Access 66 corresponds to reception and is therefore connected, in particular, to a low noise amplifier 70
  • access 68 corresponds to transmission and is therefore connected, among other things, to a power amplifier 72.
  • a truncated circular flat pad 74 is provided, having an access connected to the output of the power amplifier 72 1 (transmission circuit) by means of a circulator 76.
  • Access 78 is also connected to the reception channel, that is to say to a low noise amplifier 70 1 , by means of the same circulator 76.
  • a planar radiating element 80 of non-truncated circular shape having two orthogonal accesses 82 and 84 connected to two terminals, respectively 86 and 88, of a hybrid coupler 90 comprising two other terminals, respectively 92 and 94.
  • Terminal 92 is connected to the input of a low noise amplifier 70 2
  • terminal 94 is connected to the output of power amplifier 72 2 .
  • the 90 ° hybrid coupler makes it possible to transform orthogonal linear polarizations, on its terminals 92 and 94, into circular polarizations in opposite directions on its terminals 86 and 88.
  • the signals have circular polarizations in opposite directions.
  • the hybrid coupler 90 is preferably of the broadband type.
  • one or more additional branches 96 in microstrip there is also provided in a known manner.
  • FIG. 4 An embodiment planar pellet transmitting and receiving device which can preferably be used with the embodiment of Figure 3.
  • two superimposed planar pads are provided, 98 and 100 respectively.
  • Each of these pastilles has a shape corresponding to that shown in Figure 3, that is to say, the shape of a chamfered circle.
  • dimensions of these pellets are different.
  • the lower pad 98 has dimensions corresponding to a resonance in the receiving band and the patch greater than smaller dimensions corresponding to a resonance in the band the highest frequencies).
  • the two tablets have a relative arrangement such that they have the same central axis (perpendicular to their planes) and that their chamfers are parallel.
  • the accesses 102 are arranged under the lower patch 98. In FIG. 4 a only access is visible. These accesses are on-line micro ribbon or suspended triplate. They are connected to filter circuits and to low noise or power amplifiers by via micro ribbon or triplate lines. In the example, the filtering means and adaptation are also in line micro ribbon or triplate.
  • pellets and the accesses are arranged in a cylindrical cavity 110 open upwards and presenting a bottom 112.
  • This cavity 110 limits the cone of emission and reception of waves microwave so that this cone is relatively narrow, directed towards the satellite 12.
  • the bottom of the cavity is connected to a channel 1 14 with an axis perpendicular to the axis 1 16 of the cylindrical cavity 1 10.
  • a substrate 1 18 carrying, on the one hand, the access lines 102 and, on the other hand, filtering and adaptation circuits in micro lines tapes or triplates 120.
  • the substrate also comprises, at the end of the channel 1 14 opposite to the cavity 110, active elements such as transistors 122 of amplifier (s).
  • the part end of the channel 1 14 comprising the transistors 122 in planar microstrip technique is separated from the circuits 120, preferably in planar suspended three-plate technique, by through a sealing wall 124.
  • the end of the channel 114 includes a terminal 128 for the signals of reception and a boom 130 for the transmission signals.
  • the upper opening 132 of the cavity 110 is closed by a cover protector 134 made of plastic such as "teflon” or ABS.
  • the accesses are on one of the pads, for example that of reference 98.
  • planar filters and a multi-stage amplification and filtering planar filters and a multi-stage amplification and filtering.
  • the attenuation, or rejection, of the filter which is the closer to the radiating element has a value which is a fraction of the attenuation necessary to eliminate the frequencies to be deleted.
  • the rejection rate total necessary to eliminate the frequencies of emission (or reception) is of the order of 50 dB and the rejection of the first (or last) stage filter is only around 14 dB.
  • This last value is calculated according to the compression point of the first transistor (amplifier) in reception (or of the noise factor of the last transistor, amplifier, in transmission), the power to be transmitted, or the isolation between the two ports of the source (radiating element).
  • the amplification provided by the first amplification stage is preferably that which can be obtained with a very low noise transistor.
  • the noise seen by the radiating element is minimized. Indeed, this noise depends mainly on the noise provided by the nearest amplifier stage and filter of this element. On the other hand, the noise brought to the radiating element by the floors more amplification and filtering only occur attenuated, because this noise is decreased in proportion to the gain of the intermediate amplification stages located between the radiating element and the noise generating filter.
  • planar filters with moderate rejection can be produced from easy way, at moderate cost, because the substrates used can be of a low cost price.
  • filtering using a planar micro ribbon technique requires relatively expensive alumina substrates for high rejection rates, whereas for lower rejection rates, better substrates can be used market, for example PTFE-based, as will be seen below.
  • the receiving circuit includes a first part 140 disposed between the access 142 of the patch 144 of the element radiating and one end of a cable 146.
  • a second part 148 is disposed between the other end of the cable 146 and the demodulator (not shown) of the reception circuit.
  • Access 142 is connected directly to the input of a first filter 150 of the type band pass for reception frequencies and band cut type for frequencies resignation. For these emission frequencies, it has a rejection characteristic relatively moderate, 14 dB. For the reception frequency, the attenuation (or loss) is low value, of the order of 0.2 dB.
  • This first filter 150 is connected to the input of a first amplifier stage 152, with a single transistor in the example. This amplifier 152 shows an gain of 8 dB in the example. Note that this 8 dB gain is not the gain maximum that we could get with a transistor. But, in the example, we minimize the noise to the slight detriment of gain, as will be seen below in connection with FIG. 6.
  • This first part 140 of the reception circuit also includes a second filter-amplification stage pair, namely a filter 154 whose input is connected to the output of the first amplifier 152 and a second amplifier 156 also constituted, in the example, by a single transistor.
  • Filter 154 has 10 dB rejection for transmit frequencies and slight rejection, 0.2 dB, for receive frequencies.
  • the amplification stage 156 has a gain of 10 dB.
  • the parasitic emission signal at the output of stage 156 is less than 10 dBm.
  • Cable 146 - which in the example introduces attenuation of 1.5 dB - is connected to the second filtering and amplification part 148 which includes a third filter 158-amplifier 160 pair.
  • Filter 158 receives the signal supplied by cable 146 and delivers a signal to the third amplifier 160.
  • the attenuation of the filter 158 for the transmit frequencies is 26.5 dB and the attenuation for receive frequencies is 1.8 dB.
  • Amplification stage 160 has two transistors and its gain is 18 dB.
  • stage 160 a completely filtered signal is obtained from spurious emission signals.
  • This output is conventionally connected to a mixer 162 receiving a local oscillator signal at 10.75 GHz on another input. Leaving the mixer 162 is connected to the receiving demodulator via a low-pass filter 166.
  • each of the filters is given to the gain of the associated amplifier so that this attenuation is sufficient to prevent delinearization, or saturation (or compression), of the amplifier transistor (s) by the spurious emission signal. It is therefore necessary that each filter is placed upstream of the associated amplifier.
  • upstream we mean here that the filter should be closer to the radiating element than the amplifier of the same couple.
  • the overall noise factor of the receiving circuit is essentially that of the first filter 150 and amplification stage 152.
  • the coaxial cable 146 forms, in the example, a loop around the motors which may roll up or loosen depending on the movement of the arms.
  • the second part 148 of the reception circuit (as well as the part corresponding to the transmission circuit) is, in the example, at the base of the antenna, that is to say near the base 48 ( Figure 2).
  • the first part 142 of the reception circuit is made using so-called technology "hybrid without regulation", that is to say that the active elements such as the transistors are deposited directly on a substrate, without a housing, and that the substrate has planar conductors, for example produced by photoengraving.
  • hybrid without regulation that is to say that the active elements such as the transistors are deposited directly on a substrate, without a housing, and that the substrate has planar conductors, for example produced by photoengraving.
  • the part of circuit 148 located at the foot of the antenna, which is further from the radiating element, can be carried out more conventionally by integrated technology such as "Microwave monolithic integrated" circuit ", that is to say monolithic microwave integrated circuit).
  • integrated technology such as "Microwave monolithic integrated” circuit ", that is to say monolithic microwave integrated circuit).
  • the noise introduced by this stage 148 plays little role in the noise factor global.
  • the losses of the filter 158 with a higher rejection rate (26.5 dB in the example), which avoids compression or delineation of the transistors of stage 160 are also less critical than in Part 140.
  • the substrates are, for example, RO 3006 substrates or RO 4003 distributed by the Rogers Corporation. They consist of a matrix in flexible organic material such as reinforced PTFE (polytetra-fluorethylene) by micro glass fibers and in which are embedded ceramic particles allowing the dielectric constant to be increased and therefore the size of the circuits to be reduced.
  • This substrate is covered, on one side, by a layer of copper which constitutes the mass, while that the other side is also covered with photogravable copper to make the circuits.
  • the transmission circuit is analogous to the reception circuit.
  • Access 180 emission of the patch 144 is connected to the output of a first filter 182 whose input is connected to the output of an amplification stage 184.
  • the attenuation of the filter 182 is 14 dB for reception frequencies and 0.2 dB for transmission frequencies.
  • the gain of amplifier 184 is 8 dB.
  • the input of amplifier 184 is connected to the output of a filter 186 receiving the output signal from an amplification stage 188.
  • the attenuation of the filter 186 is 10 dB for reception frequencies and 0.2 dB for transmission frequencies.
  • the gain of the floor amplification 188 is 8 dB.
  • the other part of the transmission circuit is also at the foot of the antenna, in the vicinity of the support 48 (FIG. 2), and includes a filter 190 connected to the cable 170 or 172 via a switch 173.
  • the filter 190 receives the output signal from a stage amplifier 192 with four transistors.
  • the attenuation of filter 190 is 30 dB for receive frequencies and 1.8 dB for transmit frequencies.
  • the gain of amplifier 192 is 32 dB.
  • the input of amplifier 192 is connected to the output of a mixer 194 by through a filter 196.
  • the mixer has two inputs which, conventionally, are connected on the one hand, to the emission modulator (not shown), and on the other hand, to a local emission oscillator at 13.05 GHz.
  • the advantage of the division into stages is that the top floor, directly connected to access 180, has low losses due to the low rejection rate of the filter 182 and the relatively low gain of the stage 184.
  • Cable 172 is connected to the circuits associated with the second element radiant (not shown).
  • the part of the transmission circuit with switch 173, filter 190, amplifier 192, filter 196 and mixer 194 is common to the two elements radiant.
  • the other parts of the circuit are individual to each element radiant.
  • FIG. 6 There is shown in Figure 6 a particularly embodiment simple and effective of the first part 140 of the receiving circuit.
  • the first part (182, 184, 186, 188) of the transmission circuit can be carried out in a similar manner; we will not describe it therefore not in detail.
  • An important characteristic of this embodiment is that of the filters 150 and 154.
  • Each of these filters comprises at least one planar conducting element, formed by an etching which, in the example, is transverse to the etching 200 of current propagation. It can thus be seen that the filter 150 has a first etching elongated rectangular metal 202 perpendicular to the metal engraving 200, and ends in classic open circuit.
  • the filter 150 also includes a second engraving 204 or stub in diversion on line 200. This stub 204 ends with a "pseudo short-circuit", this short-circuit being simulated by a large capacitive section 206. In the latter case, we thus avoids a connection with the ground by metallized hole (s).
  • the stub 202 ending in open circuit must have a length l such that it presents at its junction with the main line 200 an open circuit for frequencies transmission and a short circuit for reception frequencies.
  • This length l must be a multiple of l / 2 for the wavelengths I corresponding to reception frequencies and a multiple of l / 4 for wavelengths corresponding to the transmission frequencies.
  • the length l is chosen at a value of I d / 4 , I d being a wavelength corresponding to a frequency f d equal to the difference f t - f r between two frequencies f t and f r , f t being a frequency of the transmit band and f r , a frequency of the receive band.
  • m is a positive integer.
  • the length l is a multiple of l / 4 for the frequencies and is a multiple of 1/2 for the receiving frequencies.
  • element 202 constitutes a short circuit for the reception frequencies and an open circuit for transmission frequencies.
  • the stub 204 terminated by the large capacitive section 206 simulating a short circuit at the junction 204-206, must have a length l 'chosen so that the element constitutes a short circuit for the transmission frequencies and a open circuit for reception frequencies.
  • the desired result is obtained, to know the strong attenuation of the frequencies of emission and the transmission without disturbance reception frequencies.
  • frequencies f r , f t and f d will be chosen, such that f r is an even multiple of f d and f t an odd multiple of f d .
  • the amplifier stage 152 includes a transistor 208 as well as etchings for impedance matching and polarization of the electrodes.
  • the transistor 208 is, in the example, an FHX13X transistor from the Fujitsu brand. Its grid is connected to the line 200 by means of a rectangular engraving 210. The polarizations are applied to engravings of square shapes, 212 for the grid polarization and 214 for the drain polarization.
  • Stage 152 is connected to filtering stage 154 via a capacitor 216 for adaptation and decoupling between the bias voltages on the studs 212 and 214.
  • the source of transistor 208 is connected to ground via a inductor 220, playing the role of a feedback and constituted by a ribbon or wire wiring or connection.
  • the value of this inductor 220 is optimized so as to minimize noise. It was found that this minimization of noise can lead to a decrease in gain; but this decrease is small and does not affect performance amplification.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Transceivers (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)

Abstract

L'invention est relative à un dispositif d'émission et de réception d'ondes hyperfréquences comportant un élément rayonnant planaire.
Le dispositif est caractérisé en ce que l'élément rayonnant (60) présente, pour l'émission et pour la réception, des accès (68, 66) sensiblement orthogonaux, le déphasage des signaux d'émission et de réception et la forme de l'élément rayonnant étant tels que les signaux d'émission et de réception, dont les fréquences sont différentes, soient polarisés circulairement en sens inverses.

Description

L'invention est relative à un dispositif d'émission et de réception d'ondes hyperfréquences polarisées circulairement.
Des dispositifs de ce genre sont utilisés couramment dans les systèmes de télécommunication. Ces dispositifs d'émission et de réception sont habituellement destinés à émettre des puissances importantes et recevoir des puissances faibles. Il en est ainsi, par exemple, des systèmes de télécommunication dans lesquels les signaux sont relayés par des satellites géostationnaires.
Dans ces dispositifs, les fréquences d'émission et les fréquences de réception sont distinctes pour éviter que les signaux de réception ne soient perturbés par les signaux d'émission. Il est, en outre, nécessaire de prévoir des moyens de filtrage pour que, dans chaque voie, on puisse recevoir ou émettre la fréquence désirée et éliminer la fréquence de l'autre voie. La séparation entre les signaux doit être particulièrement soignée quand l'émission et la réception sont simultanées.
Ces dispositifs comportent, le plus souvent, une source en guide d'onde et un duplexeur à haute réjection dans les bandes respectives d'émission et de réception. Ils présentent donc un encombrement important qui ne peut convenir pour toutes les applications, notamment pour les terminaux de systèmes de télécommunication dans lesquels chaque abonné doit disposer d'un émetteur et d'un récepteur.
En particulier, les dispositifs d'émission et de réception à ondes hyperfréquences peuvent être utilisés de façon courante, pour des usages tant domestiques que professionnels, dans des systèmes de télécommunication par satellites.
Par exemple, des systèmes de télécommunication de ce type sont développés pour des applications dites "multimédia". Dans ces systèmes, on prévoit une constellation de satellites à orbites basses, d'altitude comprise entre 800 à 1500 km, ou moyennes, d'altitude comprise entre 6000 et 12000 km. Les orbites sont dites "basses ou moyennes" par opposition à des satellites géostationnaires dont l'altitude est de 36000 km. Les satellites ont pour but d'assurer une communication entre utilisateurs terrestres. Les communications ainsi transmises sont de nature multimédia, c'est-à-dire qu'elles concernent des signaux de télévision, des signaux audio, vidéo, des données numériques de toute nature, des programmes, des signaux téléphoniques ou de télécopie. Par rapport à des communications relayées par des satellites géostationnaires, la basse altitude des satellites réduit la distance de communication et donc les retards dus à la propagation, ce qui facilite l'interactivité de ces systèmes. En outre, avec des constellations, on peut optimiser la couverture par exemple en privilégiant les zones à forte densité de population, alors qu'une orbite géostationnaire privilégie les zones proches de l'équateur.
Un utilisateur terrestre ne peut communiquer avec un satellite que pendant le temps au cours duquel ce satellite est "en vue" de l'utilisateur ; cette durée est en général de l'ordre d'une vingtaine de minutes. Il est donc nécessaire que, d'une part, l'antenne de l'utilisateur puisse suivre le satellite sur sa trajectoire et, d'autre part, l'utilisateur puisse commuter instantanément la communication sur le satellite suivant, qui entre dans son champ de vision, alors que le satellite précédent est en train de quitter son champ de vision. La commutation instantanée est surtout nécessaire pour des communications interactives pour lesquelles une interruption du service, même de courte durée, n'est pas envisageable. Pour résoudre ce problème, on prévoit en général un dispositif d'émission et de réception à deux antennes dont l'une se déplace pour suivre le satellite avec lequel l'utilisateur communique et l'autre est en attente et pointée vers le début de la zone de vision du satellite suivant.
Les dispositifs d'émission et de réception et, notamment leurs antennes, destinés à de tels systèmes de télécommunication doivent être particulièrement légers et de dimensions réduites pour faciliter le déplacement et l'installation sur le toit d'un immeuble (notamment une maison individuelle) et, ainsi, ménager l'esthétique.
En outre, il peut être avantageux d'associer les deux dispositifs d'émission et de réception à une lentille de focalisation commune. Dans ce cas, ces deux dispositifs doivent coexister dans un espace limité, ce qui renforce la nécessité de faible encombrement et de faible poids de ces dispositifs.
Dans ces conditions, il est difficilement envisageable de faire appel à une configuration guide d'ondes / duplexeur à haute réjection qui est lourde et encombrante. On fait donc appel à une technologie plus compacte dont la plus courante est appelée "micro ruban". Mais avec cette technologie, les solutions connues au problème d'isolation entre l'émission et la réception entraínent des pertes importantes qui dégradent la qualité de liaison ou obligent à surdimensionner l'antenne.
Par exemple, le document JP 10 022728 décrit une antenne à polarisation circulaire faisant appel à une telle technologie et utilisée pour un seul type de transmission, à savoir l'émission ou la réception et donc pour une seule bande de fréquence. Par conséquent un dispositif d'émission et de réception devra comprendre deux antennes de ce type avec un coupleur hybride puisque le même type de polarisation est utilisé pour les deux bandes de fréquences.
Le document JP 06 140835 concerne une antenne à polarisation circulaire comportant un patch pour l'émission et un patch pour la réception. Ainsi il est prévu un accès par bande de fréquence, ce qui signifie un surdimensionnement de l'antenne.
L'invention fournit un dispositif d'émission et de réception particulièrement compact qui permet une émission et une réception simultanées et assure une perturbation minimisée du signal reçu par le signal émis, une émission à faible perte et une réception avec un faible facteur de bruit, c'est-à-dire avec un rapport signal à bruit élevé.
Le dispositif d'émission et de réception conforme à l'invention est caractérisé en ce que les signaux d'émission et de réception présentent des polarisations circulaires de sens inverses et en ce que l'antenne du dispositif comporte un élément rayonnant à deux accès, ou lignes, orthogonales, l'une pour l'émission, et l'autre pour la réception.
Suivant un premier mode de réalisation, l'élément rayonnant est un élément compact comportant un empilement de :
  • une cavité de court-circuit ;
  • une cavité intermédiaire ;
  • une cavité d'adaptation ;
  • une section rectangulaire de guide d'onde polarisante,
les trois cavités de court-circuit, intermédiaire et d'adaptation permettant de régler l'adaptation des accès en rapport avec les bandes de fréquences souhaitées, un accès étant ménagé entre la cavité de court-circuit et la cavité intermédiaire, l'autre accès étant ménagé entre la cavité intermédiaire et la cavité d'adaptation.
Suivant un deuxième mode de réalisation, l'élément rayonnant comporte au moins une pastille planaire.
Pour obtenir des polarisations circulaires en sens inverses, l'élément rayonnant planaire ne doit pas présenter une forme circulaire, mais une forme circulaire déformée, par exemple selon des chanfreins.
Les signaux d'émission et de réception étant à polarisations orthogonales, on assure déjà, de ce fait, une certaine isolation entre l'émission et la réception, de l'ordre de 20 dB.
En outre, la technologie retenue, à élément planaire de forme non circulaire et accès perpendiculaires, minimise l'encombrement et le poids de l'antenne. En particulier, le nombre d'éléments du dispositif est minimisé car il n'est pas nécessaire de prévoir soit un circulateur, qui empêcherait d'utiliser deux polarisations inverses, soit un coupleur hybride 90° qui transforme les polarisations linéaires orthogonales en polarisations circulaires de sens inverses.
La minimisation du nombre de composants contribue à la minimisation du coût du dispositif.
Étant donné que les bandes de fréquences d'émission et de réception sont distinctes, l'élément rayonnant doit pouvoir fonctionner sur une bande relativement large comprenant les deux bandes utiles. Pour optimiser ce fonctionnement à large bande, dans une réalisation, on prévoit deux éléments rayonnants planaires superposés de dimensions différentes, l'un résonnant sur une fréquence correspondant à la bande d'émission, et l'autre résonnant selon une fréquence se trouvant dans la bande de réception.
Les deux éléments rayonnants sont, par exemple disposés dans une cavité, ce qui optimise la directivité de l'élément rayonnant. En effet, la cavité empêche un rayonnement arrière et latéral et limite le rayonnement à un cône utile, dirigé vers la source d'émission et de réception avec laquelle communique le dispositif, notamment un satellite défilant, comme expliqué ci-dessus.
Quand on prévoit deux éléments rayonnants superposés, il est possible soit de prévoir les accès sur l'un de ces éléments, de préférence celui de position inférieure, soit de prévoir des accès sans contact avec aucun des deux éléments. Dans ce dernier cas, les accès sont, de préférence, sous l'élément rayonnant inférieur.
D'autres caractéristiques et avantages de l'invention apparaítront avec la description de certains de ses modes de réalisation, celle-ci étant effectuée en se référant aux dessins ci-annexés sur lesquels :
  • la figure 1 est un schéma montrant l'utilisation d'un dispositif d'émission et de réception selon l'invention dans un système de télécommunication par satellites défilants,
  • la figure 2 est un schéma d'une antenne comprenant deux dispositifs d'émission et de réception selon l'invention, cette antenne étant utilisée également dans un système de télécommunication par satellites,
  • la figure 3 est un schéma d'une partie de dispositif d'émission et de réception conforme à l'invention,
  • les figures 3a et 3b sont des schémas analogues à celui de la figure 3, mais pour des variantes correspondant à l'état antérieur de la technique,
  • la figure 4 est un schéma en coupe d'un dispositif d'émission et de réception conforme à l'invention,
  • la figure 5 est un schéma des circuits d'émission et de réception du dispositif conforme à l'invention,
  • la figure 6 représente un exemple de réalisation de circuits de réception, et
  • la figure 7 est une vue éclatée en perspective d'un autre mode de réalisation de l'élément rayonnant compact.
  • Dans le système de télécommunication représenté sur la figure 1, un ensemble de satellites 10, 12 circule sur une orbite 14 à une altitude d'environ 1000 à 1500 km au-dessus de la surface 16 de la terre. Chaque satellite comporte des moyens d'émission et de réception pour relayer une communication entre des usagers terrestres et des stations d'accès à des services spécifiques, tels que des banques de données. On a ainsi représenté sur la figure 1 un terminal 18 d'usager qui établit une communication interactive avec un autre usager ou une station terrestre (non représentée) par l'intermédiaire du satellite 12. Le caractère interactif de communication est symbolisé par une double flèche 20 sur le chemin des ondes électromagnétiques entre l'antenne 22 du satellite 12 et l'antenne 24 de l'abonné 18.
    L'antenne 24 est, par exemple, disposée sur le toit d'une maison individuelle. Elle comporte une surface focalisante 26, par exemple sphérique, comme représenté sur la figure 2, et deux éléments rayonnants 28 et 30 mobiles sur la surface focale 26 de l'antenne 24.
    L'élément rayonnant 28 est commandé pour suivre le satellite 12 avec lequel l'usager est en vue, tandis que l'élément rayonnant 30 est dans une position d'attente. Ce dernier reste pointé vers la zone d'apparition du satellite suivant. En effet, quand le satellite 12 quitte le champ de vision de l'antenne et que le satellite suivant entre dans ce champ de vision, l'élément rayonnant 30 remplace l'élément 28 utilisé pour effectuer la communication. La commutation de l'élément 28 à l'élément 30 peut s'effectuer de façon instantanée.
    Dans l'exemple représenté sur la figure 1, on prévoit chez l'usager 18, un dispositif 32 permettant de suivre les satellites, de commander l'émission et la réception des signaux et, éventuellement, de décrypter ces signaux. Ce dispositif de commande est relié à un micro-ordinateur 34 ou organe analogue à mémoire dans laquelle sont enregistrées des informations se rapportant aux positions des satellites, de façon qu'à chaque instant on puisse commander les moteurs assurant le déplacement des éléments rayonnants 28 et 30 afin que ceux-ci soient pointés de façon précise vers les satellites.
    Si on utilise un micro-ordinateur, celui-ci peut également être utilisé pour recevoir ou émettre des programmes.
    Dans cet exemple d'application multimédia, on prévoit, en outre, de connecter, par l'intermédiaire d'un connecteur ou répartiteur 36, une ligne 38 téléphonique ou de télécopie et un récepteur 40 d'émissions de télévision ou de radiophonie.
    On a représenté sur la figure 2 un exemple plus détaillé d'antenne 24 avec des éléments rayonnants 28 et 30. Dans cette réalisation, on prévoit une lentille fixe 42 permettant de recevoir un rayonnement hyperfréquence sur un angle solide de valeur suffisante pour collecter les signaux des satellites défilant dans la zone de vision de l'utilisateur. Cette lentille focalise les rayonnements reçus sur une surface sphérique sur laquelle se déplacent les éléments rayonnants 28 et 30. Cette lentille 42 est supportée par deux montants dont un seul, de référence 44, est visible sur la figure 2.
    Les éléments rayonnants 28 et 30 sont déplaçables sur la surface sphérique 26 de focalisation. A cet effet, on prévoit deux moteurs et deux bras pour chacun de ces éléments. Pour simplifier, on ne décrira que les moteurs et les bras de l'élément rayonnant 28.
    Pour déplacer l'élément rayonnant 28, on prévoit un premier moteur 46 solidaire d'un support inférieur 48 et dont l'arbre permet de faire tourner un bras 50 à l'extrémité duquel se trouve le second moteur 52 entraínant lui-même un avant-bras 54 à l'extrémité duquel se trouve l'élément rayonnant 28. Pour assurer le déplacement de l'élément rayonnant 28, les moteurs 46 et 52 sont commandés par des informations fournies par le micro-ordinateur 34 ou analogue.
    A chaque élément rayonnant 28, 30 sont associés un circuit d'émission et un circuit de réception qui seront décrits plus loin en relation avec la figure 5.
    Les terminaux 18 étant des appareils de grande diffusion, il est essentiel qu'ils soient de faible encombrement, de faible poids et d'un coût minimisé. La nécessité d'un faible encombrement et d'un faible poids est renforcée encore par le fait que les dispositifs d'émission et de réception sont mobiles et sont associés dans un volume réduit, celui de l'antenne 24.
    Cette minimisation d'encombrement, de poids et de prix doit être compatible avec des performances élevées nécessitées par, notamment le haut débit de l'information et la simultanéité de l'émission et de la réception. De ce point de vue, l'isolation entre les signaux d'émission et de réception présente un problème difficile à résoudre, surtout dans le contexte, mentionné plus haut, de faible encombrement et de faible prix.
    Dans l'exemple, la bande de réception Rx est de 1 1,7 à 12,45 GHz (pouvant être étendue à 12,55 GHz), tandis que la bande d'émission Tx est de 14 à 14,3 GHz. La puissance d'émission est de quelques watts, de l'ordre de 2 à 3.
    L'élément rayonnant selon l'invention est du type compact et présente, pour l'émission et pour la réception, des accès sensiblement orthogonaux, le déphasage des signaux d'émission et de réception et la forme de l'élément rayonnant étant tels que les signaux d'émission et de réception, dont les fréquences sont différentes, soient polarisés circulairement en sens inverses.
    Suivant un premier mode de réalisation (figure 7), l'élément rayonnant comporte un empilement des éléments suivants :
    • une cavité de court-circuit 220 ;
    • une cavité intermédiaire 221 ;
    • une cavité d'adaptation 222 ;
    • une section rectangulaire de guide d'onde polarisante 223.
    Les trois cavités de court-circuit, intermédiaire et d'adaptation permettent de régler l'adaptation des accès en rapport avec les bandes de fréquences souhaitées.
    A cet effet, un accès 224 est ménagé entre la cavité de court-circuit et la cavité intermédiaire, l'autre accès 225 étant ménagé entre la cavité intermédiaire et la cavité d'adaptation.
    Le fonctionnement peut être décrit schématiquement par les points suivants :
    Les aspects mono-bande ou bi-bande sont gérés par les trois cavités de court-circuit, intermédiaire et d'adaptation.
    L'interface radiative constituée par la section rectangulaire de guide d'onde polarisante 223 permet de propager deux modes TE01 et TE10 orthogonaux dans les bandes désirées. Du fait de la section rectangulaire, la vitesse de groupe des modes TE01 et TE10 diffère légèrement ce qui permet de créer un déphasage entre ces deux modes. La quadrature de phase entre les deux modes est obtenue lorsque les conditions aux limites de la section rectangulaire 223 et sa longueur (environ λg/4) sont adéquates: l'antenne génère de la polarisation circulaire.
    L'orthogonalité des accès 224 et 225 permet une isolation entre accès et l'excitation superposée de deux paires de modes TE01 et TE10 avec des conditions de quadrature opposées pour chaque paire permettant d'obtenir une double polarisation circulaire.
    La cavité formée par la section rectangulaire 223 et la partie accès d'une part et la partie radiative d'autre part permet l'obtention d'une condition de quadrature de phase des modes TE01 et TE10 sur des grandes largeurs de bandes.
    L'empilement comportant la cavité de court-circuit 220, la cavité intermédiaire 221 et la cavité d'adaptation 222 constitue une cavité qui est représentée circulaire sur la figure 7. Cette cavité peut également être de forme sensiblement carrée. Ses côtés sont alors sensiblement perpendiculaires aux lignes d'excitation 224a et 225a qui constituent les accès respectivement 224 et 225 et par conséquent inclinés d'environ 45° par rapport à la section rectangulaire 223.
    Sur la figure 7, la technologie représentée pour les accès 224 et 225 correspond à une solution triplaque, mais d'autres solutions peuvent être choisies en fonction de l'application, telles que par exemple :
    • une solution coaxiale ;
    • une solution microstrip inversé ou non par rapport à l'axe Z du repère antenne R;
    • pour l'accès inférieur 224, un couplage par fente ou iris avec un guide d'onde ;
    • une solution en guide d'onde pour des applications au-delà de la bande Ku;
    • une solution mixte telle que chaque accès 224, 225 soit réalisé suivant une des solutions précédentes .
    Afin d'assurer le contact électrique entre les différents cavités présentes dans l'alignement de l'axe Z, les gravures pourront être doubles faces avec trous métallisés. Cette dernière solution est justifiée notamment pour des applications dans des bandes de fréquences supérieures à 6 GHz (bande C).
    Suivant un deuxième mode de réalisation l'élément rayonnant est de type planaire et comprend une pastille ou "patch" 60 (figure 3) ayant la forme d'un cercle tronqué par des chanfreins parallèles 62 et 64. A cette pastille 60 sont associés deux accès 66 et 68 en lignes micro ruban formant un angle de 90°. Ces deux accès 66 et 68 sont excités par des signaux déphasés de 90°. L'accès 66 correspond à la réception et est donc relié, notamment, à un amplificateur 70 à faible bruit, tandis que l'accès 68 correspond à l'émission et est donc relié, entre autres, à un amplificateur de puissance 72.
    L'excitation des lignes 66 et 68 par des signaux déphasés de 90° permet d'obtenir des signaux d'émission et de réception qui sont à polarisations circulaires en sens inverses. Les polarisations orthogonales des signaux d'émission et de réception, ajoutées aux bandes de fréquences distinctes de ces signaux, permettent une isolation de l'ordre de 20 dB entre ces signaux. La technologie planaire utilisée pour réaliser l'élément rayonnant minimise son coût, son encombrement et son poids. En outre, la réalisation à deux accès directs minimise le nombre de composants et permet de se passer de coupleur hybride à large bande ou de circulateur correspondant à l'état antérieur de la technique tel que représenté par la figure 3a (utilisation d'un circulateur) et par la figure 3b (utilisation d'un coupleur hybride).
    Dans l'exemple connu représenté sur la figure 3a, on prévoit une pastille plane circulaire tronquée 74 présentant un accès relié à la sortie de l'amplificateur de puissance 721 (circuit d'émission) par l'intermédiaire d'un circulateur 76. L'accès 78 est également relié à la voie de réception, c'est-à-dire à un amplificateur faible bruit 701, par l'intermédiaire du même circulateur 76.
    Dans l'exemple de la figure 3b, on prévoit un élément rayonnant planaire 80 de forme circulaire non tronquée présentant deux accès 82 et 84 orthogonaux reliés à deux bornes, respectivement 86 et 88, d'un coupleur hybride 90 comportant deux autres bornes, respectivement 92 et 94. La borne 92 est connectée à l'entrée d'un amplificateur faible bruit 702, et la borne 94 est reliée à la sortie de l'amplificateur de puissance 722. De façon en soi connue, le coupleur hybride 90° permet de transformer des polarisations linéaires orthogonales, sur ses bornes 92 et 94, en des polarisations circulaires en sens inverses sur ses bomes 86 et 88. Ainsi, sur les accès 82 et 84, les signaux présentent des polarisations circulaires de sens inverses. Le coupleur hybride 90 est de préférence du type large bande. A cet effet, on prévoit, aussi de façon en soi connue, une ou plusieurs branches supplémentaires 96 en micro ruban.
    On va maintenant décrire en relation avec la figure 4 un mode de réalisation de dispositif d'émission et de réception à pastille planaire pouvant être utilisé de préférence avec le mode de réalisation de la figure 3.
    Dans cet exemple, on prévoit deux pastilles planaires superposées, respectivement 98 et 100. Chacune de ces pastilles a une forme correspondant à celle représentée sur la figure 3, c'est-à-dire la forme d'un cercle chanfreiné. Toutefois, les dimensions de ces pastilles sont différentes. L'une d'elles, la pastille inférieure 98, présente des dimensions correspondant à une résonance dans la bande de réception et la pastille supérieure a des dimensions plus faibles correspondant à une résonance dans la bande d'émission (les plus hautes fréquences).
    Les deux pastilles présentent une disposition relative telle qu'elles présentent le même axe central (perpendiculaire à leurs plans) et que leurs chanfreins sont parallèles.
    Les accès 102 sont disposés sous la pastille inférieure 98. Sur la figure 4 un seul accès est visible. Ces accès sont en ligne micro ruban ou triplaque suspendue. Ils sont connectés aux circuits de filtrage et aux amplficateurs faible bruit ou de puissance par l'intermédiaire de lignes micro ruban ou triplaques. Dans l'exemple, les moyens de filtrage et d'adaptation sont également en ligne micro ruban ou triplaque.
    Les pastilles ainsi que les accès sont disposés dans une cavité cylindrique 110 ouverte vers le haut et présentant un fond 112.
    Cette cavité 110 limite le cône d'émission et de réception des ondes hyperfréquences afin que ce cône soit relativement étroit, dirigé vers le satellite 12.
    Le fond de la cavité est relié à un canal 1 14 d'axe perpendiculaire à l'axe 1 16 de la cavité cylindrique 1 10. Dans ce canal est disposé un substrat 1 18 portant, d'une part, les lignes d'accès 102 et, d'autre part, des circuits de filtrage et d'adaptation en lignes micro rubans ou triplaques 120. Le substrat comporte aussi, à l'extrémité du canal 1 14 opposée à la cavité 110, des éléments actifs tels que des transistors 122 d'amplificateur(s). La partie d'extrémité du canal 1 14 comportant les transistors 122 en technique planaire micro ruban est séparée des circuits 120, de préférence en technique planaire triplaque suspendue, par l'intermédiaire d'une paroi d'étanchéité 124.
    L'extrémité du canal 114 comprend une borne 128 pour les signaux de réception et une bome 130 pour les signaux d'émission.
    L'ouverture supérieure 132 de la cavité 110 est fermée par un capot protecteur 134 en matière plastique telle que du "téflon" ou de l'ABS.
    En variante (non représentée), les accès sont sur l'une des pastilles, par exemple celle de référence 98.
    Il est également possible de prévoir une seule pastille avec des accès sur cette pastille ou à distance de cette dernière.
    On va maintenant décrire en relation avec la figure 5, une autre disposition se rapportant au filtrage et à l'amplification qui permet de minimiser le bruit, notamment celui engendré par le filtrage tout en permettant de diminuer le coût de réalisation des circuits. En outre, les pertes sont minimisées.
    L'émission et la réception étant effectuées simultanément, l'élimination, par filtrage, des fréquences d'émission dans les circuits de réception ainsi que l'élimination, par filtrage, des fréquences de réception, dans les circuits d'émission doivent être particulièrement efficaces.
    A cet effet, on prévoit, dans chaque circuit, des filtres planaires et une amplification et un filtrage à plusieurs étages. L'atténuation, ou réjection, du filtre qui est le plus proche de l'élément rayonnant présente une valeur qui est une fraction de l'atténuation nécessaire pour éliminer les fréquences à supprimer. Dans un exemple, le taux de réjection total nécessaire pour éliminer les fréquences d'émission (ou de réception) est de l'ordre de 50 dB et la réjection du filtre du premier (ou dernier) étage n'est que de l'ordre de 14 dB. Cette demière valeur est calculée en fonction du point de compression du premier transistor (amplificateur) en réception (ou du facteur de bruit du dernier transistor, amplificateur, en émission), de la puissance à émettre, ou de l'isolation entre les deux ports de la source (élément rayonnant).
    L'amplification apportée par le premier étage d'amplification est de préférence celle qu'on peut obtenir avec un transistor à très faible bruit.
    De cette manière, le bruit vu par l'élément rayonnant est minimisé. En effet, ce bruit dépend surtout du bruit apporté par l'étage d'amplification et le filtre les plus proches de cet élément. Par contre, le bruit apporté à l'élément rayonnant par les étages plus éloignés d'amplification et de filtrage n'interviennent que de façon atténuée, car ce bruit est diminué en proportion du gain des étages d'amplification intermédiaires se trouvant entre l'élément rayonnant et le filtre générateur de bruit.
    En outre, les filtres planaires à réjection modérée peuvent être réalisés de façon aisée, à coût modéré, car les substrats utilisés peuvent être d'un bas prix de revient. On sait, en effet, qu'un filtrage en technique micro ruban planaire (ou triplaque suspendue) nécessite, pour des taux de réjection élevés, des substrats en alumine relativement onéreux, alors que pour des taux de réjection plus faibles, on peut utiliser des substrats meilleur marché, par exemple à base de PTFE, comme on le verra plus loin.
    Dans l'exemple représenté sur la figure 5, le circuit de réception comprend une première partie 140 disposée entre l'accès 142 de la pastille 144 de l'élément rayonnant et une extrémité d'un câble 146. Une seconde partie 148 est disposée entre l'autre extrémité du câble 146 et le démodulateur (non représenté) du circuit de réception.
    L'accès 142 est connecté directement à l'entrée d'un premier filtre 150 du type passe bande pour les fréquences de réception et du type coupe bande pour les fréquences d'émission. Pour ces fréquences d'émission, il présente une caractéristique de réjection relativement modérée, 14 dB. Pour la fréquence de réception, l'atténuation (ou perte) est de faible valeur, de l'ordre de 0,2 dB. Ce premier filtre 150 est relié à l'entrée d'un premier étage amplificateur 152, à un seul transistor dans l'exemple. Cet amplificateur 152 présente un gain de 8 dB dans l'exemple. Il est à noter que ce gain de 8 dB n'est pas le gain maximal qu'on pourrait obtenir avec un transistor. Mais, dans l'exemple, on minimise le bruit au léger détriment du gain, comme on le verra plus loin en relation avec la figure 6.
    Cette première partie 140 du circuit de réception comporte aussi un deuxième couple filtre-étage d'amplification, à savoir un filtre 154 dont l'entrée est reliée à la sortie du premier amplificateur 152 et un deuxième amplificateur 156 constitué aussi, dans l'exemple, par un seul transistor. Le filtre 154 présente une réjection de 10 dB pour les fréquences d'émission et une légère réjection, 0,2 dB, pour les fréquences de réception. L'étage 156 d'amplification présente un gain de 10 dB.
    Dans cet exemple, le signal d'émission parasite à la sortie de l'étage 156 est inférieur à 10 dBm.
    Le câble 146 - qui, dans l'exemple, introduit une atténuation de 1,5 dB - est relié à la seconde partie 148 de filtrage et d'amplification qui comprend un troisième couple filtre 158-amplificateur 160. Le filtre 158 reçoit le signal fourni par le câble 146 et délivre un signal au troisième amplificateur 160. L'atténuation du filtre 158 pour les fréquences d'émission est de 26,5 dB et l'atténuation pour les fréquences de réception, de 1,8 dB. L'étage d'amplification 160 présente deux transistors et son gain est de 18 dB.
    A la sortie de l'étage 160, on obtient un signal complètement filtré des signaux parasites d'émission. Cette sortie est reliée, de façon classique, à un mélangeur 162 recevant sur une autre entrée un signal d'oscillateur local à 10,75 GHz. La sortie du mélangeur 162 est reliée au démodulateur de réception par l'intermédiaire d'un filtre passe-bas 166.
    L'atténuation des fréquences parasites qui est effectuée par chacun des filtres est accordée au gain de l'amplificateur associé de façon telle que cette atténuation soit suffisante pour empêcher la délinéarisation, ou saturation (ou compression), du (des) transistor(s) de l'amplificateur par le signal parasite d'émission. Il est donc nécessaire que chaque filtre soit disposé en amont de l'amplificateur associé. Par "en amont", on entend ici que le filtre doit être plus proche de l'élément rayonnant que l'amplificateur du même couple.
    Le facteur de bruit global du circuit de réception est, pour l'essentiel, celui du premier étage de filtrage 150 et d'amplification 152.
    Le câble coaxial 146, ainsi que les câbles coaxiaux correspondants 170 et 172 pour le circuit d'émission, forme, dans l'exemple, une boucle autour des moteurs qui peut s'enrouler ou se relâcher selon le déplacement des bras.
    La seconde partie 148 du circuit de réception (ainsi que la partie correspondante du circuit d'émission) se trouve, dans l'exemple, à la base de l'antenne, c'est-à-dire à proximité du socle 48 (figure 2).
    La première partie 142 du circuit de réception est réalisée en technologie dite "hybride sans réglage", c'est-à-dire que les éléments actifs tels que les transistors sont déposés directement sur un substrat, sans boítier, et que le substrat présente des conducteurs planaires, par exemple réalisés par photogravure. Cette réalisation permet de minimiser encore plus le facteur de bruit, c'est-à-dire de maximiser le rapport signal à bruit. Le poids et l'encombrement sont aussi minimisés.
    Par contre, la partie du circuit 148 se trouvant au pied de l'antenne, qui est plus éloignée de l'élément rayonnant, peut être réalisée de façon plus classique en technologie intégrée telle que la technologie dite "MMIC" ("Microwave monolithic integrated circuit", c'est-à-dire circuit intégré monolithique hyperfréquences). En effet, comme on l'a déjà indiqué, le bruit introduit par cet étage 148 intervient peu dans le facteur de bruit global. De même, les pertes du filtre 158 de taux de réjection plus élevé (26,5 dB dans l'exemple), qui évite la compression ou la délinéarisation des transistors de l'étage 160, interviennent aussi de façon moins critique que pour la partie 140.
    Dans la partie 140, les substrats sont, par exemple, des substrats RO 3006 ou RO 4003 distribués par la Société Rogers Corporation. Ils sont constitués par une matrice en matière organique souple telle que le PTFE (polytétra-fluoréthylène) renforcée par des micro fibres de verre et dans laquelle sont noyées des particules de céramique permettant d'augmenter la constante diélectrique et donc de diminuer la taille des circuits. Ce substrat est recouvert, d'un côté, par une couche de cuivre qui constitue la masse, tandis que l'autre côté est également recouvert de cuivre photogravable pour réaliser les circuits.
    Le circuit d'émission est analogue au circuit de réception. L'accès 180 d'émission de la pastille 144 est relié à la sortie d'un premier filtre 182 dont l'entrée est connectée à la sortie d'un étage d'amplification 184. L'atténuation du filtre 182 est de 14 dB pour les fréquences de réception et de 0,2 dB pour les fréquences d'émission. Le gain de l'amplificateur 184 est de 8 dB.
    L'entrée de l'amplificateur 184 est reliée à la sortie d'un filtre 186 recevant le signal de sortie d'un étage d'amplification 188. L'atténuation du filtre 186 est de 10 dB pour les fréquences de réception et de 0,2 dB pour les fréquences d'émission. Le gain de l'étage d'amplification 188 est de 8 dB.
    L'autre partie du circuit d'émission se trouve également au pied de l'antenne, au voisinage du support 48 (figure 2), et comporte un filtre 190 relié au câble 170 ou 172 par l'intermédiaire d'un commutateur 173. Le filtre 190 reçoit le signal de sortie d'un étage d'amplification 192 à quatre transistors. L'atténuation du filtre 190 est de 30 dB pour les fréquences de réception et de 1,8 dB pour les fréquences d'émission. Le gain de l'amplificateur 192 est de 32 dB.
    L'entrée de l'amplificateur 192 est reliée à la sortie d'un mélangeur 194 par l'intermédiaire d'un filtre 196. Le mélangeur présente deux entrées qui, de façon classique, sont reliées d'une part, au modulateur d'émission (non montré), et d'autre part, à un oscillateur local d'émission à 13,05 GHz.
    Pour ce circuit d'émission, l'avantage de la division en étages est que le dernier étage, directement connecté à l'accès 180, présente des faibles pertes du fait du faible taux de réjection du filtre 182 et du relativement faible gain de l'étage 184.
    Le câble 172 est connecté aux circuits associés au deuxième élément rayonnant (non montré). Autrement dit, la partie du circuit d'émission à commutateur 173, filtre 190, amplificateur 192, filtre 196 et mélangeur 194 est commune aux deux éléments rayonnants. Par contre, les autres parties du circuit sont individuelles à chaque élément rayonnant.
    On a représenté sur la figure 6 un exemple de réalisation particulièrement simple et efficace de la première partie 140 de circuit de réception. La première partie (182, 184, 186, 188) du circuit d'émission peut être réalisée de façon analogue ; on ne la décrira donc pas en détail.
    Une caractéristique importante de cette réalisation est celle des filtres 150 et 154.
    On sait que ces filtres doivent présenter des caractéristiques passe-bande à faible perte pour les fréquences de réception, et de coupe-bande à forte atténuation pour les fréquences d'émission.
    Chacun de ces filtres comprend au moins un élément conducteur planaire, formé par une gravure qui, dans l'exemple, est transversale à la gravure 200 de propagation du courant. On voit ainsi que le filtre 150 comporte une première gravure métallique rectangulaire allongée 202 perpendiculaire à la gravure métallique 200, et se termine en circuit ouvert classique. Le filtre 150 comporte aussi une seconde gravure 204 ou stub en dérivation sur la ligne 200. Ce stub 204 se termine par un "pseudo court-circuit", ce court-circuit étant simulé par un large tronçon capacitif 206. Dans ce demier cas, on évite ainsi une connexion avec la masse par trou(s) métallisé(s).
    Le stub 202 se terminant en circuit ouvert doit présenter une longueur l telle qu'il présente à sa jonction avec la ligne principale 200 un circuit ouvert pour les fréquences d'émission et un court-circuit pour les fréquences de réception.
    Cette longueur l doit être un multiple de l/2 pour les longueurs d'onde I correspondant aux fréquences de réception et un multiple de l/4 pour les longueurs d'onde correspondant aux fréquences d'émission.
    Pour atteindre cet objectif, la longueur l est choisie à une valeur de Id/4, Id étant une longueur d'onde correspondant à une fréquence fd égale à la différence ft - fr entre deux fréquences ft et fr, ft étant une fréquence de la bande d'émission et fr, une fréquence de la bande de réception. Les fréquences fd, ft et fr sont, en outre, choisies pour satisfaire aux relations suivantes : ft = (2m+1)fd fr = 2mfd.
    Dans ces formules, m est un nombre entier positif.
    De cette manière, la longueur l est un multiple de l/4 pour les fréquences d'émission et est un multiple de l/2 pour les fréquences de réception. Dans ces conditions, l'élément 202 constitue un court-circuit pour les fréquences de réception et un circuit ouvert pour les fréquences d'émission.
    Le stub 204, terminé par le large tronçon capacitif 206 simulant un court-circuit à la jonction 204-206, doit présenter une longueur l' choisie de façon telle que l'élément constitue un court-circuit pour les fréquences d'émission et un circuit ouvert pour les fréquences de réception. On choisira une longueur l' de Id/4, ld correspondant à une fréquence fd = ft - fr, avec : ft = 2mfd, et fr = (2m - 1)fd.
    Quel que soit le mode de réalisation, on obtient bien le résultat recherché, à savoir la forte atténuation des fréquences d'émission et la transmission sans perturbation des fréquences de réception.
    Dans l'exemple pour lequel la bande Rx est de 1 1,7 à 12,45 GHz et la bande Tx est de 14 à 14,3 GHz, dans le cas du stub 204 terminé par un pseudo court-circuit, on peut choisir les fréquences fr, ft et fd de valeurs suivantes : fr = 11,75 GHz ff = 14,1 GHz fd = ft - fr = 2,35 GHz fr = 5fd, et ft = 6fd.
    Pour l'élément 202 terminé en circuit ouvert, on choisira, au contraire, des fréquences fr, ft et fd, telles que fr soit un multiple pair de fd et ft un multiple impair de fd.
    Il est à noter qu'on peut utiliser soit l'élément de filtrage 202 seul, sans l'élément de filtrage 204-206, soit l'élément de filtrage 204-206 seul, sans l'élément 202, soit, enfin, comme représenté, les deux éléments de filtrage simultanément.
    L'étage amplificateur 152 comporte un transistor 208 ainsi que des gravures pour l'adaptation d'impédance et la polarisation des électrodes. Le transistor 208 est, dans l'exemple, un transistor de type FHX13X de la marque Fujitsu. Sa grille est reliée à la ligne 200 par l'intermédiaire d'une gravure rectangulaire 210. Les polarisations sont appliquées à des gravures de formes carrées, 212 pour la polarisation de grille et 214 pour la polarisation de drain.
    L'étage 152 est relié à l'étage de filtrage 154 par l'intermédiaire d'un condensateur 216 d'adaptation et de découplage entre les tensions de polarisation sur les plots 212 et 214.
    La source du transistor 208 est reliée à la masse par l'intermédiaire d'une inductance 220, jouant le rôle d'une contre-réaction et constituée par un ruban ou fil de câblage ou connexion. La valeur de cette inductance 220 est optimisée de façon à minimiser le bruit. On a constaté que cette minimisation du bruit peut entraíner une diminution du gain; mais cette diminution est faible et n'altère pas les performances d'amplification.

    Claims (16)

    1. Dispositif d'émission et de réception d'ondes hyperfréquences comportant un élément rayonnant, caractérisé en ce que l'élément rayonnant (60; 219) présente, pour l'émission et pour la réception, des accès (68, 66; 224, 225) sensiblement orthogonaux, le déphasage des signaux d'émission et de réception et la forme de l'élément rayonnant étant tels que les signaux d'émission et de réception, dont les fréquences sont différentes, soient polarisés circulairement en sens inverses.
    2. Dispositif selon la revendication 1, caractérisé en ce que les signaux d'émission et de réception sont simultanés.
    3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que l'élément rayonnant est un élément compact (219) comportant un empilement de :
      une cavité de court-circuit (220) ;
      une cavité intermédiaire (221) ;
      une cavité d'adaptation (222) ;
      une section rectangulaire de guide d'onde polarisante (223),
      les trois cavités de court-circuit, intermédiaire et d'adaptation permettant de régler l'adaptation des accès en rapport avec les bandes de fréquences souhaitées, un accès (224) étant ménagé entre la cavité de court-circuit et la cavité intermédiaire, l'autre accès (225) étant ménagé entre la cavité intermédiaire et la cavité d'adaptation.
    4. Dispositif selon la revendication 1 ou 2, caractérisé en ce que l'élément rayonnant (60) comporte au moins une pastille planaire.
    5. Dispositif selon la revendication 4, caractérisé en ce que la pastille (60) présente une forme circulaire avec des déformations (62, 64).
    6. Dispositif selon la revendication 5, caractérisé en ce que les déformations sont constituées par des chanfreins (62, 64), par exemple parallèles.
    7. Dispositif selon la revendication 5 ou 6, caractérisé en ce que l'élément rayonnant comporte deux pastilles superposées (98, 100).
    8. Dispositif selon la revendication 7, caractérisé en ce que les deux pastilles superposées sont disposées dans une cavité (110).
    9. Dispositif selon la revendication 7 ou 8, caractérisé en ce que les dimensions des pastilles sont différentes, l'une des pastilles (100) résonnant pour les fréquences d'émission et l'autre pastille (98) résonnant pour les fréquences de réception.
    10. Dispositif selon l'une quelconque des revendications 7 à 9, caractérisé en ce que les accès (102) sont à distance de la pastille inférieure (98).
    11. Dispositif selon l'une quelconque des revendications 4 à 9, caractérisé en ce que les accès sont en contact avec une pastille.
    12. Dispositif selon la revendication 8, caractérisé en ce que la cavité est prolongée par un canal (114) portant des circuits planaires d'accès.
    13. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que l'accès d'émission (68 ; 180) est relié directement à la sortie d'un circuit d'amplification et filtrage des signaux d'émission et en ce que l'accès de réception (66; 142) est relié directement à l'entrée d'un circuit de filtrage et d'amplification des signaux reçus.
    14. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que les fréquences d'émission sont dans la bande de 14 à 14,3 GHz et les fréquences de réception dans la bande de 1 1,7 à 12,45 GHz ou 12,55 GHz.
    15. Dispositif d'émission et de réception d'ondes hyperfréquences pour un système de télécommunication par satellites défilant autour de la terre, caractérisé en ce qu'il comprend deux dispositifs d'émission et de réception selon l'une quelconque des revendications précédentes, ces deux dispositifs d'émission et de réception étant associés à une même surface focale (26) recevant les signaux provenant des satellites.
    16. Dispositif selon la revendication 15, caractérisé en ce qu'il comporte des moyens moteurs pour que chaque dispositif d'émission et de réception puisse suivre le mouvement d'un satellite.
    EP99401148A 1998-05-15 1999-05-10 Dispositif d'émission et de réception d'ondes hyperfréquences polarisées circulairement Withdrawn EP0957534A1 (fr)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR9806200 1998-05-15
    FR9806200A FR2778802B1 (fr) 1998-05-15 1998-05-15 Dispositif d'emission et de reception d'ondes hyperfrequences polarisees circulairement

    Publications (1)

    Publication Number Publication Date
    EP0957534A1 true EP0957534A1 (fr) 1999-11-17

    Family

    ID=9526428

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP99401148A Withdrawn EP0957534A1 (fr) 1998-05-15 1999-05-10 Dispositif d'émission et de réception d'ondes hyperfréquences polarisées circulairement

    Country Status (10)

    Country Link
    US (1) US6222493B1 (fr)
    EP (1) EP0957534A1 (fr)
    JP (1) JP2002516504A (fr)
    KR (1) KR20010021841A (fr)
    CN (1) CN1272230A (fr)
    AU (1) AU747622B2 (fr)
    BR (1) BR9906451A (fr)
    FR (1) FR2778802B1 (fr)
    ID (1) ID24491A (fr)
    WO (1) WO1999060661A1 (fr)

    Families Citing this family (17)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6624787B2 (en) 2001-10-01 2003-09-23 Raytheon Company Slot coupled, polarized, egg-crate radiator
    KR100845232B1 (ko) * 2004-06-18 2008-07-09 한국전자통신연구원 오발(oval) 모양의 개구면을 갖는 원형 편파기 및그를 이용한 급전 혼
    US9172145B2 (en) 2006-09-21 2015-10-27 Raytheon Company Transmit/receive daughter card with integral circulator
    US8279131B2 (en) * 2006-09-21 2012-10-02 Raytheon Company Panel array
    US7671696B1 (en) * 2006-09-21 2010-03-02 Raytheon Company Radio frequency interconnect circuits and techniques
    US9019166B2 (en) 2009-06-15 2015-04-28 Raytheon Company Active electronically scanned array (AESA) card
    US7859835B2 (en) * 2009-03-24 2010-12-28 Allegro Microsystems, Inc. Method and apparatus for thermal management of a radio frequency system
    US8537552B2 (en) * 2009-09-25 2013-09-17 Raytheon Company Heat sink interface having three-dimensional tolerance compensation
    US8508943B2 (en) 2009-10-16 2013-08-13 Raytheon Company Cooling active circuits
    US8427371B2 (en) 2010-04-09 2013-04-23 Raytheon Company RF feed network for modular active aperture electronically steered arrays
    US8363413B2 (en) 2010-09-13 2013-01-29 Raytheon Company Assembly to provide thermal cooling
    US8810448B1 (en) 2010-11-18 2014-08-19 Raytheon Company Modular architecture for scalable phased array radars
    US8355255B2 (en) 2010-12-22 2013-01-15 Raytheon Company Cooling of coplanar active circuits
    US9124361B2 (en) 2011-10-06 2015-09-01 Raytheon Company Scalable, analog monopulse network
    US9130278B2 (en) 2012-11-26 2015-09-08 Raytheon Company Dual linear and circularly polarized patch radiator
    CN109283519B (zh) * 2018-10-29 2021-07-16 湖南迈克森伟电子科技有限公司 基于lfmcw测距系统
    CN109361061B (zh) * 2018-10-29 2021-11-02 湖南迈克森伟电子科技有限公司 天线

    Citations (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4403221A (en) * 1981-08-10 1983-09-06 Honeywell Inc. Millimeter wave microstrip antenna
    JPH06112724A (ja) * 1992-09-30 1994-04-22 Toshiba Corp 2周波共用電磁結合パッチアンテナ
    JPH06140835A (ja) * 1991-03-14 1994-05-20 Toshiba Corp 送受共用円偏波アンテナ
    US5434581A (en) * 1992-11-16 1995-07-18 Alcatel N.V. Societe Dite Broadband cavity-like array antenna element and a conformal array subsystem comprising such elements
    US5497164A (en) * 1993-06-03 1996-03-05 Alcatel N.V. Multilayer radiating structure of variable directivity
    JPH1022728A (ja) * 1996-07-01 1998-01-23 Toyo Commun Equip Co Ltd 2周波共用給電結合型円偏波アンテナ
    EP0886336A2 (fr) * 1997-06-18 1998-12-23 Hughes Electronics Corporation Réseau d'antennes plan de profil bas à commande de phase, à large bande, à balayage large utilisant radiateurs de disques empilés

    Family Cites Families (12)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPS56160103A (en) * 1980-05-14 1981-12-09 Toshiba Corp Microstrip-type antenna
    JPH0235514U (fr) * 1988-08-31 1990-03-07
    FR2648626B1 (fr) * 1989-06-20 1991-08-23 Alcatel Espace Element rayonnant diplexant
    US5043738A (en) * 1990-03-15 1991-08-27 Hughes Aircraft Company Plural frequency patch antenna assembly
    FR2668305B1 (fr) * 1990-10-18 1992-12-04 Alcatel Espace Dispositif d'alimentation d'un element rayonnant fonctionnant en double polarisation.
    FR2677491B1 (fr) * 1991-06-10 1993-08-20 Alcatel Espace Antenne hyperfrequence elementaire bipolarisee.
    US5241321A (en) * 1992-05-15 1993-08-31 Space Systems/Loral, Inc. Dual frequency circularly polarized microwave antenna
    JPH0652217U (ja) * 1992-12-15 1994-07-15 松下電器産業株式会社 デュアルビームアンテナ
    JPH08242101A (ja) * 1995-03-03 1996-09-17 Maspro Denkoh Corp 偏波分波器
    JPH0927701A (ja) * 1995-07-11 1997-01-28 Sharp Corp 同軸導波管変換器
    US5812932A (en) * 1995-11-17 1998-09-22 Globalstar L.P. Mobile satellite user information request system and methods
    US6054953A (en) * 1998-12-10 2000-04-25 Allgon Ab Dual band antenna

    Patent Citations (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4403221A (en) * 1981-08-10 1983-09-06 Honeywell Inc. Millimeter wave microstrip antenna
    JPH06140835A (ja) * 1991-03-14 1994-05-20 Toshiba Corp 送受共用円偏波アンテナ
    JPH06112724A (ja) * 1992-09-30 1994-04-22 Toshiba Corp 2周波共用電磁結合パッチアンテナ
    US5434581A (en) * 1992-11-16 1995-07-18 Alcatel N.V. Societe Dite Broadband cavity-like array antenna element and a conformal array subsystem comprising such elements
    US5497164A (en) * 1993-06-03 1996-03-05 Alcatel N.V. Multilayer radiating structure of variable directivity
    JPH1022728A (ja) * 1996-07-01 1998-01-23 Toyo Commun Equip Co Ltd 2周波共用給電結合型円偏波アンテナ
    EP0886336A2 (fr) * 1997-06-18 1998-12-23 Hughes Electronics Corporation Réseau d'antennes plan de profil bas à commande de phase, à large bande, à balayage large utilisant radiateurs de disques empilés

    Non-Patent Citations (3)

    * Cited by examiner, † Cited by third party
    Title
    PATENT ABSTRACTS OF JAPAN vol. 018, no. 390 (E - 1582) 21 July 1994 (1994-07-21) *
    PATENT ABSTRACTS OF JAPAN vol. 018, no. 447 (E - 1594) 19 August 1994 (1994-08-19) *
    PATENT ABSTRACTS OF JAPAN vol. 098, no. 005 30 April 1998 (1998-04-30) *

    Also Published As

    Publication number Publication date
    FR2778802A1 (fr) 1999-11-19
    BR9906451A (pt) 2000-09-19
    WO1999060661A1 (fr) 1999-11-25
    FR2778802B1 (fr) 2000-09-08
    JP2002516504A (ja) 2002-06-04
    US6222493B1 (en) 2001-04-24
    CN1272230A (zh) 2000-11-01
    ID24491A (id) 2000-07-20
    KR20010021841A (ko) 2001-03-15
    AU747622B2 (en) 2002-05-16
    AU3610699A (en) 1999-12-06

    Similar Documents

    Publication Publication Date Title
    EP0957534A1 (fr) Dispositif d'émission et de réception d'ondes hyperfréquences polarisées circulairement
    EP1374340B1 (fr) Antenne commutee
    EP0123350B1 (fr) Antenne plane hyperfréquences à réseau de lignes microruban complètement suspendues
    EP1074065B1 (fr) Systemes d'antennes de poursuite de satellites a defilement
    EP1044482A1 (fr) Emetteur/recepteur d'ondes electromagnetiques
    EP2656438B1 (fr) Cellule rayonnante a deux etats de phase pour reseau transmetteur
    FR2810163A1 (fr) Perfectionnement aux antennes-sources d'emission/reception d'ondes electromagnetiques
    OA10623A (fr) Système de communications interactives multifonction avec transmission et réception de signaux polarisés de façon circulaire/elliptique
    FR2902250A1 (fr) Commutateur et dispositif de commutation a isolation selective pour terminaux multimedias
    FR2850792A1 (fr) Filtre compact en guide d'onde
    EP1074064A1 (fr) Appareil de poursuite de satellites a defilement
    FR2829297A1 (fr) Reseau formateur de faisceaux, vehicule spatial, systeme associe et methode de formation de faisceaux
    EP1142063B1 (fr) Dispositif de telecommunication a reseaux a balayage electronique conforme et terminal de telecommunication associe
    FR2831734A1 (fr) Dispositif pour la reception et/ou l'emission de signaux electromagnetiques a diversite de rayonnement
    EP0957590A1 (fr) Circuit et procédé de réception ou d'émission d'ondes hyperfréquences
    EP0475162A1 (fr) Démodulateur hyperfréquence pour liaisons hertziennes numériques utilisant une modulation de type maq
    FR2779294A1 (fr) Dispositif d'emission/reception de signaux
    FR2766995A1 (fr) Repeteur actif pour systeme de transmission
    FR2818809A1 (fr) Dispositif de filtrage d'ondes electromagnetiques
    FR3111480A1 (fr) Antenne multimode, multiport et multistandard pour système de communication adaptable
    FR2932340A1 (fr) Dispositif d'amplification de puissance de charge utile d'un satellite, et satellite equipe d'un tel dispositif
    MXPA00000471A (en) Device for transmitting and receiving microwaves subjected to circular polarisation
    MXPA00000470A (en) Circuit and method for receiving or transmitting microwaves
    EP1283600A1 (fr) Système d'émission/réception pour téléphone mobile multibande et multimode
    EP1056282A1 (fr) Voie modulaire de traitement pour la réémission d'un signal radiofréquence de télévision analogique et numérique et système mettant en oeuvre cette voie de traitement

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20000517

    AKX Designation fees paid

    Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AXX Extension fees paid

    Free format text: AL PAYMENT 20000517;LT PAYMENT 20000517;LV PAYMENT 20000517;MK PAYMENT 20000517;RO PAYMENT 20000517;SI PAYMENT 20000517

    REG Reference to a national code

    Ref country code: HK

    Ref legal event code: WD

    Ref document number: 1022055

    Country of ref document: HK

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ALCATEL LUCENT

    17Q First examination report despatched

    Effective date: 20080515

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

    18D Application deemed to be withdrawn

    Effective date: 20080916