EP2110189A1 - Procédé de formage de tôle sans outil - Google Patents

Procédé de formage de tôle sans outil Download PDF

Info

Publication number
EP2110189A1
EP2110189A1 EP08007621A EP08007621A EP2110189A1 EP 2110189 A1 EP2110189 A1 EP 2110189A1 EP 08007621 A EP08007621 A EP 08007621A EP 08007621 A EP08007621 A EP 08007621A EP 2110189 A1 EP2110189 A1 EP 2110189A1
Authority
EP
European Patent Office
Prior art keywords
sheet metal
semi
cavity
finished product
metal elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08007621A
Other languages
German (de)
English (en)
Inventor
Oskar Zieta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eidgenoessische Technische Hochschule Zurich ETHZ
Original Assignee
Eidgenoessische Technische Hochschule Zurich ETHZ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eidgenoessische Technische Hochschule Zurich ETHZ filed Critical Eidgenoessische Technische Hochschule Zurich ETHZ
Priority to EP08007621A priority Critical patent/EP2110189A1/fr
Publication of EP2110189A1 publication Critical patent/EP2110189A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/021Deforming sheet bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/053Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure characterised by the material of the blanks
    • B21D26/059Layered blanks

Definitions

  • This invention relates to three-dimensional sheet metal structures and their semi-finished products, as well as methods for the production of three-dimensional sheet metal structures and their semi-finished products.
  • Sheet metal is a very versatile material that, due to its plastic deformability, can be transformed from a simple planar basic shape into complex three-dimensional sheet metal structures.
  • Such components can have a high rigidity and strength at a relatively low weight and are therefore often used when weight is an important factor, for example in vehicle construction and lightweight construction.
  • the media pressure required for forming depends, inter alia, on the geometry of the component, the sheet thickness and the material used, and can range from 5 MPa (aluminum sheet) to 200 MPa (stainless steel sheet). Such pressures can only be generated hydraulically, and require expensive, expensive tools.
  • the internal high-pressure method is used, a variant of high-pressure sheet metal forming, in which the pressurized medium is introduced into a pressure-tight closed interior of a tubular sheet metal blank, which is arranged in a mold forming an external die ,
  • a method is described, for example, in WO 00/10748 A1 and WO 2006/018846 A1 .
  • the necessary pressures are similar to conventional high-pressure sheet metal forming.
  • a tubular sheet metal blank it is also possible to use two laminations laid one on top of the other in order to form a tank, for example.
  • the known methods are the very high working pressures, which can be up to 200 MPa (2000 bar). At such pressures, the forming tools are heavily loaded. Their preparation and operation is also complicated and expensive, and limits the size of the manufacturable components.
  • the object of the invention is to provide three-dimensional sheet metal structures and their semi-finished products, as well as methods for the production of three-dimensional sheet metal structures and their semi-finished products, which do not have the above-mentioned and other disadvantages.
  • such processes should be time and cost efficient, and do without expensive tools.
  • the invention will be described using the example of sheet metal. In addition to sheet metal, however, the invention can be applied to any other sheet-like starting material which has a certain degree of plasticity and ductility. If a material is suitable for conventional forming processes, it can also be used for the processes according to the invention.
  • two or even more sheet metal elements cut to a specific contour are provided. These blanks can be cut directly before processing, which is advantageous for larger blanks, or have already been prepared in advance.
  • the two or more sheet metal elements are joined together along their edges, so that forms a substantially pressure-tight closed cavity.
  • this semi-finished product is reshaped by inflating the three-dimensional sheet structure, that is, it is generated within the cavity relative to the external environment, an overpressure, for example by introducing compressed air or filling with water or other hydraulic active medium.
  • inflation is used synonymously with the term transformation.
  • the sheet metal blanks are plastically deformed by the increased internal pressure and stretched elastically to a certain extent, the deformation is "free", that is not predetermined by a die or a stamp.
  • the type of forming is determined by the choice of contouring and topological connection of the sheet metal elements, the specific properties of the sheet such as material, modulus of elasticity, sheet thickness, rolling direction, as well as the process parameters such as applied working pressure and forming time. It is not necessary, however, as already explained, to use a die or another shaping tool.
  • one or more limiting elements are arranged on the sheet metal elements.
  • the said limiting elements may, for example, be substantially one-dimensional, for example sheet metal strips or cables, which are arranged between the sheet metal elements and connected to the latter at suitable locations, so that when inflating Sheet metal structure, the spatial distance of the connected by the limiting element points of the sheet metal blanks is limited upwards.
  • the distance of the corresponding points can also be fixed, for example with stiff rods.
  • boundary elements that are two-dimensional Shaping, which defines a minimum inner contour at a certain point when inflating the sheet metal structure.
  • webs or other structures can be attached as limiting elements on the sheet metal elements to locally modify the mechanical strength of the sheet surfaces, and so to influence the shaping during inflation / deformation of the sheet metal structure.
  • the boundary elements can also take on other tasks after the completion of the three-dimensional sheet metal structure.
  • limiting elements can be configured as perforated plates, which serve as slosh plates in later operation.
  • the limiting elements of the mechanical stabilization serve, for example as internal struts.
  • Inventive three-dimensional sheet structures can be used for a variety of uses, such as lightweight construction elements and vehicles, etc, as floats, tanks, ornaments, furniture, and more.
  • FIG. 1 schematically shown with a cross section through (a) a semi-finished product before inflation, and (b) through the finished inflated sheet metal structure.
  • Two flat sheet metal elements 11, 11 'or sheet metal blanks are cut to DIN 8588, 8589 with a certain contour of the raw sheet. This is done by a conventional method, for example by means of punching or laser cutting.
  • the corresponding contoured sheet metal elements 11, 11 ' are arranged one above the other, and along their contours 16 according to DIN 8580 assembled to form a semi-finished product 1a, for example by welding, joining or gluing.
  • the greatest flexibility in terms of shaping is achieved with laser welding.
  • one or more ports 13 are provided for a supply of a pressure medium.
  • the production of the semi-finished product 1a is preferably done in line, that is, the sheet metal elements are cut from roll plate and then welded directly along the contours. Appropriate systems are known to those skilled in the industrial practice. For smaller sheet metal elements 11. 11 'it may also be useful to produce them in a separate operation, and ready to provide contoured for the preparation of the semi-finished product.
  • the semi-finished product can then be converted directly to the finished three-dimensional sheet metal structure and further processed, or later in a separate step.
  • the semifinished product is inflated, that is, it is compared to the external environment in the interior 14 generates an overpressure, so that the unconnected surfaces of the sheet metal elements 11, 11 'are pushed apart, and the sheet metal elements 11, 11' free to a predetermined three-dimensional Transform sheet metal structure 1.
  • compressed air or water or another hydraulic fluid pressurized is introduced into the cavity 14.
  • the overpressure and the action time are determined by the contouring and the material parameters.
  • the pressure is then lowered again, whereby due to the plastic deformation of the sheet, the shape remains stable.
  • a certain amount of reversible elastic deformation must be taken into account when defining the process parameters and contouring. It may also be an increased internal pressure remain, for example, to mechanically stabilize the sheet metal structure 1.
  • the pressure required in the interior is lower in a process according to the invention, and depending on the case is between 50 kPa (0.5 bar) and 1 MPa (10 bar).
  • the shaping takes place without matrices or counter tools, very large sheet metal structures are also manufacturable.
  • the semi-finished products are flat, they require much less space than the finished formed sheet metal structures. This results in the logistically advantageous possibility to transport larger sheet metal structures, for example, for use in buildings, as a semi-finished product to the installation site, and to finish there on site.
  • An inventive sheet metal structure may also have openings, for example in the topological shape of a torus, as long as the interior is completed.
  • the shaping of a sheet metal structure according to the invention results primarily from the choice of contours, the material properties and the process parameters.
  • the by the increased internal pressure generated force acts basically perpendicular to the sheet surface. Due to the plastic deformation, there is a shift in the contours.
  • When blowing out the semi-finished products they are therefore narrower in the plane of the contours, which must be considered in the choice of contouring, as in FIG. 2 is explained schematically.
  • FIG. 2 (a) shown two long sheet metal elements 11 assembled with a width a and a length b to form a semi-finished product 1a, then the three-dimensional sheet metal structure 1 is waisted during forming (b).
  • By a round contouring at the longitudinal ends (c) this effect can be reduced.
  • An exact compliance with a constant width a over the entire length of the sheet metal structure can finally be achieved by broadening the sheet metal elements 11 in the middle (e), which then results in a unsupported sheet structure during inflation (f).
  • FIG. 3 illustrates the use of sheets of different thicknesses.
  • a first sheet metal element 11 is made of 2 mm thick sheet metal, while a second sheet metal element 11 'has a thickness of 0.8 mm.
  • the sheets are stretched to varying degrees due to their resulting different mechanical stability, resulting in an asymmetric shaping of the sheet metal parts.
  • the use of different sheet thicknesses thus also allows an influence on the deformation of the inventive three-dimensional sheet metal structure.
  • FIG. 4 (a) shows three different examples of possible design forms of simple sheet metal structures according to the invention.
  • the weld seam 12 does not necessarily have to match the contour 16 either.
  • points the second sheet metal structure at the longitudinal ends of a weld 12 which can survive a certain part of the sheet metal elements, whereby a region is formed which is not inflated, and can serve for example for attaching a breakpoint.
  • Another way to attach a breakpoint is in the first example of FIG. 4 (a) and in FIG. 4 (b) seen.
  • the semi-finished product 1a has at its longitudinal end a dovetail-shaped contour 16, the tips of which move towards each other during inflation / reshaping. After forming, a correspondingly shaped connection point 16 is inserted between the two tips.
  • pivoting movements can also be induced during the forming, with certain parts of the sheet metal structure being pivoted relative to others.
  • Suitable for this purpose are, for example, constrictions in the contour. In this way, can produce three-dimensional sheet metal structures that would not be produced with conventional Blechumformungsclar.
  • the possibility of determining the shape of the sheet metal structure may be restricted at a certain distance from the contour lines.
  • This problem is solved by one or more limiting elements which are attached to one or more sheet metal elements, and limit the deformation of the sheet metal elements in one or the other of the inflation molding.
  • FIG. 5 An exemplary example of an inventive sheet metal structure 1 with a delimiting element 2 is shown in FIG. 5 (a) before inflation / reshaping, (b) as detail I in the area of the boundary element 2 and (c) after inflation.
  • the limiting element in the example shown is a folded sheet metal strip 2 which is arranged between two sheet-metal elements 11, 11 'and is connected to two connecting points 21, 21'. is positively and / or non-positively connected to the sheet metal elements at the points A and B, for example by gluing or welding.
  • the limiting element 2 When inflating the semi-finished product, the limiting element 2 is now unfolded until it is stretched to its maximum length L.
  • connection points 21, 21 'of the limiting element can be displaceable, possibly also with a latching mechanism.
  • a rigid limiting element such as a distance rod, which would determine not only the maximum distance between points A and B, but also the minimum distance, and thus also the mechanical stabilization of the inventive sheet metal structure can serve.
  • Such stabilization can also be achieved by crossing two or more limiting elements 2, 2 ', as in FIG FIG. 6 shown.
  • a limiting element 2 can also limit only the deformation of a sheet metal element 11.
  • FIG. 7 a possible embodiment (a) of an inventive semifinished product 1 a of a sheet metal structure 1 according to the invention, in which between two sheet metal elements 11, 11 'a web 2, for example in the form of a folded sheet metal strip is arranged, along its entire length with an 11 of the sheet metal elements connected is.
  • the sheet metal structure 1 When inflating (b) the sheet metal structure 1 then prevents the limiting element 2 a bending of the surface of the sheet metal element 11 in the longitudinal direction, as in the longitudinal section in FIG. 7 (c) is apparent. This influences the overall forming, which is taken into account when determining the contouring, process parameters, etc.
  • Such a web can of course be seconded on the outside of the sheet metal element.
  • An inventive sheet structure 1 with a large volume can serve, for example, as a tank, for example for fuel, fuel oil or water.
  • a tank is particularly suitable for installation in existing buildings, because it is usually no longer possible to bring a large-volume rigid tank later in the building interior.
  • the tank will be welded together on site or replaced with a variety of smaller tanks.
  • a sheet metal structure according to the invention can now be brought into the building as a space-saving semifinished product 1a, and then be inflated / reshaped into the finished tank. It is also possible to additionally roll or fold the flat semifinished product in a suitable manner prior to transport in order to make it even more compact.
  • FIG. 9 (a) A simple example of a rolled semi-finished product 1a shows FIG. 9 (a) , By increasing the internal pressure, this rolls Semi-finished product automatically, in order then to be shaped into the final three-dimensional shape of the inventive sheet metal structure 1, as in FIG. 9 (b) shown.
  • inventive sheet metal structures which are intended for use as vehicle tanks, it is possible to use two-dimensional boundary elements which, for example, can be configured as perforated plates and thus serve as slosh plates later in operation.
  • inventive sheet metal structures can also be designed double-walled, which in turn is particularly advantageous for tanks. For this purpose, instead of two four sheet metal elements are welded.
  • FIG. 8 shows two further embodiments of an inventive sheet metal structure 1.
  • FIG. 8 (a) is mounted on a sheet metal element 11 in the longitudinal direction of a bead 2.
  • Beading is often used in sheet metal technology to stabilize sheet metal structures.
  • they serve as limiting element 2 because it influences the deformation of the sheet metal element 11 during the forming process.
  • the shape of the beads is also variable to affect the shape of the three-dimensional sheet structure 1.
  • FIG. 8 (b) was the semifinished product 1a bent before the forming process in the flat state, which also allows influencing the shape.
  • FIG. 10 Other variants of inventive sheet metal structures 1 are in FIG. 10 shown. These are designed multi-chamber, wherein the boundary surfaces between two chambers each serve as a limiting element 2, which influences the shape of the overall structure 1. So shows Figure 10 (a) a variant in which in the two sheet metal elements 11, 11 'additional welds 2 are mounted within the contours 16, which lead to three separate chambers. When inflating / reshaping the Semifinished 1a, these welds form 2 interfaces between the chambers, and at the same time influence the deformation of the sheet metal structure 1 as delimiting elements. In a preferred variant, various internal pressures in the chambers can additionally be selected.
  • FIG. 10 (f) shows a multi-chambered variant.
  • the individual sheet metal elements 11, 11 'stacked in a brick shape, and so welded 12, that a single sheet metal element 11 each serves as the top of a chamber and as the bottom of the next chamber.
  • FIGS. 10 (b) and (c) two or a smaller chambers are arranged within a third, larger chamber. During forming, they influence the deformation of the outer chamber due to their volume and shape, and therefore also function as a delimiting element 2
  • FIG. 10 (d) again shows a multi-chambered variant in which folded sheet metal elements 11 are arranged inside each other and welded 12 are.
  • individual sheet metal structures are arranged in a brick shape. In both of these variants, in each case a part of a sheet metal element 11 simultaneously serves as a limiting element 2.
  • inventive sheet metal structures FIGS. 10 (a) and (b) are particularly suitable as lightweight carrier structures.
  • the additional stiffening of the edges by the outer edges corresponds to a reinforcement of the upper and lower chords.
  • inventive sheet metal structures FIG. 10 (d) to (f) in turn are suitable for larger-scale applications, for example, for facade and roof elements or flat support structures such as floors.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
EP08007621A 2008-04-18 2008-04-18 Procédé de formage de tôle sans outil Withdrawn EP2110189A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08007621A EP2110189A1 (fr) 2008-04-18 2008-04-18 Procédé de formage de tôle sans outil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08007621A EP2110189A1 (fr) 2008-04-18 2008-04-18 Procédé de formage de tôle sans outil

Publications (1)

Publication Number Publication Date
EP2110189A1 true EP2110189A1 (fr) 2009-10-21

Family

ID=39745601

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08007621A Withdrawn EP2110189A1 (fr) 2008-04-18 2008-04-18 Procédé de formage de tôle sans outil

Country Status (1)

Country Link
EP (1) EP2110189A1 (fr)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH700604A1 (de) * 2009-03-30 2010-09-30 Ludger Hovestadt C O Inst Fuer Vorrichtung zur Strukturverstärkung.
ITBZ20100007A1 (it) * 2010-02-12 2011-08-13 Kreithner Kg Sas Elemento costruttivo metallico.
CN102172664A (zh) * 2010-12-31 2011-09-07 吉林大学 薄壁复杂弯管的柔性制造方法
CN102728694A (zh) * 2012-06-30 2012-10-17 台州市航天恒通科技有限公司 一种水上移动基站的密封仪器舱弧面成型方法
WO2012159856A1 (fr) 2011-05-03 2012-11-29 Jakob Przybylo Architekt Procédé de fabrication de structures en tôle déformée par pression interne
CN104668905A (zh) * 2014-12-31 2015-06-03 黄胜 一种多维度弯曲锥形管的制造方法
DE102016014191A1 (de) 2016-11-29 2018-05-30 Ingenieurgesellschaft Peil Durch Innendruck-Umformung hergestellter Hohlkörper
WO2019141785A1 (fr) 2018-01-19 2019-07-25 Karlsruher Institut für Technologie Structures porteuses hybrides et leur utilisation
EP3636364A1 (fr) 2018-10-09 2020-04-15 Outokumpu Oyj Procédé de fabrication d'un cadre de collision d'un compartiment de batterie pour batterie de véhicules électriques
WO2021124093A1 (fr) * 2019-12-18 2021-06-24 Instytut Formy Sp. Z O.O. Élément structural à chambres multiples et procédé de fabrication d'élément structural à chambres multiples
WO2022070150A3 (fr) * 2020-10-02 2022-06-16 Zieta Prozessdesign Spółka Z Ograniczoną Odpowiedzialnością Cadre de carrosserie de véhicule, préformes d'élément de composant de cadre de carrosserie de véhicule, procédé de fabrication d'éléments de composant de cadre de carrosserie de véhicule, et éléments de composant de cadre de carrosserie de véhicule
US20230003023A1 (en) * 2019-11-20 2023-01-05 Instytut Formy Sp. Z O.O. An i-profile preform and an i-profile manufacturing method
WO2023088935A1 (fr) * 2021-11-18 2023-05-25 Ipu Ingenieurgesellschaft Braunschweig Mbh Procédé de production sans moule d'un composant à relief et composant à relief
WO2023233266A1 (fr) * 2022-06-02 2023-12-07 Zieta Prozessdesign Spółka Z Ograniczoną Odpowiedzialnością Élément structurel fermé à chambres multiples et procédé de fabrication d'un élément structurel fermé à chambres multiples

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3924793A (en) * 1973-07-24 1975-12-09 British Aircraft Corp Ltd Forming metals
AT346667B (de) * 1977-03-14 1978-11-27 Voest Ag Verfahren zum herstellen von auf biegung beanspruchbaren platten
FR2739832A1 (fr) * 1995-10-12 1997-04-18 Aerospatiale Structure metallique creuse monobloc et dissymetrique telle qu'un bord de fuite d'un bec d'attaque d'une voilure d'aeronef et son procede de fabrication
DE19753658A1 (de) * 1997-12-03 1999-06-17 Fraunhofer Ges Forschung Bauteil mit einer aus einem duktilen Material gebildeten Materiallage sowie Verfahren und Vorrichtung zur Herstellung eines derartigen Bauteils
EP0962268A1 (fr) * 1998-06-02 1999-12-08 Solistor B.V. Procédé de fabrication d'un récipient de sctockage pour stocker un médium et récipient de stockage ainsi fabriqué
WO2000010748A1 (fr) 1998-08-25 2000-03-02 R.J. Tower Corporation Procede d'hydroformage d'elements tubulaires
RU2200640C2 (ru) * 2000-10-24 2003-03-20 Российский федеральный ядерный центр - Всероссийский научно-исследовательский институт технической физики им. акад. Е.И.Забабахина Способ изготовления панельной структуры
JP2004160485A (ja) * 2002-11-12 2004-06-10 Nissan Motor Co Ltd 液圧成形における予備成形体および中空成形体の液圧成形方法
WO2005018846A1 (fr) 2003-08-13 2005-03-03 Thyssenkrupp Steel Ag Procede pour le formage a haute pression interne de tubes coniques en metal
DE102004032238A1 (de) * 2004-07-03 2006-01-19 Bayerische Motoren Werke Ag Herstellung eines maßgetreuen Metallschaum-Sandwichformteiles

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3924793A (en) * 1973-07-24 1975-12-09 British Aircraft Corp Ltd Forming metals
AT346667B (de) * 1977-03-14 1978-11-27 Voest Ag Verfahren zum herstellen von auf biegung beanspruchbaren platten
FR2739832A1 (fr) * 1995-10-12 1997-04-18 Aerospatiale Structure metallique creuse monobloc et dissymetrique telle qu'un bord de fuite d'un bec d'attaque d'une voilure d'aeronef et son procede de fabrication
DE19753658A1 (de) * 1997-12-03 1999-06-17 Fraunhofer Ges Forschung Bauteil mit einer aus einem duktilen Material gebildeten Materiallage sowie Verfahren und Vorrichtung zur Herstellung eines derartigen Bauteils
EP0962268A1 (fr) * 1998-06-02 1999-12-08 Solistor B.V. Procédé de fabrication d'un récipient de sctockage pour stocker un médium et récipient de stockage ainsi fabriqué
WO2000010748A1 (fr) 1998-08-25 2000-03-02 R.J. Tower Corporation Procede d'hydroformage d'elements tubulaires
RU2200640C2 (ru) * 2000-10-24 2003-03-20 Российский федеральный ядерный центр - Всероссийский научно-исследовательский институт технической физики им. акад. Е.И.Забабахина Способ изготовления панельной структуры
JP2004160485A (ja) * 2002-11-12 2004-06-10 Nissan Motor Co Ltd 液圧成形における予備成形体および中空成形体の液圧成形方法
WO2005018846A1 (fr) 2003-08-13 2005-03-03 Thyssenkrupp Steel Ag Procede pour le formage a haute pression interne de tubes coniques en metal
DE102004032238A1 (de) * 2004-07-03 2006-01-19 Bayerische Motoren Werke Ag Herstellung eines maßgetreuen Metallschaum-Sandwichformteiles

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH700604A1 (de) * 2009-03-30 2010-09-30 Ludger Hovestadt C O Inst Fuer Vorrichtung zur Strukturverstärkung.
ITBZ20100007A1 (it) * 2010-02-12 2011-08-13 Kreithner Kg Sas Elemento costruttivo metallico.
CN102172664A (zh) * 2010-12-31 2011-09-07 吉林大学 薄壁复杂弯管的柔性制造方法
WO2012159856A1 (fr) 2011-05-03 2012-11-29 Jakob Przybylo Architekt Procédé de fabrication de structures en tôle déformée par pression interne
CN102728694A (zh) * 2012-06-30 2012-10-17 台州市航天恒通科技有限公司 一种水上移动基站的密封仪器舱弧面成型方法
CN102728694B (zh) * 2012-06-30 2014-09-24 台州市航天恒通科技有限公司 一种水上移动基站的密封仪器舱弧面成型方法
CN104668905A (zh) * 2014-12-31 2015-06-03 黄胜 一种多维度弯曲锥形管的制造方法
DE102016014191A1 (de) 2016-11-29 2018-05-30 Ingenieurgesellschaft Peil Durch Innendruck-Umformung hergestellter Hohlkörper
WO2019141785A1 (fr) 2018-01-19 2019-07-25 Karlsruher Institut für Technologie Structures porteuses hybrides et leur utilisation
DE102018132485A1 (de) 2018-01-19 2019-07-25 Karlsruher Institut für Technologie Hybride Tragstrukturen und deren Verwendung
EP3636364A1 (fr) 2018-10-09 2020-04-15 Outokumpu Oyj Procédé de fabrication d'un cadre de collision d'un compartiment de batterie pour batterie de véhicules électriques
WO2020074486A1 (fr) 2018-10-09 2020-04-16 Outokumpu Oyj Procédé de fabrication d'un cadre de collision d'un compartiment de batterie pour véhicules électriques à batterie
CN112770854A (zh) * 2018-10-09 2021-05-07 奥托库姆普联合股份公司 用于制造用于电池电动车辆的电池仓的碰撞框架的方法
US11967727B2 (en) 2018-10-09 2024-04-23 Outokumpu Oyj Method for manufacturing a crash frame of a battery compartment for battery electric vehicles
US20230003023A1 (en) * 2019-11-20 2023-01-05 Instytut Formy Sp. Z O.O. An i-profile preform and an i-profile manufacturing method
WO2021124093A1 (fr) * 2019-12-18 2021-06-24 Instytut Formy Sp. Z O.O. Élément structural à chambres multiples et procédé de fabrication d'élément structural à chambres multiples
US20230037963A1 (en) * 2019-12-18 2023-02-09 Instytut Formy Sp. Z O.O. A multichamber structural element and a multichamber structural element manufacturing method
WO2022070150A3 (fr) * 2020-10-02 2022-06-16 Zieta Prozessdesign Spółka Z Ograniczoną Odpowiedzialnością Cadre de carrosserie de véhicule, préformes d'élément de composant de cadre de carrosserie de véhicule, procédé de fabrication d'éléments de composant de cadre de carrosserie de véhicule, et éléments de composant de cadre de carrosserie de véhicule
WO2023088935A1 (fr) * 2021-11-18 2023-05-25 Ipu Ingenieurgesellschaft Braunschweig Mbh Procédé de production sans moule d'un composant à relief et composant à relief
WO2023233266A1 (fr) * 2022-06-02 2023-12-07 Zieta Prozessdesign Spółka Z Ograniczoną Odpowiedzialnością Élément structurel fermé à chambres multiples et procédé de fabrication d'un élément structurel fermé à chambres multiples

Similar Documents

Publication Publication Date Title
EP2110189A1 (fr) Procédé de formage de tôle sans outil
EP1820577A1 (fr) Machine pour la réalisation de profilés avec une section variable dans le sens de la longueur et profilés obtenus par une telle machine
WO2007090213A1 (fr) Element deformable en forme de tube ondule pour colonne de direction et procede pour sa fabrication
DE102006025522B4 (de) Verfahren und Vorrichtung zur Herstellung strukturierter, geschlossener Hohlprofile
DE19535870A1 (de) Verfahren zum Herstellen von schalenförmigen Hohlstrukturen aus gedoppelten Blechzuschnitten mittels Innenhochdruckumformen
EP0494843B1 (fr) Procédé de fabrication d'une pièce tubulaire à parois double .
WO2001058615A1 (fr) Piece comportant des zones de renforcement localisees, et son procede de production
DE19905365B4 (de) Verfahren zur Herstellung eines Hohlprofiles mit Flansch
DE19946010B4 (de) Verfahren zum Umformen eines Ausgangsprofils od. dgl. Werkstückes mittels eines Innenhochdruckes sowie Profil und dessen Verwendung
DE102010017022B4 (de) Verfahren zum Herstellen eines Hohlprofils, Stützkern zur Durchführung des Verfahrens sowie ein danach hergestelltes Profil
DE19516064C2 (de) Verfahren zur Herstellung eines Blechbehälters mit im wesentlichen bauchiger Form
DE3906957A1 (de) Verfahren zur herstellung von rohrartigen bauteilen
WO2012037914A1 (fr) Procédé et dispositif pour façonner des pièces planes
DE102015002708B3 (de) Behälter zum Aufnehmen und Speichern von Flüssigkeiten und viskosen Stoffen, insbesondere von kryogenen Fluiden, und Verfahren zu dessen Herstellung sowie dessen Verwendung
EP0770435B1 (fr) Méthode de fabrication d'un support d'essieu
EP3509771A1 (fr) Procédé et outil pour la fabrication des pièces en tôle
DE10016025A1 (de) Verfahren zur Herstellung von großvolumigen Hohlkörpern
EP1708832B1 (fr) Procede pour produire un profile creux
EP2177282A1 (fr) Elément structurel en métal adapté au chargement pour un échangeur thermique, procédé de fabrication d'un élément structurel adapté au chargement
CH700617A1 (de) Halbfabrikat zur Herstellung einer Leitplanken-Vorrichtung und Leitplanken-Vorrichtung mit einem solchen Halbfabrikat .
DE102007013174A1 (de) Verfahren zum Herstellen eines aus gegeneinander gesetzten Profilen bestehenden Achskörpers
DE19512533A1 (de) Verfahren zur Wölbstrukturierung und Profilierung dünner Wände und Folien
EP4126410B1 (fr) Structure d'écartement, construction en sandwich pourvue d'une telle structure d'écartement et procédé de fabrication d'une telle structure d'écartement
DE4320656B4 (de) Anwendung des bekannten Innenhochdruckverfahrens
DE102011117769A1 (de) Walzprofilierbiegeverfahren zur Fertigung geometrievariabler Profilbauteile

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

AKX Designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100422