EP2107328A1 - Evaporateur - Google Patents
Evaporateur Download PDFInfo
- Publication number
- EP2107328A1 EP2107328A1 EP09004110A EP09004110A EP2107328A1 EP 2107328 A1 EP2107328 A1 EP 2107328A1 EP 09004110 A EP09004110 A EP 09004110A EP 09004110 A EP09004110 A EP 09004110A EP 2107328 A1 EP2107328 A1 EP 2107328A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- flow
- evaporator
- refrigerant
- flow channels
- fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/0202—Header boxes having their inner space divided by partitions
- F28F9/0204—Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
- F28F9/0209—Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/02—Evaporators
- F25B39/022—Evaporators with plate-like or laminated elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/03—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
- F28D1/0308—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
- F28D1/0325—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/01—Geometry problems, e.g. for reducing size
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/008—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
- F28D2021/0085—Evaporators
Definitions
- the invention relates to an evaporator, in particular for a motor vehicle, according to the preamble of claim 1.
- the invention also relates to a device for cooling a heat source of a motor vehicle according to the preamble of claim 13.
- DE 10 2004 036 951 A1 proposes to use a built-up of parallel, interconnected plates heat exchanger, the type of which is also referred to as stacked plate heat exchanger to use as an evaporator of a refrigeration cycle of a motor vehicle While heat from a heat exchanger flowing through the coolant can be absorbed in the course of the evaporation of the refrigerant heat.
- a plate type heat exchanger used as an evaporator in order to ensure sufficient evaporation and, in particular, to ensure sufficient overheating of the vaporized refrigerant, it is required that the plate length in the flow direction of the refrigerant be sufficiently large, whereby it is generally much larger than a plate width across to the flow direction of the refrigerant. This results in restrictions on the dimensions of the evaporator depending on the given space.
- the refrigerant flows through at least a first and second tide of the evaporator .
- a tide in the context of the invention is to be understood by the evaporator over its length by sweeping flow path of the refrigerant, wherein successive floods generally parallel to each other and in the opposite direction, so that the refrigerant undergoes a deflection between the two successive floods. Due to the deflection and the passage of successive floods, the flow path of the refrigerant in the evaporator is extended even in a short design, so that sufficient overheating can be ensured.
- the ratio of the length to the width UB is not less than about 0.5, in particular not less than about 0.7.
- the heat exchanger is designed with respect to the refrigerant in such a design with exactly two floods useful as a U-flow heat exchanger.
- the refrigerant flows through at least a third, one or more flow channels of the first kind comprehensive tide, which follows a secondary flow downstream of the second deflection.
- the second tide has at least as many flow channels as the first tide and up to 50% more flow channels than the first tide.
- the third tide has at least as many flow channels as the second tide and up to 200% more flow channels than the second tide.
- “approximately equal” means that a number of flow channels of one tide deviate slightly from the number of the other two tides.
- the number of flow channels of the first and third floods can be six and the number of second floods seven.
- the second fluid flows through the evaporator in at least two floods, each comprising one or more of the flow channels of the second type.
- the evaporator would be expediently designed as a U-flow heat exchanger with respect to the second fluid.
- it can also be designed in a simple manner as an I-flow heat exchanger with only one tide for the second fluid.
- more than two floods may be provided for the second fluid.
- the second fluid is generally a coolant, in particular a coolant in the liquid phase.
- the second fluid is generally to be understood as a fluid that undergoes a phase change between two states of aggregation, in particular within the evaporator.
- a separation of successive floods is formed by a special plate different from other plates, which has an obstruction instead of one or more of the openings.
- a multi-flow evaporator is designed according to the design of a plate heat exchanger in a simple manner.
- the special plate has both an obstruction for the separation of floods of Refrigerant as well as an obstruction to separate flooding of the second fluid. In this way, the number of special plates is kept very small and the number of other, generally formed as equal parts plates of the heat exchanger is kept particularly large.
- the flow direction of the last of the floods is generally preferred for the flow direction of the last of the floods to be essentially in the direction of the force of gravity. This can prevent the refrigerant from accumulating in the evaporator.
- substantially in the direction of gravity is thus also to be understood any deviation from the exact direction of gravity, which still allows a sufficiently large influence of gravity on the outflow of the refrigerant.
- An inventive evaporator is particularly well suited to be provided in a refrigerant circuit or the air conditioning system of a motor vehicle in order to cool a heat source of the motor vehicle via a coolant circuit. Due to the compact design of the evaporator, the increasingly critical space conditions in modern motor vehicles can be taken into account.
- the heat source is a traction battery of the motor vehicle, in particular a lithium-ion battery.
- a traction battery of the motor vehicle in particular a lithium-ion battery.
- Such batteries which are used not only in pure electric vehicles but especially in hybrid vehicles with an electric motor and an internal combustion engine, high demands are placed on the cooling to ensure durability and reliability.
- an inventive, small-sized evaporator of high heat exchanger performance which is arranged between a coolant circuit and a particular air conditioning of the vehicle serving refrigeration circuit (also called "chiller") is particularly suitable.
- the compressor of the refrigeration circuit may expediently be arranged directly downstream of the second evaporator. This is to be understood in particular that no collector between evaporator and compressor is arranged and space reasons, no integrated into the evaporator collector is provided.
- the schematic sectional view Fig. 1 shows a vaporizer according to the prior art.
- a plurality of plates 1 are stacked in parallel in a vertical direction h, wherein a flow channel of the first type 2 and a flow channel of the second type 3 alternately remain between two plates.
- the plates 1 have aligned apertures 1a, 1b through which are formed tube-like, vertically extending feeds and outlets for a refrigerant or first fluid and a second fluid of the evaporator.
- the openings 1 a, 1 b in a known manner alternately raised edges (not shown), which are soldered sealingly with the adjacent plate.
- the plates are made of an aluminum alloy.
- the stack of plates 1 is closed in a known manner at its two ends by end plates 9, to which the supply lines and outlets for the refrigerant and the second fluid are attached.
- Fig. 2 shows a first embodiment of an evaporator according to the invention, in which the evaporator with respect to the refrigerant in three floods 4, 5, 6 is divided.
- the separation of the flow channels 1 in the individual floods 4, 5, 6 takes place by special plates 7, in which at least one of the openings 1a, 1b is replaced by an obstruction 7a.
- the obstructions 7a prevent the refrigerant from a complete flow through the supply or discharge in the vertical direction.
- a width direction of the evaporator is perpendicular to the plane of the drawing Fig. 2 and thus perpendicular to the longitudinal direction and to the vertical direction h.
- the plates 1 have between the feeders and drains 1a, 1b a heat transferring surface having a length L in the longitudinal direction and a width B in the width direction.
- L is about 4 cm and B about 5.5 cm. This results in a ratio of UB of about 0.73.
- a height H of the stack of plates 1 is about 4 cm.
- the external dimensions of the evaporator for this particular example have a total length of 8.8 cm, a total width of 6.2 cm and a height of 4 cm.
- the plates 1 Between the individual plates 1 no turbulence inserts are provided at least on the side of the refrigerant. Depending on requirements, the plates 1 have indentations and structuring in order to increase the surface area and introduce turbulence into the flowing refrigerant.
- the flow channels of the second type 3 are represented by broken lines and in the present case flow through a liquid coolant of a coolant circuit as a second fluid.
- the feeds and drains for the second fluid are not shown.
- Fig. 3 shows a further embodiment of an evaporator according to the invention.
- the refrigerant only flows through two floods 4, 5, so that the throughflow path of the refrigerant as a whole is U-shaped (U-flow heat exchanger).
- the dimensions of the plates 1 are the same as in the first embodiment.
- the path of the coolant through the flow channels of the second type 3 is divided into a plurality of floods.
- Fig. 3 a representation of the floods of the second fluid or coolant, wherein the illustration Fig. 2 shows the floods of the refrigerant of the same evaporator.
- both fluids are divided into several floods, it may be expedient for one or more of the special plates 7 to have both an obstruction for the first fluid and an obstruction for the second fluid. This makes it possible to reduce the number of special plates required and increase the total number of identical parts of the evaporator.
- Fig. 4 shows a device for cooling a heat source 10 of a motor vehicle, in this case a lithium-ion battery of a hybrid drive.
- the battery 10 is cooled by a circuit with liquid coolant, which is circulated via a circulation pump 11.
- the heat absorbed by the battery 10 is dissipated via a heat exchanger 12, the an efindungshunter evaporator according to one of the preceding embodiments.
- the evaporator 12 is integrated in a refrigeration circuit 13, which also serves for air conditioning of the motor vehicle.
- the refrigerant is compressed by a compressor 14 and subsequently cooled by a condenser or gas cooler 15.
- the condenser or gas cooler 15 below, an air conditioner evaporator 16 and the evaporator 12 according to the invention are connected in parallel, wherein before each of the evaporator 12, 16 each have an expansion element 16a, 12a is arranged.
- a fan 17 delivers air for conditioning by the A / C evaporator 16.
- Fig. 5 shows a modification of the device Fig. 4 in which the coolant circuit in addition to the evaporator 16 still has a parallel-connected auxiliary cooler 18, which is flowed around by outside air.
- the coolant can selectively flow through the evaporator 12, the radiator 18 or both heat exchangers 12, 18 to ensure optimal cooling of battery 10 and vehicle interior in all operating situations.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Air-Conditioning For Vehicles (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102008017113A DE102008017113A1 (de) | 2008-04-02 | 2008-04-02 | Verdampfer |
DE102008044673 | 2008-08-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2107328A1 true EP2107328A1 (fr) | 2009-10-07 |
EP2107328B1 EP2107328B1 (fr) | 2012-07-11 |
Family
ID=40846998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09004110A Not-in-force EP2107328B1 (fr) | 2008-04-02 | 2009-03-23 | Evaporateur |
Country Status (2)
Country | Link |
---|---|
US (1) | US20090249810A1 (fr) |
EP (1) | EP2107328B1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011008653A1 (de) | 2011-01-14 | 2012-07-19 | Behr Gmbh & Co. Kg | Wärmeübertrager |
DE102011081886A1 (de) | 2011-08-31 | 2013-02-28 | Behr Gmbh & Co. Kg | Wärmeübertrager |
DE102012104520A1 (de) * | 2012-05-25 | 2013-11-28 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Elektrisch angetriebenes Fahrzeug |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015205933A1 (de) * | 2015-04-01 | 2016-10-06 | Mahle International Gmbh | Wärmeübertrager oder Chiller |
WO2017201252A1 (fr) * | 2016-05-20 | 2017-11-23 | Modine Manufacturing Company | Échangeur de chaleur et système d'échange de chaleur |
CN110186300B (zh) * | 2019-06-27 | 2024-10-15 | 浙江银轮机械股份有限公司 | 板片、板片组件及热交换器 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2346680A (en) * | 1999-02-11 | 2000-08-16 | Llanelli Radiators Ltd | Condenser |
US20020179295A1 (en) * | 1999-12-29 | 2002-12-05 | Laurent Palanchon | Evaporator consisting of stacked flat tubes having two opposite fluid boxes |
DE102004036951A1 (de) | 2003-08-01 | 2005-05-25 | Behr Gmbh & Co. Kg | Wärmeübertrager sowie Verfahren zu dessen Herstellung |
US20060137853A1 (en) * | 2003-02-20 | 2006-06-29 | Valeo Climatisation | Ventilation/heating and/or air conditioning device for the passenger compartment of a motor vehicle with simultaneous cooling of air and coolant |
EP1703232A1 (fr) * | 2005-02-28 | 2006-09-20 | Calsonic Kansei Corporation | Évaporateur |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2717045A (en) * | 1949-09-28 | 1955-09-06 | Daimler Benz Ag | Heating and cooling system for vehicle passenger and battery compartments |
US4016929A (en) * | 1974-06-08 | 1977-04-12 | Pfluger Apparatebau Gmbh & Co. Kg | Heat-exchanger |
US3978687A (en) * | 1975-06-23 | 1976-09-07 | Faaca Inc. | Modified evaporator for automobile air conditioning systems |
US4201263A (en) * | 1978-09-19 | 1980-05-06 | Anderson James H | Refrigerant evaporator |
JPS60173879U (ja) * | 1984-04-25 | 1985-11-18 | 日産自動車株式会社 | 自動車用冷温蔵庫 |
US5682944A (en) * | 1992-11-25 | 1997-11-04 | Nippondenso Co., Ltd. | Refrigerant condenser |
DE4426692C1 (de) * | 1994-07-28 | 1995-09-14 | Daimler Benz Ag | Zweistufige Verdampfereinheit für einen Reaktant-Massenstrom und Verfahren zur Herstellung desselben |
JPH116693A (ja) * | 1997-04-23 | 1999-01-12 | Denso Corp | 車両空調用熱交換器 |
JP4281175B2 (ja) * | 1999-09-29 | 2009-06-17 | 株式会社デンソー | 複式熱交換器 |
WO2002055947A1 (fr) * | 2001-01-16 | 2002-07-18 | Zexel Valeo Climate Control Corporation | Echangeur thermique |
DE10158385A1 (de) * | 2001-11-28 | 2003-06-12 | Bosch Gmbh Robert | Klimaanlage |
EP1530701B1 (fr) * | 2002-07-05 | 2016-04-13 | MAHLE Behr GmbH & Co. KG | Echangeur de chaleur, en particulier evaporateur pour installation de climatisation d'un vehicule |
DE10302412A1 (de) * | 2003-01-21 | 2004-07-29 | Behr Gmbh & Co. Kg | Wärmeübertrager, insbesondere Gaskühler |
JP2005030700A (ja) * | 2003-07-07 | 2005-02-03 | Calsonic Kansei Corp | 熱交換器のチューブ取付部構造 |
KR100518856B1 (ko) * | 2003-09-04 | 2005-09-30 | 엘지전자 주식회사 | 플랫 튜브 열 교환기 |
BRPI0416193A (pt) * | 2003-12-11 | 2007-01-16 | Behr Gmbh & Co Kg | disposição estrutural para dispositivos para troca de calor |
US7080683B2 (en) * | 2004-06-14 | 2006-07-25 | Delphi Technologies, Inc. | Flat tube evaporator with enhanced refrigerant flow passages |
US20060130513A1 (en) * | 2004-12-22 | 2006-06-22 | Samsung Electronics Co., Ltd. | Refrigerator |
DE102006002194A1 (de) * | 2005-01-14 | 2006-08-24 | Behr Gmbh & Co. Kg | Verdampfer, insbesondere für eine Klimaanlage eines Kraftfahrzeuges |
JP2007163042A (ja) * | 2005-12-14 | 2007-06-28 | Showa Denko Kk | 熱交換器 |
-
2009
- 2009-03-23 EP EP09004110A patent/EP2107328B1/fr not_active Not-in-force
- 2009-04-02 US US12/417,491 patent/US20090249810A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2346680A (en) * | 1999-02-11 | 2000-08-16 | Llanelli Radiators Ltd | Condenser |
US20020179295A1 (en) * | 1999-12-29 | 2002-12-05 | Laurent Palanchon | Evaporator consisting of stacked flat tubes having two opposite fluid boxes |
US20060137853A1 (en) * | 2003-02-20 | 2006-06-29 | Valeo Climatisation | Ventilation/heating and/or air conditioning device for the passenger compartment of a motor vehicle with simultaneous cooling of air and coolant |
DE102004036951A1 (de) | 2003-08-01 | 2005-05-25 | Behr Gmbh & Co. Kg | Wärmeübertrager sowie Verfahren zu dessen Herstellung |
EP1703232A1 (fr) * | 2005-02-28 | 2006-09-20 | Calsonic Kansei Corporation | Évaporateur |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011008653A1 (de) | 2011-01-14 | 2012-07-19 | Behr Gmbh & Co. Kg | Wärmeübertrager |
WO2012095531A1 (fr) | 2011-01-14 | 2012-07-19 | Behr Gmbh & Co. Kg | Échangeur thermique |
US9093729B2 (en) | 2011-01-14 | 2015-07-28 | MAHLE Behr GmbH & Co. KG | Heat exchanger |
DE102011081886A1 (de) | 2011-08-31 | 2013-02-28 | Behr Gmbh & Co. Kg | Wärmeübertrager |
EP2565560A2 (fr) | 2011-08-31 | 2013-03-06 | Behr GmbH & Co. KG | Échangeur de chaleur |
US9121643B2 (en) | 2011-08-31 | 2015-09-01 | MAHLE Behr GmbH & Co. KG | Heat exchanger |
DE102012104520A1 (de) * | 2012-05-25 | 2013-11-28 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Elektrisch angetriebenes Fahrzeug |
Also Published As
Publication number | Publication date |
---|---|
US20090249810A1 (en) | 2009-10-08 |
EP2107328B1 (fr) | 2012-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102008017113A1 (de) | Verdampfer | |
DE102012006346B4 (de) | Wärmetauscher | |
EP1454106B1 (fr) | Échangeur thermique | |
DE102010048015B4 (de) | Anlage mit einem Wärmeübertrager | |
EP1279805B1 (fr) | Refroidisseur de l'air de charge aéroréfrigérée | |
EP1996888B1 (fr) | Échangeur thermique pour véhicule automobile | |
DE112012004988T5 (de) | Wärmetauscher | |
DE102014107869A1 (de) | Kühlmodul für ein Fahrzeug | |
DE102006048667A1 (de) | Wärmeübertrageranordnung und Verfahren zur Wärmeübertragung | |
EP2107328B1 (fr) | Evaporateur | |
DE102007054345A1 (de) | Kühlmodul | |
EP1985953A1 (fr) | Echangeur thermique, en particulier destiné au refroidissement des gaz d'echappement, procédé d'utiliser d'un tel échangeur et système comprenant un refroidisseur EGR | |
DE102010055972A1 (de) | Evaporator mit Kältespeicherfunktion | |
DE112012005008T5 (de) | Wärmetauscher | |
DE112015004908T5 (de) | Gestapelter Wärmetauscher | |
DE102019128941B4 (de) | Front-Stoßfänger mit integriertem Wärmetauscher | |
DE102010040292A1 (de) | Wärmetauscher mit einem Strömungsablenker und Verfahren zum Betrieb desselben | |
DE102013204946A1 (de) | Rippe und Wärmetauscher, welcher dieselbige verwendet | |
DE102016123904A1 (de) | Interne Entlüftungsvorrichtung für Lamellenwärmeübertrager | |
DE102015016241A1 (de) | Elektrisch angetriebenes Fahrzeug | |
DE102007013125A1 (de) | Wärmeübertrager | |
EP2710318A1 (fr) | Echangeur de chaleur à lamelles | |
DE102016113469A1 (de) | Fahrzeugwärmetauscher | |
DE112017001679B4 (de) | Ladeluftkühler | |
DE19926052B4 (de) | Wärmetauschereinheit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
17P | Request for examination filed |
Effective date: 20100407 |
|
17Q | First examination report despatched |
Effective date: 20100512 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 566349 Country of ref document: AT Kind code of ref document: T Effective date: 20120715 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502009004042 Country of ref document: DE Effective date: 20120830 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20120711 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D Effective date: 20120711 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120711 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121111 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121011 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120711 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120711 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120711 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120711 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120711 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120711 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121012 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120711 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120711 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120711 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120711 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121022 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120711 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120711 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120711 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120711 |
|
26N | No opposition filed |
Effective date: 20130412 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121011 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502009004042 Country of ref document: DE Effective date: 20130412 |
|
BERE | Be: lapsed |
Owner name: BEHR G.M.B.H. & CO. KG Effective date: 20130331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130331 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20130323 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130331 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130323 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130331 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130331 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120711 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502009004042 Country of ref document: DE Representative=s name: GRAUEL, ANDREAS, DIPL.-PHYS. DR. RER. NAT., DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502009004042 Country of ref document: DE Owner name: MAHLE INTERNATIONAL GMBH, DE Free format text: FORMER OWNER: BEHR GMBH & CO. KG, 70469 STUTTGART, DE Effective date: 20150317 Ref country code: DE Ref legal event code: R082 Ref document number: 502009004042 Country of ref document: DE Representative=s name: GRAUEL, ANDREAS, DIPL.-PHYS. DR. RER. NAT., DE Effective date: 20150317 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 566349 Country of ref document: AT Kind code of ref document: T Effective date: 20140323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120711 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20090323 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120711 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140323 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20210323 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20210518 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502009004042 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220331 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221001 |