EP2104624A2 - Procede de freinage pour vehicule hybride et procede d'amelioration d'un vehicule hybride pour la mise en oeuvre de ce procede - Google Patents

Procede de freinage pour vehicule hybride et procede d'amelioration d'un vehicule hybride pour la mise en oeuvre de ce procede

Info

Publication number
EP2104624A2
EP2104624A2 EP07871963A EP07871963A EP2104624A2 EP 2104624 A2 EP2104624 A2 EP 2104624A2 EP 07871963 A EP07871963 A EP 07871963A EP 07871963 A EP07871963 A EP 07871963A EP 2104624 A2 EP2104624 A2 EP 2104624A2
Authority
EP
European Patent Office
Prior art keywords
braking torque
braking
wheels
vehicle
recup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07871963A
Other languages
German (de)
English (en)
Inventor
Joseph Krasznai
Armand Boatas
Vincent Mulot
Rémy Delplace
Olivier Mechin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PSA Automobiles SA
Original Assignee
Peugeot Citroen Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroen Automobiles SA filed Critical Peugeot Citroen Automobiles SA
Publication of EP2104624A2 publication Critical patent/EP2104624A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2220/00Monitoring, detecting driver behaviour; Signalling thereof; Counteracting thereof
    • B60T2220/04Pedal travel sensor, stroke sensor; Sensing brake request
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/60Regenerative braking
    • B60T2270/611Engine braking features related thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/18Braking system
    • B60W2510/182Brake pressure, e.g. of fluid or between pad and disc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the invention relates to a braking process for hybrid vehicles in which a regenerative braking torque and a dissipative braking torque are applied to the wheels.
  • the invention is in particular to increase the regenerative braking torque applied to the wheels by the electric machine while ensuring good control of the vehicle.
  • Braking systems in which a regenerative braking torque and a dissipative braking torque are applied to the wheels are known.
  • the regenerative braking torque is applied to the wheels by the action of an electric machine acting as a generator to recharge a battery to which it is connected.
  • the dissipative braking torque is applied to the wheels by means of disk or drum brakes which apply a frictional force on a mobile element rotating with the wheels.
  • the first type is a category A recovery system exerting a braking torque to the wheels without action of the driver on the brake pedal.
  • a representation of the braking characteristic of such a system is shown in FIG.
  • recuperative CmeM torque applied by the electric machine to the wheels as a function of the depression of the brake pedal is constant regardless of the depression of the brake pedal.
  • the sum of the torque applied by the Chydri brakes and the CmeM electric machine to the wheels increases with the depression of the brake pedal.
  • the category A system does not a priori require any adaptation of the hybrid vehicle's drivetrain.
  • the second type is a category B recovery system exerting a braking torque controlled by the brake pedal.
  • the invention finds an advantageous application in this type of system. These systems make it possible in particular to decouple the brake pedal action from the torque produced by the conventional dissipative braking system. Thus, they offer the possibility of controlling the distribution between the recuperative brake achieved by the electric traction chain and the dissipative brake realized by the conventional hydraulic braking system.
  • document JP2003-284202 describes a distribution management method between the conventional braking system and the regenerative braking of the electric machine. This method comprises a step of increasing the regenerative braking while the brake pedal is actuated. However, this process involves an intrinsic modification of the hydraulic braking system.
  • the regenerative braking device according to the invention proposes to solve the aforementioned drawbacks.
  • the brake pedal support can be detected by an inductive sensor of the BLS type, and / or by the pedal travel sensor, and / or by the hydraulic brake pressure sensor, and
  • the brake system supervisor which is an ABS or ESP calculator, detects the braking life situation and controls the application of the additional electric braking torque according to this life situation.
  • the living situation depends in particular on the vehicle speed, course of the road (curved or straight line), and tire grip on the road (dry or wet grip).
  • the brake supervisor also controls the modulation of the regenerative braking torque as a function of the position of the brake pedal measured by the pedal stroke sensor and / or the hydraulic brake pressure measured by the pressure sensor.
  • the brake supervisor also controls the modulation of the regenerative braking torque as a function of the vehicle speed and the engaged gear ratio.
  • the brake supervisor additionally modulates the regenerative braking torque so as to never exceed a limit "acceptable" by the driver in terms of approval.
  • ABS Anti-lock Braking System
  • ESP Electronic Stability Program
  • the additional regenerative braking torque setpoint thus determined by the brake supervisor is then transmitted to the computer which controls the electric machine. This controls the electric machine so that it achieves this regenerative torque.
  • the invention therefore relates to a braking process for a hybrid vehicle comprising a heat engine and an electric machine forming a power train, this traction chain being connected to wheels of the vehicle, this vehicle comprising a brake pedal which controls the braking of the vehicle, this method comprising the following steps:
  • a dissipative braking torque is applied to the wheels by means of brakes connected to a hydraulic braking circuit, these brakes rubbing on elements rotating with the wheels, and
  • this additional braking torque being modulated according to the travel of the brake pedal and / or the hydraulic brake pressure, this braking torque also depending on the gear ratio engaged.
  • to modulate the braking torque to modulate this additional braking torque it further comprises the following steps: - measuring the maximum braking torque of the electric machine,
  • this corrective gain dependent on the gear engaged, this corrective gain also depending on the speed of the vehicle for a given gear ratio and on at least one parameter among the braking pressure and the stroke. of the brake pedal, and - control the electric machine so that the electric braking torque applied to the wheels in addition to the dissipative braking is substantially equal to the maximum braking torque weighted.
  • the invention furthermore relates to a method for improving a hybrid vehicle comprising a heat engine and an electric machine forming a traction chain, this traction chain being connected to wheels of the vehicle, in which:
  • the additional braking torque applied by the electric machine to the wheels when the brake pedal is depressed is modulated according to the stroke of the brake pedal and / or the hydraulic brake pressure.
  • FIG. 2 a schematic representation of a hybrid vehicle implementing the regenerative braking process according to the invention
  • FIGS. 3-5 schematic representations of the control management according to the invention of the recuperative torque applied by the electric machine in the case of a braking system according to the invention comprising a driving sensor and / or a sensor hydraulic pressure;
  • - Figure 6 a curve representing the torque applied to the wheels according to a depression of the brake pedal for a regenerative braking process according to the invention;
  • FIG. 2 shows a braking control system according to the invention applied to a hybrid vehicle 1.
  • the vehicle wheels are represented by their respective associated brake disks.
  • Front wheels 2.1, 2.2 of this vehicle which function as drive wheels are driven by an electric machine 3 and a heat engine (not shown).
  • This machine 3 and this motor can for example be connected to each other by means of a clutch and they can be accompanied by a controlled gearbox or a CVT (Continuously Variable Transmission).
  • the electric machine 3 is connected to the shaft of these wheels via a differential assembly 4. This machine 3 is also connected to a battery 7 via a power circuit.
  • the electric machine 3 transmits to the wheels 2.1-2.4 a regenerative braking torque when operating in generator mode to recharge the battery 7 and that its shaft is driven by the wheels. This charging phase occurs during deceleration or braking.
  • a supervisor 8 controls the torque applied by the traction chain formed of the heat engine and the electric machine 3. In particular, the supervisor 8 controls the braking torque applied by the machine 3 to the wheels 2.1-2.4.
  • the vehicle 1 comprises a hydraulic braking system.
  • This system 10 comprises a vacuum braking assistance device 11 which amplifies the force supplied by the driver on the pedal 20.
  • the device 11 is connected to a source 13 of vacuum which allows to have pressures different on the piston that it comprises (not shown).
  • This device 11 is connected to a master cylinder 12 fed with This master cylinder 12 is connected to the brakes 16.1-16.4 via a network 17 of pipes.
  • the amplifier 11 and master cylinder 12 transforms the mechanical force provided by the driver when the pedal is pressed into hydraulic pressure.
  • the pipes then transmit this hydraulic pressure to the brakes 16.1-16.4.
  • These brakes turn this pressure into a force capable of driving the pads against the 4 discs 2.1-2.4.
  • the vehicle has an ABS type system.
  • This system comprises a hydraulic unit 23 connected to the master cylinder 12 and the network 17 of pipe.
  • This hydraulic unit 23 is provided with a pump 22 and is associated with a braking supervisor 24.
  • This hydraulic unit 23 provides control of the hydraulic pressure applied by the brakes.
  • the ABS system includes sensors 27.1-27.4 measuring the speed of the wheels which are connected to inputs 30-33 of the supervisor 24.
  • the supervisor 24 acts on the hydraulic unit 23 so that the wheel is partially or completely released by a drop or overpressure of the hydraulic pressure depending on the type of brake used, in the brake concerned.
  • the dissipative brake torque is applied to the four wheels, while the electric braking torque is applied solely to the tractor or propellant axle. Nevertheless, the invention is also applicable in the case of an integral transmission.
  • the vehicle 1 comprises a sensor 41 brake contactor type BLS (Brake Light Switch in English) which can detect the depression of the brake pedal. This sensor is connected to an input of the computer 24.
  • the vehicle 1 also includes sensors for estimating the braking intensity requested by the driver.
  • the vehicle comprises a sensor 42 of brake pedal travel or master cylinder displacement and / or a brake pressure sensor 43 measuring the pressure delivered by the master cylinder.
  • sensors 42, 43 are added with respect to a conventional ABS configuration.
  • the sensor 43 of the brake pressure is implanted either at the location of the master cylinder 12 or at the location of the hydraulic block 23.
  • the block 24 also includes an ESP function that makes it possible to rectify the trajectory of the vehicle from the calculation of an expected trajectory.
  • the pressure sensor 43 is already present on the hydraulic block 23 and it is not necessary to add it.
  • the computer 24 controls the computer 8 of the traction chain which modulates the recuperative torque of the electric machine 3.
  • FIGS. 3 to 5 describe the implementation of the control laws of the invention in the brake computer 24 (ABS or ESP) and the supervisor 8 which controls the various elements of the hybrid traction system, namely in particular the heat engine 52, the electric machine 3, and the gearbox 53.
  • FIG. 3 shows the case where the sensor 42 of stroke of the brake pedal and the pressure sensor 43 are used.
  • the information 58 produced at the output of the module 57 is transmitted to the module 59 with the values of the depression (or the travel) of the brake pedal "pedal stroke" and the brake pressure measured.
  • this function is a tab with 2 inputs (“pressurejmtc” and "speed”) and an output (gain between 0 and 1).
  • ABS or ESP control functions activate.
  • a module 63 which comprises the control and regulation laws specific to the ABS and / or ESP functions, takes control of the calculation of the regenerative braking torque setpoint "Cf_récup" and adjusts the value of this setpoint to these particular life situations.
  • the "Cf_recup" electrical braking instruction is then sent by the braking supervisor 24 to the traction chain supervisor 8 which drives the machine 3 in order to achieve the requested electrical braking torque.
  • the module 63 uses this value in order to adapt the control of the machine. . More specifically, the module 63 compares the setpoint torque "Cf_recup” with the value "Cmel”, so that the module 63 can refine the setpoint value. "Cf_recup” sent to the supervisor 8. The "Cmel” value, which is measured or estimated, is supplied to the brake supervisor 24 by the supervisor 8.
  • FIG. 4 shows an alternative embodiment of the method according to the invention in which only a brake pedal stroke sensor 42 is used.
  • FIG. 5 shows an alternative embodiment of the method according to the invention in which only a brake pressure sensor 43 is used.
  • the vehicle 1 has a failure detection capability of the sensor 41 BLS, the brake pedal stroke sensor 42, the master cylinder pressure sensor 43, the information flow between the traction chain computer 8 and the engine. supervisor 24 braking. In case of failure of one of these elements, the function of adaptation of the recuperative torque of the electric machine according to the depression of the brake pedal ("pedal stroke") and / or the hydraulic brake pressure (“ pressure ”) is inhibited.
  • FIG. 6 shows a curve representing the recuperative torque Cf_recup applied by the electric machine to the wheels as a function of the depression of the brake pedal (bottom left dial).
  • This torque Cf_recup increases substantially linearly with the depression of the brake pedal.
  • the curve thus demonstrates that the regenerative braking method according to the invention makes it possible to obtain a braking torque applied to the wheels by the machine (Cf_recup) greater than with a method of the state of the art (see CMEM in Figure 1).
  • the second curve represents the sum of the torque applied by the brakes Chydr2 and the electric machine Cf_recup to the wheels. This curve is identical to that of FIG. 1. During braking, the torque applied by the brakes is therefore less important in the process according to the invention than in that of the state of the art. While optimizing the energy recovery in the braking phases, the method according to the invention also makes it possible to limit the wear of the brakes.
  • Cf_elec_max_roue_i is the maximum electrical braking torque value that the electric machine is able to supply to the wheels for each gear ratio i. This value corresponds to the torque saturation by construction of the electric machine. It corresponds to the maximum value of the electric braking torque to the wheels that can be achieved by the electric machine under nominal operating conditions.
  • Cf_recup_max indicated by the engine ECU is the value of the maximum electrical torque achievable by the machine at time t, at the moment when braking is performed. “Cf_recup_max” therefore depends in particular on the state of the power train, the temperature of the electric machine, and the state of charge of the batteries. When the electric machine operates under nominal conditions "Cf_recup_max" is equal to
  • Cf_elec_max_acceptable is the maximum acceptable electrical torque level with respect to the braking performance of the driver. It can be interesting that this level of electric braking torque is substantially constant regardless of the gear engaged. In one example,
  • the corrective gain “Fcp” is between 0 and 1.
  • the gain “Fcp” varies linearly between 0 and 1 depending on the depression of the brake pedal “pedal_stroke” on the first 20 millimeters of this depression, Fcp being 0 for a void and 1 for a depression of 20 millimeters.
  • the corrective gain "Fpmtc” is between 0 and 1.
  • the gain “Fpmtc” varies linearly between 0 and 1 as a function of the pressure delivered "pressurejmtc" by the master cylinder between 0 and 10 bar, "Fpmtc 0 for a pressure of 0 bar and 1 for a pressure of 10 bar.
  • Figure 7 shows a table showing the values of the corrective gain
  • F (i) between 0 and 1 as a function of the gear ratio engaged i, for a maximum acceptable torque "Cf_elec_max_acceptable” equal to 300N. m.
  • the maximum electric braking torque values that the electric machine is capable of providing the wheels "Cf_elec_max_roue_i", which vary according to the gear ratio i engaged, are indicated for a given conventional gearbox. If the ratio Cf_elec_max_acceptable / Cf_elec_max_roue_i is higher than 1, F (i) takes the value 1.
  • Fcp and Fpmtc also depend on the speed of the vehicle.
  • the corrective gains “Fcp” or “Fpmtc” can be chosen so that whatever the engaged ratio, the level of electric braking torque applied to the wheels "Cf_récup” is substantially equal to "Cf_elec_max_acceptable”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Regulating Braking Force (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

L'invention concerne un procédé de freinage pour un véhicule (1) hybride comportant un moteur thermique et une machine (3) électrique formant une chaîne de traction. Dans ce procédé, lorsqu'un enfoncement de la pédale de frein est détecté, on ajoute un couple de freinage électrique supplémentaire (Cf_recup), et on module ce couple de freinage électrique supplémentaire en fonction de la position de la pédale de frein mesurée par un capteur (42) de course pédale et/ou de la pression hydraulique de freinage mesurée par un capteur (43) de pression de freinage.

Description

Procédé de freinage pour véhicule hybride et procédé d'amélioration d'un véhicule hybride pour la mise en œuvre de ce procédé
L'invention concerne un procédé de freinage pour véhicules hybrides dans lequel un couple de freinage récupératif et un couple de freinage dissipatif sont appliqués aux roues. L'invention a notamment pour but d'augmenter le couple de freinage récupératif appliqué aux roues par la machine électrique tout en garantissant un bon contrôle de ce véhicule.
Les systèmes de freinage dans lesquels un couple de freinage récupératif et un couple de freinage dissipatif sont appliqués aux roues sont connus. Le couple de freinage récupératif est appliqué aux roues par l'action d'une machine électrique jouant un rôle de génératrice pour recharger une batterie à laquelle elle est reliée. Le couple de freinage dissipatif est appliqué aux roues au moyen de freins à disque ou à tambour qui appliquent un effort de friction sur un élément mobile tournant avec les roues.
Deux types de freinage récupératifs existent et sont distingués par la législation européenne de freinage. Le premier type est un système à récupération de catégorie A exerçant un couple freineur aux roues sans action du conducteur sur la pédale de frein. Une représentation de la caractéristique de freinage d'un tel système est représentée à la figure 1.
On constate que le couple CmeM récupératif appliqué par la machine électrique aux roues en fonction de l'enfoncement de la pédale de frein (cadran en bas à gauche) est constant quel que soit l'enfoncement de la pédale de frein. La somme du couple appliqué par les freins Chydri et la machine électrique CmeM aux roues augmente en fonction de l'enfoncement de la pédale de frein. Pour sa mise en œuvre, le système de catégorie A ne nécessite a priori aucune adaptation de la chaîne de traction du véhicule hybride.
Le deuxième type est un système à récupération de catégorie B exerçant un couple freineur commandé par la pédale de frein. L'invention trouve une application avantageuse dans ce type de systèmes. Ces systèmes permettent notamment de découpler l'action pédale de frein du couple réalisé par le système de freinage dissipatif conventionnel. Ainsi, ils offrent la possibilité de piloter la répartition entre le frein récupératif réalisé par la chaîne de traction électrique et le frein dissipatif réalisé par le système de freinage hydraulique conventionnel.
Les inconvénients de ces dispositifs sont qu'ils ajoutent un coût significatif au véhicule ainsi que des risques en sûreté de fonctionnement et de qualité à l'usage en raison de leur complexité intrinsèque.
Ainsi, le document JP2003-284202 décrit un procédé de gestion de répartition entre le système de freinage conventionnel et le freinage récupératif de la machine électrique. Ce procédé comporte une étape consistant à augmenter le freinage récupératif alors que la pédale de frein est actionnée. Toutefois, ce procédé implique une modification intrinsèque du système de freinage hydraulique.
Le dispositif de freinage récupératif selon l'invention se propose de résoudre les inconvénients précités.
A cette fin, il repose sur des modifications mineures de l'architecture matérielle de freinage déjà existante et maîtrisée. Ainsi, en ajoutant un capteur de pression et/ou de course de pédale à un système de catégorie A, il permet d'optimiser la récupération d'énergie pendant les phases de freinage. L'ajout des capteurs est réalisé de manière « non intrusive », c'est- à-dire sans modifier intrinsèquement les éléments du système. En supplément de la décélération réalisée en lever de pied, l'invention met en oeuvre les étapes consistant à :
- ajouter un couple de freinage électrique supplémentaire (dans la mesure où l'état de la machine électrique le permet) lorsqu'un appui pédale de frein est détecté. L'appui pédale de frein peut être détecté par un capteur inductif de type BLS, et/ou par le capteur de course pédale, et/ou par le capteur de pression hydraulique de freinage, et
- moduler et piloter ce couple de freinage électrique supplémentaire en fonction de la position pédale de frein mesuré par le capteur de course pédale et/ou de la pression hydraulique de freinage mesurée par le capteur de pression freinage.
Dans une mise en œuvre, le superviseur du système de frein qui est un calculateur ABS ou ESP, détecte la situation de vie de freinage et commande l'application du couple de freinage électrique supplémentaire en fonction de cette situation de vie. La situation de vie dépend notamment de la vitesse du véhicule, de la trajectoire de la route (ligne courbe ou droite), et de l'adhérence des pneus sur la route (adhérence sur route sèche ou mouillée).
Le superviseur frein commande en outre la modulation du couple de freinage récupératif en fonction de la position de la pédale de frein mesurée par le capteur de course pédale et/ou de la pression hydraulique de freinage mesurée par le capteur de pression. Le superviseur frein pilote aussi la modulation du couple de freinage récupératif en fonction de la vitesse véhicule et du rapport de boite engagé. Le superviseur frein module de plus le couple de freinage récupératif de manière à ne jamais dépasser une limite « acceptable » par le conducteur en terme d'agrément.
Toutefois, en cas d'activation des fonctions de régulation du freinage telles que l'ABS (Anti-lock Braking System en anglais) ou de l'ESP (Electronic Stability Program en anglais), qui sont mises en œuvre lorsque le véhicule perd de l'adhérence ou ne suit pas la trajectoire désirée, les régulations et lois de commande propres à ces fonctions (implantées dans l'unité de commande) prennent le contrôle et pilotent le couple de freinage électrique supplémentaire.
La consigne de couple de freinage récupératif supplémentaire ainsi déterminée par le superviseur frein est alors transmise au calculateur qui pilote la machine électrique. Celui-ci commande la machine électrique afin qu'elle réalise ce couple régénératif.
L'invention concerne donc un procédé de freinage pour un véhicule hybride comportant un moteur thermique et une machine électrique formant une chaîne de traction, cette chaîne de traction étant reliée à des roues du véhicule, ce véhicule comportant une pédale de frein qui commande le freinage du véhicule, ce procédé comportant les étapes suivante :
- lorsqu'un appui sur la pédale de frein du véhicule est détecté,
- on applique un couple de freinage dissipatif aux roues au moyen de freins reliés à un circuit de freinage hydraulique, ces freins frottant sur des éléments tournant avec les roues, et
- on applique un couple de freinage supplémentaire aux roues au moyen de la machine électrique,
- ce couple de freinage supplémentaire étant modulé en fonction de la course de la pédale de frein et/ou de la pression hydraulique de freinage, ce couple de freinage dépendant en outre du rapport de vitesse engagé. Dans une mise en œuvre, pour moduler le couple de freinage pour moduler ce couple de freinage supplémentaire, il comporte en outre les étapes suivantes : - mesurer le couple de freinage maximum de la machine électrique,
- pondérer ce couple de freinage maximum par un gain correctif dépendant du rapport engagé, ce gain correctif dépendant en outre, pour un rapport de vitesse donné, de la vitesse du véhicule et d'au moins un paramètre parmi la pression de freinage et la course de la pédale de frein, et - commander la machine électrique de sorte que le couple de freinage électrique appliqué aux roues en complément du freinage dissipatif soit sensiblement égal au couple de freinage maximum pondéré.
L'invention concerne en outre un procédé d'amélioration d'un véhicule hybride comportant un moteur thermique et une machine électrique formant une chaîne de traction, cette chaîne de traction étant reliée à des roues du véhicule, dans lequel :
- on ajoute un capteur de course pédale et/ou un capteur de pression, de sorte que
- le couple de freinage supplémentaire appliqué par la machine électrique aux roues lorsque la pédale de frein est enfoncée est modulé en fonction de la course de la pédale de frein et/ou de la pression hydraulique de freinage.
L'invention sera mieux comprise à la lecture de la description qui suit et à l'examen des figures qui l'accompagnent. Ces figures ne sont données qu'à titre illustratif mais nullement limitatif de l'invention. Elles montrent :
- Figure 1 (déjà décrite) : une courbe représentant le couple appliqué aux roues en fonction d'un enfoncement de la pédale de frein pour un procédé de freinage récupératif selon l'état de la technique ;
- Figure 2 : une représentation schématique d'un véhicule hybride mettant en oeuvre le procédé de freinage récupératif selon l'invention ;
- Figures 3-5 : des représentations schématiques de la gestion de commande selon l'invention du couple récupératif appliqué par la machine électrique dans la cas d'un système de freinage selon l'invention comportant un capteur d'enfoncement et/ou un capteur de pression hydraulique ; - Figure 6 : une courbe représentant le couple appliqué aux roues en fonction d'un enfoncement de la pédale de frein pour un procédé de freinage récupératif selon l'invention ;
- Figure 7 : un tableau indiquant la valeur d'un gain correctif F(i) dépendant du rapport de vitesse engagé utilisé pour calculer le couple de freinage récupératif.
Les éléments identiques conservent la même référence d'une figure à l'autre.
La figure 2 montre un système de contrôle de freinage selon l'invention appliqué à un véhicule 1 hybride. Les roues du véhicule sont représentées par leurs disques de freinage respectifs associés. Des roues 2.1 , 2.2 avant de ce véhicule qui fonctionnent en tant que roues motrices sont entraînées par une machine 3 électrique et un moteur thermique (non représenté). Cette machine 3 et ce moteur peuvent par exemple être reliés entre eux par l'intermédiaire d'un embrayage et ils peuvent être accompagnés d'une boite de vitesse pilotée ou d'une CVT (Continuously Variable Transmission).
La machine 3 électrique est reliée à l'arbre de ces roues par l'intermédiaire d'un ensemble différentiel 4. Cette machine 3 est également reliée à une batterie 7 par l'intermédiaire d'un circuit de puissance.
La machine électrique 3 transmet aux roues 2.1-2.4 un couple de freinage récupératif lorsqu'elle fonctionne en mode générateur pour recharger la batterie 7 et que son arbre est entraîné par les roues. Cette phase de recharge se produit lors d'une décélération ou d'un freinage. Un superviseur 8 commande le couple appliqué par la chaîne de traction formée du moteur thermique et de la machine 3 électrique. En particulier, le superviseur 8 commande le couple de freinage appliqué par la machine 3 aux roues 2.1-2.4.
Par ailleurs, le véhicule 1 comporte un système 10 de freinage hydraulique. Ce système 10 comporte un dispositif d'assistance au freinage par dépression 11 qui amplifie l'effort fourni par le conducteur sur la pédale 20. A cet effet, le dispositif 11 est relié à une source 13 de vide qui permet d'avoir des pressions différentes sur le piston qu'il comporte (non représenté). Ce dispositif 11 est relié à un maître-cylindre 12 alimenté en liquide par un réservoir 15. Ce maître-cylindre 12 est relié aux freins 16.1- 16.4 par l'intermédiaire d'un réseau 17 de canalisations.
Ainsi lorsque le conducteur appuie 19 sur la pédale 20 pour freiner, l'ensemble amplificateur 11 et maître-cylindre 12 transforme la force mécanique fournie par le conducteur lors de l'appui sur la pédale en une pression hydraulique. Les canalisations transmettent alors cette pression hydraulique aux freins 16.1-16.4. Ces freins transforment cette pression en une force capable d'actionner les plaquettes contre les 4 disques 2.1-2.4.
En outre, le véhicule comporte un système de type ABS. Ce système comporte un groupe hydraulique 23 relié au maître-cylindre 12 et au réseau 17 de canalisation. Ce groupe hydraulique 23 est muni d'une pompe 22 et est associé à un superviseur de freinage 24. Ce groupe hydraulique 23 assure le contrôle de la pression hydraulique appliquée par les freins. En outre, le système ABS comporte des capteurs 27.1-27.4 mesurant la vitesse des roues qui sont reliés à des entrées 30-33 du superviseur 24.
Ainsi, dès qu'une roue 2.1-2.4 du véhicule présente une vitesse de rotation anormale (glissement), le superviseur 24 agit sur le groupe hydraulique 23 afin que la roue soit desserrée partiellement ou totalement par baisse ou surpression de la pression hydraulique dépendant du type de frein utilisé, dans le frein concerné.
Sur la figure 2, le couple de frein dissipatif est appliqué aux quatre roues, tandis que le couple de freinage électrique est appliqué uniquement sur l'essieu tracteur ou propulseur. Néanmoins, l'invention est également applicable dans le cas d'une transmission intégrale. En outre, le véhicule 1 comporte un capteur 41 contacteur de frein de type BLS (Brake Light Switch en anglais) qui permet de détecter l'enfoncement de la pédale de frein. Ce capteur est relié à une entrée du calculateur 24.
Le véhicule 1 comporte également des capteurs permettant d'estimer l'intensité du freinage demandé par le conducteur. En effet, le véhicule comporte un capteur 42 de course pédale de frein ou de déplacement maître-cylindre et/ou un capteur 43 de pression de freinage mesurant la pression délivrée par le maître-cylindre. Ces capteurs 42, 43 sont ajoutés par rapport à une configuration ABS classique. Dans une réalisation, le capteur 43 de pression de freinage est implanté soit à l'endroit du maître-cylindre 12, soit à l'endroit du bloc hydraulique 23.
En variante, le bloc 24 comporte également une fonction ESP qui permet de rectifier la trajectoire du véhicule à partir du calcul d'une trajectoire attendue. Dans ce cas, le capteur 43 de pression est déjà présent sur le bloc hydraulique 23 et il n'est pas utile de le rajouter.
En fonction des signaux d'entrée qu'il reçoit, et notamment des signaux émis par les capteurs 42 et 43, le calculateur 24 commande le calculateur 8 de la chaîne de traction qui module le couple récupératif de la machine 3 électrique.
Plus précisément, les figures 3 à 5 décrivent l'implantation des lois de commande de l'invention dans le calculateur de freinage 24 (ABS ou ESP) et le superviseur 8 qui pilote les différents éléments de la chaîne de traction hybride, à savoir notamment le moteur thermique 52, la machine 3 électrique, et la boite de vitesses 53.
La figure 3 montre le cas où le capteur 42 de course de la pédale de frein et le capteur 43 de pression sont utilisés. Dans ce cas, les signaux 51 ,
« course_pedale », et « pressionjmtc » émis respectivement par les capteurs 41-43 sont appliqués en entrée d'un module 57 qui détecte si un freinage est en cours ou non.
L'information 58 produite en sortie du module 57 est transmise au module 59 avec les valeurs de l'enfoncement (ou la course) de la pédale de frein « course_pédale » et de la pression de freinage mesurées
« pressionjmtc » respectivement par les capteurs 42 et 43. De même la valeur de la vitesse du véhicule «vitesse » (calculée à partir des signaux émis par les capteurs de vitesse 27.1-27.4), la valeur du rapport de vitesse engagé « i », et la valeur du couple de freinage électrique maximum
« Cf_recup-max » réalisable par la machine électrique sont transmises au module 59. Il est à noter que les valeurs « i » et « Cf_recup max » sont transmises au superviseur frein 24 par le superviseur de chaîne de traction 8.
Le module 59 calcule alors la consigne de couple freinage électrique récupératif Cf_recup en fonction de ces valeurs reçues. Plus précisément, dans le cas de la figure 3, le module 59 calcule Cf_recup à partir de la relation suivante : Cf_récup = Cf_récup_max x Fcp_i(course _pédale, vitesse) x Fpmtc_i(pression_mtc, vitesse),
« Fcp_i » étant une fonction qui renvoie un gain correctif compris entre 0 et 1 en fonction de la course pédale de frein « course_pedale » et de la vitesse véhicule « vitesse ». Typiquement, cette fonction est une tabulation à 2 entrées (« course_pédale » et « vitesse ») et une sortie (gain entre 0 et 1 ). Le paramétrage de la tabulation dépend du rapport « i » de boite de vitesses engagé. Ainsi il existe un jeu de paramètres, et une tabulation spécifique pour chaque rapport de boite de vitesse (i= neutre, 1 , 2, 3,...). « Fpmtc_i » étant une fonction qui renvoie un gain correctif compris entre 0 et 1 en fonction de la pression de freinage et de la vitesse véhicule. Typiquement, cette fonction est une tabulation à 2 entrées (« pressionjmtc » et « vitesse ») et une sortie (gain entre 0 et 1 ). Le paramétrage de la tabulation dépend du rapport de boite de vitesse engagé. Il y a ainsi un jeu de paramètres et une tabulation spécifique pour chaque rapport de boite de vitesses (i= neutre, 1 , 2, 3,...).
Lors de situations de vies particulières telles qu'un freinage en courbe, un freinage d'urgence (mode freinage AFU) ou une perte d'adhérence, les fonctions de régulation de l'ABS ou de l'ESP s'activent. Dans ce cas, un module 63 qui comporte les lois de commande et de régulation propres aux fonctions ABS et/ou ESP, prend le contrôle du calcul de la consigne de couple de freinage récupératif « Cf_récup » et adapte la valeur de cette consigne à ces situations de vie particulières.
La consigne « Cf_recup » de freinage électrique est alors envoyée par le superviseur 24 de freinage au superviseur 8 de chaîne de traction qui pilote la machine 3 afin de réaliser la couple de freinage électrique demandé.
Dans le cas d'un fonctionnement normal, la consigne de couple
« Cf_recup » est transmise par le superviseur de freinage 24 au superviseur
8 de chaîne de traction sans être adapté par le module 63. En variante, si la valeur « Cmel » du couple réel appliqué par la machine électrique aux roues est disponible, le module 63 exploite cette valeur afin d'adapter la commande de la machine. Plus précisément, le module 63 compare le couple de consigne « Cf_recup » avec la valeur « Cmel », de sorte que le module 63 peut affiner la valeur de consigne « Cf_recup' » envoyée au superviseur 8. La valeur « Cmel », qui est mesurée ou estimée, est fournie au superviseur frein 24 par le superviseur 8.
La figure 4 montre une variante de mise en œuvre du procédé selon l'invention dans laquelle uniquement un capteur 42 de course de pédale de frein est utilisé. Dans ce cas, la valeur « pression_mtc », n'est pas disponible et on a : Cf_récup = Cf_récup_max x Fcp_i(course _pédale, vitesse).
La figure 5 montre une variante de mise en œuvre du procédé selon l'invention dans laquelle uniquement un capteur 43 de pression de freinage est utilisé. Dans ce cas, la valeur « course_pédale », n'est pas disponible et on a : Cf_récup = Cf_récup_max x Fpmtc_i(pression_mtc, vitesse).
Le véhicule 1 dispose d'une capacité de détection des défaillances du capteur 41 BLS, du capteur 42 de course pédale de frein, du capteur 43 de pression maître-cylindre, du flux d'information entre le calculateur 8 de chaîne de traction et le superviseur 24 de freinage. En cas de défaillance d'un de ces éléments, la fonction d'adaptation du couple récupératif de la machine électrique en fonction de l'enfoncement de la pédale de frein (« course_pédale ») et/ou de la pression hydraulique de freinage (« pressionjmtc ») est inhibée.
La figure 6 montre une courbe qui représente le couple récupératif Cf_recup appliqué par la machine électrique aux roues en fonction de l'enfoncement de la pédale de frein (cadran en bas à gauche). Ce couple Cf_recup augmente de manière sensiblement linéaire avec l'enfoncement de la pédale de frein. La courbe met ainsi en évidence que le procédé de freinage récupératif selon l'invention permet d'obtenir un couple de freinage appliqué aux roues par la machine (Cf_recup) plus important qu'avec un procédé de l'état de la technique (voir CmeM sur la figure 1 ).
La deuxième courbe représente la somme du couple appliqué par les freins Chydr2 et la machine électrique Cf_recup aux roues. Cette courbe est identique à celle de la figure 1. Lors du freinage, le couple appliqué par les freins est donc moins important dans le procédé selon l'invention que dans celui de l'état de la technique. Tout en optimisant la récupération d'énergie dans les phases de freinage, le procédé selon l'invention permet ainsi également de limiter l'usure des freins.
En variante, le module 59 calcule la consigne de couple freinage électrique récupératif « Cf_recup » suivant la relation suivante : Cf_récup = Cf_récup_max x Fcp(course_pédale) x Fpmtc(pression_mtc) x F(i)
Avec F(i) = Cf_elec_max_acceptable / Cf_elec_max_roue_i
« Cf_elec_max_roue_i » est la valeur de couple de freinage électrique maximal que la machine électrique est capable de fournir aux roues pour chaque rapport de vitesse i. Cette valeur correspond à la saturation en couple par construction de la machine électrique. Elle correspond à la valeur maximale du couple électrique de freinage aux roues réalisable par la machine électrique dans des conditions nominales de fonctionnement. « Cf_récup_max » indiquée par le calculateur moteur est la valeur du couple électrique maximal réalisable par la machine à l'instant t, au moment où est réalisé le freinage. « Cf_recup_max » dépend donc notamment de l'état de la chaîne de traction, de la température de la machine électrique, et de l'état de charge des batteries. Lorsque la machine électrique fonctionne dans des conditions nominales « Cf_récup_max » est égal à
« Cf_elec_max_roue_i », sinon « Cf_récup_max » est différent de (inférieur à) « Cf_elec_max_roue_i ».
« Cf_elec_max_acceptable » est le niveau de couple électrique maximal acceptable vis-à-vis de l'agrément de freinage pour le conducteur. Il peut être intéressant que ce niveau de couple électrique de freinage soit sensiblement constant quel que soit le rapport engagé. Dans un exemple,
« Cf_elec_max_acceptable » vaut 300 N. m
Par ailleurs, le gain correctif « Fcp » est compris entre 0 et 1. Dans un exemple, le gain « Fcp » varie linéairement entre 0 et 1 en fonction de l'enfoncement de la pédale de freinage « course_pédale » sur les 20 premiers millimètres de cet enfoncement, Fcp valant 0 pour un enfoncement nul et 1 pour un enfoncement de 20 millimètres.
Le gain correctif « Fpmtc » est compris entre 0 et 1. Dans un exemple, le gain « Fpmtc » varie linéairement entre 0 et 1 en fonction de la pression délivrée « pressionjmtc » par le maître-cylindre entre 0 et 10 bars, « Fpmtc » valant 0 pour une pression de 0 bar et 1 pour une pression de 10 bars.
La figure 7 montre un tableau indiquant les valeurs du gain correctif
F(i) compris entre 0 et 1 en fonction du rapport de boîte de vitesses engagé i, pour un couple maximal acceptable « Cf_elec_max_acceptable » valant 300N. m. Les valeurs de couple de freinage électrique maximal que la machine électrique est capable de fournir aux roues « Cf_elec_max_roue_i », qui varient en fonction du rapport de vitesse i engagé, sont indiquées pour une boîte de vitesses classique donnée. Si le rapport Cf_elec_max_acceptable/Cf_elec_max_roue_i est supérieur à 1 , F(i) prend la valeur 1.
En variante, « Fcp » et « Fpmtc » dépendent en outre de la vitesse du véhicule. En variante, les gains correctifs « Fcp » ou « Fpmtc » peuvent être choisis de manière que quel que soit le rapport engagé, le niveau de couple de freinage électrique appliqué aux roues « Cf_récup » soit sensiblement égal à « Cf_elec_max_acceptable ».

Claims

REVENDICATIONS
1 - Procédé de freinage pour un véhicule (1 ) hybride comportant un moteur thermique et une machine (3) électrique formant une chaîne de traction, cette chaîne de traction étant reliée à des roues (2.1-2.4) du véhicule (1 ), ce véhicule comportant une pédale (20) de frein qui commande le freinage du véhicule, ce procédé comportant les étapes suivante :
- lorsqu'un appui sur la pédale (20) de frein du véhicule est détecté,
- on applique un couple de freinage dissipatif aux roues au moyen de freins (16.1-16.4) reliés à un circuit de freinage hydraulique, ces freins frottant sur des éléments tournant avec les roues (2.1-2.4), et
- on applique un couple (Cf_recup) de freinage supplémentaire aux roues au moyen de la machine (3) électrique,
- ce couple (Cf_recup) de freinage supplémentaire étant modulé en fonction de la course de la pédale de frein (« course_pedale ») et/ou de la pression hydraulique de freinage (« pressionjmtc »), ce couple de freinage dépendant en outre du rapport de vitesse engagé (i).
2. Procédé selon la revendication 1 , caractérisé en ce que, pour moduler ce couple de freinage supplémentaire, il comporte en outre les étapes suivantes :
- mesurer le couple de freinage maximum (Cf_recup_max) de la machine (3) électrique,
- pondérer ce couple de freinage maximum par un gain correctif (Fcp_i, Fpmtc_i) dépendant du rapport engagé (i), ce gain correctif (Fcp_i, Fpmtc_i) dépendant en outre, pour un rapport de vitesse (i) donné, de la vitesse du véhicule et d'au moins un paramètre parmi la pression de freinage et la course de la pédale de frein, et
- commander la machine (2) électrique de sorte que le couple de freinage électrique (Cf_recup) appliqué aux roues en complément du freinage dissipatif soit sensiblement égal au couple de freinage maximum pondéré.
3 - Procédé selon l'une des revendications 1 et 2, caractérisé en ce que : - l'appui sur la pédale (20) de frein est détecté au moyen d'un capteur (41) inductif de type BLS et/ou d'un capteur (42) de course de pédale et/ou d'un capteur (43) de pression hydraulique de freinage.
4 - Procédé selon l'une des revendications 1 à 3, caractérisé en ce que :
- la course de la pédale de frein (« course_pedale ») est mesurée au moyen d'un capteur (42) de course de pédale.
5 - Procédé selon l'une des revendications 1 à 4, caractérisé en ce que : - la pression hydraulique de freinage (« pressionjmtc ») est mesurée au moyen d'un capteur (43) de pression de freinage positionné
- soit à l'endroit d'un bloc hydraulique (23) assurant le contrôle de la pression hydraulique appliquée aux freins (16.1-16.4),
- soit à l'endroit d'un maître-cylindre (12) assurant la transformation d'un appui sur la pédale (20) en une pression hydraulique.
6 - Procédé selon l'une des revendications 1 à 5, caractérisé en ce que pour moduler le couple de freinage de la machine électrique (Cf_recup), il comporte les étapes suivantes :
- mesurer le couple de freinage maximum (Cf_recup_max) de la machine (3) électrique,
- calculer un premier gain correctif (Fcp_i) qui dépend de la vitesse du véhicule et de la course pédale de frein, et/ou
- calculer un deuxième gain correctif (Fpmtc_i) qui dépend de la vitesse du véhicule et de la pression de freinage, - multiplier le couple de freinage maximum par le premier (Fcp_i) et/ou le deuxième (Fpmtc_i) gain correctif calculé, et
- commander la machine (2) électrique de sorte que la valeur du couple de freinage électrique (Cf_recup) appliqué aux roues en complément du freinage dissipatif soit sensiblement égale au résultat de la multiplication. 7 - Procédé selon la revendication 6, caractérisé en ce que :
- les gains correctifs (Fcp_i, Fpmtc_i) dépendent du rapport (i) de vitesse engagé.
8 - Procédé selon la revendication 6 ou 7, caractérisé en ce que : - le couple de freinage maximum (Cf_recup_max) de la machine (3) électrique est obtenu au moyen d'un calculateur (8) qui commande le couple appliqué par la chaîne de traction.
9 - Procédé d'amélioration d'un véhicule hybride comportant un moteur thermique et une machine (3) électrique formant une chaîne de traction, cette chaîne de traction étant reliée à des roues (2.1-2.4) du véhicule (1 ), dans lequel :
- on ajoute un capteur (42) de course pédale et/ou un capteur (43) de pression de sorte que - le couple (Cf_recup) de freinage supplémentaire appliqué par la machine (3) électrique aux roues lorsque la pédale de frein (20) est enfoncée est modulé en fonction de la course de la pédale de frein (« course_pedale ») et/ou de la pression hydraulique de freinage (« pressionjmtc »).
EP07871963A 2006-12-18 2007-12-18 Procede de freinage pour vehicule hybride et procede d'amelioration d'un vehicule hybride pour la mise en oeuvre de ce procede Withdrawn EP2104624A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0655609A FR2909957A1 (fr) 2006-12-18 2006-12-18 Procede de freinage pour vehicule hybride et procede d'amelioration d'un vehicule hybride pour la mise en oeuvre de ce procede
PCT/FR2007/052549 WO2008087322A2 (fr) 2006-12-18 2007-12-18 Procede de freinage pour vehicule hybride et procede d'amelioration d'un vehicule hybride pour la mise en œuvre de ce procede

Publications (1)

Publication Number Publication Date
EP2104624A2 true EP2104624A2 (fr) 2009-09-30

Family

ID=38222527

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07871963A Withdrawn EP2104624A2 (fr) 2006-12-18 2007-12-18 Procede de freinage pour vehicule hybride et procede d'amelioration d'un vehicule hybride pour la mise en oeuvre de ce procede

Country Status (5)

Country Link
US (1) US20100106386A1 (fr)
EP (1) EP2104624A2 (fr)
JP (1) JP2010513130A (fr)
FR (1) FR2909957A1 (fr)
WO (1) WO2008087322A2 (fr)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2923422B1 (fr) * 2007-11-14 2010-05-14 Renault Sas Procede de controle du freinage recuperatif d'un vehicule comprenant au moins un moteur electrique
EP2127987B1 (fr) * 2008-05-27 2013-07-03 IVECO S.p.A. Procédé et dispositif de freinage dotés d'une récupération d'énergie, notamment pour véhicule équipé d'un système de traction hybride
US8893845B2 (en) * 2009-02-19 2014-11-25 Nmhg Oregon, Llc Multi-stage brake pedal linkage
SE534115C2 (sv) * 2009-09-23 2011-05-03 Scania Cv Ab Bromssystem där friktionsbroms och regenerativ broms aktiveras i beroende av pedalnedtryckning
FR2950592B1 (fr) 2009-09-25 2011-09-23 Michelin Soc Tech Dispositif de freinage mixte a commande optimisee
FR2959718B1 (fr) * 2010-05-07 2015-03-13 Thierry Zerbato Procede d'assistance electrique au freinage d'un vehicule et motorisation associee
JP5222329B2 (ja) * 2010-08-05 2013-06-26 本田技研工業株式会社 車両用制動装置
DE102011085980A1 (de) * 2011-11-09 2013-05-16 Robert Bosch Gmbh Verfahren und Vorrichtung zur Bestimmung eines Drehzahlparameters zur Ermittlung eines Solldrehmoments
EP2591960A1 (fr) * 2011-11-10 2013-05-15 Thierry Zerbato Procede d'assistance electrique au freinage d'un vehicule et motorisation associee
US8878469B2 (en) 2011-11-14 2014-11-04 Polaris Sales Europe Sarl Process for electrical assistance to the braking of a vehicle and associated motor system
US9347532B2 (en) 2012-01-19 2016-05-24 Dana Limited Tilting ball variator continuously variable transmission torque vectoring device
WO2013123117A1 (fr) 2012-02-15 2013-08-22 Dana Limited Transmission et chaîne cinématique ayant une transmission à variation continue par variateur à bille d'inclinaison
JP5987570B2 (ja) * 2012-09-06 2016-09-07 スズキ株式会社 自動変速機の変速制御装置
WO2014039447A1 (fr) 2012-09-06 2014-03-13 Dana Limited Transmission ayant un entraînement à variateur variable de façon continue ou infinie
EP2893220A4 (fr) 2012-09-07 2016-12-28 Dana Ltd Transmission à variation continue à billes avec mode d'entraînement direct
WO2014039448A2 (fr) 2012-09-07 2014-03-13 Dana Limited Transmission variable en continu du type à bille comportant des schémas de puissance à sorties accouplées
WO2014039713A1 (fr) 2012-09-07 2014-03-13 Dana Limited Transmission à variation infinie basée sur un planétaire à variation continue à billes comprenant des chemins de division de puissance
CN104768787A (zh) 2012-09-07 2015-07-08 德纳有限公司 具有动力分流路径的球型cvt
CN104769329B (zh) 2012-09-07 2017-06-23 德纳有限公司 球型连续式无级变速器/无限式无级变速器
WO2014078583A1 (fr) 2012-11-17 2014-05-22 Dana Limited Transmission à variation continue
WO2014124063A1 (fr) 2013-02-08 2014-08-14 Microsoft Corporation Service omniprésent de fourniture de mises à jour spécifiques à des dispositifs
US9689482B2 (en) 2013-03-14 2017-06-27 Dana Limited Ball type continuously variable transmission
US9551404B2 (en) 2013-03-14 2017-01-24 Dana Limited Continuously variable transmission and an infinitely variable transmission variator drive
CN103241238B (zh) * 2013-05-14 2015-08-26 清华大学 基于主观意图和安全的混合动力车下坡辅助制动退出方法
US9188218B2 (en) * 2013-05-31 2015-11-17 Gm Global Technology Operations, Llc Methodology for controlling a hydraulic control system of a continuously variable transmission
WO2014197711A1 (fr) 2013-06-06 2014-12-11 Dana Limited Transmission planétaire à variation continue d'entraînement des roues avant et des roues arrière en 3 modes
US10030751B2 (en) 2013-11-18 2018-07-24 Dana Limited Infinite variable transmission with planetary gear set
WO2015073948A2 (fr) 2013-11-18 2015-05-21 Dana Limited Mécanisme de commande et de détection de pic de couple d'un cvp
US20150142281A1 (en) * 2013-11-18 2015-05-21 Dana Limited Braking management system for a transmission incorporating a cvp
US10030594B2 (en) 2015-09-18 2018-07-24 Dana Limited Abuse mode torque limiting control method for a ball-type continuously variable transmission

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3915391B2 (ja) * 2000-09-14 2007-05-16 トヨタ自動車株式会社 車輌の制動力制御装置
JP4032639B2 (ja) * 2000-11-30 2008-01-16 トヨタ自動車株式会社 車両の回生制御装置
JP3921109B2 (ja) * 2002-03-20 2007-05-30 日産ディーゼル工業株式会社 車両のハイブリッドシステム
US20030184152A1 (en) * 2002-03-25 2003-10-02 Ford Motor Company Regenerative braking system for a hybrid electric vehicle
JP3651448B2 (ja) * 2002-04-09 2005-05-25 トヨタ自動車株式会社 回生装置の制御装置
US20060220452A1 (en) * 2003-02-12 2006-10-05 Continental Teves Ag & Co. Ohg Method for controlling the braking system of a motor vehicle
JP2005162175A (ja) * 2003-12-05 2005-06-23 Toyota Motor Corp 車両の減速制御装置
US7957881B2 (en) * 2006-10-04 2011-06-07 Toyota Jidosha Kabushiki Kaisha Vehicle and method of controlling driving force for the vehicle based on detected slip of the drive wheel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008087322A2 *

Also Published As

Publication number Publication date
FR2909957A1 (fr) 2008-06-20
WO2008087322A3 (fr) 2008-10-16
WO2008087322A2 (fr) 2008-07-24
JP2010513130A (ja) 2010-04-30
US20100106386A1 (en) 2010-04-29

Similar Documents

Publication Publication Date Title
EP2104624A2 (fr) Procede de freinage pour vehicule hybride et procede d'amelioration d'un vehicule hybride pour la mise en oeuvre de ce procede
EP2209664B1 (fr) Procede de controle du freinage recuperatif d'un vehicule comprenant au moins un moteur electrique
EP3019374B1 (fr) Commande du couple transmis a une roue motrice d'un vehicule a motorisation hybride
WO2015067889A1 (fr) Procede et systeme de commande du freinage recuperatif d'un vehicule automobile electrique ou hybride
EP2199163B1 (fr) Système de simulation de sensation de freinage et application d'un tel système.
EP2222525A1 (fr) Procede de freinage pour vehicules hybrides permettant la compensation d'un couple de freinage electrique
FR2936206A1 (fr) Systeme de freinage pour vehicule automobile mettant en oeuvre la machine electrique de traction via un dispositif de frein de stationnement electromecanique et procede d'utilisation d'un tel systeme
FR2926771A1 (fr) Procede et dispositif de freinage mixte electrique hydraulique
FR2749229A1 (fr) Procede de freinage recuperatif d'un vehicule electrique
EP1547891B1 (fr) Commande de freinage d'un véhicule électrique avec récupération d'énergie
EP3390181B1 (fr) Procede de commande d'un systeme de freinage apte a realiser la fonction frein de parking
EP2199161A1 (fr) Système de simulation de sensation de freinage et véhicule comportant un tel système
EP2139738B1 (fr) Procede de freinage recuperatif pour vehicule hybride tenant compte d'un appui pedale et d'un gradient de pression pour l'application d'un freinage electrique
EP3820748B1 (fr) Procede et circuit de freinage hydraulique d'urgence ameliores pour attelage
JP7058047B2 (ja) 車両制動装置および車両制動方法
FR3097510A1 (fr) Procédé d’immobilisation d’un véhicule automobile équipé d’un moteur électrique.
FR2927869A1 (fr) Systeme et procede de commande des dispositifs de freinage d'un vehicule hybride
FR2915802A1 (fr) Procede et systeme de determination d'adherence pour vehicule automobile
FR2764250A1 (fr) Dispositif de commande d'un etat d'embrayage d'un embrayage
FR2756521A1 (fr) Procede de regulation de la vitesse d'un vehicule electrique en descente
EP2555938B1 (fr) Procede de commande du fonctionnement d'un moyen de couplage mecanique des premier et deuxieme essieux d'un vehicule automobile, procede de fonctionnement d'un systeme de transmission respectif, systemes correspondants, programme realisant les etapes des procedes, support d'enregistrement de donnees avec un tel programme et vehicule automobile avec un systeme respectif
FR2721265A1 (fr) Procédé de contrôle du freinage récupératif sur un véhicule électrique.
EP4385792A1 (fr) Kit de conversion pour transformer un vehicule thermique en vehicule electrique, vehicule transforme et procede afferent
WO2023041875A1 (fr) Dispositif et procede pour le pilotage en traction d'un circuit d'assistance hydraulique
EP0239452B1 (fr) Système hydraulique de contrôle de freinage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090602

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20091104

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100316