EP2097729A2 - Procede et dispositif de detection et/ou de quantification de fuites d'eau - Google Patents

Procede et dispositif de detection et/ou de quantification de fuites d'eau

Info

Publication number
EP2097729A2
EP2097729A2 EP07870340A EP07870340A EP2097729A2 EP 2097729 A2 EP2097729 A2 EP 2097729A2 EP 07870340 A EP07870340 A EP 07870340A EP 07870340 A EP07870340 A EP 07870340A EP 2097729 A2 EP2097729 A2 EP 2097729A2
Authority
EP
European Patent Office
Prior art keywords
water
point
pipe
downstream
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07870340A
Other languages
German (de)
English (en)
Inventor
Daniel Getto
Patrick Burghoffer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP2097729A2 publication Critical patent/EP2097729A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/28Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds
    • G01M3/2807Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/704Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
    • G01F1/708Measuring the time taken to traverse a fixed distance
    • G01F1/7088Measuring the time taken to traverse a fixed distance using electrically charged particles as tracers

Definitions

  • the invention relates to a method for detecting and / or quantifying water leaks on a water pipe and a device for carrying out this method.
  • the invention aims to overcome the disadvantages of prior art detection methods due to the use, in particular, of plastic pipes and especially to allow the quantification of a very low leakage rate.
  • the invention proposes a method for detecting and / or quantifying a water leak on a water pipe of the type consisting in measuring the flow of water in the pipe in at least two points of water. this pipe, one downstream, and the other upstream of the supposed leak.
  • the measurement of the water flow is performed by measuring the conductivity of the water.
  • the tracer selected for conductivity measurements must first be a good tracer of water, that is to say faithfully reflect the movements of water.
  • the tracer In the particular case of drinking water, the tracer must have zero toxicity or acceptable by the water distributors. Therefore, in the invention, the preferred tracer is sodium hypochlorite, NaOCI (bleach) already used in abundance in drinking water to maintain a correct treatment thereof and which will be detected by a measure conductivity meter.
  • Other tracers are conceivable such as Cb (already used in drinking water purification objectives) and therefore nontoxic in the context of this application.
  • the conductivity measurement is performed using a device comprising two electrodes, the device being placed in the pipe in which the water flows, and imposing an alternating current between the two electrodes, which has the effect of migrating the ions each to an electrode according to its electric charge, and to cause a current.
  • Conductivity therefore characterizes the capacity of the solution to conduct the current and is directly proportional to the concentration of ions present in the volume delimited by the measuring cell.
  • the tracer is injected instantaneously at a point 11 upstream of the water leak and at a point 12 downstream of the water leak, and a conductivity measurement is performed. continuously in each of these two points of observation to follow the function of passage of the tracer.
  • This type of measurement can be renewed at several points of the network, and thus, by successive differences, makes it possible to highlight a possible flow difference which indicates a leak on the water pipe between the two points considered.
  • This technique has the advantage of being able to quantify the leakage rate and to locate the leakage between the two measurement points. To locate the leak very precisely, we can then use an acoustic method.
  • the measurement of the conductivity of the water circulating upstream and downstream of the assumed leak is performed by positioning in the pipe, upstream and downstream of the assumed leak point, a conductivity measuring cell, each cell consisting of two devices for measuring the conductivity and a tracer injection point. It should be noted that the distance between two cells has no particular impact on both the detection and the quantization of the leak.
  • Each measuring device consists of two electrodes, one of which forms the body of the device, this body allowing the passage of water, and the other electrode being electrically connected but isolated from the first electrode (the body of the device ) and dipping directly into the flow of flowing water.
  • the electrodes are made of stainless steel.
  • Each device is provided with flanges for connection at each end of the water pipe.
  • FIG. 1 schematically represents the principle of detection of a leak on a pipe according to the invention
  • Figure 2 shows a photograph of a conductivity measuring device according to the invention, connected to a water distribution pipe
  • Figure 3 schematically shows the conductivity measuring device according to the invention shown in Figure 2
  • Figure 4 shows the conductivity curves obtained at a conductivity measuring cell, in a particular embodiment of the invention.
  • FIG. 1 The principle of detecting a water leak on a water pipe according to the invention is schematically illustrated in FIG.
  • the method of the invention therefore consists in instantaneously injecting at a point denoted II in FIG. 1, located upstream of the supposed vanishing point, denoted F in FIG. 1, as well as at a point noted 12 in FIG. downstream of the supposed leak point F, a tracer changing the conductivity of the water.
  • the conductivity of the water flowing in the pipe is then measured continuously, from the moment t1 of the injection until the moment t2 of return to the initial value of the conductivity, between the points noted A1 and A2 in FIG. 1 on the one hand, and, on the other hand, between the points marked B1 and B2 in FIG.
  • the conductivity is measured by placing, at each of the points A1, A2 and B1, B2 conductivity measuring devices denoted respectively 2, 3 and 4, 5 in Figure 1.
  • the conductivity measuring device 2 is located downstream of the injection point 11 but upstream of the conductivity measuring device 3, the devices 2 and 3 being situated upstream of the assumed leak point F, and the conductivity measuring device 4 is situated downstream of the injection point 12 and upstream of the point B2 to which is positioned the conductivity measuring device 5.
  • FIG. 1 A photograph of a conductivity meter in place in line 1 is shown in FIG.
  • the device of the invention consists of a hollow body 6 positioned in the pipe 1 and allowing the circulation of the water in the pipe 1 and the body of the device 6.
  • the conductivity measuring device 2 is connected to each end of the pipe 1 by flanges marked 8 and 9 in FIG.
  • the structure of the conductivity measuring device according to the invention is more precisely shown schematically in FIG.
  • the conductivity measuring device 2 consists of a hollow body 6 forming a first electrode and in which water circulates from the pipe 1 (not shown).
  • hollow body 6 is connected by the flanges 8 and 9.
  • the hollow body that is to say the electrode 6, and the electrode 7 are made of stainless steel.
  • the distances between measurement points, between the injection point and the measuring cell are easily adaptable by those skilled in the art.
  • the distance between the injection point and the first measurement point must be sufficient to have a good homogeneity of the tracer in the section when the latter reaches the measurement point.
  • This distance called “good mixing” generally follows the following rule: it usually takes a distance of 50x the diameter of the pipe.
  • Tests were carried out on a pipe 1 with a diameter of 53 mm and in which the water flow rate is 1000 l / h.
  • the devices 2 and 3 are spaced from each other by a distance of 3.8 m, and the devices 4 and 5 are spaced from each other by a distance of 3, 8 m.
  • the devices 3 and 4 are spaced from each other by 10 m of the supposed leakage point F.
  • the hollow body 6 had a diameter of 53 mm and a volume of 220 cm 3 .
  • the hollow body forming the electrode 6 and the electrode 7 are made of stainless steel.
  • injection point 11 1 mL of sodium hypochlorite (bleach 10% active chlorine), is injected instantaneously at time t1 injection points 11 and 12.
  • the injection point 11 is located 2 meters upstream of the device 2, and the injection point 12 is spaced 2 meters from the device 4.
  • the conductivity curves obtained at the points A1 and A2 of measurement are represented in FIG. 4 in which the curve recorded at point A1 is denoted 10 and the curve recorded at point A2 is denoted 11. From these curves and those obtained at points B1 and B2, the flow rates Q1 and Q2 upstream and downstream of the leak F are calculated.
  • the average time of each curve is obtained by the center of gravity of the curve. This data is easily accessible by the mathematical treatment of a curve. One could also consider taking the average time corresponding to the top of the curve, a value that can be confused with the gravity of the curve in case of perfect Gaussian. Other mathematical curve treatments are conceivable, such as deconvolution treatment. All these methods are known to those skilled in the art.
  • Example 2 The same tests as in Example 1 were carried out except that the flow rate of the water flowing in the pipe 1 is 2500 l / h.
  • the method of the invention can be applied to all drinking water networks but also to other types of pipe flow for which there is no reliable means of leakage measurement as minimal as it is.

Abstract

L'invention concerne un procédé de détection et/ou de quantification de fuites d'eau sur une canalisation d'eau ainsi qu'un dispositif pour la mise en oeuvre de ce procédé. Le procédé de l'invention consiste à mesurer le débit de l'eau s'écoulant dans la canalisation en au moins deux points distincts, l'un en aval, et l'autre en amont, du point de fuite supposée, la mesure du débit de l'eau étant effectuée en injectant de manière instantanée en un point en amont, et en un point en aval, du point de fuite supposée, un traceur modifiant la conductivité de l'eau, en mesurant la conductivité de l'eau en continu en aval de ces points et en calculant à partir des valeurs de conductivité les débits d'eau s'écoulant en amont, et en aval du point de fuite supposée dans la canalisation. Le procédé de l'invention trouve application dans le domaine de la quantification d'un débit de fuite même très faible.

Description

PROCEDE ET DISPOSITIF DE DETECTION ET/OU DE QUANTIFICATION
DE FUITES D'EAU.
L'invention concerne un procédé de détection et/ou de quantification de fuites d'eau sur une canalisation d'eau ainsi qu'un dispositif pour la mise en oeuvre de ce procédé.
L'eau est devenue un produit très surveillé et de plus en plus précieux pour la plupart des pays du monde. La distribution d'eau potable fait donc l'objet de toutes les attentions. Selon diverses enquêtes effectuées aussi bien en France qu'à l'étranger, tout tend à prouver qu'une partie non négligeable de l'eau distribuée se perd en raison de fuites sur le réseau de distribution.
Par exemple, selon une enquête réalisée en 1991 au Canada par l'Association Internationale des Distributions d'Eau (AIDE), la quantité d'eau perdue ou « non comptabilisée » se situerait entre 20 et 30% de la production totale.
De même, l'Institut Français de l'Environnement (IFEN) estime que pour environ 6 milliards de mètres cubes d'eau distribués en France en 2001 , seulement les trois quarts de ces volumes ont été facturés aux abonnés, le reste étant constitué pour une faible partie (3%) par des volumes non facturés et surtout par des fuites du réseau de l'ordre de 24%. Ces fuites sont principalement causées par la corrosion, des défauts de matériaux, des installations défectueuses, des mouvements de terrain, des vibrations ou charges trop importantes dues notamment à la circulation, l'absence ou la carence de maintenance...
Outre la perte économique causée par le manque à gagner des distributeurs, d'autres problèmes viennent s'ajouter comme par exemple des risques pour la santé publique à la suite de la pénétration de contaminants dans les réseaux de distribution au niveau des fuites.
Les pressions économiques, la menace pour la santé publique et la nécessité d'économiser l'eau poussent les exploitants des réseaux d'eau à mettre en place des programmes de détection et de quantification des fuites afin de les éliminer. La mise en évidence de fuites importantes sur un réseau est le plus souvent bien maîtrisée par un suivi automatique des débits qui permet de déceler une augmentation inhabituelle de consommation d'eau sur un secteur bien déterminé. La localisation de la fuite peut ensuite se faire selon diverses méthodes dont les plus répandues sont l'utilisation des ultrasons ou des signaux acoustiques, mais aussi par des techniques non acoustiques à savoir l'utilisation de gaz traceur, de géo radars ou encore d'imagerie infrarouge
Si ces méthodes paraissent satisfaisantes pour les gestionnaires en ce qui concerne les fuites relativement importantes, une grande sensibilité de mesure est nécessaire pour appréhender et localiser des fuites de plus faible importance qui sont aussi plus « silencieuses ».
Selon une étude récente menée au Conseil National de Recherches du Canada, les problèmes qui entravent habituellement l'utilisation des instruments acoustiques pour localiser les fuites, par exemple l'interférence provoquée par les bruits de la circulation et l'affaiblissement des signaux le long de conduites, sont accentués dans le cas des conduites en plastique, ce qui amène la plupart des opérateurs à douter de l'efficacité du matériel acoustique de détection. Cela est un problème épineux en raison de la progression de l'utilisation de canalisations en plastique dans les réseaux d'eau partout dans le monde.
Il y a donc une difficulté à appréhender et à localiser des fuites d'eau sur un réseau d'eau potable en utilisant les différentes méthodes connues et sans pouvoir quantifier un débit de fuite, aussi faible soit-il.
L'invention a pour but de pallier les inconvénients des méthodes de détection de l'art antérieur dues à l'utilisation, en particulier, de canalisations en plastique et surtout de permettre la quantification d'un débit de fuite même très faible.
A cet effet, l'invention propose un procédé de détection et/ou de quantification d'une fuite d'eau sur une canalisation d'eau du type consistant à mesurer le débit de l'eau dans la canalisation en au moins deux points de cette canalisation, l'un étant en aval, et l'autre en amont de la fuite supposée. Dans le procédé de l'invention, la mesure du débit de l'eau est effectuée par mesure de la conductivité de l'eau.
Pour cela, dans le procédé de l'invention, on injecte en amont et en aval du point supposé de fuite d'eau, et de manière instantanée, un traceur modifiant la conductivité de l'eau.
La conductivité de l'eau, du temps t1 de l'injection du traceur jusqu'au temps t2 où la conductivité de l'eau revient à sa valeur initiale, est alors mesurée.
Le traceur retenu pour les mesures de conductivité doit tout d'abord être un bon traceur de l'eau, c'est-à-dire refléter fidèlement les déplacements de l'eau. Dans le cas particulier de l'eau potable, le traceur doit présenter une toxicité nulle ou acceptable par les distributeurs d'eau. C'est pourquoi, dans l'invention, le traceur préféré est l'hypochlorite de sodium, NaOCI (eau de javel) déjà utilisé en abondance dans les eaux potables pour maintenir un traitement correct de celles-ci et qui sera détecté par une mesure de conductimètre. D'autres traceurs sont envisageables tels que le Cb (déjà utilisé dans des objectifs d'assainissement d'eau potable) et donc non toxique dans le cadre de cette application.
La mesure de la conductivité est effectuée en utilisant un dispositif comprenant deux électrodes, le dispositif étant placé dans la canalisation dans laquelle l'eau s'écoule, et en imposant un courant alternatif entre les deux électrodes, ce qui a pour effet de faire migrer les ions chacun vers une électrode en fonction de sa charge électrique, et de provoquer un courant.
On peut accéder, à partir de la mesure de l'intensité du courant, à la résistivité R et à la conductivité C de la solution selon la relation C = 1/R. La conductivité caractérise donc la capacité de la solution à conduire le courant et est directement proportionnelle à la concentration en ions présents dans le volume délimité par la cellule de mesure.
Ainsi, dans le procédé de l'invention, le traceur est injecté de façon instantanée en un point 11 en amont de la fuite d'eau et en un point 12 en aval de la fuite d'eau, et une mesure de conductivité est effectuée en continu en chacun des ces deux points d'observation afin de suivre la fonction de passage du traceur.
Après traitement numérique et calcul selon la méthode d'Allen décrite dans « Théorie de la méthode d'Allen et ses conséquences pratiques pour la mesure des débits en conduite », par J. Guizerix et R. Margrita publiée dans la Houille Blanche n°3/4-1976, p291-296, la différence des moments d'ordre 1 des courbes d'évolution de conductivité obtenues permet le calcul de la vitesse moyenne de l'eau et, connaissant la section de la conduite, on accède directement au débit de circulation dans la conduite au niveau des cellules de mesure de conductivité.
Ce type de mesures peut être renouvelé en plusieurs points du réseau, et ainsi, par différences successives, permet de mettre en évidence une éventuelle différence de débit qui signale une fuite sur la canalisation d'eau entre les deux points considérés.
Cette technique présente l'avantage de pouvoir quantifier le débit de fuite et de localiser la fuite entre les deux points de mesure. Pour localiser très précisément la fuite, on pourra alors employer une méthode acoustique.
Plus précisément, la mesure de la conductivité de l'eau circulant en amont et en aval de la fuite supposée, est effectuée en positionnant dans la canalisation, en amont et en aval du point de fuite supposée, une cellule de mesure de la conductivité, chaque cellule étant constituée de deux dispositifs de mesure de la conductivité et d'un point d'injection du traceur. On notera que la distance entre 2 cellules n'a pas d'incidence particulière tant sur la détection que sur la quantification de la fuite.
Chaque dispositif de mesure est constitué de deux électrodes dont l'une forme le corps du dispositif, ce corps permettant le passage de l'eau, et l'autre électrode étant liée, mais isolée électriquement, de la première électrode (le corps du dispositif) et plongeant directement dans le flux d'eau en écoulement.
De préférence, les électrodes sont en inox. Chaque dispositif est muni de brides pour liaison à chaque extrémité de la canalisation d'eau.
L'invention sera mieux comprise et d'autres caractéristiques et avantages de celle-ci apparaîtront plus clairement à la lumière de la description explicative et des exemples qui suivent, et qui sont donnés en référence aux figures dans lesquelles : la figure 1 représente schématiquement le principe de détection d'une fuite sur une canalisation selon l'invention, la figure 2 représente une photographie d'un dispositif de mesure de conductivité selon l'invention, relié à une canalisation de distribution d'eau, la figure 3 représente schématiquement le dispositif de mesure de conductivité selon l'invention représenté en figure 2, et la figure 4 représente les courbes de conductivité obtenues au niveau d'une cellule de mesure de conductivité, dans un mode de réalisation particulier de l'invention.
Le principe de la détection d'une fuite d'eau sur une canalisation d'eau selon l'invention est schématiquement illustré en figure 1.
Le procédé de l'invention consiste donc à injecter de manière instantanée en un point noté II en figure 1 , situé en amont du point de fuite supposée, noté F en figure 1 , ainsi qu'en un point noté 12 en figure 1 , situé en aval du point de fuite supposée F, un traceur modifiant la conductivité de l'eau.
La conductivité de l'eau circulant dans la canalisation, notée 1 en figure 1 , est alors mesurée en continu, du moment t1 de l'injection jusqu'au moment t2 de retour à la valeur initiale de la conductivité, entre les points notés A1 et A2 en figure 1 d'une part, et, d'autre part, entre les points notés B1 et B2 en figure 1.
La conductivité est mesurée en plaçant, en chacun des points A1 , A2 et B1 , B2 des dispositifs de mesure de la conductivité notés respectivement 2, 3 et 4, 5 en figure 1.
Comme on le voit en figure 1 , le dispositif de mesure de conductivité 2, est situé en aval du point d'injection 11 mais en amont du dispositif de mesure de conductivité 3, les dispositifs 2 et 3 étant situés en amont du point de fuite supposée F, et le dispositif de mesure de conductivité 4 est situé en aval du point d'injection 12 et en amont du point B2 auquel est positionné le dispositif de mesure de conductivité 5.
A partir des courbes de conductivité obtenues aux points A1 , A2 et B1 , B2, le débit d'eau Q1 circulant dans la canalisation 1 en amont du point de fuite supposée F ainsi que le débit d'eau Q2 circulant dans la canalisation 1 en aval du point de fuite supposée F, sont calculés par la méthode d'Allen. Si une différence entre les débits Q1 et Q2 est constatée, cela révèle une fuite d'eau entre les points 11 et 12. De plus, le débit de cette fuite est quantifié.
Une photographie d'un dispositif de mesure de la conductivité en place dans la canalisation 1 est montrée en figure 2.
Comme on le voit en figure 2, où le dispositif de mesure de la conductivité de l'invention est noté 2, le dispositif de l'invention est constitué d'un corps creux 6 positionné dans la canalisation 1 et permettant la circulation de l'eau dans la canalisation 1 et le corps du dispositif 6.
Le dispositif de mesure de conductivité 2 est relié à chaque extrémité de la canalisation 1 par des brides notées 8 et 9 en figure 2.
Dans le corps creux 6 du dispositif 2, plonge une électrode notée 7 en figure 2.
La structure du dispositif de mesure de conductivité selon l'invention est plus précisément montrée schématiquement en figure 3.
Comme on le voit en figure 3, le dispositif 2 de mesure de conductivité selon l'invention est constitué d'un corps creux 6 formant une première électrode et dans lequel circule l'eau en provenance de la canalisation 1 (non montrée) auquel ce corps creux 6 est relié par les brides 8 et 9.
Une seconde électrode 7 isolée électriquement du corps creux 6, mais reliée à celui-ci, est positionnée pour plonger dans le flux d'eau s'écoulant dans le corps creux 6.
De préférence, le corps creux, c'est-à-dire l'électrode 6, ainsi que l'électrode 7 sont en inox. On va maintenant décrire à titre purement illustratif et non limitatif plusieurs exemples de mise en oeuvre du procédé de l'invention.
En particulier, les distances entre points de mesure, entre point d'injection et cellule de mesure sont aisément adaptables par l'homme du métier. Ainsi, la distance entre le point d'injection et le premier point de mesure doit-elle être suffisante pour avoir une bonne homogénéité du traceur dans la section lorsque ce dernier atteint le point de mesure. Cette distance dite « de bon mélange » suite globalement la règle suivante : il faut en général une distance de 5Ox le diamètre de la conduite.
Exemple 1
Cet exemple sera décrit en référence aux figures 1 et 4.
Des essais ont été effectués sur une canalisation 1 d'un diamètre de 53 mm et dans laquelle le débit d'eau est de 1000 l/h.
Quatre dispositifs de mesure 2, 3, 4, 5 de conductivité ont été placés dans cette canalisation 1.
Dans cet exemple, les dispositifs 2 et 3 sont espacés l'un de l'autre d'une distance de 3,8 m, et les dispositifs 4 et 5 sont espacés l'un de l'autre d'une distance de 3,8 m.
Les dispositifs 3 et 4 sont espacés l'un de l'autre de 10 m du point de fuite supposée F. Le corps creux 6 avait un diamètre de 53mm et un volume de 220 cm3.
Le corps creux formant l'électrode 6 et l'électrode 7 sont en inox.
1 mL d'hypochlorite de sodium (eau de javel à 10% de chlore actif), est injecté de manière instantanée au temps t1 aux points d'injection 11 et 12. Le point d'injection 11 est situé à 2 mètres en amont du dispositif 2, et le point d'injection 12 est espacé de 2 mètres du dispositif 4.
Du temps t1 d'injection au temps t2 auquel la conductivité de l'eau revient à son niveau initial, l'évolution de la conductivité est enregistrée sous forme de courbes aux points A1 , A2 et B1 , B2.
Les courbes de conductivité obtenues au niveau des points A1 et A2 de mesure sont représentées en figure 4 dans laquelle la courbe enregistrée au point A1 est notée 10 et la courbe enregistrée au point A2 est notée 11. A partir de ces courbes et de celles obtenues aux points B1 et B2, les débits Q1 et Q2 en amont et en aval de la fuite F sont calculés.
Chaque débit Q1 et Q2 est obtenu par la formule Q=V/Δt où V représente le volume de la section entre les deux cellules et où Δt représente la différence entre le temps moyen de la première courbe et le temps moyen de la seconde courbe. Le temps moyen de chacune des courbes est obtenu par le centre de gravité de la courbe. Cette donnée est aisément accessible par le traitement mathématique d'une courbe. On pourrait également envisager de prendre le temps moyen correspondant au sommet de la courbe, valeur qui peut se confondre avec la gravité de la courbe en cas de gaussienne parfaite. D'autres traitements mathématiques de courbe sont envisageables comme le traitement par déconvolution. Toutes ces méthodes sont connues de l'homme du métier.
Les valeurs des fuites calculées sont reportées dans le tableau 1 ci-dessous.
Tableau 1 Exemple 2
Les mêmes essais qu'à l'exemple 1 ont été réalisés sauf que le débit de l'eau s'écoulant dans la canalisation 1 est de 2500 l/h.
Les valeurs des fuites calculées sont reportées dans le tableau 2 ci-dessous.
Tableau 2
Ainsi, on voit à partir de la différence Q1 - Q2 que, par la méthode de l'invention, de faibles débits de fuite peuvent être détectés et quantifiés, ces faibles débits de fuite correspondant à des fuites de 5 à 10% du débit nominal. De plus, on a constaté que l'écart entre les valeurs mesurées par la méthode d'Allen et les valeurs réelles de fuite est globalement inférieur à 5% et de l'ordre de 15% pour des débits d'écoulement très faible. On notera de plus que plus le débit est important, meilleure est la sensibilité.
Les mêmes essais ont été réalisés pour une conduite de diamètre de 100 mm. Les résultats obtenus sont identiques.
Le procédé de l'invention peut s'appliquer à tous les réseaux d'eau potable mais aussi à d'autres types d'écoulement en conduite pour lesquels il n'existe pas de moyen fiable de mesure de fuite aussi minime soit-elle.

Claims

REVENDICATIONS
1. Procédé de détection et/ou de quantification d'une fuite d'eau (F) sur une canalisation d'eau (1) du type consistant à mesurer le débit de l'eau s'écoulant dans la canalisation (1) en au moins deux points distincts, l'un en aval du point de fuite F supposée, et l'autre en amont du point de fuite F supposée, caractérisé en ce que : la mesure du débit de l'eau est effectuée en injectant de manière instantanée en un point 11 en amont du point de fuite F supposée et un point 12 en aval du point de fuite F supposée, un traceur modifiant la conductivité de l'eau, et en mesurant la conductivité de l'eau en continu en aval des chacun des points II et 12 pendant une période commençant au temps t1 de l'injection jusqu'au temps t2 auquel la conductivité de l'eau revient à sa valeur avant injection du traceur, et en calculant à partir de ces valeurs les débits Q1 et Q2 d'eau s'écoulant en amont, et en aval du point de fuite F supposée dans la canalisation (1).
2. Procédé selon la revendication 1 caractérisé en ce que le traceur est de l'eau de javel (NaOCI).
3. Procédé selon la revendication 1 ou 2 caractérisé en ce que la mesure du débit Q1 et du débit Q2 est effectuée : a) en plaçant au moins quatre dispositifs (2, 3, 4, 5) de mesure de la conductivité de l'eau, chaque dispositif comprenant deux électrodes (6,7) isolées électriquement, dont l'une (6) constitue le corps de la cellule et l'autre (7) est en position centrale directement dans le flux d'eau en écoulement dans la canalisation 1, le corps du dispositif constitué par l'électrode 6 permettant le passage de l'eau, et b) en imposant un courant alternatif entre les deux électrodes (6) et (7), le premier dispositif (2) étant situé dans la canalisation en un point A1 en aval du point d'injection 11 et en amont du point de fuite F supposée, le deuxième dispositif de mesure (3) étant situé en un point A2 en aval du point A1 et en amont du point de fuite F supposée, le troisième dispositif (4) étant situé en un point B1 situé en aval du point d'injection 12, et le quatrième dispositif (5) étant situé en un point B2 en aval du point B1.
4. Procédé selon la revendication 3 caractérisé en ce que les électrodes (6, 7) de chaque dispositif (2, 3, 4, 5) sont en inox.
5. Dispositif de mesure (2) de la conductivité de l'eau pour la mise en oeuvre du procédé selon l'une quelconque des revendications précédentes caractérisé en ce qu'il comprend : un corps creux (6), constituant une première électrode, dont le diamètre est de préférence égal au diamètre de la canalisation (1), une seconde électrode (7) reliée au corps creux (6) mais isolé électriquement de celui-ci, et centrée dans le corps creux (6), et deux brides (8, 9) de fixation pour fixer chaque extrémité du corps creux (6) respectivement à une extrémité de la canalisation (1).
6. Dispositif de mesure (2) selon la revendication 5 caractérisé en ce que les électrodes (6, 7) sont en inox.
EP07870340A 2006-12-12 2007-11-27 Procede et dispositif de detection et/ou de quantification de fuites d'eau Withdrawn EP2097729A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0610800A FR2909764B1 (fr) 2006-12-12 2006-12-12 Procede et dispositif de detection et/ou de quantification de fuites d'eau.
PCT/FR2007/001942 WO2008081089A2 (fr) 2006-12-12 2007-11-27 Procede et dispositif de detection et/ou de quantification de fuites d'eau

Publications (1)

Publication Number Publication Date
EP2097729A2 true EP2097729A2 (fr) 2009-09-09

Family

ID=38255022

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07870340A Withdrawn EP2097729A2 (fr) 2006-12-12 2007-11-27 Procede et dispositif de detection et/ou de quantification de fuites d'eau

Country Status (6)

Country Link
US (1) US8342006B2 (fr)
EP (1) EP2097729A2 (fr)
JP (1) JP5027244B2 (fr)
CA (1) CA2672255A1 (fr)
FR (1) FR2909764B1 (fr)
WO (1) WO2008081089A2 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2935800B1 (fr) * 2008-09-09 2010-11-19 R & I Alliance Procede et dispositif de detection de fuites dans une conduite de liquide souterraine, notamment une conduite d'eau
EP2764373A4 (fr) * 2011-10-04 2015-07-01 Aseptia Inc Mesure de conductivité de fluides
WO2016077509A1 (fr) * 2014-11-13 2016-05-19 Daniel Sterling Système de surveillance d'eau interactif
US9933329B2 (en) * 2015-08-11 2018-04-03 Electro Scan, Inc. Multi-sensor inspection for identification of pressurized pipe defects that leak
CN106969885B (zh) * 2017-04-21 2023-06-13 西安热工研究院有限公司 一种发电厂凝汽器泄漏检测系统及检测方法
US10539480B2 (en) * 2017-10-27 2020-01-21 Mueller International, Llc Frequency sub-band leak detection
FI128387B (fi) * 2018-05-11 2020-04-15 Varo Teollisuuspalvelut Oy Soodakattilavuodon toteaminen

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1616481A (en) * 1922-10-02 1927-02-08 Charles M Allen Method of measuring the rate of flow of liquid

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3695094A (en) * 1970-07-16 1972-10-03 Halliburton Co Leak detection method and system
US4407158A (en) * 1979-12-17 1983-10-04 Petroff Peter D Flow analyzer
FR2491618B1 (fr) * 1980-10-07 1985-06-07 Renault Capteur ionique de debit a temps de transit de type differentiel
JPS6018737A (ja) * 1983-07-12 1985-01-30 Kishimoto Boring Kk 溜池漏水調査止水法
JP2568620B2 (ja) * 1988-03-29 1997-01-08 愛知時計電機株式会社 電磁流量計
US5247836A (en) * 1992-01-24 1993-09-28 Lew Hyok S Convective electric current flowmeter
JP3082162B2 (ja) * 1992-06-09 2000-08-28 日昌興業株式会社 地中埋設水道管の漏水箇所検知方法
US5304800A (en) * 1992-11-10 1994-04-19 Nalco Chemical Company Leak detection and responsive treatment in industrial water processes
JPH0896039A (ja) * 1994-09-29 1996-04-12 Akira Hayashi 水道管路情報管理装置
JPH08304127A (ja) * 1995-05-09 1996-11-22 Toshiba Corp 管内流速流量測定装置
FI106224B (fi) * 1996-10-21 2000-12-15 Grundfos Management As Menetelmä ja laitteisto vuotoveden mittaamiseksi viemäriverkostossa
GB9715283D0 (en) * 1997-07-22 1997-09-24 Ingham Michael G Leak tracing
US6393925B1 (en) * 1999-05-26 2002-05-28 University Of Waterloo Groundwater velocity probe
US7007545B1 (en) * 1999-10-26 2006-03-07 Peter Martinek Method and measurement probe for the performance of measurements in water supply systems
FR2860588B1 (fr) * 2003-10-06 2005-12-16 Inst Rech Developpement Ird Procede et appareil pour la mesure de la vitesse d'un faible ecoulement d'eau
JP4665502B2 (ja) * 2004-05-20 2011-04-06 横河電機株式会社 電磁流量計及び電磁流量計の製造方法
US7279903B2 (en) * 2005-05-02 2007-10-09 Invensys Systems, Inc. Non-metallic flow-through electrodeless conductivity sensor with leak and temperature detection
AT501993B1 (de) * 2006-02-20 2007-06-15 Guenter Dipl Ing Fh Weilguny Vorrichtung für die messung der geschwindigkeit eines fluids
US7861601B2 (en) * 2008-03-06 2011-01-04 Colorado State University Research Foundation Measurement of liquid flow in porous media by tracer dilution without continuous mixing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1616481A (en) * 1922-10-02 1927-02-08 Charles M Allen Method of measuring the rate of flow of liquid

Also Published As

Publication number Publication date
JP5027244B2 (ja) 2012-09-19
WO2008081089A3 (fr) 2008-09-04
US8342006B2 (en) 2013-01-01
US20100064776A1 (en) 2010-03-18
WO2008081089A2 (fr) 2008-07-10
FR2909764A1 (fr) 2008-06-13
CA2672255A1 (fr) 2008-07-10
JP2010512476A (ja) 2010-04-22
FR2909764B1 (fr) 2009-04-03

Similar Documents

Publication Publication Date Title
EP2097729A2 (fr) Procede et dispositif de detection et/ou de quantification de fuites d'eau
FR2740215A1 (fr) Methode et dispositif pour mesurer un parametre d'un fluide de densite variable
CA2399615A1 (fr) Procede et dispositif non intrusif pour caracteriser les perturbations d'ecoulement d'un fluide a l'interieur d'une canalisation
FR3074818B1 (fr) Procede d'evaluation de l'etat d'un systeme de distribution d'eau
EP0352203A2 (fr) Dispositif et procédé de mesure simultanée dans un conduit, de la densité, concentration, vitesse d'écoulement, débit et température d'un fluide liquide ou pâteux par transmission ultrasonore
FR2803032A1 (fr) Procede et dispositif de mesure d'un debit de fluide circulant dans une canalisation
FR3030102B1 (fr) Dispositif de diagnostic pour transformateur electrique immerge et transformateur electrique comprenant un tel dispositif.
FR3043204A1 (fr) Methode pour mesurer la degradation par corrosion d'une conduite metallique et appareil mobile de mesure mettant en oeuvre une telle methode
WO2018162249A1 (fr) Procédé de mesure d'une vitesse d'un fluide
EP0077757B1 (fr) Procédé pour détecter les défauts d'un revêtement diélectrique à la surface d'un substrat électriquement conducteur
EP2264355A1 (fr) Méthode pour réduire la perte de charge d'un liquide en écoulement dans une conduite en tenant compte de la dégradation d'agents réducteurs de traînée
CN103743793A (zh) 一种船用液压管路清洗油在线检测装置
WO2018162250A1 (fr) Procede de mesure d'une vitesse d'un fluide
EP4158639A1 (fr) Detection de changement de composition physico-chimique d'un liquide
FR3121212A1 (fr) Procédé de prédiction du risque de gel d’un liquide
FR3126781A1 (fr) Dispositif d’inspection d’une conduite, notamment à l’égard de piquages clandestins
FR3031591B1 (fr) Procede et dispositif de detection d'encrassement pour des tuyauteries
EP1966580A2 (fr) Detection d'une fuite de fluide dans un circuit par intercorrelation
FR2969296A1 (fr) Dispositif de controle du pouvoir oxydant d'une masse d'eau, s'appliquant notamment a l'eau d'une piscine
FR2471177A1 (fr) Dispositif de mesure de la vitesse moyenne du sang
FR3034517A1 (fr) Dispositif pour evaluer l'ecoulement d'un premier fluide vers un second fluide a travers une paroi
Shiddiqi et al. Leak Detection using Non-Intrusive Ultrasonic Water Flowmeter Sensor in Water Distribution Networks
FR3096752A1 (fr) Racleur instrumenté pour l’inspection de canalisations de pipelines.
FR3075919A1 (fr) Procede de detection de la presence d'hydrate de gaz dans une conduite destinee au transport de fluide d'hydrocarbure
FR3032796A1 (fr) Procede de caracterisation d'un ecoulement diphasique en milieu poreux avec une sonde tdr

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090710

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20091002

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20151120