EP2097118A2 - Bioaktive implantatbeschichtung - Google Patents

Bioaktive implantatbeschichtung

Info

Publication number
EP2097118A2
EP2097118A2 EP07845634A EP07845634A EP2097118A2 EP 2097118 A2 EP2097118 A2 EP 2097118A2 EP 07845634 A EP07845634 A EP 07845634A EP 07845634 A EP07845634 A EP 07845634A EP 2097118 A2 EP2097118 A2 EP 2097118A2
Authority
EP
European Patent Office
Prior art keywords
coating
implant
strontium
range
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07845634A
Other languages
English (en)
French (fr)
Other versions
EP2097118B1 (de
Inventor
Ulrich Bayer
Jürgen Schmidt
Angelika Henning
Armin Rex Kautz
Jürgen Weisser
Matthias Schnabelrauch
Falko Schlottig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thommen Medical AG
Original Assignee
Thommen Medical AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thommen Medical AG filed Critical Thommen Medical AG
Publication of EP2097118A2 publication Critical patent/EP2097118A2/de
Application granted granted Critical
Publication of EP2097118B1 publication Critical patent/EP2097118B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0012Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • A61L27/306Other specific inorganic materials not covered by A61L27/303 - A61L27/32
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/3092Special external or bone-contacting surface, e.g. coating for improving bone ingrowth having an open-celled or open-pored structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00592Coating or prosthesis-covering structure made of ceramics or of ceramic-like compounds
    • A61F2310/00598Coating or prosthesis-covering structure made of compounds based on metal oxides or hydroxides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00592Coating or prosthesis-covering structure made of ceramics or of ceramic-like compounds
    • A61F2310/00796Coating or prosthesis-covering structure made of a phosphorus-containing compound, e.g. hydroxy(l)apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents
    • A61L2300/414Growth factors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/18Modification of implant surfaces in order to improve biocompatibility, cell growth, fixation of biomolecules, e.g. plasma treatment

Definitions

  • the present invention relates to an osteointegration-enhancing coating for metallic implants for at least partial insertion into the bone. Furthermore, the present invention relates to a method for producing such a coating and to uses of the implants. STATE OF THE ART
  • Injured or damaged parts of the hard tissue of the human body are best restored or mechanically strengthened by using the body's own hard tissue. This is not always possible for a variety of reasons, and therefore synthetic material is often used as a temporary (biodegradable or postoperatively removable) or permanent replacement material.
  • Implants which are mainly anchored in hard tissue, are used for the temporary or permanent replacement or support of accident, wear, lack of appearance or disease-damaged or otherwise degenerated parts of the human body.
  • An implant is usually called an artificial, chemically stable material, which is introduced into the body as a plastic substitute or for mechanical reinforcement (see, for example, Roche Lexicontechnik, Urban & Fischer, (ed.), 5th Edition 2003).
  • the auxiliary and replacement function in the body is taken on the basis of the mechanical properties and the implant design.
  • hip and knee joint prostheses, spinal implants and materials for osteosynthesis treatment of bone fractures
  • metals or metallic alloys are very often used as materials for their production.
  • Typical metals or metallic alloys used for implants in the Hard tissue area are used titanium, titanium alloys, stainless steel or cobalt-chromium alloys.
  • the implant surface is of great importance. By changing the implant surface, the healing process can be accelerated.
  • Calcium phosphate-containing surface layers which can be produced for example by thermal spraying, sol-gel or electrochemical processes on implant surfaces.
  • Calcium phosphate coatings have very good biocompatibility due to their chemical similarity to the mineral phase of the bone.
  • calcium and phosphate ions can be incorporated into the bone, creating a more stable bond between the implant and the surrounding bone tissue.
  • the calcium phosphate coating may be formed to form an open-porous structure into which bone cells can grow and become anchored. This property, referred to as osteoconductivity, of the coating promotes rapid stabilization of the implant in the surrounding tissue.
  • these substances are already used in the treatment of osteoporosis (see, for example, Biskoping, DM: Expert Opin. Invest. Drugs 12 (2003), 611-621).
  • Such low molecular weight compounds are of particular interest for achieving osteogenic properties of implant surfaces because they are generally less sensitive to conventional sterilization procedures for implants as compared to proteins such as BMP.
  • water-soluble strontium salts are of particular interest, since it is known that these compounds both activate bone-forming cells (osteoblasts) and inhibit bone-degrading cells (osteoclasts) (Marie, PJ, Ammann, P., Boivin, G , Rey, C: Calcif., Tissue Interna.
  • EP 1 481 696 describes a method for producing an implant with a bioactive, strontium-substituted ceramic apatite coating.
  • the not yet coated implant is immersed in a solution of strontium ions, calcium ions and phosphate ions then incubated at a pH of 5-8, over a period of several hours and a temperature between 30 ° C and 50 ° C. Subsequently, the implant is dried. It is claimed that this incubation results in an apatite coating in which portions of the Ca ions are substituted by strontium ions. Statements about the adhesion properties of such a layer are not made. It turns out, however, that such apatite coatings have a very insufficient adhesion to the underlying substrate, be it metallic or ceramic.
  • WO 03/039609 discloses a method for coating implants, in which a layer comprising several layers is produced on a titanium implant by firstly electrolytically cleaning the surface in an acid bath, wherein an alternating voltage can also be applied, and wherein the surface layer is removed. Subsequently, an oxide layer is deliberately built up in a phosphoric acid bath. In a third bath, now containing calcium and phosphate ions, an electrical potential is created to form a hydroxyapatite layer. It is mentioned that the applied direct current can be increased until melting takes place in the surface.
  • the uppermost layer is applied by immersing the implant in a vesicle solution having an inner layer of phospholipid and an outer layer of calcium phosphate, and depositing again on the implant while applying an electrical potential.
  • the calcium contained in the vesicles in the calcium phosphate can be partially replaced by magnesium, strontium, barium or a mixture of these ions, for example, to improve the adhesion of the layer.
  • a plasmachemical treatment does not take place.
  • the object of the invention is to provide an improved bioactive coating, in particular firmly adhering to a substrate, and a method for the production thereof on a substrate which shows a good, uncomplicated osteointegration and at the same time in a simple and cost-effective method can be produced.
  • the object is achieved in which a porous coating adhering to the implant surface is provided, which contains strontium ions in the form of a variable fraction of a strontium compound which is sparingly soluble in aqueous media as an effective constituent layer.
  • the object is achieved by proposing a method is for coating a medical implant, in particular a dental implant on a metallic basis, which is characterized in that the implant is immersed in an implanted state in the bone exposed area in an (electrolyte) solution with strontium ions, and the coating in a plasmachemischen Oxidation is formed, which is preferably a plasma-chemical anodic oxidation.
  • the strontium is excellently bound in a surface layer and thus the strontium ions can be prevented from being released into the environment in such a way that the concentration in the environment becomes too high and thus no longer a growth-promoting effect but a toxic effect is effected. Furthermore, it has been found that layers thus produced exhibit excellent adhesion to the substrate.
  • Such coatings can be produced either in a single step or in multiple operations. Different electrolyte solutions can also be used for the different operations and correspondingly different layers can be produced.
  • the anodic plasma chemical oxidation is a process which is known per se, but which has never been used in connection with the introduction of strontium ions into a coating for implants.
  • Descriptions of plasma-chemical anodic oxidation can be found, for example, for calcium phosphate coatings in US Pat. No. 5,205,921, and generally for ceramic oxide films, for example, in US Pat. No. 5,811,194, US Pat. No. 5,385,662, US Pat. No. 4,846,837, or US Pat. No. 5,478,237 Oxidation, as described, for example, in US Pat. No.
  • 5,811,194 is a gas-solid reaction in aqueous electrolytes under plasma conditions in which the high energy input at the bottom of the discharge column on the anode produces liquid metal which forms a short-time fused oxide with the activated oxygen ,
  • the layer formation takes place via partial anodes.
  • the spark discharge is preceded by a forming area.
  • the electrolytes are so combined that their beneficial properties unite and produce high-quality anodically produced oxide ceramic layers on metals. By combining different salts, higher salt concentrations in the electrolyte bath and thus higher viscosities can be achieved.
  • Such high-viscosity electrolytes have a high heat capacity, stabilize the formed oxygen film on the anode and thus guarantee a uniform oxide layer formation.
  • the barrier layer grows. Then, at the phase boundary metal / gas / electrolyte partially an oxygen plasma, through which forms the oxide ceramic layer.
  • the metal ion in the oxide ceramic layer is derived from the metal, the oxygen from the anodic reaction in the aqueous electrolyte used.
  • the oxide ceramic is liquid at the determined plasma temperatures of about 7,000 Kelvin. At the metal side, the time is sufficient for the melt of the oxide ceramic to contract well, forming a low-pore oxide ceramic layer.
  • the melt of the oxide ceramic is rapidly cooled by the electrolyte and the still migrating gases, in particular oxygen and water vapor leave an oxide ceramic layer with a marmaschig linked capillary system.
  • the current density must reach a certain height, it must be above 5 mA / cm 2 , preferably above 10, particularly preferably above 50 mA / cm 2 . If the current density is below such a value, a conventional electrochemical deposition takes place and no plasma is formed in the course of this deposition.
  • the applied voltage is modulated at a high frequency in the kilohertz range, typically at least 500 Hz.
  • the substrate for the implant is a titanium-based substrate.
  • the electrolyte solution contains not only strontium ions but also other ions which are introduced in the form of soluble salts, such as, in addition, phosphate ions, particularly preferably in a concentration in the range from 0.03 to 0.2 mol / l.
  • the electrolyte solution additionally contains calcium ions, particularly preferably in a concentration in the range of 0.06-0.12 mol / l.
  • the strontium ions in the solution in a concentration in the range of 0.01 to 0.03 mol / 1, more preferably in the range of 0.01 to 0.02 mol / 1, are presented, especially if it is a substantially aqueous electrolyte solution is.
  • a further preferred embodiment is characterized in that the implant is anodically contacted, that in addition a stainless steel cathode is immersed in the bath, and with a direct current the oxidation is triggered, wherein preferably in the course of the coating time increasing stress in the range of 100 -500V, more preferably from 200 to 300 V is applied. It is possible that pulsed direct current with a frequency in the range of 0.5-2 kHz at a duty cycle of 1: 2 to 2: 1 is used. As mentioned, the frequency is typically at least 500 Hz. According to another preferred embodiment, it is possible to pattern the implant before (or even after) the coating on the surface.
  • the implant may be a macrostructure such as, for example, with the aid of a blast treatment, and / or also to a microstructuring, for example by a chemical treatment in an acid bath or in a molten salt.
  • the implant is rinsed after one or more such coating operations with water, particularly preferably distilled water and then dried.
  • the electrolyte solution is an aqueous solution.
  • a particularly preferred polar solvent use or mixtures of one of solvents.
  • Possible further solvents are, for example, acetonitrile, DMSO.
  • the coating when produced by such a method, has excellent adhesive strength. Accordingly, according to a preferred embodiment, the method is characterized in that the resulting coating on the substrate has an adhesive strength of at least 3 MPa, more preferably of at least 8 MPa.
  • the coating thus prepared has a very suitable porous structure for the process of ingrowth.
  • the porous structure has a pore density of 10 4 to 10 7 pores / mm 2 and / or an average pore size between 0.2 and 5 microns.
  • Such a coating preferably has a thickness in the range of 0.5-50 ⁇ m.
  • the present invention relates to a bioactive coating adhering to a substrate (in particular a metallic substrate), in particular for medical implants and dental implants, which is characterized in that it can be produced or manufactured by a method as described above.
  • the present invention relates to a bioactive coating firmly adhering to a substrate, in particular for medical implants and dental implants, which is characterized in that the coating contains strontium ions in the form of strontium compounds which are sparingly soluble in aqueous media, and the strontium content in the coating is 1 to 50 atomic percent , preferably 5 to 30 atomic percent, particularly preferably 5 to 15 atomic percent, and the coating has a porous structure, particularly preferably with a pore density of 10 4 to 10 7 pores / mm 2 and preferably with an average pore size between 0.2 and 5 ⁇ m has.
  • the strontium ions may be present at least partially in the form of a strontium phosphate and / or a strontium titanate such as a perovskite structure or a perovskite-like structure with embedded strontium ions. These forms may be in amorphous or nanocrystalline form.
  • the coating contains strontium ions which are embedded in a mixed oxide structure, in particular a mixed oxide structure containing titanium and / or calcium, particularly preferably in a perovskite structure of the coating.
  • the coating contains amorphous and / or crystalline calcium phosphate phases.
  • the strontium or the calcium ions in the aqueous solution may preferably be present with a chelate-forming agent in the form of a complex, for example as EDTA complex.
  • a chelate-forming agent in the form of a complex
  • the material Prior to treatment in the plasma chemical oxidation, the material may already be structured on the surface, for example as a result of an acid treatment (for example in a nitric acid / hydrofluoric acid bath) or as a result of blasting or a combination of such processes.
  • the coating preferably has a thickness in the range of 2-10 ⁇ m at the end.
  • the coating preferably has pores in the form of blind holes with a typical mean diameter in the range of 0.5-3 ⁇ m.
  • the coating has a proportion of 20 to 95 atomic percent of metal oxide consisting of one or more metals or mixtures of different metal oxides.
  • the metal oxide is, for example and preferably, titanium dioxide and / or calcium oxide or mixed forms formed therefrom, such as, for example, perovskites.
  • the layer may also consist essentially completely of such a perovskite with embedded strontium ions.
  • the present invention relates to a substrate, in particular implant with a coating as described above, which is characterized in that the substrate contains one of the elements Ti, Ta, Nb, Zr, Al, Ca, Mg, V or their alloys.
  • the substrate may be completely or partially covered with the coating.
  • the present invention relates to the use of such bioactive coating for complete or partial finishing of metallic surfaces of implants in the medical and dental field, wherein the metallic surfaces are preferably smooth, structured and / or porous.
  • the advantages achieved by the invention are summarized thus essentially to be seen in the fact that thanks to the coating according to the invention, the bone can grow faster in the porous support structure.
  • the strontium ions present in the coating in the form of strontium compounds which are sparingly soluble in water stimulate bone-forming cells (osteoblasts), so that improved integration of the implant into the surrounding tissue is achieved.
  • the strontium ions are integrated into the coating in the form of a sparingly soluble strontium compound, so that, although sufficient strontium ions are present to stimulate bone growth, there is no danger of overdosing and so that there is a cytotoxic effect of strontium ions on the cells surrounding the implant.
  • the coating may have a proportion of 20 to 95 atomic percent of metal oxide consisting of one or more metals or mixtures of different metal oxides.
  • the thickness of the coating is preferably 0.5 to 50 ⁇ m, preferably 0.5 to 10 ⁇ m.
  • Such a thin coating has good adhesive properties on the substrate and is relatively stable to mechanical, especially shear, stress.
  • the coating according to the invention is preferably applied to substrates which consist of metals or metal alloys which are customary in the field of medical and dental technology, preferably those metals or metal alloys which contain one or more of the elements Ti, Ta, Nb, Zr, Al, Ca, Mg, V or their alloys.
  • the substrates can have any shape and surface morphology and the coating can completely cover the substrate or partially record.
  • the coating according to the invention is preferably applied to the implant to be coated by means of plasma-chemical anodic methods, preferably the method of plasma-chemical anodic oxidation.
  • the aqueous electrolyte used in this process contains strontium, preferably phosphates and optionally further ions, which are to be constituents of the coating according to the invention, in the form of suitable water-soluble salts.
  • the electrolyte used for the plasma-chemical oxidation may contain further additives which improve the coating process, such as complexing agents or chelating agents or additives which adjust the pH and / or the conductivity of the electrolyte.
  • the coating is formed by reaction between the metallic substrate and the components of the electrolyte.
  • Fig. 2 AP activity of pig osteoclasts on strontium (Sr-P) and strontium / calcium (Ca-Sr-P) containing surfaces at 7, 14 and 21 days compared to calcium (Ca-P) containing and uncoated (Control) TiA16V4 surfaces; 3 shows SEM photographs of uncoated titanium surfaces (a, unit 10 ⁇ m and a 2, unit 2 ⁇ m) and titanium surfaces coated in accordance with the invention (bl, unit 10 ⁇ m, b 2, unit 1 ⁇ m, c, unit 10 ⁇ m ; c2, unit of mass 1 ⁇ m).
  • aqueous electrolyte in which 20 g / l strontium acetate (C 4 H 6 O 4 Sr * xH 2 O) and 20 g / l Ethylenediaminotetraessigklare (C 10 H 16 N 2 O 8 ) and 10 g / l di-sodium hydrogen phosphate 12 hydrate (Na 2 HPO 4 .12H 2 O) are prepared.
  • a stainless steel cathode is inserted and electrically contacted with an external power source.
  • the grade 2 titanium substrate to be coated is anodically contacted and connected to the power supply.
  • the bath voltage is increased from 0 volts at a constant current density of 5 A / dm 2 .
  • the electrolyte temperature is between 15 and 40 ° C. It is pulsed DC with a frequency of 1 kHz at a duty cycle of 1: 1 is used.
  • the first plasma-chemical oxidation effects can be observed, which can be monitored by means of visually visible spark discharges at the anode surface. If the bath voltage has reached a value of approx. 280 V, the voltage can not be increased any further. As a result, there is a drop in the current. When it has reached half of the initial value, the coating process is terminated by switching off the power supply.
  • the titanium substrate is removed from the electrolyte, rinsed several times in distilled water and dried in air.
  • the titanium surface has a characteristic microporous surface at layer thicknesses between 5 and 10 microns.
  • the energy-dispersive X-ray analysis of the layer shows significant contents of Sr, P, Ti and O.
  • An aqueous electrolyte in which 50 g / l of ethylenediaminetetraacetic acid, calcium di-sodium salt dihydrate, 20 g / l of ammonium dihydrogen phosphate, 30 g / l Ethylenediaminetetraacetic acid magnesium di-sodium salt and 1 g / l
  • Dissolved ethylenediaminetetraacetic acid is adjusted by means of ammonia solution to a pH of 8.6. Thereafter, 20 g / l strontium acetate (C 4 H 6 O 4 Sr ⁇ xH 2 O) are added and dissolved using a stirrer. Thereafter, a TiA16V4 titanium alloy implant is stained in an aqueous solution containing 175 ml / 1 HNO 3 (65%) and 175 ml / 1 HF (40%) for 2 to 10 s and in the aqueous electrolyte described above contacted anodically.
  • the plasmachemical oxidation of this implant takes place at a pulsed voltage with a frequency of 1 kHz and a current density of 2 A / dm 2 at an electrolyte temperature of 20 to 40 ° C. With a final tension of 280 V, a layer thickness of 5 to 10 ⁇ m is achieved.
  • the energy-dispersive X-ray analysis of the layer shows significant contents of Ca, Ti, P, O and Sr. The layer thus produced is colored darker by the alloying elements of the titanium alloy than the layer of pure titanium.
  • EXAMPLE 3 Square test specimens (Ti-Al 6V4) of 10 ⁇ 10 ⁇ 1 mm (control: uncoated) coated in each case in accordance with Examples 1 and 2 were transferred individually into the wells of a 24-well cell culture plate for 30 minutes with 70% ethanol disinfected and subsequently each 30 min twice with 1 ml of sterile PBS and once with 1 ml of nutrient medium (Alpha-Medium, Biochrom AG, Berlin, Germany, with the addition of 10% fetal calf serum, 50 U / ml penicillin, 0.05 mg / mL streptomycin, 2 mM glutamine replacement, 0.1 ⁇ M dexamethasone, 10 mM ⁇ -glycerophosphate) at room temperature.
  • nutrient medium Alpha-Medium, Biochrom AG, Berlin, Germany
  • the specimens were colonized with pig osteoblasts (5th passage after primary culture), in each of which 1 ml of a cell suspension (cell density about 100 000 cells / ml) of freshly trypsin faced cells were added to a preculture, resulting in a cell colonization of about 50 000 cells / cm 2 resulted.
  • the cells were cultured at 37 0 C in a 5% C0 2 atmosphere, wherein the nutrient medium was renewed every 2 days. After 4 days, the specimens were transferred to a new 24 well cell culture plate.
  • the protein determination was carried out as a colorimetric test with the micro-BCA (Bicinchoninic acid) method according to the manufacturer's instructions (Perbio Science Germany, Bonn, Germany).
  • the absorption measurement after the color reaction was carried out in transparent 96-well plates using a Genwell Pro multiwell plate photometer (Tecan Germany, Crailsheim, Germany) at 565 nm and the determination of the protein concentration using a calibration curve prepared with bovine serum albumin.
  • Figure 1 shows the protein formation of pig osteoclasts on strontium and strontium / calcium containing surfaces after 7, 14 and 21 days compared to calcium-containing and uncoated TiA16V4 surfaces.
  • the AP activity was measured as cleavage activity against the luminescent substrate CDP-Star TM in the alkaline medium.
  • 5 ⁇ l of cell lysate were mixed with 0.1 ml CDP-Star ready-to-use ready reagent with Sapphire II enhancer (Applera Germany, Darmstadt, Germany) in black 96-well plates (2 replicates per cell lysate) and after 20 min Incubation at room temperature, the relative luminescence intensity measured in the multiwell plate photometer Genios Pro at 28 ° C in the luminescence mode.
  • the luminescence values obtained are proportional to the AP activity, a determination of absolute values has been omitted.
  • Figure 2 shows the AP activity of pig osteoclasts on strontium and strontium / calcium containing surfaces after 7, 14 and 21 days compared to calcium-containing and uncoated TiA16V4 surfaces.
  • Titanium test specimens in the dimensions 2O x 10 x 2 mm (length x width x height) according to Example 1 coated.
  • Stainless steel cylinders with a diameter of 5 mm are glued to the coated surface of the specimens using a cold-curing epoxy resin adhesive (eg Epilox system from Leuna Harze GmbH, Leuna, Germany), the adhesive joint being approximately 0.1 mm .
  • a cold-curing epoxy resin adhesive eg Epilox system from Leuna Harze GmbH, Leuna, Germany
  • the adhesive joint being approximately 0.1 mm
  • the adhesive strength of the glued cylinder was then determined.
  • 10 specimens were used. Under the selected bonding conditions, the layer separation takes place exclusively from the substrate of the coated specimens, so that the values determined reflect the adhesive strength of the coating.
  • FIG. 3 shows SEM images of the surfaces.
  • FIGS. 1 a and 2 a show the surfaces of untreated TiA 16 V 4 surfaces at different magnifications. It turns out that the surface is substantially free of pores.
  • FIGS. 1 b and b 2 show in different enlargements the surfaces of T1A16V4 implants provided with a coating according to the invention (Sr-P) (method according to Example 1). It turns out how a special type of pore structure is formed, which differs fundamentally from a surface structure, as arises in a classical electrochemical deposition, and as shown for example in US 2005/0000819, and where in a electrochemical deposition occurring crystal growth on the surface structure remains recognizable.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Molecular Biology (AREA)
  • Ceramic Engineering (AREA)
  • Dentistry (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

Beschrieben wird ein Verfahren zur Beschichtung eines medizinischen Implantates, insbesondere eines Dentalimplantates auf metallischer Basis, sowie ein unter Zuhilfenahme dieses Verfahrens herstellbares Implantat. Das Verfahren ist dadurch gekennzeichnet, dass das Implantat wenigstens in einem im implantierten Zustand dem Knochen ausgesetzten Bereich in eine (wässrige) (Elektrolyt-)Lösung mit Strontiumionen eingetaucht wird, und die Beschichtung in einer plasmachemischen bevorzugtermassen anodischen Oxidation gebildet wird.

Description

BESCHREIBUNG
TITEL BIOAKTIVE IMPLANTATBESCHICHTUNG
TECHNISCHES GEBIET
Die vorliegende Erfindung betrifft eine die Osteointegration verbessernde Beschichtung für metallische Implantate zum wenigstens teilweisem Einsetzen in den Knochen. Weiterhin betrifft die vorliegende Erfindung ein Verfahren zur Herstellung einer solchen Beschichtung und zu Verwendungen der Implantate. STAND DER TECHNIK
Verletzte oder beschädigte Teile des Hartgewebes des menschlichen Körpers werden am Besten wiederhergestellt oder mechanisch verstärkt, indem körpereigenes Hartgewebe verwendet wird. Dies ist aus verschiedenen Gründen nicht immer möglich, und daher kommt in vielen Fällen synthetisches Material als temporäres (bioabbaubares respektive postoperativ entfernbares) oder permanentes Ersatzmaterial zum Einsatz.
Implantate, welche hauptsächlich im Hartgewebe verankert werden, dienen dem temporären oder permanenten Ersatz oder dem Support von unfall-, abnützungs-, mangelerscheinungs- oder krankheitsgeschädigten oder sonst degenerierten Teilen des menschlichen Körpers. Als Implantat wird normalerweise ein künstliches, chemisch stabiles Material bezeichnet, welches als plastischer Ersatz oder zur mechanischen Verstärkung in den Körper eingebracht wird (vgl. z.B. Roche Lexikon Medizin, Urban & Fischer, (Hrsg.); 5. Aufl. 2003). Die Hilfs- und Ersatzfunktion im Körper wird auf Basis der mechanischen Eigenschaften und des Implantatdesigns übernommen. So sind beispielsweise Hüft- und Kniegelenksprothesen, Wirbelsäulenimplantate und Materialien zur Osteosynthese (Versorgung von Knochenfrakturen) seit vielen Jahren im erfolgreichen klinischen Einsatz. Auf Grund der stabilisierenden, lastaufnehmenden und/oder -übertragenden Funktion, die solche Implantate übernehmen sollen, werden als Werkstoffe zu ihrer Herstellung sehr oft Metalle oder metallische Legierungen eingesetzt. Typische Metalle oder metallische Legierungen, die für Implantate im Hartgewebebereich eingesetzt werden, sind Titan, Titanlegierungen, Edelstahl oder Kobalt-Chrom-Legierungen. Für die Implantatverankerung und die Implantatverträglichkeit an der Grenzfläche Implantatoberfläche / angrenzendes Gewebe hat die Implantatoberfläche eine grosse Bedeutung. Durch eine Veränderung der Implantatoberfläche kann der Heilungsprozess beschleunigt werden.
Zur Oberflächenbehandlung und Oberflächenstrukturierung werden verschiedenste Methoden verwendet, siehe z. B. Titanium in Medicine, Material Science, Surface Science, Engineering, Biological Responses and Medical Applications Series: Engineering Materials, (Brünette, D.M.; Tengvall, P.; Textor, M.; Thomsen, P.(Eds.)); und die darin genannten Referenzen.
Gut etabliert sind Calciumphosphathaltige Oberflächenschichten, die beispielsweise durch thermische Spritzverfahren, Sol-Gel- Verfahren oder elektrochemische Verfahren auf Implantatoberflächen erzeugt werden können. Calciumphosphat-Beschichtungen weisen auf Grund ihrer chemischen Ähnlichkeit mit der mineralischen Phase des Knochens eine sehr gute Biokompatibilität auf. In Abhängigkeit von der Löslichkeit der Calciumphosphat-Beschichtung können Calcium- und Phosphat-Ionen in den Knochen eingebaut werden, wodurch ein stabilerer Verbund zwischen Implantat und umliegendem Knochengewebe entsteht. Darüber hinaus kann die Calciumphosphat- Beschichtung so ausgebildet werden, dass eine offen-poröse Struktur entsteht, in die Knochenzellen einwachsen und sich verankern können. Diese als Osteokonduktivität bezeichnete Eigenschaft der Beschichtung fördert eine schnelle Stabilisierung des Implantats im umliegenden Gewebe.
Ein wesentlicher Nachteil von Calciumphosphat-Beschichtungen ist allerdings darin zu sehen, dass diese Beschichtungen den Heilungsprozess des Knochengewebes nicht aktiv stimulieren, also nicht osteogen wirken. Es wurden daher in jüngster Zeit grosse Anstrengungen unternommen, Implantatoberflächen mit Substanzen zu beschichten, die eine osteogene oder osteoinduktive Wirkung entfalten können. Als Substanzen mit osteoinduktiver Wirkung gelten beispielsweise Wachstumsfaktoren, wie die sogenannten Bone Morphogenetic Proteins (BMP). Auch niedermolekulare Substanzen sind in der Lage, die Prozesse der Knochenbildung und des Knochenabbaus zu beeinflussen. Als solche osteogene Substanzen sind aus der Literatur beispielsweise Bisphosphonate, Statine oder wasserlösliche Strontiumsalze (z. B. Strontiumranelat) bekannt. Gegenwärtig werden diese Substanzen in der Osteoporose-Behandlung bereits eingesetzt (siehe z. B. Biskoping, D. M.: Expert Opin. Invest. Drugs 12 (2003), 611- 621). Solche niedermolekularen Verbindungen sind zur Erzielung osteogener Eigenschaften von Implantatoberflächen von besonderem Interesse, da sie im Vergleich zu Proteinen wie BMP in der Regel weniger empfindlich gegenüber herkömmlichen Sterilisationsverfahren für Implantate sind. Unter den niedermolekularen Substanzen mit potentiell osteogener Wirkung sind wasserlösliche Strontiumsalze von besonderem Interesse, da bekannt ist, das diese Verbindungen sowohl knochenbildende Zellen (Osteoblasten) aktivieren als auch knochenabbauende Zellen (Osteoklasten) hemmen (Marie, P. J., Ammann, P., Boivin, G., Rey, C: Calcif. Tissue Intern. 69 (2001),121~ 129). Wasserlösliche Strontiumsalze wie Strontiumranelat sind daher als Pharmaka zur systemischen Applikation bei Osteoporose bereits im klinischen Einsatz (Reginster, J.- Y.: Curr. Pharmaceut. Design 8 (2002), 1907-1916).
Es wurden in der Vergangenheit zahlreiche Anstrengungen unternommen, die Osteointegration verbessernde hoch- oder niedermolekulare Substanzen auf unbeschichteten sowie auf Calciumphosphat- oder andersartig beschichteten Implantatoberflächen zu immobilisieren. Da eine rein adsorptive Immobilisierung auf Implantatoberflächen, beispielsweise durch Tauchen oder Besprühen derselben mit geeigneten Lösungen der die Osteointegration verbessernden Substanzen den Nachteil einer schnellen Auswaschung der Substanzen aus der Oberfläche mit sich bringt, wurden unterschiedliche Verfahren einer dauerhaften Immobilisierung vorgeschlagen. Beispiele sind die kovalente Fixierung von Bisphosphonaten auf Calciumphosphat- Oberflächen (Peter B. et al., Local delivery of bisphosphonate from coated orthopedic implants increases implants mechanical stability in osteoporotic rats., J Biomed Mater Res A. 2006 Jan;76(l): 133-43) oder die Beschichtung von metallischen Implantaten mit Suspensionen aus resorbierbaren Polymeren und BMP (Schmidmaier et al., Collective review: bioactive implants coated with poly(D,L-lactide) and growth factors IGF-I, TGF-betal, or BMP-2 for Stimulation of fracture healing, J Long Term Eff Med Implants. 2006;16(l):61-9). Wesentliche Nachteile all dieser Verfahren sind jedoch darin zu sehen, dass die Aufbringung der die Osteointegration verbessernden Komponente mit einem hohen technischen Aufwand verbunden ist und zusätzliche Hilfsstoffe wie Polymere, organische Lösungsmittel oder Kopplungsagenzien benötigt werden, die das Einwachverhalten der Implantate negativ beeinflussen können. Im Falle einer wünschenswerten Immobilisierung von wasserlöslichen Strontiumsalzen auf Implantatoberflächen besteht darüber hinaus das Ziel einer stetigen kontrollierten Freisetzung geringer Dosen von Strontiumionen aus der Implantatoberfläche über einen Zeitraum von mehreren Tagen bis Wochen, da bekannt ist, dass eine Überdosierung mit Strontiumionen zu cytotoxischen Effekten führen kann. Implantatbeschichtungen, die solche Anforderungen erfüllen, sind gegenwärtig nicht bekannt.
Die EP 1 481 696 beschreibt ein Verfahren zur Herstellung eines Implantates mit einer bioaktiven, Strontium-substituierten keramischen Apatit-Beschichtung. Dazu wird das noch nicht beschichtete Implantat in eine Lösung aus Strontiumionen, Calciumionen und Phosphationen eingetaucht dann bei einem pH- Wert von 5 - 8, während einer Dauer von mehreren Stunden und einer Temperatur zwischen 30°C und 50°C inkubiert. Anschliessend wird das Implantat getrocknet. Es wird behauptet, dass diese Inkubation zu einer Apatit-Beschichtung führt, bei welcher Teile der Ca-Ionen substituiert sind durch Strontiumionen. Aussagen über die Haftungseigenschaften einer derartigen Schicht werden nicht gemacht. Es zeigt sich aber, dass derartige Apatit-Beschichtungen eine sehr ungenügende Haftung auf dem darunter liegenden Substrat, sei es nun metallisch oder Keramik, aufweisen.
Aus der WO 03/039609 ist ein Verfahren zur Beschichtung von Implantaten bekannt, bei welchem eine mehrere Lagen umfassende Schicht auf einem Titan-Implantat hergestellt wird, indem zunächst die Oberfläche in einem Säurebad elektrolytisch gereinigt wird, wobei auch eine Wechselspannung angelegt werden kann, und wobei die Oberflächenschicht entfernt wird. Anschliessend wird in einem Phosphorsäurebad gezielt eine Oxidschicht aufgebaut. In einem dritten Bad, in welchem nun Kalzium und Phosphationen enthalten sind, wird ein elektrisches Potenzial zur Bildung einer Hydroxyapatit-Schicht angelegt. Dabei wird erwähnt, dass der angelegte Gleichstrom erhöht werden kann, bis ein Schmelzen in der Oberfläche abläuft. Ln letzten Schritt wird die oberste Schicht aufgebracht, indem das Implantat in eine Lösung mit Vesikeln, mit einer Innenschicht mit Phospholipid und einer Aussenschicht aus Kalziumsphosphat, eingetaucht wird, und unter Anlegen wiederum eines elektrischen Potenzials eine Ablagerung auf dem Implantat stattfindet. Dabei wird unter anderem darüber gesprochen, dass das in den Vesikeln enthaltene Kalzium im Kalziumsphosphat teilweise ersetzt werden kann durch Magnesium, Strontium, Barium oder eine Mischung dieser Ionen, dies beispielsweise, um die Haftung der Schicht zu verbessern. Eine plasmachemische Behandlung findet dabei nicht statt.
Auch aus der US 2005/0000819 ist ein Verfahren zur Oberflächenbeschichtung von Titan-Implantaten bekannt. Dabei wird ebenfalls Kalziumsphosphat elektrochemisch auf der Oberfläche abgeschieden. Das darin beschriebene Verfahren wird als MECD
(Modulated electrochemical deposition) bezeichnet, und es beruht auf der gepulsten
Anlegung einer Spannung, wobei Rechteckimpulse mit einer Länge von 200μs-20s eingesetzt werden. Die Modulationsfrequenz bewegt sich mit anderen Worten höchstens im Bereich von einigen Herz. Die Stromdichte beim verwendeten Verfahren liegt im
Bereich von 200 μA/cm2 bis 3 rtiA/cm2. Damit liegt auch bei diesem Verfahren keine plasmachemische Oxidation vor.
DARSTELLUNG DER ERFINDUNG Der Erfindung liegt die Aufgabe zugrunde, eine verbesserte bioaktive, auf einem Substrat insbesondere fest haftende Beschichtung sowie ein Verfahren zu deren Herstellung auf einem Substrat zur Verfügung zu stellen, die eine gute, komplikationslose Osteointegration zeigt und gleichzeitig in einem einfachen und kostengünstigen Verfahren hergestellt werden kann. Erfϊndungsgemäss wird die Aufgabe gelöst, in dem eine auf der Implantatoberfläche festhaftende, poröse Beschichtung bereitgestellt wird, die als wirksamen Schichtbestandteil Strontiumionen in Form eines variablen Anteils einer in wässrigen Medien schwerlöslichen Strontiumverbindung enthält.
Insbesondere wird die Aufgabe dadurch gelöst, indem ein Verfahren vorgeschlagen wird zur Beschichtung eines medizinischen Implantates, insbesondere eines Dentalimplantates auf metallischer Basis, welches dadurch gekennzeichnet ist, dass das Implantat wenigstens in einem im implantierten Zustand dem Knochen ausgesetzten Bereich in eine (Elektrolyt-)Lösung mit Strontiumionen eingetaucht wird, und die Beschichtung in einer plasmachemischen Oxidation gebildet wird, wobei es sich dabei bevorzugtermassen um eine plasmachemische anodische Oxidation handelt.
Es zeigt sich, dass bei der Verwendung eines derartigen Verfahrens zur Beschichtung einerseits das Strontium hervorragend in einer Oberflächenschicht gebunden wird und so verhindert werden kann, dass die Strontiumionen in die Umgebung in einer Art und Weise abgegeben werden, dass die Konzentration in der Umgebung zu hoch wird und damit nicht mehr ein das Wachstum fördernder Effekt sondern ein toxischer Effekt bewirkt wird. Des weiteren wurde gefunden, dass derart hergestellte Schichten eine hervorragende Haftfestigkeit auf dem Substrat zeigen. Solche Beschichtungen können entweder in einem einzigen Schritt oder in mehreren Arbeitsgängen erzeugt werden. Dabei können auch für die unterschiedlichen Arbeitsgänge unterschiedliche Elektrolyt- Lösungen verwendet werden und entsprechend unterschiedliche Schichten erzeugt werden.
Bei der anodischen plasmachemischen Oxidation handelt es sich um ein an sich bekanntes Verfahren, welches aber noch nie im Zusammenhang mit der Einbringung von Strontiumionen in eine Beschichtung für Implantate Verwendung gefunden hat. Beschreibungen der plasmachemischen anodischen Oxidation finden sich beispielsweise für Kalziumsphosphatsbeschichtungen in der US 5 205 921 sowie generell für keramische Oxidschichten beispielsweise in der US 5 811 194, der US 5 385 662, der US 4 846 837, oder der US 5 478 237. Diese anodische Oxidation, wie z.B. in der US 5 811 194 beschrieben, ist in wässrigen Elektrolyten eine Gas-Festkörper-Reaktion unter Plasmabedingungen, bei der der hohe Energieeintrag am Fusspunkt der Entladungssäule auf der Anode flüssiges Metall erzeugt, das mit dem aktivierten Sauerstoff ein kurzzeitverschmolzenes Oxid bildet. Die Schichtbildung erfolgt über Partialanoden. Der Funkenentladung ist ein Formierbereich vorgelagert. Die Elektrolyte werden so kombiniert, dass ihre positiven Eigenschaften vereint werden und qualitativ hochwertige anodisch erzeugte Oxidkeramikschichten auf Metallen entstehen. Durch Kombination verschiedener Salze können höhere Salzkonzentrationen im Elektrolytbad und damit höhere Viskositäten erreicht werden. Solche hochviskosen Elektrolyte haben eine hohe Wärmekapazität, stabilisieren den ausgebildeten Sauerstofffilm auf der Anode und garantieren damit eine gleichmässige Oxidschichtausbildung.
Auf dem Metall oder der Metalllegierung befindet sich natürlicherweise eine Sperrschicht. Durch Erhöhung der Spannung des anodisch gepolten Metalls wächst die Sperrschicht. Dann entsteht an der Phasengrenze Metall/Gas/Elektrolyt partiell ein Sauerstoffplasma, durch das sich die Oxidkeramikschicht bildet. Das Metallion in der Oxidkeramikschicht stammt aus dem Metall, der Sauerstoff aus der anodischen Reaktion in dem verwendeten wässrigen Elektrolyten. Die Oxidkeramik ist bei den ermittelten Plasmatemperaturen von etwa 7.000 Kelvin flüssig. Zur Seite des Metalls hin ist die Zeit ausreichend, damit sich die Schmelze der Oxidkeramik gut zusammenziehen kann und so eine porenarme Oxidkeramikschicht bildet. Zur Seite des Elektrolyten hin wird die Schmelze der Oxidkeramik schnell durch den Elektrolyten abgekühlt und die noch abwandernden Gase, insbesondere Sauerstoff und Wasserdampf hinterlassen eine Oxidkeramikschicht mit einem weitmaschig verknüpften Kapillarsystem. Damit tatsächlich eine plasmachemische anodische Oxidation im Sinne der vorliegenden Erfindung abläuft, muss die Stromdichte eine gewisse Höhe erreichen, sie muss über 5 mA/cm2 sein, bevorzugt oberhalb von 10, insbesondere bevorzugt oberhalb von 50 mA/cm2. Liegt die Stromdichte unterhalb von einem solchen Wert, findet eine konventionelle elektrochemische Abscheidung statt und es bildet sich kein Plasma im Rahmen dieser Abscheidung.
Damit des weiteren eine plasmachemische anodische Oxidation im Sinne der vorliegenden Erfindung vorhanden ist, wird die angelegte Spannung mit einer hohen Frequenz im Kilohertz Bereich, typischerweise von wenigstens 500 Hz moduliert.
Gemäss einer bevorzugten Ausfuhrungsform handelt es sich beim Substrat für das Implantat um ein Substrat auf Titan-Basis. Gemäss einer weiteren bevorzugten Ausfuhrungsform enthält die Elektrolyt-Lösung nicht nur Strontiumionen sondern auch weitere Ionen, welche in Form von löslichen Salzen eingebracht werden, wie z.B. zusätzlich Phosphationen, dies insbesondere bevorzugt in einer Konzentration im Bereich von 0.03 — 0.2 mol/1. Alternativ oder zusätzlich ist es möglich, dass die Elektrolyt-Lösung zusätzlich Calciumionen enthält, dies insbesondere bevorzugt in einer Konzentration im Bereich von 0.06 - 0.12 mol/1.
Es erweist sich dabei als vorteilhaft, wenn die Strontiumionen in der Lösung in einer Konzentration im Bereich von 0.01 - 0.03 mol/1, insbesondere bevorzugt im Bereich von 0.01 - 0.02 mol/1, vorgelegt werden, dies insbesondere wenn es sich um eine im wesentlichen wässrige Elektrolyt-Lösung handelt.
Eine weitere bevorzugte Ausführungsform zeichnet sich dadurch aus, dass das Implantat anodisch kontaktiert wird, dass zusätzlich eine Edelstahl-Katode in das Bad eingeaucht wird, und mit einem Gleichstrom die Oxidation ausgelöst wird, wobei eine bevorzugtermassen im Laufe der Beschichtungszeit zunehmende Spannung im Bereich von 100-500V insbesondere bevorzugt von 200-300 V angelegt wird. Dabei ist es möglich, dass gepulster Gleichstrom mit einer Frequenz im Bereich von 0.5-2 kHz bei einem Tastverhältnis von 1: 2 bis 2:1 verwendet wird. Wie erwähnt liegt die Frequenz typischerweise bei wenigstens 500 Hz. Gemäss einer weiteren bevorzugten Ausführungsform ist es möglich, das Implantat vor (oder auch nach) der Beschichtung an der Oberfläche strukturiert wird. Es kann sich dabei um eine Makrostrukturierung handeln wie sie beispielsweise unter Zuhilfenahme einer Strahlbehandlung, und/oder aber auch um eine Mikrostrukturierung beispielsweise durch eine chemische Behandlung in einem Säurebad oder in einer Salzschmelze. Typischerweise wird das Implantat nach einem oder mehreren derartigen Beschichtungsvorgängen mit Wasser, insbesondere bevorzugt destilliertem Wasser gespült und anschliessend getrocknet.
Bevorzugtermassen handelt es sich bei der Elektrolyt-Lösung um eine wässrige Lösung. Es ist aber auch möglich, ein anderes insbesondere bevorzugt polares Lösungsmittel zu verwenden, oder Mischungen eines von Lösungsmitteln. Mögliche weitere Lösungsmittel sind beispielsweise Acetonitril, DMSO.
Wie bereits erläutert verfugt die Beschichtung, wenn sie mit einem derartigen Verfahren hergestellt wird, über eine ausgezeichnete Haftfestigkeit. Entsprechend ist gemäss einer bevorzugten Ausfuhrungsform das Verfahren dadurch gekennzeichnet, dass die resultierende Beschichtung auf dem Substrat eine Haftfestigkeit von wenigstens 3 MPa, insbesondere bevorzugt von wenigstens 8 MPa aufweist.
Typischerweise verfugt die so hergestellte Beschichtung über eine sehr geeignete poröse Struktur für den Vorgang des Einwachsens. Bevorzugtermassen verfügt die poröse Struktur über eine Porendichte von 104 bis 107 Poren/mm2 und/oder über eine durchschnittliche Porengrösse zwischen 0,2 und 5 μm.
Bevorzugtermassen verfügt eine derartige Beschichtung über eine Dicke im Bereich von 0.5-50 μm.
Zudem betrifft die vorliegende Erfindung eine bioaktive, auf einem Substrat (insbesondere einem metallischen Substrat) haftende Beschichtung, insbesondere für medizinische Implantate und Dentalimplantate, welche dadurch gekennzeichnet ist, dass sie nach einem Verfahren, wie oben beschrieben wurde, herstellbar oder hergestellt ist.
Die vorliegende Erfindung betrifft eine bioaktive, auf einem Substrat fest haftende Beschichtung, insbesondere für medizinische Implantate und Dentalimplantate, bevorzugtermassen welche dadurch gekennzeichnet ist, dass die Beschichtung Strontiumionen in Form von in wässrigen Medien schwerlöslichen Strontiumverbindungen enthält, der Strontiumgehalt in der Beschichtung 1 bis 50 Atomprozente, bevorzugt 5 - 30 Atomprozente, insbesondere bevorzugt 5 - 15 Atomprozente beträgt, und die Beschichtung eine poröse Struktur, insbesondere bevorzugt mit einer Porendichte von 104 bis 107 Poren/mm2 und bevorzugtermassen mit einer durchschnittlichen Porengrösse zwischen 0,2 und 5 μm besitzt. Die Strontiumionen können dabei wenigstens teilweise in Form eines Strontiumphosphates und/oder eines Strontiumtitanates wie z.B. einer Perowskitstruktur oder einer perowskitähnlichen Struktur mit eingelagerten Strontiumionen vorliegen. Diese Formen können in amorpher oder nanokristalliner Form vorliegen.
Alternativ oder zusätzlich ist es möglich, dass die Beschichtung Strontiumionen enthält, welche in einer Mischoxid-Struktur, insbesondere einer Mischoxid-Struktur enthaltend Titan und/oder Calcium, insbesondere bevorzugt in einer Perowskit-Struktur der Beschichtung eingebettet sind.
In einer weiteren bevorzugten Ausführungsform der Erfindung enthält die Beschichtung amorphe und/oder kristalline Calciumphosphat-Phasen.
Die Strontium respektive die Calciumionen in der wässrigen Lösung können dabei vorzugsweise mit einem Chelat-Bildner in Form eines Komplexes vorliegen, so beispielsweise als EDTA-Komplex. Vor der Behandlung in der plasmachemischen Oxidation kann das Material bereits an der Oberfläche strukturiert sein, beispielsweise infolge einer Säurebehandlung (beispielsweise in einem Salpetersäure/Flusssäure-Bad) oder infolge einer Strahlbehandlung oder einer Kombination von solchen Verfahren.
Die Beschichtung verfügt am Ende vorzugsweise über eine Dicke im Bereich von 2-10 μm. Die Beschichtung verfügt vorzugsweise über Poren in Form von Sacklöchern mit einem typischen mittleren Durchmesser im Bereich von 0.5-3 μm.
Typischerweise verfügt die Beschichtung über einen Anteil von 20 bis 95 Atomprozenten Metalloxid, bestehend aus einem oder mehreren Metallen oder Mischungen unterschiedlicher Metalloxide. Bei dem Metalloxid handelt es sich beispielsweise und bevorzugtermassen um Titandioxid und/oder Calciumoxid oder davon gebildete Mischformen wie beispielsweise Perowskite. Die Schicht kann auch im wesentlichen vollständig aus einem derartigen Perowskit mit eingelagerten Strontiumionen bestehen.
Weiterhin betrifft die vorliegende Erfindung ein Substrat, insbesondere Implantat mit einer Beschichtung wie sie oben beschrieben wurde, welches dadurch gekennzeichnet ist, dass das Substrat eines der Elemente Ti, Ta, Nb, Zr, Al, Ca, Mg, V oder deren Legierungen enthält. Das Substrat kann dabei vollständig oder teilweise mit der Beschichtung bedeckt sein.
Weiterhin betrifft die vorliegende Erfindung die Verwendung einer derartigen bioaktiven Beschichtung zur vollständigen oder teilweisen Ausrüstung von metallischen Oberflächen von Implantaten im Medizinal- und Dentalbereich, wobei die metallischen Oberflächen bevorzugt glatt, strukturiert und/oder porös sind.
Weitere bevorzugte Ausführungsformen sind in den abhängigen Ansprüchen beschrieben.
Die durch die Erfindung erreichten Vorteile sind zusammenfassend also im wesentlichen darin zu sehen, dass dank der erfmdungsgemässen Beschichtung der Knochen schneller in die poröse Trägerstruktur einwachsen kann. Dabei erfolgt durch die in der Beschichtung in Form von in Wasser schwerlöslichen Strontiumverbindungen vorhandenen Strontiumionen eine Stimulierung knochenbildender Zellen (Osteoblasten), so dass eine verbesserte Integration des Implantats in das umliegende Gewebe gegeben ist. Da die Strontiumionen in Form einer schwerlöslichen Strontiumverbindung in die Beschichtung integriert sind, ist die Konzentration an gelösten, frei beweglichen Strontiumionen in der Umgebung der Implantat-Grenzfläche gering, so dass zwar ausreichend Strontiumionen zur Stimulierung des Knochenwachstums vorhanden sind, aber keine Gefahr einer Überdosierung und damit einer cytotoxischen Wirkung von Strontiumionen auf die das Implantat umgebenden Zellen besteht.
Die Beschichtung kann einen Anteil von 20 bis 95 Atomprozenten Metalloxid bestehend aus einem oder mehreren Metallen oder Mischungen unterschiedlicher Metalloxide aufweisen. Wie bereits erläutert, beträgt die Dicke der Beschichtung bevorzugtermassen 0,5 bis 50 μm, vorzugsweise 0,5 bis 10 μm. Eine derartige, dünne Beschichtung verfügt über gute Hafteigenschaften auf dem Substrat und ist relativ stabil gegenüber mechanischer, insbesondere Scherbeanspruchung. Die erfindungsgemässe Beschichtung wird, wie bereits erläutert, vorzugsweise auf Substrate aufgebracht, die aus in der Medizinal- und Dentaltechnik üblichen Metallen oder Metalllegierungen bestehen, vorzugsweise solchen Metallen oder Metalllegierungen, die eines oder mehrere der Elemente Ti, Ta, Nb, Zr, Al, Ca, Mg, V oder deren Legierungen enthalten. Die Substrate können dabei eine beliebige Form und Oberflächenmorphologie besitzen und die Beschichtung kann das Substrat vollständig oder teilweise erfassen.
Die erfindungsgemässe Beschichtung wird bevorzugtermassen mittels plasmachemisch- anodischer Verfahren, vorzugsweise dem Verfahren der plasmachemischen anodischen Oxidation auf das zu beschichtende Implantat aufgebracht. Der in diesem Verfahren eingesetzte wässrige Elektrolyt enthält dabei Strontium-, bevorzugtermassen Phosphat- und gegebenenfalls weitere Ionen, welche Bestandteile der erfmdungsgemässen Beschichtung sein sollen, in Form geeigneter wasserlöslicher Salze. Der für die plasmachemische Oxidation verwendete Elektrolyt kann darüber hinaus weitere, den Prozess der Beschichtung verbessernde Zusätze wie Komplex- oder Chelatbildner oder den pH- Wert und/oder die Elektrolytleitfähigkeit einstellende Zusätze enthalten. Die Beschichtung entsteht durch Reaktion zwischen dem metallischen Substrat und den Komponenten des Elektrolyten.
KURZE ERLÄUTERUNG DER FIGUREN Die Erfindung soll nachfolgend anhand von Ausführungsbeispielen im Zusammenhang mit den Zeichnungen näher erläutert werden. Es zeigen:
Fig. 1 Proteinbildung von Schweineosteoblasten auf Strontium- (Sr-P) und Strontium/Calcium (Ca-Sr-P)-haltigen Oberflächen nach 7, 14 und 21 Tagen im Vergleich zu Calcium (Ca-P) -haltigen und nichtbeschichteten (Kontrolle) TiA16V4-Oberflächen;
Fig. 2 AP-Aktivität von Schweineosteoblasten auf Strontium (Sr-P)- und Strontium/Calcium (Ca-Sr-P)-haltigen Oberflächen nach 7, 14 und 21 Tagen im Vergleich zu Calcium (Ca-P)-haltigen und nichtbeschichteten (Kontrolle) TiA16V4-Oberflächen; und Fig. 3 SEM- Aufnahmen von unbeschichteten Titan-Oberflächen (al, Masseinheit 10 μm und a2, Masseinheit 2 μm) sowie von erfindungsgemäss beschichteten Titan-Oberflächen (bl, Masseinheit 10 μm; b2, Masseinheit 1 μm; cl, Masseinheit 10 μm; c2, Masseinheit 1 μm). WEGE ZUR AUSFUHRUNG DER ERFINDUNG
Die nachstehenden Beispiele dienen der näheren Erläuterung der Erfindung. Die in der Folge diskutierten Ausführungsbeispiele sollen nicht dazu verwendet werden, den allgemein formulierten Gegenstand, wie er oben beschrieben ist sowie in den angehängten Ansprüchen formuliert ist, einschränkend auszulegen.
Beispiel 1
Es wird ein wässriger Elektrolyt, in dem 20 g/l Strontiumacetat (C4H6O4Sr*xH2O) und 20 g/l Ethylendiaminotetraessigsäure (C10H16N2O8) sowie 10 g/l di- Natriumhydrogenphosphat 12-Hydrat (Na2HPO4.12H2O ) gelöst werden, hergestellt. In diesen wird eine Edelstahlkatode eingeführt und elektrisch mit einer äusseren Stromversorgungsquelle kontaktiert. Das zu beschichtende Substrat aus Titanium grade 2 wird anodisch kontaktiert und mit der Stromversorgung verbunden. Nach dem Einschalten der Stromversorgung wird bei einer konstanten Stromdichte von 5 A/dm2 die Badspannung von 0 Volt beginnend, erhöht. Die Elektrolyttemperatur beträgt zwischen 15 und 40 °C. Es kommt gepulster Gleichstrom mit einer Frequenz von 1 kHz bei einem Tastverhältnis von 1 : 1 zur Anwendung. Bei Badspannungen von ca. 200 V zeigen sich erste plasmachemische Oxidationseffekte die anhand von visuell sichtbaren Funkenentladungen an der Anodenoberfläche verfolgt werden können. Wenn die Badspannung einen Wert von ca. 280 V erreicht hat, lässt man die Spannung nicht weiter steigen. Infolge dessen kommt es zu einem Absinken des Stromes. Wenn dieser die Hälfte des Ausgangswertes erreicht hat, wird der Beschichtungsprozess durch Ausschalten der Stromversorgung beendet. Das Titansubstrat wird aus dem Elektrolyt entfernt, mehrmals in destilliertem Wasser gespült und an Luft getrocknet. Die Titanoberfläche weist eine charakteristische mikroporöse Oberfläche bei Schichtdicken zwischen 5 und 10 μm auf. Die energiedispersive Röntgenanalyse der Schicht zeigt deutliche Gehalte an Sr, P, Ti und O.
Beispiel 2
Ein wässriger Elektrolyt, in dem 50 g/l Ethylendiaminotetraessigsäure Calcium-di- Natriumsalz-Dihydrat, 20 g/l Ammoniumdihydrogenphosphat, 30 g/l Ethylendiamintetraessigsäure-Magnesium-di-Natriumsalz und 1 g/l
Ethylendiamintetraessigsäure gelöst sind, wird mittels Ammoniaklösung auf einen pH- Wert von 8,6 eingestellt. Danach werden 20 g/l Strontiumacetat (C4H6O4Sr^xH2O) zugegeben und unter Einsatz eines Rührwerkes gelöst. Danach wird ein Implantat aus der Titanlegierung TiA16V4 in einer wässrigen Lösung, mit 175 ml/1 HNO3 (65%-ig) und 175 ml/1 HF (40%-ig) 2 bis 10 s gebeizt und in dem oben beschriebenen wässrigen Elektrolyten anodisch kontaktiert. Die plasmachemische Oxidation dieses tmplantates erfolgt bei einer gepulsten Spannung mit einer Frequenz von 1 kHz und einer Stromdichte von 2 A/dm2 bei einer Elektrolyttemperatur von 20 bis 40°C. Mit der Endspannung von 280 V wird eine Schichtdicke von 5 bis 10 μm erzielt. Die energiedispersive Röntgenanalyse der Schicht zeigt deutliche Gehalte an Ca, Ti, P, O und Sr. Die so erzeugte Schicht wird durch die Legierungselemente der Titanlegierung dunkler gefärbt als die Schicht auf Reintitan.
Beispiel 3 Jeweils 15 entsprechend den Beispielen 1 und 2 beschichtete quadratische Probekörper (Ti-Al 6V4) von 10 x 10 x 1 mm (Kontrolle: unbeschichtet) wurden einzeln in die Kavitäten einer 24-Well-Zellkulturplatte überführt, 30 min mit 70% Ethanol desinfiziert und in der Folge je 30 min zweimal mit 1 ml sterilem PBS und einmal mit 1 ml Nährmedium (Alpha-Medium, Biochrom AG, Berlin, Deutschland, mit Zusatz von 10% fötalem Kälberserum, 50 U/mL Penicillin, 0,05 mg/mL Streptomycin, 2 mM Glutaminersatz, 0,1 μM Dexamethason, 10 mM ß-Glycerophosphat) bei Raumtemperatur inkubiert.
Anschliessend wurden die Probekörper mit Schweineosteoblasten (5. Passage nach Primärkultur) besiedelt, in dem jeweils 1 ml einer Zellsuspension (Zelldichte ca. 100 000 Zellen/ml) von frisch trypsinierten Zellen einer Vorkultur zugesetzt wurden, woraus eine Zellbesiedlung von ca. 50 000 Zellen/cm2 resultierte. Die Zellen wurden bei 370C in einer 5% C02-Atmosphäre kultiviert, wobei das Nährmedium alle 2 Tage erneuert wurde. Nach 4 Tagen wurden die Probekörper in eine neue 24 well-Zellkulturplatte überführt. Zur Bestimmung des Proteingehaltes und der alkalischen Phosphatase (AP)-Aktivität der Zellen wurden nach 7, 14 und 21 Tagen jeweils 4 Probekörper jeder Beschichtungsvariante sowie der Kontrolle entnommen, zweimal mit 1 ml PBS gespült und die Zellen auf den Probekörpern durch Zugabe von jeweils 0,1 ml CytoBusterTM Proteinextraktionsreagenz (Merck Biosciences, Bad Soden, Deutschland) lysiert und von aliquoten Teilen des Lysats der Proteingehalt und die AP-Aktivität bestimmt.
Die Proteinbestimmung wurde als kolorimetrischer Test mit der Mikro-BCA (Bicinchoninic acid)-Methode nach Vorschrift des Herstellers (Perbio Science Deutschland, Bonn, Deutschland) durchgeführt. Die Absorptionsmessung nach der Farbreaktion erfolgte in transparenten 96-well-Platten mit Hilfe eines Multiwellplatten- Photometers Genios Pro (Tecan Deutschland, Crailsheim, Deutschland) bei 565 nm und die Ermittlung der Proteinkonzentration an Hand einer mit Rinderseramalbumin erstellten Eichkurve.
Fig. 1 zeigt die Proteinbildung von Schweineosteoblasten auf Strontium- und Strontium/Calcium-haltigen Oberflächen nach 7, 14 und 21 Tagen im Vergleich zu Calcium-haltigen und zu nichtbeschichteten TiA16V4-Oberflächen.
Die AP-Aktivität wurde als Spaltungsaktivität gegenüber dem Lumineszenzsubstrat CDP-StarTM im alkalischen Milieu gemessen. Dazu wurden 5 μl Zelllysat mit 0,1 ml CDP-Star Ready-to-use Fertigreagenz mit Sapphire II-Enhancer (Applera Deutschland, Darmstadt, Deutschland) in schwarzen 96-well-Platten gemischt (2 Replikate je Zelllysat) und nach 20 min Inkubation bei Raumtemperatur die relative Lumineszenzintensität im Multiwellplatten-Photometer Genios Pro bei 28° C im Lumineszenzmodus gemessen. Die erhaltenen Lumineszenzwerte sind proportional zur AP -Aktivität, auf eine Bestimmung von Absolutwerten wurde verzichtet. Fig. 2 zeigt die AP-Aktivität von Schweineosteoblasten auf Strontium- und Strontium/Calcium-haltigen Oberflächen nach 7, 14 und 21 Tagen im Vergleich zu Calcium-haltigen und zu nicht-beschichteten TiA16V4-Oberflächen.
Messung der Haftfestigkeit:
Zur Ermittlung der Haftfestigkeit der erfindungsgemässen Beschichtungen werden Titanprobekörper in den Abmessungen 2O x 10 x 2 mm (Länge x Breite x Höhe) nach Beispiel 1 beschichtet. Auf die beschichtete Oberfläche der Probekörper werden unter Verwendung eines kalthärtenden Epoxidharzklebstoffes (z. B. Epilox-System der Fa. Leuna Harze GmbH, Leuna, Deutschland) Edelstahlzylinder mit einem Durchmesser von 5 mm aufgeklebt, wobei die Klebefuge ca. 0,1 mm beträgt. In einer Instron- Zugprüfmaschine wurde anschliessend die Klebefestigkeit der aufgeklebten Zylinder ermittelt. Für eine Messung kamen 10 Probekörper zum Einsatz. Unter den gewählten Verklebungsbedingungen erfolgt der Schichtabriss ausschliesslich vom Untergrund der beschichteten Probekörper, so dass die ermittelten Werte die Haftfestigkeit der Beschichtung widerspiegeln.
Es wurde ein Wert für die Haftfestigkeit der Beschichtung von 9,9 MPa ermittelt.
In Figur 3 sind SEM-Aufnahmen der Oberflächen dargestellt. In den Figuren al sowie a2 sind in unterschiedlichen Vergrösserungen die Oberflächen von unbehandelten TiA16V4-Oberflächen gezeigt. Es zeigt sich, dass die Oberfläche im wesentlichen frei von Poren ist.
In den Figuren bl und b2 sind in unterschiedlichen Vergrösserungen die Oberflächen von mit einer erfϊndungsgemässen Beschichtungen (Sr-P) versehenen T1A16V4 Implantaten dargestellt (Verfahren nach Beispiel 1). Es zeigt sich, wie eine spezielle Art der Porenstruktur ausgebildet wird, die sich grundsätzlich von einer Oberflächen- Struktur unterscheidet, wie sie bei einer klassischen elektrochemischen Abscheidung entsteht, und wie sie beispielsweise in der US 2005/0000819 dargestellt ist, und wo das bei einer elektrochemischen Abscheidung erfolgende Kristallwachstum an der Oberflächenstruktur erkennbar bleibt.
In den Figuren cl und c2 sind in unterschiedlichen Vergrösserungen die Oberflächen von mit einer erfindungsgemässen Beschichtung (Ca-Sr-P) versehenen ΗA16V4 Implantaten dargestellt. Auch hier findet man die ganz besondere Oberflächenstruktur, welche sich von einer Oberfläche aus einer klassischen elektrochemischen Abscheidung wesentlich unterscheidet.

Claims

PATENTANSPRÜCHE
1. Verfahren zur Beschichtung eines medizinischen Implantates, insbesondere eines Dentalimplantates auf metallischer Basis, dadurch gekennzeichnet, dass das Implantat wenigstens in einem im implantierten Zustand dem Knochen ausgesetzten Bereich in eine Lösung mit Strontiumionen eingetaucht wird, und die Beschichtung in einer plasmachemischen bevorzugtermassen anodischen Oxidation gebildet wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass es sich um ein Implantat auf Titan-Basis handelt.
3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Lösung zusätzlich Phosphationen enthält, insbesondere bevorzugt in einer Konzentration im Bereich von 0.03 - 0.2 mol/1.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Lösung zusätzlich Calciumionen enthält, insbesondere bevorzugt in einer Konzentration im Bereich von 0.06 - 0.12 mol/1.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Strontiumionen in der Lösung in einer Konzentration im Bereich von 0.01 - 0.03 mol/1, insbesondere bevorzugt im Bereich von 0.01 - 0.02 mol/1, vorgelegt werden.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Implantat anodisch kontaktiert wird, dass zusätzlich eine Edelstahl- Katode in das Bad eingetaucht wird, und mit einem Gleichstrom die Oxidation ausgelöst wird, wobei eine bevorzugtermassen im Laufe der Beschichtungszeit zunehmende Spannung im Bereich von 100-500V insbesondere bevorzugt von 200-300 V angelegt wird.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass gepulster Gleichstrom mit einer Frequenz im Bereich von 0.5-2 kHz bei einem Tastverhältnis von 1 : 2 bis 2: 1 verwendet wird.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Implantat vor der Beschichtung an der Oberfläche strukturiert wird, insbesondere bevorzugt durch eine Strahlbehandlung.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Implantat nach einem oder mehreren Beschichtungsvorgängen mit Wasser, insbesondere bevorzugt destilliertem Wasser gespült und anschliessend getrocknet wird.
10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei der Lösung um eine wässrige Lösung handelt.
11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Beschichtung auf dem Substrat eine Haftfestigkeit von wenigstens 3 MPa, insbesondere bevorzugt von wenigstens 8 MPa aufweist.
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Beschichtung eine poröse Struktur mit einer Porendichte von 104 bis 107 Poren/mm2 und/oder einer durchschnittliche Porengrösse zwischen 0,2 und 5 μm und/oder eine Dicke im Bereich von 0.5-50 μm aufweist.
13. Bioaktive, auf einem Substrat haftende Beschichtung, insbesondere für medizinische Implantate und Dentalimplantate, dadurch gekennzeichnet, dass sie nach einem Verfahren nach einem der vorhergehenden Ansprüche herstellbar oder hergestellt ist.
14. Bioaktive, auf einem Substrat fest haftende Beschichtung, insbesondere für medizinische Implantate und Dentalimplantate, bevorzugtermassen nach Anspruch 13, dadurch gekennzeichnet, dass die Beschichtung Strontiumionen in Form von in wässrigen Medien schwerlöslichen Strontiumverbindungen enthält, der Strontiumgehalt in der Beschichtung 1 bis 50 Atomprozente, insbesondere bevorzugt 5 - 15 Atomprozente beträgt, und die Beschichtung eine poröse
Struktur mit einer Porendichte von 104 bis 107 Poren/mm2 und einer durchschnittliche Porengrösse zwischen 0,2 und 5 μm besitzt.
15. Beschichtung nach einem der Ansprüche 13 oder 14, dadurch gekennzeichnet, dass Strontiumionen in Form eines Strontiumphosphates vorliegen.
16. Beschichtung nach einem der Ansprüche 13-15, dadurch gekennzeichnet, dass sie eine Dicke im Bereich von 0.5-50 μm aufweist.
17. Beschichtung nach einem der Ansprüche 13-16, dadurch gekennzeichnet, dass sie Strontiumphosphat in amorpher oder nanokristalliner Form enthält.
18. Beschichtung nach einem der Ansprüche 13-17, dadurch gekennzeichnet, dass sie Strontiumionen enthält, welche in einer Mischoxid-Struktur, insbesondere einer Mischoxid-Struktur enthaltend Titan und/oder Calcium, insbesondere bevorzugt in einer Perowskit-Struktur der Beschichtung eingebettet sind.
19. Beschichtung nach einem der Ansprüche 10-18, dadurch gekennzeichnet, dass sie einen Anteil von 20 bis 95 Atomprozenten Metalloxid, bestehend aus einem oder mehreren Metallen oder Mischungen unterschiedlicher Metalloxide, enthält.
20. Beschichtung nach Anspruch 19, dadurch gekennzeichnet, dass es sich bei dem Metalloxid um Titandioxid handelt.
21. Substrat, insbesondere Implantat mit einer Beschichtung gemäss einem der Ansprüche 13-20, dadurch gekennzeichnet, dass das Substrat eines der Elemente
Ti, Ta, Nb, Zr, Al, Ca, Mg, V oder deren Legierungen enthält.
22. Substrat nach Anspruch 21, dadurch gekennzeichnet, dass es vollständig oder partiell mit der Beschichtung bedeckt ist.
23. Verwendung der bioaktiven Beschichtung nach einem der Ansprüche 13-20 zur vollständigen oder teilweisen Ausrüstung von metallischen Oberflächen von Implantaten im Medizinal- und Dentalbereich, wobei die metallischen Oberflächen bevorzugt glatt, strukturiert und/oder porös sind.
EP07845634.0A 2006-12-21 2007-12-17 Bioaktive implantatbeschichtung Not-in-force EP2097118B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH21012006 2006-12-21
PCT/CH2007/000637 WO2008074175A2 (de) 2006-12-21 2007-12-17 Bioaktive implantatbeschichtung

Publications (2)

Publication Number Publication Date
EP2097118A2 true EP2097118A2 (de) 2009-09-09
EP2097118B1 EP2097118B1 (de) 2013-09-18

Family

ID=38151631

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07845634.0A Not-in-force EP2097118B1 (de) 2006-12-21 2007-12-17 Bioaktive implantatbeschichtung

Country Status (3)

Country Link
EP (1) EP2097118B1 (de)
ES (1) ES2435433T3 (de)
WO (1) WO2008074175A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114686881A (zh) * 2022-03-24 2022-07-01 西安交通大学 一种基于离子缓释及保型性设计的高结合强度涂层及其制备方法和应用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2179752B1 (de) 2008-10-06 2014-08-13 Biotronik VI Patent AG Implantat sowie Verfahren zur Herstellung desselben
DE102012021003B4 (de) 2012-10-26 2015-02-12 Otto Bock Healthcare Products Gmbh Perkutanes lmplantat und Verfahren zum Herstellen eines solchen lmplantates
CN108042846B (zh) * 2018-01-15 2020-11-24 陕西科技大学 一种锶掺杂钽氧化物纳米棒结构生物活性涂层的制备方法
CN112679780B (zh) * 2020-12-09 2023-04-07 中国科学院宁波材料技术与工程研究所慈溪生物医学工程研究所 一种复合材料及其制备方法、应用
CN114984317B (zh) * 2022-06-06 2023-07-18 北京大清西格科技有限公司 一种掺锶镁生物活性涂层结构的钛材料的制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD246028A1 (de) 1986-02-12 1987-05-27 Karl Marx Stadt Tech Hochschul Keramisiertes metallimplantat
US5205921A (en) 1991-02-04 1993-04-27 Queen's University At Kingston Method for depositing bioactive coatings on conductive substrates
DE4139006C3 (de) 1991-11-27 2003-07-10 Electro Chem Eng Gmbh Verfahren zur Erzeugung von Oxidkeramikschichten auf sperrschichtbildenden Metallen und auf diese Weise erzeugte Gegenstände aus Aluminium, Magnesium, Titan oder deren Legierungen mit einer Oxidkeramikschicht
US5478237A (en) 1992-02-14 1995-12-26 Nikon Corporation Implant and method of making the same
CA2442582C (en) * 2001-04-02 2011-01-04 Stratec Medical Ag Bioactive surface layer, particularly for medical implants and prostheses
US6974532B2 (en) 2003-05-01 2005-12-13 New York University Method for producing adherent coatings of calcium phosphate phases on titanium and titanium alloy substrates by electrochemical deposition
DE102004021739B4 (de) * 2004-04-30 2007-11-22 Heraeus Kulzer Gmbh Metallimplantat mit Oberflächenbeschichtung
US20060229715A1 (en) 2005-03-29 2006-10-12 Sdgi Holdings, Inc. Implants incorporating nanotubes and methods for producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008074175A2 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114686881A (zh) * 2022-03-24 2022-07-01 西安交通大学 一种基于离子缓释及保型性设计的高结合强度涂层及其制备方法和应用

Also Published As

Publication number Publication date
WO2008074175A2 (de) 2008-06-26
ES2435433T3 (es) 2013-12-19
EP2097118B1 (de) 2013-09-18
WO2008074175A3 (de) 2009-03-26

Similar Documents

Publication Publication Date Title
EP2004248B1 (de) Bio-auflösende salzbeschichtungen von implantaten zum schutz vor organischen verunreinigungen
EP1166804B1 (de) Knochenanaloge Beschichtung für metallische Implantatmaterialien
EP0222853B1 (de) Implantatkörper mit beschichtung
EP1982007B1 (de) Verfahren zur herstellung eines metallkörpers sowie metallkörper
DE112007003309B4 (de) Knochenimplantat sowie Set zur Herstellung von Knochenimplantaten und seine Verwendung
EP2097118B1 (de) Bioaktive implantatbeschichtung
EP2224970B1 (de) Implantat und verfahren zur beschichtung eines implantats
WO2002078759A1 (de) Bioaktive oberflächenschicht, insbesondere für medizinische implantate und prothesen
EP1940482B1 (de) Implantat enthaltend amino-bisphosphonate und verfahren zu dessen herstellung
CH695985A5 (de) Oberflächenmodifizierte Implantate.
EP2237808A2 (de) Offenporige biokompatible oberflächenschicht für ein implantat, verfahren zur herstellung und verwendung
EP2323705B1 (de) Implantat und verfahren zu seiner herstellung sowie deren verwendung
DE102008046197B3 (de) Degradierbares Implantat und Verfahren zu seiner Herstellung sowie deren Verwendung
DE102004044102B4 (de) Implantat zur Behandlung von osteochondralen Defekten, sowie Verfahren zu dessen Herstellung
EP2617439B1 (de) Antibakterielle und osteoinduktive implantatbeschichtung, verfahren zur herstellung einer solchen beschichtung sowie damit beschichtetes implantat
EP1301220A1 (de) Elektrochemisch abgeschiedene, bioaktive calciumphosphat-kompositschichten auf implantaten
DE10158302A1 (de) Beschichtung von implantierbaren Metallkörpern mit bioaktiven Materialien
DE102004016065B3 (de) Knochenersatzmittel
EP1293219A1 (de) Biomedizinisches Erzeugnis mit einem eine Nickel-Titan-Legierung enthaltenden Substrat und einer Calciumphosphat enthaltenden überdeckenden Schicht
Ha et al. Biokompatible Keramische Werkstoffe
Wintermantel et al. Keramische Werkstoffe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090603

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHMIDT, JUERGEN

Inventor name: SCHNABELRAUCH, MATTHIAS

Inventor name: WEISSER, JUERGEN

Inventor name: KAUTZ, ARMIN REX

Inventor name: SCHLOTTIG, FALKO

Inventor name: BAYER, ULRICH

Inventor name: HENNING, ANGELIKA

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20110812

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502007012314

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: A61L0027300000

Ipc: A61F0002300000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130503

RIC1 Information provided on ipc code assigned before grant

Ipc: A61F 2/30 20060101AFI20130422BHEP

Ipc: A61C 8/00 20060101ALI20130422BHEP

Ipc: A61L 27/54 20060101ALI20130422BHEP

Ipc: A61L 27/30 20060101ALI20130422BHEP

Ipc: A61L 27/06 20060101ALI20130422BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 632321

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131015

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER AND PEDRAZZINI AG, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007012314

Country of ref document: DE

Effective date: 20131114

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2435433

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20131219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130918

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140118

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007012314

Country of ref document: DE

BERE Be: lapsed

Owner name: THOMMEN MEDICAL A.G.

Effective date: 20131231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140120

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140619

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131217

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007012314

Country of ref document: DE

Effective date: 20140619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131218

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 632321

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20071217

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130918

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191210

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20191220

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20191211

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200121

Year of fee payment: 13

Ref country code: IT

Payment date: 20191227

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007012314

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201217

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210701

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201218