EP2237808A2 - Offenporige biokompatible oberflächenschicht für ein implantat, verfahren zur herstellung und verwendung - Google Patents

Offenporige biokompatible oberflächenschicht für ein implantat, verfahren zur herstellung und verwendung

Info

Publication number
EP2237808A2
EP2237808A2 EP09707895A EP09707895A EP2237808A2 EP 2237808 A2 EP2237808 A2 EP 2237808A2 EP 09707895 A EP09707895 A EP 09707895A EP 09707895 A EP09707895 A EP 09707895A EP 2237808 A2 EP2237808 A2 EP 2237808A2
Authority
EP
European Patent Office
Prior art keywords
surface layer
implant
range
framework structure
pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09707895A
Other languages
English (en)
French (fr)
Inventor
Hans Schmotzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Smith and Nephew Orthopaedics AG
Original Assignee
Smith and Nephew Orthopaedics AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smith and Nephew Orthopaedics AG filed Critical Smith and Nephew Orthopaedics AG
Publication of EP2237808A2 publication Critical patent/EP2237808A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0012Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • A61L27/306Other specific inorganic materials not covered by A61L27/303 - A61L27/32
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/34Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/34Acetabular cups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/38Joints for elbows or knees
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/42Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes
    • A61F2/4225Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes for feet, e.g. toes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/42Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes
    • A61F2/4241Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes for hands, e.g. fingers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/30004Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis
    • A61F2002/30011Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis differing in porosity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/30062(bio)absorbable, biodegradable, bioerodable, (bio)resorbable, resorptive
    • A61F2002/30064Coating or prosthesis-covering structure made of biodegradable material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/30065Properties of materials and coating materials thermoplastic, i.e. softening or fusing when heated, and hardening and becoming rigid again when cooled
    • A61F2002/30067Coating or prosthesis-covering structure made of thermoplastic material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30838Microstructures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/3084Nanostructures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30907Nets or sleeves applied to surface of prostheses or in cement
    • A61F2002/30909Nets
    • A61F2002/30911Nets having a honeycomb structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/3092Special external or bone-contacting surface, e.g. coating for improving bone ingrowth having an open-celled or open-pored structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/30929Special external or bone-contacting surface, e.g. coating for improving bone ingrowth having at least two superposed coatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/3093Special external or bone-contacting surface, e.g. coating for improving bone ingrowth for promoting ingrowth of bone tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2002/30968Sintering
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2002/30971Laminates, i.e. layered products
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0023Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in porosity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00395Coating or prosthesis-covering structure made of metals or of alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00395Coating or prosthesis-covering structure made of metals or of alloys
    • A61F2310/00401Coating made of iron, of stainless steel or of other Fe-based alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00395Coating or prosthesis-covering structure made of metals or of alloys
    • A61F2310/00407Coating made of titanium or of Ti-based alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00395Coating or prosthesis-covering structure made of metals or of alloys
    • A61F2310/00413Coating made of cobalt or of Co-based alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00395Coating or prosthesis-covering structure made of metals or of alloys
    • A61F2310/00419Other metals
    • A61F2310/00425Coating made of magnesium or of Mg-based alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00395Coating or prosthesis-covering structure made of metals or of alloys
    • A61F2310/00419Other metals
    • A61F2310/00437Coating made of silicon or Si-based alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00395Coating or prosthesis-covering structure made of metals or of alloys
    • A61F2310/00419Other metals
    • A61F2310/00485Coating made of zirconium or Zr-based alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00395Coating or prosthesis-covering structure made of metals or of alloys
    • A61F2310/00419Other metals
    • A61F2310/00544Coating made of tantalum or Ta-based alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00395Coating or prosthesis-covering structure made of metals or of alloys
    • A61F2310/00419Other metals
    • A61F2310/00562Coating made of platinum or Pt-based alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00592Coating or prosthesis-covering structure made of ceramics or of ceramic-like compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00592Coating or prosthesis-covering structure made of ceramics or of ceramic-like compounds
    • A61F2310/00598Coating or prosthesis-covering structure made of compounds based on metal oxides or hydroxides
    • A61F2310/00604Coating made of aluminium oxide or hydroxides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00592Coating or prosthesis-covering structure made of ceramics or of ceramic-like compounds
    • A61F2310/00598Coating or prosthesis-covering structure made of compounds based on metal oxides or hydroxides
    • A61F2310/0061Coating made of silicon oxide or hydroxides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00592Coating or prosthesis-covering structure made of ceramics or of ceramic-like compounds
    • A61F2310/00598Coating or prosthesis-covering structure made of compounds based on metal oxides or hydroxides
    • A61F2310/00634Coating made of zirconium oxide or hydroxides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00592Coating or prosthesis-covering structure made of ceramics or of ceramic-like compounds
    • A61F2310/00796Coating or prosthesis-covering structure made of a phosphorus-containing compound, e.g. hydroxy(l)apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00592Coating or prosthesis-covering structure made of ceramics or of ceramic-like compounds
    • A61F2310/00856Coating or prosthesis-covering structure made of compounds based on metal nitrides
    • A61F2310/00874Coating made of silicon nitride
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/0097Coating or prosthesis-covering structure made of pharmaceutical products, e.g. antibiotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00976Coating or prosthesis-covering structure made of proteins or of polypeptides, e.g. of bone morphogenic proteins BMP or of transforming growth factors TGF
    • A61F2310/00982Coating made of collagen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00976Coating or prosthesis-covering structure made of proteins or of polypeptides, e.g. of bone morphogenic proteins BMP or of transforming growth factors TGF
    • A61F2310/00994Coating made of gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents
    • A61L2300/414Growth factors

Definitions

  • the invention relates to an open-pore biocompatible surface layer for an implant according to the preamble of patent claim 1, an implant according to the preamble of patent claim 2 and a method for producing an open-pore biocompatible surface layer for or as an implant according to the preamble of patent claim 18, an implant with or from such a surface layer according to the preamble of patent claim 23 and a use of the surface layer for implants according to the preamble of patent claim 24.
  • Implants and especially joint and bone replacement implants are becoming increasingly important in restorative and curative medicine.
  • joint or bone replacement implants these are cemented cementlessly in the bone according to the current state of the art.
  • a key factor in the success of such cementless anchoring of a metallic orthopedic implant to or in a bone is the rate at which bone tissue bonds to the implant. This speed is critically dependent on the type and structuring of the surface of the metallic implant. For this reason, such surfaces have in the past been provided with a predefined surface roughness, optionally additionally having a bioactive coating applied to the metal substrate of the metallic orthopedic implant.
  • Porous layers, in particular open-porous structures, which have a pore size which allows ingrowth of bone tissue into these, usually metallic, structures have hitherto proven suitable for producing such surface layers which promote the growth of bone cells.
  • porous structures have a thickness in the range of 1 mm or more in current joint and bone replacement implants. Such a thickness is necessary and useful with regard to a good and stable connection between bone and implant, but is problematic in that a good connection between implant and bone is only guaranteed if the porous structure is at least predominantly, but preferably completely, is crossed by ingrown bone tissue. Due to the high thickness of the porous structure, it is therefore essential in terms of achieving a good and stable connection between implant and bone that a ingrowth of bone tissue in the porous structure as quickly as possible take place so that contact between bone cells and porous structure possible forms quickly and comprehensively and stabilizes the connection between implant and bone in this way.
  • the ingrowth of bone into an open-porous structure represents a multi-step process in which bone cells together with blood vessels for nutrient and oxygen supply to the bone cells and the later bone in the pores of the open-porous structure must immigrate to the largest possible and stable connection of the bone cells and the later bone with the pores, respectively, to ensure the particular inner surface of the open-pore structure and thus the implant.
  • an important aspect of ingrowing bone cells into a porous structure is the fact that bone cells can not migrate directly into an empty cavity, but always require a surface in the form of a substrate or matrix to which they adhere and along which they are divide and "move" in this way.
  • bone tissue ingrowth-promoting surfaces have been provided in the form of porous surfaces which were either uncoated or provided with a thin surface coating which typically contained calcium phosphate.
  • the pores were so large in relation to bone cells that, although a lengthening of the bone cells along the pore matrix, ie their inner surface, took place, but the pores over a geraumen period hollow and vacancies that were not filled with bone tissue, since the bone was very slowly from the wall regions of the pores in the direction of pore cavity.
  • this had the disadvantage that the bone on the implant or pore surface formed only a thin layer whose, in particular mechanical, stability was low, so that the connection between the implant and bone was not allowed or only extremely cautious , Only with complete ingrowth of the bone into the entire pore cavities, the latter being filled up with bone tissue, a stable and reliable connection between bone and implant was formed.
  • a coating of the implant with hydroxyapatite which was preferably applied by means of plasma spraying, was often performed.
  • a disadvantage of this method is that the pores of the implant layer starting only from the implant surface and only superficially can be coated with hydroxyapatite and the coating often does not reach to the bottom of the pore. Rather, there is the risk that the pores are clogged at the opening side when using this method, so that the pore bottom is no longer accessible for a coating.
  • such a hydroxyapatite coating has a low solubility under physiological conditions so that bone cells can not penetrate into deeper layers of the coating and can not fully penetrate into the hydroxyapatite coating.
  • a significant disadvantage of the method there is, inter alia, that only a coating of pores is possible, which extends from the implant surface substantially perpendicular to this extend.
  • a coating of transverse pores in a three-dimensional pore network is not possible with this plasma spray coating method, so that a further disadvantage of the local method is that at best a bone growth to a joint replacement implant, but no actual bone ingrowth into a three-dimensional pore structure of an implant , as described for example in WO 2007/051519, is possible.
  • the object of the invention is to provide an open-pore biocompatible surface layer having a three-dimensional pore structure into which a rapid and space-filling ingrowth of osteoblasts is possible, as well as the provision of a method for producing such an open-pored biocompatible surface layer. Furthermore, it is the object of the invention to provide an implant with or consisting of such a surface layer as well as its use for implants.
  • the object is achieved by an open-pored biocompatible surface layer, wherein pores of the surface layer are at least partially, preferably at least 30% and particularly preferably completely filled with a filling material.
  • this open-pored biocompatible surface layer is arranged on a raw surface of a substrate that is present as an implant or as an implant blank.
  • the open-pore biocompatible surface layer is self-supporting and forms the implant itself without the need for a substrate.
  • the latter variant is particularly advantageous when the implant is not intended to carry out any essential supporting function but, for example, a filling and / or stabilizing and / or connecting function.
  • the open-pored surface layer can be formed entirely from a metal foam or have a metal foam.
  • Such an embodiment is particularly advantageous in the case of a self-supporting structure of the open-pore biocompatible surface layer.
  • the filling material is soluble under physiological conditions and / or, in particular by migrating osteoblasts, resorbable and preferably bioactive.
  • the essential essence of the invention is that by a filling of, in an open-pore biocompatible surface layer of an implant, existing pores with a filling material, the free pore volume of the pores in the surface layer is reduced, wherein the filler in turn preferably has a bioactivity and preferably by ingrowing osteoblasts and from these resulting bone tissue at least partially, preferably for the most part, can be absorbed.
  • the filling material in turn has a micro- and nano-pore structure and / or a three-dimensional matrix structure into which ingrowth and migration of osteoblasts is possible.
  • micro- and nano-pores The free cross-section of these micro- and nano-pores is reduced by a factor in the range of 100 to 10,000 compared to the cross-section of the pores of the surface layer, so that in these micro- and nanopores ingrowing cells, for example osteoblasts, which receive the filler present there and / or Due to the small internal volume and the larger inner surface of the micro- and nanopores, these micro- and nanopores can be filled almost completely within a few days to weeks.
  • micropores and nanopores in the context of this invention, a three-dimensional matrix, for example in the form of a gel or in the form of a preferably surface-rich leaf, mesh or honeycomb structure, such as this example in a Silica gel, a pebble xerogel or silica sol as well as in silica hydrosols present.
  • the osteoblasts can migrate into this three-dimensional matrix or into the micropore space of the filling material and adhere and grow to solid constituents of the filling material.
  • a filling of the pore space of the surface layer emanates not only from a wall of pores of the surface layer, but also from the first empty according to the prior art space within the originally free, respectively empty pore volume of the surface layer pores, now However, according to the invention filled with the aforementioned bioactive and preferably resorbable filling material.
  • the pores of the open-pored surface layer are connected to form a coherent three-dimensional pore network, wherein the surface layer is formed as a framework structure and at least a plurality of pores via at least one lateral opening formed in a lateral boundary of the pore is, channel and / or tunnel-like communicate with each other in communication.
  • Such a framework structure has proven to be particularly advantageous, since a particularly firm connection between the bone tissue and the framework structure and thus also the implant on which the framework structure is formed can be achieved by ingrowth of bone tissue into such a framework structure.
  • a particularly firm connection between the bone tissue and the framework structure and thus also the implant on which the framework structure is formed can be achieved by ingrowth of bone tissue into such a framework structure.
  • tunnel-like interconnected pores takes place a mutual enclosure of skeletal structure material and bone tissue, so that such a compound can be claimed not only on pressure, but excellently on train without the bone cells detach from the implant surface, as a in the surface layer of ingrown bone tissue can completely penetrate the pore network and in this way builds up a bone structure which extends through the pore network and also runs within the surface layer or the framework structure.
  • the ingrowing bone tissue traverses and undermines the surface of the surface layer or the contiguous pore network in a manner which ensures an intimate connection of the surface layer with the bone tissue and prevents detachment of the bone tissue from the surface layer, for example under tensile load.
  • the thickness of the surface layer or the framework structure according to the invention is in the range of 0.1 mm to 2.5 mm, preferably in the range of 0.3 mm to 1.9 mm and particularly preferably in the range of 0.5 mm to 1.5 mm.
  • the porosity of the surface layer, or framework structure is in the range of 20% to 70%, preferably in the range of 30% to 60%, and more preferably in the range of 40% to 50%, it being understood that the porosity is within the Surface layer is formed substantially homogeneously, so that takes place within the entire surface layer, a uniform intergrowth of bone tissue with the framework structure of the surface layer.
  • the maximum cross section of the pores of the surface layer is in the range from 10 .mu.m to 800 .mu.m, preferably in the range from 50 .mu.m to 600 .mu.m and more preferably in the range from 100 .mu.m to 300 .mu.m, the size of the pore cross section or the respective free volume of a pore according to an embodiment of the invention is approximately equally distributed within the surface layer.
  • a pore volume gradient can also be provided in the opposite direction.
  • the surface layer namely the framework structure, consists of a material that is not absorbable or absorbs slowly under physiological conditions, namely a metal and / or a ceramic and / or a polymer.
  • the implant can be adapted to the respective intended use, for example with regard to the type of implant.
  • a femoral component which is usually subjected to a very high load, have a framework structure made of a metal
  • a finger joint replacement may have a framework structure of ceramic and a component for a disc replacement a framework structure of a polymer.
  • an implant can be individually adapted to a purpose, wherein a metal, for example, has a very high stability and toughness, while a ceramic can be lightweight, but very hard, and a framework structure of a polymer can have some flexibility.
  • the framework structure or the surface layer is formed of preferably edged metal particles, titanium being the preferred material.
  • titanium particles are coated or bonded according to the invention with silicon particles, wherein silicon particles, for example by a superficial melting of the titanium particles may be compounded with these.
  • the amount of silicon particles used for coating ranges from 0.5% to 8.5% by weight ⁇ 1.5% by weight, preferably 0.5% to 3.0% Wt .-% and particularly preferably 1.0 wt .-% ⁇ 0.5 wt .-%.
  • a titanium powder whose particles have a particle size in the range from 90 ⁇ m to ⁇ 500 ⁇ m, preferably in the range from 150 ⁇ m to ⁇ 300 ⁇ m, is preferably used as the titanium particle.
  • the silicon particles used are preferably silicon powder having a particle size of ⁇ 80 ⁇ m, preferably ⁇ 40 ⁇ m and particularly preferably ⁇ 20 ⁇ m, so that titanium particles coated with silicon particles are present as compound particles having an axial ratio of ⁇ 5: 2.
  • a particle size distribution measured in percent by volume with respect to particle size in accordance with ISO / DIS 13322-1 is given in the following table:
  • coated with silicon particles titanium particles which are present as compound particles, have a particle size of ⁇ 90 microns, preferably ⁇ 150 microns, wherein the above-defined particle size distribution is maintained.
  • an intermediate layer is provided between the raw surface of the implant and the surface layer.
  • Such an intermediate layer is useful, for example, if the base material of the substrate to be coated is not suitable directly for a coating by means of vacuum plasma spraying, such as a polymer or a ceramic, or an extremely high strength is required, depending on the respective Can apply application.
  • the raw surface of the implant can first be coated with a dense base layer, which preferably consists of a bio-inert material, which is preferably a metal.
  • a metal is due to its bioinert properties and its very high strength and its low specific gravity titanium preferred. However, it is also silicon or compounded with silicon titanium into consideration.
  • Other bioinert metals, such as tantalum, platinum, or other biocompatible metals are also useful as basecoat materials, as in the following for the preparation of frameworks called metals.
  • the metal used to make the framework structure may be titanium alloys.
  • the metal used to make the framework structure may be titanium alloys.
  • stainless steel in particular stainless steel, magnesium and / or alloys thereof, zirconium and / or alloys thereof, tantalum and / or alloys thereof, and mixtures and alloys of all of the aforementioned metals into consideration ,
  • the framework structure is to be made of a ceramic, it is preferably selected from the group comprising alumina and zirconia, alumina-reinforced zirconia, zirconia-reinforced alumina and silicon nitride being materials suitable according to the invention. Further, additives may be added to these metal oxides. In addition, the ceramic can also be made of a mixture of these oxides.
  • the framework structure is made of a polymer, this is selected from the group comprising polyetheretherketone (s) (PEEK), polyaryletherketone (s) (PAEK), polyimide (s) (PI), polyurethane (s) (PU), polycarbonate urethane (e) (PCU), polyetherimide (s) (PEI), polyethylene, especially ultra-high molecular weight polyethylene (UHMWPE), preferably crosslinked UHMWPE, polypropylene, and mixtures of these polymers.
  • PEEK polyetheretherketone
  • PAEK polyaryletherketone
  • PI polyimide
  • PU polyurethane
  • PCU polycarbonate urethane
  • PEI polyetherimide
  • polyethylene especially ultra-high molecular weight polyethylene (UHMWPE), preferably crosslinked UHMWPE, polypropylene, and mixtures of these polymers.
  • UHMWPE ultra-high molecular weight polyethylene
  • an intermediate layer is provided which is provided between the raw surface of the implant and the surface layer, ie the framework structure.
  • the intermediate layer is preferably made of titanium and has silicon; However, it can also consist of all other aforementioned metals or their alloys.
  • the intermediate layer has a layer thickness of ⁇ 200 .mu.m, preferably of ⁇ 100 .mu.m and particularly preferably in the range of 30 .mu.m to 50 .mu.m.
  • the implant blank consists of one of the abovementioned metals, wherein, in particular, the raw surface of the implant blank has titanium and / or zirconium and / or alloys of these two metals.
  • Another alloy from which the raw surface of the implant can be made is a biocompatible cobalt-based alloy.
  • the materials mentioned in the last section are characterized by a very high stability and good biocompatibility, so that they are predestined for use under physiological conditions.
  • the following substances are provided according to the invention as filling material for filling in the pores of the surface layer or the framework structure: calcium phosphate, in particular hydroxylapatite and / or tricalcium phosphate, creschite (CaHPO 4 .2H 2 O), calcium sulfate, silicon oxide, in particular in the form of silica gel, preferably pebble xerogel, titanium oxide, gelatin, collagen, extracellular matrix proteins, growth factor (s), bone-forming protein (s), hydrogel (s), substance (s) having antibiotic activity and mixtures of the aforementioned substances.
  • the particle size of the optionally crystalline substances used as filling material is in the range of 0.005 ⁇ m to 50 ⁇ m, preferably in the range of 0.01 ⁇ m to 5 ⁇ m and particularly preferably in the range of 30 nm to 100 nm.
  • these substances can preferably be applied to the framework structure by precipitation or by electrophoresis using a sol-gel process with a water-based and / or silicate-based binder, preferably also in the form of a dip bath, and, if desired, into the pores of the framework structure are filled, with respect to the type of application is no restriction, as long as a filling of the pores at least partially, preferably at least 80% and particularly preferably completely guaranteed.
  • the filling material introduced into the pores of the framework structure has micropores having an average free micropore cross section in the range of 0.1 nm to 100 ⁇ m, preferably in the range of 0.3 nm to 30 nm.
  • the surface layer or the framework structure can be produced in different ways; it should be emphasized, however, that depositing titanium particles by means of a vacuum plasma spraying method on a raw surface of the implant is preferred for generating the framework structure on the implant. Since the framework structure in this case is composed of individual interconnected metal particles, a variation of the type and size or dimensioning of the metal particles to each desired properties of the implant is well adaptable, since the particles are applied in layers and over a thermal process in regions, in particular pointwise, be connected to each other.
  • the object is achieved by a method for producing an open-pored biocompatible surface layer for an implant, in particular joint and / or Bone replacement implant, as well as solved by a method for producing an implant consisting of such an open-pore biocompatible surface layer, wherein the following steps are carried out:
  • step a) that is to say the production of an open-pored biocompatible surface layer in the form of a framework structure
  • step a is carried out by means of a vacuum plasma spraying method in which metal particles, preferably titanium particles, are applied to the raw surface of an implant blank, optionally directly above the raw surface of the implant
  • an intermediate layer preferably from one of the aforementioned metals, such as titanium, which is optionally provided with silicon, may be applied and thus not directly the raw surface of the implant blank, but the intermediate layer attached thereto is coated with the titanium particles.
  • These metal particles used for producing the skeleton structure preferably have a sintering aid which forms an alloy with the respective metal which melts at a lower temperature than the pure metal used in each case.
  • These metal particles are then applied, preferably by means of a vacuum plasma spraying method, to the raw surface of the implant or to the intermediate layer arranged on the raw surface of the implant for producing the framework structure.
  • a PVD (physical vapor deposition) method and / or a CVD (chemical vapor deposition) method can also be used to produce the framework structure, preferably metallic substances on the raw surface of the implant blank or on the intermediate layer applied thereon deposit.
  • the latter two methods are particularly suitable for deposition of metallic substances on an existing framework made of a ceramic or a plastic.
  • these two methods are also suitable to coat a framework of a metal structure.
  • the open-pore biocompatible surface layer is treated in the form of a scaffold structure by means of an arc which occurs between the raw surface of the implant blank and / or an intermediate layer on the implant blank and / or the framework structure on the implant blank, and a counter electrode is generated during and / or after application of metal, in particular titanium and / or compound particles.
  • the arc between the raw surface of the implant, or a surface layer located on the implant and a counter electrode can be applied directly to the implant during the application of the titanium and / or compound particles; Alternatively, however, the arc can also be applied after application of the titanium or compound particles. Another alternative is to use the arc process during and after application of the titanium and / or compound particles.
  • a second circuit between a Plasmatron, respectively the plasma gun, and the component are switched, so that via the electrical conductive plasma a transmitted arc can be adjusted. It is also possible to generate the arc, not to produce it from the plasmatron or the spray gun, but by means of a provided counter electrode.
  • the use of an arc during or after the application of titanium or compound particles on a raw surface of an implant has the significant advantage of a JouPschen heating high resistance resistances, ie in this case at the contact points between the titanium or compound grains, respectively - on particles because these are constricted areas and thus an increased electrical resistance.
  • a JouPschen heating high resistance resistances ie in this case at the contact points between the titanium or compound grains, respectively - on particles because these are constricted areas and thus an increased electrical resistance.
  • Tensile layer of the sintering aid to the thus coated titanium particles is a higher ohmic resistance, as the titanium particles themselves, so that here Joule heat is produced, resulting in a limited local only to the points of contact of the grains heating, especially in the coating layer, through which the sintering necks connecting the particles are reinforced.
  • this heat released on the spot leads to additional local sintering and thereby to reinforcement of sintered necks between the titanium granules, without at the same time causing sintering and / or smoothening of the remaining regions of the particles and of the substrate surface.
  • This advantageous effect causes in the coating a strong increase of their shear strength by a factor of 2 to 3 compared to the same coating parameters in the production, but without transferred arc.
  • the joint use of a sintering aid and a transferred arc can achieve a six- to seven-fold increased shear strength compared to a pure, open-pored titanium layer.
  • the arc is understood to be any type of energy action, in particular electrical, by means of which a JouFscher thermal effect can be achieved at narrowed points.
  • a major advantage of using an arc is that this immediately during the application of Titan13. Compound particles can be applied, so that the coating process ultimately runs in one stage and requires no additional process step, although a subsequent reinforcement of the sintering necks through the use of an arc is conceivable.
  • the part of the contact resistance which is due to the sintering aid, can be influenced by the choice of Sinterangesffens and the thickness thereof according to the invention, so that a targeted very high solidification of the open-pore surface layer can be achieved with a contiguous pore network
  • Silicon or cobalt are preferably used according to the invention as sintering aid, if titanium is used as the material for producing the framework structure, silicon particles preferably containing silicon particles in an amount in the range from 0.5% by weight to 8.5% by weight. % ⁇ 1.5 wt%, preferably 0.5 wt% to 3.0 wt%, and more preferably 1.0 wt% ⁇ 0.5 wt%.
  • the silicon particles used are silicon powder having a particle size ⁇ 80 ⁇ m, preferably ⁇ 40 ⁇ m and particularly preferably ⁇ 20 ⁇ m. With regard to the particle size distribution, reference is made to the above statements.
  • the titanium particles are coated with silicon particles in such a way that the coated titanium particles, which are now referred to as compound particles, have a particle size ⁇ 90 ⁇ m, preferably ⁇ 150 ⁇ m, again taking into account the predefined particle size distribution.
  • titanium particles Because of these size ratios, it is possible to coat the titanium particles with silicon particles and thus to provide a high surface area which, in the event of subsequent melting during a vacuum plasma coating process, for bonding particles or for connecting particles to a substrate is available. Furthermore, it is possible to coat titanium particles with silicon particles in compliance with the abovementioned particle sizes so that an edged periphery of the coated titanium particles, ie the compound particles, is substantially retained and the compound particles have an axial ratio of ⁇ 5: 2.
  • the vacuum plasma injection process parameters are adjusted so that the compound particles are only superficially melted and compacted when hitting the raw surface of the implant, respectively on the intermediate layer, if present, only slightly, so that their original geometry, in particular with respect to the axial ratio , largely preserved.
  • the angular particles which impinge on a substrate surface to form a structure which is connected to each other substantially only over points and edges of the individual angular particles, so that a kind of cage is created in the form of a framework structure. from which the contiguous pore network is formed and through whose cavities bone substance can grow and grow.
  • the raw surface of the implant prior to a coating process with compound particles having a base layer i. H. is coated with an intermediate layer, which may be formed depending on the base material of a raw implant body and preferably made of pure titanium and / or silicon-coated titanium.
  • the application of the intermediate layer takes place in the same vacuum plasma spray coating process as the application of the actual surface layer, with the self-explanatory application of the intermediate layer before the surface layer is applied.
  • the base or intermediate layer is produced with a layer thickness of ⁇ 200 ⁇ m, preferably of ⁇ 100 ⁇ m, and particularly preferably in the range of 30 ⁇ m to 50 ⁇ m.
  • a surface layer or three-dimensional open-porous framework structure produced according to the above statements on preferably metallic implant materials brings three major advantages, which consist on the one hand that the micro roughness of the surface structure produced stimulating effect on ingrowing bone tissue. Furthermore, a macroroughness and the open-pored framework structure itself ensure a very good bond between ingrown bone and implant material, and moreover, the material thickness of the surface layer, respectively the framework structure, provides an optimally suitable thickness which is optimized as an integration zone for the ingrowth of bone material and a firm, resilient and secure hold of the bone on the implant, respectively, vice versa, ensures.
  • step b) is carried out by immersing the framework structure in a bath, preferably a sol bath, which contains the substances which serve as filling material for filling the pores of the surface layer. These substances are either dissolved in the bath and / or, preferably homogeneously, dispersed. In this way, a filling of the pores of the surface layer or the framework structure with the filler materials is easily possible because they can penetrate together with the liquid bath medium in the pores and cavities of the framework structure.
  • substances which are selected from a group comprising: calcium phosphate, in particular hydroxylapatite and / or tricalcium phosphate, calcium sulfate, silicon oxide, in particular in the form of silica gel, preferably pebble xerogel , Titanium oxide, gelatin, collagen, extracellular matrix proteins, growth factor (s), bone-forming protein (s), hydrogel (s), substance (s) with antibiotic activity, optionally pharmacologically active substances, in particular inflammatory and / or or analgesic substances, as well as mixtures of the aforementioned substances.
  • this liquid matrix can penetrate the pores of the surface layer or the framework structure well and completely so that for filling the pores of the surface layer or the framework structure only a it is necessary to immerse the surface layer or the framework structure or the entire implant in the bath containing the filler substance baths.
  • the penetration of the silica-hydroxyapatite matrix together with the filler substances into the pores of the surface layer or the framework structure can be assisted by auxiliary measures known from the prior art, which can be mechanical and / or electrical in nature. It is also conceivable that surface tension reducing agents are used to achieve, as far as possible, complete and rapid filling of the pores.
  • the SoI i. in particular the silica-hydroxyapatite matrix, which is present in the form of a mixture, heat-treated and dried, the silica initially solidifying to a gel in which the disperse silicas are arranged net, leaf or honeycomb with a surface-rich structure and by another Drying to a xerogel solidifies.
  • this xerogel possesses micro- and nano-pores, which favor bone cell ingrowth and ingrowth, and provide good support due to the large surface area of the micropores.
  • filler materials are not exhaustive at this point, but it should be emphasized that substances which are suitable, bone ingrowth and growth, as well as optional adjuvants and additives, may also be used as filler materials, with a selection of those to be used Substances and their respective concentration in the silica hydroxyapatite matrix, depending on the condition of the bone, in particular bone type and bone age, can be varied.
  • these Sleeping material substances are at least partially replaced, preferably for the most part, by this bone substance, so that in the optimal final state only more bone substance is present within the pore volume of the surface layer or the framework structure after the filling substance substances have been dissolved and / or absorbed and rebuilt by the bone cells and / or were taken up or removed via blood vessels also ingrown into the framework structure.
  • an implant in particular joint replacement implant, which has a surface layer corresponding to the above specification and / or is produced by a method according to one of claims 14 to 18.
  • the object according to the invention is achieved by the use of a surface layer according to the above specification and / or the aforementioned manufacturing method, wherein the surface layer for hip shanks, shells for hip joints, femoral components for a knee replacement, tibial components for a knee replacement, components for a shoulder joint replacement, components for an elbow joint replacement, components for a toe joint replacement, components for a finger joint replacement, for a component for fusion of vertebrae of the lumbar spine, for components for a disc replacement, transgingival implant systems, for orthodontic implant systems and tooth replacement implants is suitable.
  • the surface layer according to the invention with its filled with filling pores for the above-mentioned areas of application in a very good manner, since a cementless anchoring of bone to the implants due to the excellent properties of the surface layer according to the invention, Namely, due to the micropores present in the filling material, is ensured, which ensure an optimized ingrowth and growth of bone on the surface layer and thus on the implant.
  • edged titanium powder produced via the hydride stage it is compounded in a first step with a small amount of a fine silicon powder.
  • the titanium powder has a particle size of less than 350 microns and the silicon powder such a maximum of 65 microns.
  • the resulting spray powder or the resulting compound particles consist of still edged particles with a maximum axial ratio of 5: 2.
  • this compounded powder is applied to the implant surface as an open-pored structure.
  • the open-pore layer itself has a layer thickness of 0.5 mm to 1.5 mm and a porosity of 40% to 50%.
  • the size of the pores, determined as the maximum diameter is 150 ⁇ m to 400 ⁇ m.
  • the opening of these pores against the outside is in the range of 150 microns to 500 microns.
  • This layer is applied by means of a vacuum plasma spraying method and using a simultaneous arc.
  • the plasma spray parameters are adjusted in this process so that the titanium particles are slightly melted, but are only slightly compacted upon impact with the substrate, namely the raw surface of the implant and already applied particles.
  • the applied arc additionally bonds the deposited titanium particles together as well as the sintering necks connecting them and their connection to the substrate, i. the surface of the implant, reinforced. It creates a coherent network of mutually connected titanium particles and at the same time a coherent, internal porosity.
  • the porosity of the titanium layer applied by means of a vacuum plasma spraying method according to the invention is continuous up to an intermediate layer which is arranged above the raw surface of the implant.
  • the intermediate layer serves an improved Adhesion of the surface layer, or the framework structure on the substrate and is formed as a thin dense titanium layer which has been deposited on the raw surface of the implant.
  • This intermediate layer has a thickness of about 50 microns.
  • this substrate serves as an electrode or grounding.
  • a JouPsche heating is generated at their junctions with each other and with the substrate, which represent a high-ohmic contact resistance, which causes a local sintering of these joints without the porosity and roughness in other areas of both the substrate and the applied particles is affected.
  • the roughness and continuous porosity which is optimally suited for ingrowth of bone tissue, sustained while the strength and cohesion of the particles with each other and with the substrate due to the application of the arc process is sustainably improved.
  • the vacuum plasma-sprayed layers in particular in combination with the arc process, have a good adhesion to the substrate and with respect to the particles with one another and a good shear resistance within the layer.
  • a filling of the pores of this surface layer or of the framework structure with a bioactive resorbable pore filling material is subsequently carried out.
  • This consists of a silica xerogel with embedded hydroxyapatite particles having a size of 10 nm to 500 nm.
  • This filling material also has extracellular matrix proteins, growth factors, bone-forming proteins, antibiotics, as well as gelatin and collagen. These substances are present in a liquid silica-hydroxyapatite matrix.
  • a bath which is formed by the silica-hydroxyapatite matrix and the other ingredients.
  • the surface layer or the framework structure is removed from the bath, the silica-hydroxyapatite matrix is dried and crosslinked by means of a thermal treatment.
  • This thermal treatment forms a nanoporous xerogel matrix that has a loose network of polysilicic acid molecules and hydroxylapatite particles. This loose network is ideal for ingrowth of osteoblasts.
  • the scaffold structure according to the invention together with the filling material filling the pores of this scaffold structure can be used not only in connection with implants but also as bone filling material, if a scaffold structure filled with filling material is introduced, for example, into bone cavities, bone cracks or otherwise damaged bones , Also in this case filled with filling material framework structure is ideal for ingrowth of bone cells, the latter can grow from all sides in the framework structure or the filler, provided that it is freely accessible. This is the case if the framework structure is not arranged on a raw surface of an implant or on another surface, but is present as such.
  • the highly porous scaffold structure can be of any size and shape that is suitable, with rods, cylinders, blocks, and wedge-shaped scaffold structures being explicitly advantageous.
  • both the open-pore biocompatible surface layer according to the invention for an implant, an implant produced from this surface layer and the method according to the invention for producing the same constitute a new and advantageous technology compared with the prior art, by which a rapid and effective ingrowth of Bone cells in one open-porous surface layer is ensured. This is accomplished by providing within the pores of the open cell surface layer a matrix to which bone cells can adhere well and within which these bone cells can spread, divide and propagate well.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Transplantation (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Dermatology (AREA)
  • Biomedical Technology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Dentistry (AREA)
  • Molecular Biology (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

Die Erfindung betrifft eine offenporige biokompatible Oberflächenschicht für ein Implantat, die an einer Rohoberfläche des Implantats angeordnet ist und ein Implantat bestehend aus einer offenporigen biokompatiblen Oberflächenschicht, wobei Poren der Oberflächenschicht zumindest teilweise, vorzugsweise zu mindestens 80 %, und besonders bevorzugt vollständig, mit einem bioaktiven, vorzugsweise resorbierbaren, Füllmaterial gefüllt sind. Ferner betrifft die Erfindung ein Verfahren zur Herstellung einer solchen Oberflächenschicht sowie eines solchen Implantats und ferner ein mit einer solchen Oberflächenschicht versehenes Implantat sowie die Verwendung einer solchen erfindungsgemäßen Oberflächenschicht für ein Implantat oder als Implantat.

Description

Offenporige biokompatible Oberflächenschicht für ein Implantat, Verfahren zur Herstellung und Verwendung
B e s c h r e i b u n g
Die Erfindung betrifft eine offenporige biokompatible Oberflächenschicht für ein Implantat gemäß dem Oberbegriff des Patentanspruchs 1, ein Implantat gemäß dem Oberbegriff des Patentanspruchs 2 sowie ein Verfahren zur Herstellung einer offenporigen biokompatiblen Oberflächenschicht für bzw. als ein Implantat gemäß dem Oberbegriff des Patentanspruchs 18, ein Implantat mit bzw. aus einer solchen Oberflächenschicht gemäß dem Oberbegriff des Patentanspruchs 23 sowie eine Verwendung der Oberflächenschicht für Implantate gemäß dem Oberbegriff des Patentanspruchs 24.
Implantate und insbesondere Gelenk- und Knochenersatzimplantate gewinnen immer mehr an Bedeutung in der restaurativen und kurativen Medizin. Bei einer Implantation von Gelenk oder Knochenersatzimplantaten werden diese gemäß dem derzeitigen Stand der Technik zementfrei im Knochen verankert. Ein wesentlicher Faktor für den Erfolg einer solchen zementfreien Verankerung eines metallischen orthopädischen Implantats an oder in einem Knochen liegt in der Geschwindigkeit, mit welcher sich Knochengewebe mit dem Implantat verbindet. Diese Geschwindigkeit ist maßgeblich abhängig von der Art und Strukturierung der Oberfläche des metallischen Implantats. Aus diesem Grund wurden derartige Oberflächen in der Vergangenheit mit einer vordefinierten Oberflächenrauhigkeit versehen, wobei gegebenenfalls zusätzlich eine bioaktive Beschichtung an dem Metallsubstrat des metallischen orthopädischen Implantats angebracht wurde. Zur Herstellung solcher, ein Anwachsen von Knochenzellen fördernder Oberflächenschichten haben sich bislang poröse Schichten, insbesondere offen-poröse Strukturen bewährt, die eine Porengröße aufweisen, die ein Einwachsen von Knochengewebe in diese, üblicherweise metallischen, Strukturen ermöglicht.
Diese porösen Strukturen weisen bei derzeitigen Gelenk- und Knochenersatzimplantaten eine Dicke im Bereich von 1 mm oder mehr auf. Eine solche Dicke ist im Hinblick auf eine gute und stabile Verbindung zwischen Knochen und Implantat notwendig und sinnvoll, jedoch dahingehend problematisch, daß eine gute Verbindung zwischen Implantat und Knochen erst dann gewährleistet ist, wenn die poröse Struktur zumindest zum überwiegenden Teil, bevorzugt jedoch vollständig, von eingewachsenem Knochengewebe durchzogen ist. Aufgrund der hohen Dicke der porösen Struktur ist es daher hinsichtlich einer Erzielung einer guten und stabilen Verbindung zwischen Implantat und Knochen von wesentlicher Bedeutung, daß ein Einwachsen von Knochengewebe in die poröse Struktur möglichst schnell vonstatten geht, damit sich ein Kontakt zwischen Knochenzellen und poröser Struktur möglichst schnell und umfassend ausbildet und auf diese Weise die Verbindung zwischen Implantat und Knochen stabilisiert.
Das Einwachsen von Knochen in eine offen-poröse Struktur stellt einen mehrstufigen Prozeß dar, bei dem Knochenzellen zusammen mit Blutgefäßen für eine Nährstoff- und Sauerstoffversorgung der Knochenzellen sowie des späteren Knochens in die Poren der offen-porösen Struktur einwandern müssen, um eine möglichst großflächige und stabile Verbindung der Knochenzellen und des späteren Knochens mit den Poren, respektive der insbesondere inneren Oberfläche der offenporigen Struktur und somit dem Implantat zu gewährleisten. Ein wesentlicher Aspekt beim Einwachsen von Knochenzellen in eine poröse Struktur besteht allerdings in der Tatsache, daß Knochenzellen nicht unmittelbar in einen leeren Hohlraum einwandern können, sondern immer eine Oberfläche in Form eines Substrats oder einer Matrix benötigen, an welcher sie anhaften und entlang derer sie sich teilen und verteilen und auf diese Weise „fortbewegen" können.
Bislang wurden solche, ein Einwachsen von Knochengewebe fördernde Oberflächen in Form von porösen Oberflächen zur Verfügung gestellt, die entweder unbeschichtet oder mit einer dünnen Oberflächenbeschichtung versehen waren, die in aller Regel Calcium- phosphat aufwies.
In all diesen vorgenannten Fällen waren die Poren jedoch im Verhältnis zu Knochenzellen so groß, daß zwar ein Entlangwachsen der Knochenzellen entlang der Porenmatrix, d.h. deren innerer Oberfläche, stattfand, die Poren jedoch über einen geraumen Zeitraum Hohl- und Leerstellen aufwiesen, die nicht mit Knochengewebe gefüllt waren, da die Knochenbildung nur sehr langsam von den Wandbereichen der Poren in Richtung Porenhohlraum erfolgte. Dies hatte jedoch in nachteiliger Weise zur Folge, daß der Knochen an der Implantat- bzw. Porenoberfläche nur eine dünne Schicht ausbildete, deren, insbesondere mechanische, Stabilität gering war, so daß die Verbindung zwischen Implantat und Knochen nicht oder nur äußerst vorsichtig belastet werden durfte. Erst mit einem vollständigen Einwachsen des Knochens in die gesamten Porenhohlräume, wobei letztere mit Knochengewebe aufgefüllt wurden, bildete sich eine stabile und belastbare Verbindung zwischen Knochen und Implantat aus.
Um gemäß den bisherigen Verfahren ein Anwachsen von Knochen an ein Implantat zu beschleunigen, wurde vielfach eine Beschichtung des Implantats mit Hydroxylapatit, das bevorzugt mittels Plasmasprühen aufgebracht wurde, vorgenommen. Ein Nachteil dieses Verfahrens besteht jedoch darin, daß die Poren der Implantatschicht nur von der Implantatoberfläche ausgehend und nur oberflächlich mit Hydroxylapatit beschichtet werden können und die Beschichtung vielfach nicht bis zum Boden der Pore reicht. Vielmehr besteht bei Verwendung dieses Verfahrens die Gefahr, daß die Poren an deren Öffnungsseite verstopft werden, so daß der Porenboden für eine Beschichtung nicht mehr zugänglich ist. Darüber hinaus weist eine derartige Hydroxylapatit-Beschichtung unter physiologischen Bedingungen eine geringe Löslichkeit auf, so daß Knochenzellen nicht in tiefere Lagen der Beschichtung vordringen und nicht umfassend in die Hydroxylapatit-Beschichtung eindringen können.
Insbesondere aufgrund der Gefahr von Porenverstopfungen beim Aufbringen einer Hydroxylapatit-Beschichtung an einem Implantat unter Verwendung von Plasmasprühen besteht ein wesentlicher Nachteil des dortigen Verfahrens unter anderem auch darin, daß nur eine Beschichtung von Poren möglich ist, die sich von der Implantatoberfläche im wesentlichen senkrecht zu dieser erstrecken. Eine Beschichtung von quer verlaufenden Poren in einem dreidimensionalen Porennetzwerk ist mit diesem Plasma-Sprühbeschich- tungsverfahren nicht möglich, so daß ein weiterer Nachteil des dortigen Verfahrens darin besteht, daß allenfalls ein Knochenanwachsen an ein Gelenkersatzimplantat, jedoch kein tatsächliches Knocheneinwachsen in eine dreidimensionale Porenstruktur eines Implantats, wie sie beispielsweise in der WO 2007/051519 beschrieben ist, möglich ist.
Die Aufgabe der Erfindung besteht in der Zurverfügungstellung einer offenporigen biokompatiblen Oberflächenschicht mit einer dreidimensionalen Porenstruktur, in die ein schnelles und raumfüllendes Einwachsen von Osteoblasten möglich ist, sowie der Zurverfügungstellung eines Verfahrens zur Herstellung einer solchen offenporigen biokompatiblen Oberflächenschicht. Ferner ist es die Aufgabe der Erfindung, ein Implantat mit oder bestehend aus einer solchen Oberflächenschicht sowie deren Verwendung für Implantate zur Verfügung zu stellen.
Diese Aufgabe wird durch eine offenporige biokompatible Oberflächenschicht gemäß Patentanspruch 1 sowie Patentanspruch 2, durch ein Verfahren zur Herstellung einer offenporigen biokompatiblen Oberflächenschicht gemäß Patentanspruch 18 sowie durch ein Implantat gemäß Patentanspruch 23 und eine Verwendung einer solchen Oberflächenschicht gemäß Patentanspruch 24 gelöst.
Insbesondere wird die Aufgabe durch eine offenporige biokompatible Oberflächenschicht gelöst, wobei Poren der Oberflächenschicht zumindest teilweise, vorzugsweise zu mindestens 30 % und besonders bevorzugt vollständig mit einem Füllmaterial gefüllt sind.
Gemäß einer Variante der Erfindung ist diese offenporige biokompatible Oberflächenschicht an einer Rohoberfläche eines Substrats, das als Implantat bzw. als Implantatrohling vorliegt, angeordnet.
Gemäß einer anderen Variante ist die offenporige biokompatible Oberflächenschicht selbsttragend und bildet selbst das Implantat ohne dass ein Substrat erforderlich ist. Letztere Variante ist insbesondere dann vorteilhaft, wenn das Implantat keine wesentliche tragende Funktion, sondern beispielsweise eine auffüllende und/oder stabilisierende und/oder verbindende Funktion übernehmen soll.
Erfindungsgemäß kann die offenporige Oberflächenschicht vollständig aus einem Metallschaum gebildet sein oder einen Metallschaum aufweisen. Eine solche Aus führungs form ist insbesondere im Fall einer selbsttragenden Struktur der offenporigen biokompatiblen Oberflächenschicht vorteilhaft.
Gemäß einer bevorzugten Aus führungs form der Erfindung ist das Füllmaterial unter physiologischen Bedingungen löslich und/oder, insbesondere durch einwandernde Osteoblasten, resorbierbar sowie vorzugsweise bioaktiv.
Der wesentliche Kern der Erfindung besteht darin, daß durch eine Füllung von, in einer offenporigen biokompatiblen Oberflächenschicht eines Implantats, vorhandenen Poren mit einem Füllmaterial das freie Porenvolumen der Poren in der Oberflächenschicht reduziert wird, wobei das Füllmaterial seinerseits bevorzugt eine Bioaktivität aufweist und vorzugsweise durch einwachsende Osteoblasten und aus diesen entstandenem Knochengewebe zumindest teilweise, vorzugsweise zum überwiegenden Teil, resorbiert werden kann. Das Füllmaterial weist seinerseits eine Mikro- und Nanoporenstruktur und/oder eine dreidimensionale Matrixstruktur auf, in die ein Einwachsen und Einwandern von Osteoblasten möglich ist. Der freie Querschnitt dieser Mikro- und Nanoporen ist gegenüber dem Querschnitt der Poren der Oberflächenschicht um einen Faktor im Bereich von 100 bis 10000 reduziert, so daß in diese Mikro- und Nanoporen einwachsende Zellen, beispielsweise Osteoblasten, welche das dort vorliegende Füllmaterial aufnehmen und/oder umbauen, diese Mikro- und Nanoporen aufgrund des geringen freien Innenvolumens und der größeren inneren Oberfläche der Mikro- und Nanoporen schnell, d.h. innerhalb weniger Tage bis Wochen, nahezu vollständig ausfüllen.
Ein wichtiger Vorteil dieser erfindungsgemäßen Oberflächenschicht besteht insbesondere darin, daß durch das in die Poren der Oberflächenschicht eingefüllte Füllmaterial eine sehr große, für ein Anwachsen von Knochenzellen optimal geeignete bioaktive Oberfläche geschaffen wird. An dieser Stelle sei darauf hingewiesen, daß der Begriff „Mikro- und Nanoporen" im Rahmen dieser Erfindung auch eine dreidimensionale Matrix, beispielsweise in Form eines Gels oder in Form einer vorzugsweise oberflächenreichen Blatt-, Netz- oder Wabenstruktur umfaßt, wie diese beispielsweise in einem Kieselsäuregel, einem Kiesel-Xerogel oder Kieselsol sowie in Kieselsäure-Hydrosolen vorliegt.
In vorteilhafter Weise können die Osteoblasten in diese dreidimensionale Matrix bzw. in den Mikroporenraum des Füllmaterials einwandern und an festen Bestandteilen des Füllmaterials anhaften und wachsen. Auf diese Weise ist es möglich, daß ein Ausfüllen des Porenraums der Oberflächenschicht nicht nur von einer Wandung von Poren der Oberflächenschicht ausgeht, sondern auch aus dem gemäß dem Stand der Technik zunächst leeren Raum innerhalb des ursprünglich freien, respektive leeren Porenvolumens der Oberflächenschichtporen, das nunmehr jedoch erfindungsgemäß mit vorerwähntem bioaktiven und vorzugsweise resorbierbaren Füllmaterial gefüllt ist.
Da das Einwachsen und Vermehren der Osteoblasten nunmehr praktisch in dem gesamten Porenvolumen der Oberflächenschicht nahezu gleichzeitig stattfindet, ist eine Erzeugung einer festen, stabilen und belastbaren Verbindung zwischen Knochen und Implantat gegenüber dem Stand der Technik stark beschleunigt, so daß der Knochen bzw. der Knochen und das Implantat wesentlich schneller als bisher seine ursprüngliche Funktion innerhalb des Körpers wieder erfüllen kann.
Gemäß einer Aus führungs form der Erfindung sind die Poren der offenporigen Oberflä- chenschicht zu einem zusammenhängenden dreidimensionalen Porennetzwerk verbunden, wobei die Oberflächenschicht als eine Gerüststruktur ausgebildet ist und zumindest eine Mehrzahl der Poren über wenigstens eine seitliche Öffnung, die in einer seitlichen Begrenzung der Pore ausgebildet ist, kanal- und/oder bevorzugt tunnelartig miteinander in Kommunikation stehen.
Eine Ausbildung einer derartigen Gerüststruktur hat sich als besonders vorteilhaft erwiesen, da durch ein Einwachsen von Knochengewebe in eine solche Gerüststruktur eine besonders feste Verbindung zwischen Knochengewebe und Gerüststruktur und damit auch dem Implantat, an welchem die Gerüststruktur ausgebildet ist, erzielt werden kann. Insbesondere durch tunnelartig miteinander in Verbindung stehende Poren findet eine gegenseitige Umschließung von Gerüststrukturmaterial und Knochengewebe statt, so daß eine solche Verbindung nicht nur auf Druck, sondern ausgezeichnet auch auf Zug beansprucht werden kann, ohne daß sich die Knochenzellen von der Implantatoberfläche lösen, da ein in die Oberflächenschicht eingewachsenes Knochengewebe das Porennetzwerk vollständig durchdringen kann und sich auf diese Weise eine das Porennetzwerk durchziehende Knochenstruktur aufbaut, die auch innerhalb der Oberflächenschicht bzw. der Gerüststruktur verläuft. Auf diese Weise durch- und unterwandert das einwachsende Knochengewebe die Oberfläche der Oberflächenschicht, respektive das zusammenhängende Porennetzwerk auf eine Weise, die eine innige Verbindung der Oberflächenschicht mit dem Knochengewebe gewährleistet und ein Ablösen des Knochengewebes von der Oberflächenschicht, beispielsweise unter Zugbelastung, verhindert.
Die Dicke der Oberflächenschicht bzw. der Gerüststruktur liegt erfindungsgemäß im Bereich von 0,1 mm bis 2,5 mm, vorzugsweise im Bereich von 0,3 mm bis 1,9 mm und besonders bevorzugt im Bereich von 0,5 mm bis 1,5 mm.
Ferner hegt die Porosität der Oberflächenschicht, respektive der Gerüststruktur, im Bereich von 20 % bis 70 %, vorzugsweise im Bereich von 30 % bis 60 % und besonders bevorzugt im Bereich von 40 % bis 50 %, wobei betont sei, daß die Porosität innerhalb der Oberflächenschicht im wesentlichen homogen ausgebildet ist, so daß innerhalb der gesamten Oberflächenschicht eine einheitliche Verwachsung von Knochengewebe mit der Gerüststruktur der Oberflächenschicht stattfindet. Erfindungsgemäß liegt der maximale Querschnitt der Poren der Oberflächenschicht im Bereich von 10 μm bis 800 μm, bevorzugt im Bereich von 50 μm bis 600 μm und besonders bevorzugt im Bereich von 100 μm bis 300 μm, wobei die Größe des Porenquer- schnitts bzw. das jeweilige freie Volumen einer Pore gemäß einer Aus führungs form der Erfindung innerhalb der Oberflächenschicht annähernd gleich verteilt ist.
Gemäß einer alternativen Aus führungs form kann jedoch vorgesehen sein, daß ein freies Porenvolumen um so kleiner ausgebildet ist, je näher die Pore bzw. der Porenhohlraum an einer Rohoberfläche eines Implantatrohlings angeordnet ist, so daß der Porenquerschnitt, d.h. das freie Porenvolumen, von einem äußeren Bereich der Oberflächenschicht in Richtung Rohoberfläche des Implantats abnimmt, so daß einerseits eine optimierte Verankerung von eingewachsenem Knochen und außerdem eine optimierte Verbindung der Oberflächenschicht mit einem Implantatsubstrat gewährleistet ist. Je nach Implantattyp, respektive dessen vorgesehenem Verwendungs- bzw. Anwendungszweck, kann ein solcher Porenvolumen-Gradient auch in umgekehrter Richtung vorgesehen sein.
Erfindungsgemäß besteht die Oberflächenschicht, nämlich die Gerüststruktur, aus einem unter physiologischen Bedingungen nicht oder nur langsam resorbierbaren Material, nämlich aus einem Metall und/oder einer Keramik und/oder einem Polymer.
Durch die Verwendungsmöglichkeit unterschiedlicher Materialien zur Herstellung der Gerüststruktur kann das Implantat an den jeweiligen Verwendungszweck, beispielsweise im Hinblick auf die Art des Implantats, angepaßt werden. So kann beispielsweise eine Femurkomponente, die in aller Regel einer sehr hohen Belastung ausgesetzt ist, eine Gerüststruktur aus einem Metall aufweisen, während ein Fingergelenkersatz eine Gerüststruktur aus Keramik und eine Komponente für einen Bandscheibenersatz eine Gerüststruktur aus einem Polymer aufweisen kann. Auf diese Weise kann ein Implantat individuell an einen Einsatzzweck angepaßt werden, wobei ein Metall beispielsweise eine sehr hohe Stabilität und Zähigkeit hat, während eine Keramik leicht, jedoch sehr hart ausgebildet sein kann, und eine Gerüststruktur aus einem Polymer eine gewisse Flexibilität aufweisen kann.
Im Falle der Verwendung einer Gerüststruktur aus Metall ist bevorzugt, daß die Gerüststruktur bzw. die Oberflächenschicht aus vorzugsweise kantigen Metallpartikeln gebildet ist, wobei als Material Titan bevorzugt ist. Diese Titanpartikel sind erfindungsgemäß mit Siliziumpartikeln beschichtet bzw. verbunden, wobei Siliziumpartikel beispielsweise durch ein oberflächliches Anschmelzen der Titanpartikel mit diesen compoundiert sein können. Die Menge der zum Beschichten bzw. Compoundieren verwendeten Siliziumpartikel Hegt im Bereich von 0,5 Gew.-% bis 8,5 Gew.-% ± 1,5 Gew.-%, vorzugsweise 0,5 Gew.-% bis 3,0 Gew.-% und besonders bevorzugt 1,0 Gew.-% ± 0,5 Gew.-%.
Als Titanpartikel wird erfindungsgemäß bevorzugt ein Titanpulver verwendet, dessen Partikel eine Korngröße im Bereich von 90 μm bis < 500 μm, vorzugsweise im Bereich von 150 μm bis < 300 μm aufweisen. Als Siliziumpartikel wird bevorzugt Siliziumpulver einer Korngröße von ≤ 80 μm, vorzugsweise ≤ 40 μm und besonders bevorzugt von ≤ 20 μm, verwendet, so daß mit Siliziumpartikeln beschichtete Titanpartikel als Compoundpartikel vorliegen, die ein Achsenverhältnis von ≤ 5 : 2 aufweisen. Eine in Volumenprozent bezüglich der Korngröße gemäß ISO/DIS 13322-1 gemessene Korngrößenverteilung ist in nachfolgender Tabelle angegeben:
Die mit Siliziumpartikeln beschichteten Titanpartikel, welche als Compoundpartikel vorliegen, weisen eine Korngröße von ≥ 90 μm, vorzugsweise ≥ 150 μm auf, wobei die oben definierte Korngrößenverteilung eingehalten wird.
Gemäß einer bevorzugten Aus führungs form ist zwischen der Rohoberfläche des Implantats und der Oberflächenschicht eine Zwischenschicht vorgesehen. Eine solche Zwischenschicht ist beispielsweise dann zweckmäßig, wenn sich der Grundstoff des zu beschichtenden Substrats nicht direkt für eine Beschichtung mittels Vakuum-Plasma- Spritzen eignet, wie beispielsweise ein Polymer oder eine Keramik, oder eine extrem hohe Festigkeit erforderlich ist, die sich nach der jeweiligen Anwendung richten kann. In diesem Fall kann die Rohoberfläche des Implantats zunächst mit einer dichten Grundschicht überzogen werden, die vorzugsweise aus einem bioinerten Material besteht, das vorzugsweise ein Metall ist. Als Metall ist aufgrund seiner bioinerten Eigenschaften und seiner sehr hohen Festigkeit sowie seines geringen spezifischen Gewichts Titan bevorzugt. Es kommt jedoch auch Silizium oder mit Silizium compoundiertes Titan in Betracht. Andere bioinerte Metalle, wie beispielsweise Tantal, Platin oder andere biokompatible Metalle kommen ebenso als Grundschichtmaterialien in Betracht wie nachfolgend für die Herstellung der Gerüststruktur genannte Metalle.
Ferner kann das Metall, welches zur Herstellung der Gerüststruktur verwendet wird, aus Legierungen von Titan bestehen. Darüber hinaus kommt als weiteres Metall Kobalt und/oder Legierungen dieses Metalls, rostfreier Stahl, insbesondere Edelstahl, Magnesium und/oder Legierungen davon, Zirkonium und/oder Legierungen davon, Tantal und/oder Legierungen davon, sowie Mischungen und Legierungen aller vorgenannten Metalle in Betracht.
Sofern die Gerüststruktur aus einer Keramik hergestellt werden soll, ist diese bevorzugt aus der Gruppe ausgewählt, die Aluminiumoxid und Zirkoniumoxid umfaßt, wobei auch Aluminiumoxid verstärktes Zirkoniumoxid, Zirkoniumoxid verstärktes Aluminiumoxid und Siliziumnitrid erfindungsgemäß geeignete Materialien sind. Ferner können Additive zu diesen Metalloxiden zugegeben werden. Darüber hinaus kann die Keramik auch aus einer Mischung dieser Oxide gefertigt sein.
Sofern die Gerüststruktur aus einem Polymer gefertigt wird, ist dieses aus der Gruppe ausgewählt, die Polyetheretherketon(e) (PEEK), Polyaryletherketon(e) (PAEK), Polyimid(e) (PI), Polyurethan(e) (PU), Polycarbonaturethan(e) (PCU), Polyetherimid(e) (PEI), Polyethylen, insbesondere ultrahochmolekulares Polyethylen (UHMWPE), vorzugsweise vernetztes UHMWPE, Polypropylen sowie Mischungen dieser Polymere umfaßt.
Wie vorerwähnt, ist insbesondere für den Fall, daß die Gerüststruktur aus einer Keramik oder aus einem Polymer hergestellt ist, erfindungsgemäß eine Zwischenschicht vorgesehen, die zwischen der Rohoberfläche des Implantats und der Oberflächenschicht, d.h. der Gerüststruktur vorgesehen ist. Die Zwischenschicht besteht vorzugsweise aus Titan und weist Silizium auf; sie kann jedoch auch aus allen anderen vorgenannten Metallen oder deren Legierungen bestehen. Die Zwischenschicht weist eine Schichtdicke von < 200 μm, vorzugsweise von < 100 μm und besonders bevorzugt im Bereich von 30 μm bis 50 μm auf.
Der Implantatrohling besteht erfϊndungsgemäß aus einem der vorgenannten Metalle, wobei insbesondere die Rohoberfläche des Implantatrohlings Titan und/oder Zirkonium und/oder Legierungen dieser beiden Metalle aufweist. Eine weitere Legierung, aus welcher die Rohoberfläche des Implantats bestehen kann, ist eine biokompatible kobaltbasierte Legierung.
Insbesondere die im letzten Abschnitt genannten Materialien zeichnen sich durch eine sehr hohe Stabilität und gute Bioverträglichkeit aus, so daß diese prädestiniert für einen Einsatz unter physiologischen Bedingungen sind.
Als Füllmaterial zum Auffüllen der Poren der Oberflächenschicht bzw. der Gerüststruktur sind erfindungsgemäß die im folgenden genannten Substanzen vorgesehen: Calcium- phosphat, insbesondere Hydroxylapatit und/oder Tricalciumphosphat, Bruschit (CaHPO4 * 2 H2O), Calciumsulfat, Siliziumoxid, insbesondere in Form von Kieselsäuregel, vorzugsweise Kiesel-Xerogel, Titanoxid, Gelatine, Kollagen, extrazelluläre Matrixproteine, Wachstumsfaktor(en), knochenbildende(s) Protein(e), Hydrogel(e), Stoff(e) mit antibiotischer Wirkung sowie Mischungen der vorgenannten Substanzen.
Die Partikelgröße der als Füllmaterial eingesetzten, gegebenenfalls kristallinen, Substanzen liegt im Bereich von 0,005 μm bis 50 μm, vorzugsweise im Bereich von 0,01 μm bis 5 μm und besonders bevorzugt im Bereich von 30 nm bis 100 nm.
Diese Substanzen können erfindungsgemäß bevorzugt mit einem Sol-Gel-Verfahren mit einem Bindemittel auf Wasser- und/oder Silikatbasis, bevorzugt in Form eines Tauchbades, jedoch auch, sofern gewünscht, mittels Ausfällen oder mittels Elektrophorese auf die Gerüststruktur aufgebracht und in die Poren der Gerüststruktur eingefüllt werden, wobei hinsichtlich der Applikationsart keine Einschränkung besteht, solange eine Füllung der Poren zumindest teilweise, vorzugsweise zu mindestens 80 % und besonders bevorzugt vollständig gewährleistet ist. Gemäß einer Ausführungsform der Erfindung weist das in die Poren der Gerüststruktur eingefüllte Füllmaterial Mikroporen auf, die einen durchschnittlichen freien Mikroporen- querschnitt im Bereich von 0,1 nm bis 100 am, vorzugsweise im Bereich von 0,3 nm bis 30 nm aufweisen.
Mittels der erfindungsgemäßen Oberflächenschicht, respektive der erfϊndungsgemäßen Gerüststruktur, ist somit eine Möglichkeit geschaffen, eine optimale Verankerung eines Knochens an bzw. in einem Implantat, respektive dessen Oberflächenschicht/Gerüststruktur, zu gewährleisten, wobei ein Einwachsen eines Knochens in diese erfindungsgemäße Oberflächenschicht bzw. Gerüststruktur gegenüber bisherigen Möglichkeiten stark beschleunigt abläuft und auf diese Weise den Erfolg einer orthopädischen Maßnahme, bei der ein orthopädisches Implantat in oder an einem Knochen verankert werden soll, optimiert.
Prinzipiell kann die Oberflächenschicht bzw. die Gerüststruktur auf unterschiedliche Weisen hergestellt sein; es sei jedoch betont, daß ein Aufbringen von Titanpartikeln mittels eines Vakuum-Plasma-Spritzverfahrens auf eine Rohoberfläche des Implantats zur Erzeugung der Gerüststruktur an dem Implantat bevorzugt ist. Da die Gerüststruktur in diesem Fall aus einzelnen miteinander verbundenen Metallpartikeln aufgebaut ist, ist eine Variation der Art und Größe bzw. Dimensionierung der Metallpartikel an jeweils gewünschte Eigenschaften des Implantats gut anpaßbar, da die Partikel schichtweise aufgetragen und über einen thermischen Prozeß bereichsweise, insbesondere punktweise, miteinander verbunden werden. Auf diese Weise ist es möglich, eine Oberfläche mit einer sehr guten Biokompatibilität im Sinne einer bioinerten oder leicht bioaktiven Eigenschaft herzustellen, die eine inhärent große innere Oberfläche sowie eine sehr gute mechanische Festigkeit und Stabilität aufweist und auch hinsichtlich Abrieb, selbst bei abrasiver Beanspruchung, nur eine äußerst geringe Abnutzung aufweist und deshalb die Lebensdauer und den Tragekomfort von Implantaten, insbesondere gegenüber dem derzeitigen Stand der Technik, maßgeblich erhöht und verbessert.
Des weiteren wird die Aufgabe durch ein Verfahren zur Herstellung einer offenporigen biokompatiblen Oberflächenschicht für ein Implantat, insbesondere Gelenk- und/oder Knochenersatzimplantat, sowie durch ein Verfahren zur Herstellung eines Implantats bestehend aus einer solchen offenporigen biokompatiblen Oberflächenschicht gelöst, wobei die folgenden Schritte durchgeführt werden:
a) Herstellen einer offenporigen biokompatiblen Oberflächenschicht in Form einer Gerüststruktur, gegebenenfalls an einer Rohoberfläche eines Implan tat-Rohlings, und
b) Füllen von Poren der offenporigen Oberflächenschicht mit einem bioaktiven, vorzugsweise resorbierbaren, Füllmaterial zumindest teilweise, vorzugsweise zu mindestens 30 %, und besonders bevorzugt vollständig.
Erfindungsgemäß wird Schritt a), also das Herstellen einer offenporigen biokompatiblen Oberflächenschicht in Form einer Gerüststruktur mittels eines Vakuum-Plasma-Spritzverfahrens durchgeführt, bei dem Metallpartikel, bevorzugt Titanpartikel, auf die Rohoberfläche eines Implantat-Rohlings aufgebracht werden, wobei gegebenenfalls unmittelbar über der Rohoberfläche des Implantatrohlings zunächst eine Zwischenschicht, bevorzugt aus einem der vorgenannten Metalle, wie beispielsweise Titan, das gegebenenfalls mit Silizium versehen ist, aufgebracht sein kann und somit nicht unmittelbar die Rohoberfläche des Implantatrohlings, sondern die darauf angebrachte Zwischenschicht mit den Titanpartikeln belegt wird. Diese Metallpartikel, die zum Herstellen der Gerüststruktur verwendet werden, weisen bevorzugt ein Sinterhilfsmittel auf, das mit dem jeweiligen Metall eine Legierung bildet, die bei einer niedrigeren Temperatur schmilzt als das jeweils verwendete reine Metall. Diese Metallpartikel werden sodann, bevorzugt mittels eines Vakuum-Plasma-Spritzverfahrens, auf die Rohoberfläche des Implantats bzw. auf die auf der Rohoberfläche des Implantats angeordnete Zwischenschicht zur Erzeugung der Gerüststruktur aufgebracht.
Des weiteren kann zum Herstellen der Gerüststruktur auch ein PVD (physical vapour deposition)-Verfahren und/oder ein CVD (chemical vapour deposition)-Verfahren verwendet werden, um bevorzugt metallische Substanzen auf der Rohoberfläche des Implantat-Rohlings bzw. auf der darauf angebrachten Zwischenschicht abzuscheiden. Die beiden letztgenannten Verfahren eignen sich besonders gut für eine Abscheidung von metallischen Substanzen auf einem bestehenden Gerüst, das aus einer Keramik oder einem Kunststoff hergestellt ist. Selbstverständlich sind diese beiden Verfahren auch geeignet, ein Gerüst aus einer Metallstruktur zu beschichten.
Gemäß einer Aus führungs form der Erfindung wird die offenporige biokompatible Oberflächenschicht in Form einer Gerüststruktur mittels eines Lichtbogens behandelt, der zwischen der Rohoberfläche des Implantat-Rohlings und/oder einer Zwischenschicht an dem Implantat-Rohling und/oder der Gerüststruktur an dem Implantat-Rohling, und einer Gegenelektrode während und/oder nach einem Aufbringen von Metall, insbesondere Titan- und/oder Compoundpartikeln erzeugt wird.
Erfindungsgemäß kann der Lichtbogen zwischen der Rohoberfläche des Implantats, respektive einer an dem Implantat befindlichen Oberflächenschicht und einer Gegenelektrode unmittelbar während des Aufbringens der Titan- und/oder Compoundpartikel auf das Implantat angewendet werden; alternativ kann der Lichtbogen jedoch auch nach einem Aufbringen der Titan- bzw. Compoundpartikel angewendet werden. Eine weitere Alternative besteht in der Anwendung des Lichtbogenverfahrens während und nach der Aufbringung der Titan- und/oder Compoundpartikel.
Im ersteren Fall, nämlich im Falle des gleichzeitigen Aufbringens der Partikel und der Anwendung des Lichtbogens, kann zusätzlich zu dem internen, plasmabildenden Stromkreis des Beschichtungsverfahrens ein zweiter Stromkreis zwischen einem Plasmatron, respektive der Plasmapistole, und dem Bauteil geschaltet werden, so daß über das elektrisch leitfähige Plasma ein übertragener Lichtbogen eingestellt werden kann. Es ist zur Erzeugung des Lichtbogens auch möglich, diesen nicht ausgehend von dem Plasmatron bzw. der Spritzpistole, sondern mittels einer bereitgestellten Gegenelektrode zu erzeugen.
Die Verwendung eines Lichtbogens während oder nach der Aufbringung von Titan- bzw. Compoundpartikeln auf einer Rohoberfläche eines Implantats weist den wesentlichen Vorteil einer JouPschen Erwärmung an hochohmigen Übergangswiderständen, d.h. in diesem Fall an den Kontaktstellen zwischen den Titan- bzw. Compoundkörnern, respektive — Partikeln auf, da diese verengte Stellen und damit einen erhöhten elektrischen Widerstand darstellen. Darüber hinaus stellt, insbesondere bei Compoundpartikeln die Über- zugsschicht des Sinterhilfsmittels an den damit beschichteten Titanpartikeln einen höher- ohmigen Widerstand dar, als die Titanpartikel selbst, so daß auch hier Joul'sche Wärme entsteht, was zu einem lokalen nur auf die Berührungsstellen der Körner begrenzten Erwärmung, insbesondere in der Überzugsschicht, führt, durch welche die die Partikel verbindenden Sinterhälse verstärkt werden.
Zusammengefaßt führt diese an Ort und Stelle frei gesetzte Wärme zu einer zusätzlichen lokalen Versinterung und dadurch zu einer Verstärkung von Sinterhälsen zwischen den Titankörner, ohne jedoch gleichzeitig ein Versintern und/oder Einglätten der übrigen Bereiche der Partikel sowie der Substratoberfläche zu bewirken. Dieser vorteilhafte Effekt bewirkt in der Beschichtung eine starke Erhöhung von deren Scherfestigkeit um einen Faktor von 2 bis 3 gegenüber den gleichen Beschichtungsparametern bei der Herstellung, jedoch ohne übertragenen Lichtbogen. Gegenüber herkömmlichen Beschichtungsverfah- ren kann durch die gemeinsame Verwendung eines Sinterhilfsmittels und eines übertragenen Lichtbogens eine sechs- bis siebenfach erhöhte Scherfestigkeit gegenüber einer reinen offenporösen Titanschicht erreicht werden.
An dieser Stelle sei erwähnt, daß als Lichtbogen jede Art der Energieeinwirkung, insbesondere elektrischer Art zu verstehen ist, durch die ein JouFscher Wärmeeffekt an verengten Stellen erzielt werden kann. Ein wesentlicher Vorteil der Verwendung eines Lichtbogens besteht jedoch darin, daß dieser unmittelbar während der Aufbringung der Titanbzw. Compoundpartikel angewendet werden kann, so daß der Beschichtungsprozeß letztlich einstufig abläuft und keinen zusätzlichen Verfahrens schritt erfordert, wenngleich auch eine nachträgliche Verstärkung der Sinterhälse durch die Anwendung eines Lichtbogens denkbar ist.
Im übrigen sei darauf hingewiesen, daß der Teil des Übergangswiderstands, welcher durch das Sinterhilfsmittel bedingt ist, durch die Wahl des Sinterhilfsmittels und durch dessen Schichtdicke erfindungsgemäß beeinflußt werden kann, so daß eine gezielte sehr hohe Verfestigung der offenporigen Oberflächenschicht mit einem zusammenhängenden Porennetzwerk erreicht werden kann. Erfindungsgemäß werden als Sinterhilfsmittel bevorzugt Silizium oder Kobalt verwendet, sofern Titan als Material zur Herstellung der Gerüststruktur verwendet wird, wobei im Falle der Verwendung von Silizium vorzugsweise Siliziumpartikel in einer Menge im Bereich von 0,5 Gew.-% bis 8,5 Gew.-% ± 1,5 Gew.-%, vorzugsweise 0,5 Gew.-% bis 3,0 Gew.-% und besonders bevorzugt 1,0 Gew.-% ± 0,5 Gew.-%, verwendet werden.
Im Falle der Verwendung anderer vorgenannter Metalle zur Herstellung der Gerüststruktur wird als Sinterhilfsmittel ein anderes aus dem Stand der Technik bekanntes biokompatibles Metall verwendet, das in einer Mischung mit dem Basismaterial der Gerüststruktur eine tiefschmelzende Legierung, beispielsweise ein Eutektikum, bildet, um ein oberflächliches Anschmelzen der aufzubringenden Metallpartikel zu ermöglichen.
Ferner wird als Titanpartikel ein kantiges Titanpulver mit einer Korngröße im Bereich von 90 μm bis < 350 μm, vorzugsweise im Bereich von 150 μm bis < 200 μm verwendet, das vorzugsweise gemahlen und erfindungsgemäß vorzugsweise über die Hydridstufe hergestellt wurde.
Als Siliziumpartikel wird Siliziumpulver mit einer Korngröße ≤ 80 μm, vorzugsweise < 40 μm und besonders bevorzugt von ≤ 20 μm verwendet. Bezüglich der Korngrößenverteilung wird auf vorstehende Ausführungen verwiesen.
Die Titanpartikel werden so mit Siliziumpartikeln beschichtet, daß die nunmehr als Compoundpartikel bezeichneten beschichteten Titanpartikel eine Korngröße ≥ 90 μm, vorzugsweise ≤ 150 μm aufweisen, wobei wiederum die vordefinierte Korngrößenverteilung zu beachten ist.
Aufgrund dieser Größenverhältnisse ist es möglich, die Titanpartikel mit Siliziumpartikeln zu beschichten und auf diese Weise eine hohe Oberfläche zur Verfügung zu stellen, die bei einem späteren Aufschmelzen während eines Vakuum-Plasma-Beschichtungsprozesses zum Verbinden von Partikeln, respektive zum Verbinden von Partikeln mit einem Substrat zur Verfügung steht. Ferner ist es unter Einhaltung der vorgenannten Korngrößen möglich, Titanpartikel so mit Siliziumpartikeln zu beschichten, daß eine kantige Peripherie der beschichteten Titanpartikel, d. h. der Compoundpartikel, im wesentlichen erhalten bleibt und die Compoundpartikel ein Achsenverhältnis von < 5 : 2 aufweisen.
Des weiteren werden die Vakuum-Plasma-Spritzverfahrensparameter so eingestellt, daß die Compoundpartikel nur oberflächlich angeschmolzen und beim Auftreffen auf die Rohoberfläche des Implantats, respektive auf die Zwischenschicht, sofern vorhanden, nur geringfügig kompaktiert werden, so daß deren ursprüngliche Geometrie, insbesondere hinsichtlich deren Achsenverhältnis, weitgehend erhalten bleibt. Auf diese Weise ist es möglich, mittels der kantigen Partikel, die auf einer Substratoberfläche auftreffen, ein Gefüge zu bilden, das im wesentlichen nur über Punkte und Kanten der einzelnen kantigen Partikel miteinander verbunden ist, so daß eine Art Käfig in Form einer Gerüststruktur entsteht, aus dem das zusammenhängende Porennetzwerk gebildet wird und durch dessen Hohlräume Knochensubstanz an- und einwachsen kann.
Wie vorerwähnt, ist es möglich, daß die Rohoberfläche des Implantats vor einem Be- schichtungsvorgang mit Compoundpartikeln mit einer Grundschicht, d. h. mit einer Zwischenschicht, beschichtet wird, die je nach Basismaterial eines Implantat-Rohkörpers ausgebildet sein kann und vorzugsweise aus reinem Titan und/oder aus mit Silizium beschichtetem Titan besteht.
Gemäß einer bevorzugten Aus führungs form erfolgt das Aufbringen der Zwischenschicht im selben Vakuum-Plasma-Spritzbeschichtungsvorgang wie das Aufbringen der eigentlichen Oberflächenschicht, wobei selbsterklärend das Aufbringen der Zwischenschicht vor dem Aufbringen der Oberflächenschicht erfolgt.
Die Grund- bzw. Zwischenschicht wird mit einer Schichtdicke von < 200 μm, vorzugsweise von < 100 μm und besonders bevorzugt im Bereich von 30 μm bis 50 μm hergestellt.
Eine gemäß vorstehenden Ausführungen hergestellte Oberflächenschicht bzw. dreidimensionale offen-poröse Gerüststruktur an bevorzugt metallischen Implantatmaterialien bringt drei wesentliche Vorteile mit sich, die zum einen darin bestehen, daß die Mikro- rauheit der erzeugten Oberflächenstruktur stimulierend auf einwachsendes Knochengewebe wirkt. Ferner ist durch eine Makrorauhigkeit sowie durch die offenporige Gerüststruktur selbst eine sehr gute Verbindung zwischen eingewachsenem Knochen und Implantatmaterial gewährleistet und darüber hinaus bietet die Materialstärke der Oberflächenschicht, respektive der Gerüststruktur, eine optimal geeignete Dicke, die als Integrationszone für das Einwachsen von Knochenmaterial optimiert ist und eine festen, belastbaren und sicheren Halt des Knochens an dem Implantat, respektive umgekehrt, sicherstellt.
Erfindungsgemäß wird der Schritt b) durchgeführt, indem die Gerüststruktur in ein Bad, bevorzugt ein Sol-Bad, getaucht wird, das die Substanzen enthält, die als Füllmaterial zum Füllen der Poren der Oberflächenschicht dienen. Diese Substanzen sind in dem Bad entweder gelöst und/oder, bevorzugt homogen, dispergiert. Auf diese Weise ist ein Füllen der Poren der Oberflächenschicht bzw. der Gerüststruktur mit den Füllmaterial-Substanzen problemlos möglich, da diese zusammen mit dem flüssigen Badmedium in die Poren und Hohlräume der Gerüststruktur eindringen können.
Als Füllmaterial zum Füllen der Poren der Oberflächenschicht bzw. der Gerüststruktur werden Substanzen verwendet, die aus einer Gruppe ausgewählt sind, die folgendes umfaßt: Calciumphosphat, insbesondere Hydroxylapatit und/oder Tricalciumphosphat, Calciumsulfat, Siliziumoxid, insbesondere in Form von Kieselsäuregel, vorzugsweise Kiesel-Xerogel, Titanoxid, Gelatine, Kollagen, extrazelluläre Matrixproteine, Wachstums- faktor(en), knochenbildende(s) Protein(e), Hydrogel(e), Stoff(e) mit antibiotischer Wirkung, gegebenenfalls pharmakologisch wirksame Substanzen, wie insbesondere entzündungs- und/oder schmerzhemmende Substanzen, sowie Mischungen der vorgenannten Substanzen.
Da diese genannten Substanzen in einer flüssigen Lösung bzw. Suspension, bevorzugt in einer Kieselsäure-Hydroxylapatit-Matrix verwendet werden, die sich in diesem Verfahrensstadium in ihrem flüssigen Zustand befindet, kann diese flüssige Matrix die Poren der Oberflächenschicht bzw. der Gerüststruktur gut und vollständig durchdringen, so daß zum Füllen der Poren der Oberflächenschicht bzw. der Gerüststruktur lediglich ein ein- faches Eintauchen der Oberflächenschicht bzw. der Gerüststruktur oder des gesamten Implantats in das die Füllmaterialsubstanzen enthaltende Bad notwendig ist.
Gemäß einer Ausführungsform der Erfindung kann das Eindringen der Kieselsäure- Hydroxylapatit-Matrix zusammen mit den Füllmaterialsubstanzen in die Poren der Oberflächenschicht bzw. der Gerüststruktur durch aus dem Stand der Technik bekannte Hilfsmaßnahmen unterstützt werden, die mechanischer und/oder elektrischer Natur sein können. Ebenfalls ist es denkbar, daß Mittel zur Herabsetzung der Oberflächenspannung eingesetzt werden, um eine nach Möglichkeit vollständige und schnelle Füllung der Poren zu erreichen.
Nachdem die Poren der Oberflächenschicht bzw. der Gerüststruktur mit den Füllmaterialsubstanzen gefüllt sind, wird das SoI, d.h. insbesondere die Kieselsäure-Hydroxylapatit- Matrix, die in Form einer Mischung vorliegt, wärmebehandelt und getrocknet, wobei die Kieselsäure zunächst zu einem Gel erstarrt, in dem die dispersen Kieselsäuren netz-, blatt- oder wabenartig mit einer oberflächenreichen Struktur angeordnet sind und durch ein weiteres Trocknen zu einem Xerogel erstarrt. Dieses Xerogel besitzt seinerseits Mi- kro- und Nanoporen, die eine Einwanderung und ein Einwachsen von Knochenzellen begünstigen und diesen aufgrund der durch die Mikroporen bedingten großen Oberfläche einen guten Halt bieten.
An dieser Stelle sei erwähnt, daß das erfindungsgemäße Verfahren prinzipiell auf jede für ein Implantat geeignete Gerüststruktur anwendbar ist, selbst dann, wenn diese Gerüststruktur nicht auf einer Rohoberfläche eines Implantat-Rohlings vorhanden, sondern eigenständig oder an einer anderen Oberfläche befestigt vorliegt.
Die vorstehende Aufführung an Füllmaterialsubstanzen ist an dieser Stelle nicht abschließend, sondern es sei betont, daß Substanzen, die geeignet sind, ein Knochen-Ein- und -Anwachsen sowie gegebenenfalls Hilfsstoffe und Additive ebenfalls als Füllmaterialsubstanzen verwendet werden können, wobei eine Auswahl der zu verwendenden Substanzen und deren jeweilige Konzentration in der Kieselsäure-Hydroxylapatit-Matrix, je nach Knochenzustand, insbesondere Knochentyp und Knochenalter, variiert werden kann. Des weiteren sei betont, daß diese Füllmaterialsub stanzen in aller Regel leicht und schnell durch Knochenzellen resorbierbar sind, wobei diese Füllmaterialsubstanzen zumindest teilweise in die Knochenzellen aufgenommen werden, so daß das Porenvolumen der Oberflächenschicht bzw. der Gerüststruktur in zunehmendem Maß von Knochensubstanz durchsetzt ist, wobei die Füllmaterialsubstanzen zumindest teilweise, bevorzugt zum überwiegenden Teil durch diese Knochensubstanz ersetzt werden, so daß im optimalen Endzustand nur mehr Knochensubstanz innerhalb des Porenvolumens der Oberflächenschicht bzw. der Gerüststruktur vorhanden ist, nachdem die Füllmaterialsubstanzen aufgelöst und/oder resorbiert und von den Knochenzellen umgebaut und/oder aufgenommen oder über in die Gerüststruktur ebenfalls eingewachsene Blutgefäße abtransportiert wurden.
Des weiteren wird die erfindungsgemäße Aufgabe durch ein Implantat, insbesondere Gelenkersatzimplantat, gelöst, das eine Oberflächenschicht entsprechend vorstehender Spezifizierung aufweist und/oder nach einem Verfahren gemäß einem der Ansprüche 14 bis 18 hergestellt ist.
Weiterhin wird die erfindungsgemäße Aufgabe durch die Verwendung einer Oberflächenschicht gemäß der vorstehenden Spezifikation und/oder dem vorstehend genannten Herstellverfahren gelöst, wobei die Oberflächenschicht für Hüftschäfte, Schalen für Hüftgelenke, Femurkomponenten für einen Kniegelenkersatz, Tibiakomponenten für einen Kniegelenkersatz, Komponenten für einen Schultergelenkersatz, Komponenten für einen Ellbogengelenkersatz, Komponenten für einen Zehengelenkersatz, Komponenten für einen Fingergelenkersatz, für eine- Komponente zur Fusion von Wirbelkörpern der Lumbarwirbelsäule, für Komponenten für einen Bandscheibenersatz, für transgingivale Implantatsysteme, für orthodontische Implantatsysteme und Zahn(ersatz)-implantate geeignet ist.
Wie bereits vorerwähnt, eignet sich die erfindungsgemäße Oberflächenschicht mit ihren mit Füllmaterial gefüllten Poren für die vorstehend genannten Anwendungsgebiete in sehr guter Weise, da eine zementfreie Verankerung von Knochen an den Implantaten aufgrund der hervorragenden Eigenschaften der erfindungsgemäßen Oberflächenschicht, nämlich aufgrund der in dem Füllmaterial vorhandenen Mikroporen, gewährleistet ist, die ein optimiertes Ein- und Anwachsen von Knochen an der Oberflächenschicht und damit an dem Implantat gewährleisten.
Weitere Ausführungsformen der Erfindung ergeben sich aus den Unteransprüchen.
Nachfolgend wird die Erfindung anhand nachfolgender Ausführungsbeispiele näher erläutert.
Ausgehend von einem gemahlenen, kantigen, über die Hydridstufe hergestellten Titanpulver wird dieses in einem ersten Schritt mit einer geringen Menge eines feinen Siliziumpulvers compoundiert. Das Titanpulver weist dabei eine Korngröße von kleiner 350 μm auf und das Siliziumpulver eine solche von maximal 65 μm. Das so entstandene Spritzpulver bzw. die so entstandenen Compoundpartikel bestehen aus nach wie vor kantigen Partikeln mit einem Achsenverhältnis von maximal 5:2. Als nächstes wird dieses compoundierte Pulver als offenporige Struktur auf die Implantatoberfläche aufgebracht. Die offenporige Schicht selbst hat eine Schichtdicke von 0,5 mm bis 1,5 mm und eine Porosität von 40 % bis 50 %. Die Größe der Poren, bestimmt als maximaler Durchmesser, beträgt 150 μm bis 400 μm. Die Öffnung dieser Poren gegen außen liegt im Bereich von 150 μm bis 500 μm. Diese Schicht wird mittels eines Vakuum-Plasma-Spritzverfahrens sowie unter Verwendung eines simultanen Lichtbogens aufgebracht. Die Plasma- Spritzparameter werden bei diesem Verfahren so eingestellt, daß die Titanpartikel zwar leicht angeschmolzen werden, aber beim Aufprall auf das Substrat, nämlich die Rohoberfläche des Implantats sowie bereits aufgebrachte Partikel, nur geringfügig kompaktiert werden. Durch den angewendeten Lichtbogen werden die aufgebrachten Titanpartikel zusätzlich miteinander verbunden sowie die sie verbindenden Sinterhälse und deren Verbindung mit dem Substrat, d.h. der Oberfläche des Implantats, verstärkt. Es entsteht ein zusammenhängendes Netzwerk von gegenseitig verbundenen Titanpartikeln und gleichzeitig eine zusammenhängende, innere Porosität.
Die Porosität der erfindungsgemäßen mittels eines Vakuum-Plasma-Spritzverfahrens aufgebrachten Titanschicht ist bis zu einer Zwischenschicht durchgängig, die über der Rohoberfläche des Implantats angeordnet ist. Die Zwischenschicht dient einer verbesserten Haftung der Oberflächenschicht, respektive der Gerüststruktur an dem Substrat und ist als dünne dichte Titanschicht ausgebildet, die auf der Rohoberfläche des Implantats abgeschieden wurde. Diese Zwischenschicht weist eine Dicke von ca. 50 μm auf.
Im Falle der nachträglichen Anwendung eines Lichtbogenverfahrens an dem Substrat, auf welchem die Teilchen aufgebracht werden sollen, dient dieses Substrat als Elektrode bzw. als Erdung. Durch den Lichtbogen, der in die aufgebrachten Partikel einkoppelt, wird an deren Verbindungsstellen untereinander und mit dem Substrat, die einen höherohmigen Übergangswiderstand darstellen, eine JouPsche Erwärmung erzeugt, die bewirkt, daß eine lokale Versinterung von diesen Verbindungsstellen erfolgt, ohne daß die Porosität und Rauhigkeit in übrigen Bereichen sowohl des Substrats als auch der aufgebrachten Partikel beeinflußt wird. Somit bleibt die Rauhigkeit und durchgängige Porosität, welche für ein Einwachsen von Knochengewebe optimal geeignet ist, nachhaltig erhalten, während die Festigkeit und der Zusammenhalt der Partikel untereinander und mit dem Substrat aufgrund der Anwendung des Lichtbogenverfahrens nachhaltig verbessert ist.
Die Vakuum-Plasma-gespritzten Schichten, insbesondere in Kombination mit dem Lichtbogenverfahren, weisen eine gute Haftfestigkeit gegenüber dem Substrat sowie hinsichtlich der Partikel untereinander und eine gute Scherfestigkeit innerhalb der Schicht auf.
Nachdem die offenporige biokompatible Oberflächenschicht, respektive die Gerüststruktur, auf vorgenannte Weise erzeugt worden ist, wird im Anschluß eine Füllung der Poren dieser Oberflächenschicht bzw. der Gerüststruktur mit einem bioaktiven resorbierbaren Porenfüllmaterial vorgenommen. Dieses besteht aus einem Kieselsäure-Xerogel mit eingebetteten Hydroxylapatitpartikeln, die eine Größe von 10 nm bis 500 nm aufweisen. Dieses Füllmaterial weist ferner extrazelluläre Matrixproteine, Wachstumsfaktoren, knochenbildende Proteine, antibiotisch wirkende Substanzen sowie Gelatine und Kollagen auf. Diese Substanzen liegen in einer flüssigen Kieselsäure-Hydroxylapatit-Matrix vor. Zur Füllung der Poren der Oberflächenschicht bzw. der Gerüststruktur wird diese in ein Bad getaucht, das von der Kieselsäure-Hydroxylapatit-Matrix sowie den weiteren Inhaltsstoffen gebildet ist. Nachdem die Poren der Oberflächenschicht bzw. der Gerüststruktur mit der flüssigen Kieselsäure-Hydroxylapatit-Matrix und deren weiteren Inhaltsstoffen gefüllt sind, wird die Oberflächenschicht bzw. die Gerüststruktur aus dem Bad entfernt, die Kieselsäure- Hydroxylapatit-Matrix getrocknet und mittels einer thermischen Behandlung vernetzt. Durch diese thermische Behandlung bildet sich eine nanoporöse Xerogel-Matrix aus, die ein loses Netzwerk aus Polykieselsäuremolekülen und Hydroxylapatitpartikeln aufweist. Dieses lose Netzwerk ist hervorragend geeignet für ein Einwachsen von Osteoblasten.
Es sei darauf hingewiesen, daß die erfϊndungsgemäße Gerüststruktur zusammen mit dem die Poren dieser Gerüststruktur ausfüllenden Füllmaterial nicht nur im Zusammenhang mit Implantaten, sondern auch als Knochenfüllmaterial verwendet werden kann, wenn eine mit Füllmaterial gefüllte Gerüststruktur beispielsweise in Knochenhohlräume, Knochenrisse oder anderweitig beschädigte Knochen eingebracht wird. Auch in diesem Fall eignet sich mit Füllmaterial gefüllte Gerüststruktur hervorragend für ein Einwachsen von Knochenzellen, wobei letztere von allen Seiten in die Gerüststruktur bzw. das Füllmaterial einwachsen können, sofern diese frei zugänglich ist. Dies ist der Fall, wenn die Gerüststruktur nicht an einer Rohoberfläche eines Implantats oder an einer anderen Oberfläche angeordnet ist, sondern als solche vorliegt.
Des weiteren sei erwähnt, daß auch pharmakologisch wirksame Substanzen in das Füllmaterial implementiert werden können, die von den Knochenzellen aufgenommen oder in die Blutbahn abgegeben werden können und dort beispielsweise entzündungshemmend und/oder Knochenwachstum-beschleunigend wirken.
Die hochporöse Gerüststruktur kann in jeder Größe und in jeder Form, die geeignet ist, vorliegen, wobei explizit Stäbe, Zylinder, Blöcke und keilförmige Gerüststrukturen vorteilhaft sind.
Zusammenfassend läßt sich festhalten, daß sowohl die erfindungsgemäße offenporige biokompatible Oberflächenschicht für ein Implantat, ein aus dieser Oberflächenschicht hergestelltes Implantat als auch das erfindungsgemäße Verfahren zum Herstellen derselben eine gegenüber dem Stand der Technik neue und vorteilhafte Technologie darstellen, durch die ein schnelles und effektives Einwachsen von Knochenzellen in eine offenporöse Oberflächenschicht gewährleistet ist. Dies wird dadurch erreicht, daß innerhalb der Poren der offenporigen Oberflächenschicht eine Matrix zur Verfügung gestellt wird, an die Knochenzellen gut anhaften können und innerhalb der sich diese Knochenzellen gut ausbreiten, teilen und fortpflanzen können.
An dieser Stelle sei darauf hingewiesen, daß alle oben beschriebenen Teile für sich alleine gesehen und in jeder Kombination als erfϊndungswesentlich beansprucht werden. Abänderungen hiervon sind dem Fachmann geläufig.

Claims

P atentansp tüche
1. Offenporige biokompatible Oberflächenschicht für ein Implantat, die an einer Rohoberfläche des Implantats angeordnet ist, dadurch gekennzeichne t, dass
Poren der Oberflächenschicht zumindest teilweise, vorzugsweise zu mindestens
30 %, und besonders bevorzugt vollständig, mit einem Füllmaterial gefüllt sind.
2. Implantat bestehend aus einer offenporigen biokompatiblen Oberflächenschicht, wobei Poren der Oberflächenschicht zumindest teilweise, vorzugsweise zu mindestens 30 %, und besonders bevorzugt vollständig, mit einem Füllmaterial gefüllt sind.
3. Oberflächenschicht nach einem der vorhergehenden Ansprüche, dadurch gekennzeichne t, dass das Füllmaterial unter physiologischen Bedingungen resorbietbar oder löslich ist.
4. Oberflächenschicht nach einem der vorhergehenden Ansprüche, dadurch gekennz eichn et, dass das Füllmaterial bioaktiv ist.
5. Oberflächenschicht nach einem der vorhergehenden Ansprüche, dadurch gekennz eichnet, dass die Poren der offenporigen Oberflächenschicht zu einem zusammenhängenden dreidimensionalen Porennetzwerk verbunden sind, wobei die Oberflächenschicht als eine Gerüststruktur ausgebildet ist und wobei zumindest eine Mehrzahl der Poren über wenigstens eine seitliche Öffnung, die in einer seitlichen Begrenzung der Pore ausgebildet ist, kanal- und/oder bevorzugt tunnelartig miteinander in Kommunikation stehen.
6. Oberflächenschicht nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die offenporige Oberflächenschicht vollständig aus einem Metallschaum gebildet ist oder einen Metallschaum aufweist.
7. Oberflächenschicht nach einem der vorhergehenden Ansprüche, dadurch gekennz eichnet, dass die Schichtdicke der Oberflächenschicht an einer Rohoberfläche des Implantats im Bereich von 0,1 mm bis 2,5 mm, vorzugsweise im Bereich von 0,3 mm bis 1,9 mm und besonders bevorzugt im Bereich von 0,5 mm bis 1,5 mm hegt.
8. Oberflächenschicht nach einem der vorhergehenden Ansprüche, dadurch gekennz eichnet, dass die Oberflächenschicht, nämlich die Gerüststruktur, eine Porosität im Bereich von 20 % bis 70 %, vorzugsweise im Bereich von 30 % bis 60 % und besonders bevorzugt im Bereich von 40 % bis 50 % aufweist.
9. Oberflächenschicht nach einem der vorhergehenden Ansprüche dadurch gekennz eichnet, dass der maximale Querschnitt der Poren im Bereich von 10 μm bis 800 μm, bevorzugt im Bereich von 50 μm bis 600 μm und besonders bevorzugt im Bereich von 100 μm bis 300 μm hegt.
10. Oberflächenschicht nach einem der vorhergehenden Ansprüche, dadurch gekennz eichnet, dass die Oberflächenschicht, nämlich die Gerüststruktur, aus einem unter physiologischen Bedingungen nicht oder nur langsam resorbierbaren Material, nämlich aus einem Metall und/oder einer Keramik und/oder einem Polymer, besteht.
11. Oberflächenschicht nach Anspruch 10, dadurch gekennz eichnet, dass die Oberflächenschicht aus, vorzugsweise kantigen, Metall-, insbesondere Titanpartikeln gebildet ist, die mit einer Menge im Bereich von 0,5 Gew.-% bis 8,5 Gew.-% ± 1,5 Gew.-%, vorzugsweise 0,5 Gew.-% bis 3,0 Gew.-% und besonders bevorzugt 1,0 Gew.-% ± 0,5 Gew.-%, Siliziumpartikel beschichtet, insbesondere compoundiert, sind.
12. Oberflächenschicht nach einem der vorhergehenden Ansprüche 10 oder 11, dadurch gekennzeichnet, dass das Metall ausgewählt ist aus einer Gruppe, die Folgendes umfasst: Titan und/oder Legierung(en) davon, Kobalt und/oder Legierung(en) davon, rostfreier Stahl, insbesondere Edelstahl, Magnesium und/oder Legierung(en) davon, Zirkonium und/oder Legierung(en) davon, Tantal und/oder Legierung(en) davon, sowie Mischungen der genannten Stoffe; die Keramik ausgewählt ist aus der Gruppe, die Folgendes umfasst: Aluminiumoxid, Zirkoniumoxid, Aluminiumoxid verstärktes Zirkoniumoxid, Zirkoniumoxid verstärktes Aluminiumoxid, Siliziumnitrid, Additive sowie Mischungen der genannten Stoffe; das Polymer ausgewählt ist aus einer Gruppe, die Folgendes umfasst: Polyetheretherketon(e) (PEEK), Polyaryletherketon(e) (PAEK), Polyimid(e) (PI), Polyurethan(e) (PU), Polycarbonaturethan(e) (PCU), Polyetherimid(e) (PEI), Polyethylen, insbesondere ultrahochmolekulares Polyethylen (UHMWPE), vorzugsweise vernetztes UHMWPE, Polypropylen, sowie Mischungen der genannten Stoffe.
13. Oberflächenschicht nach einem der vorhergehenden Ansprüche 1 sowie 3 bis 12, dadurch gekennz eichn et, dass zwischen der Rohoberfläche des Implantats und der Oberflächenschicht eine Zwischenschicht vorgesehen ist, die Titan und/oder Silizium aufweist, wobei die Zwischenschicht eine Schichtdicke von < 200 μm, vorzugsweise von < 100 μm und besonders bevorzugt im Bereich von 30 μm bis 50 μm hat.
14. Oberflächenschicht nach einem der vorhergehenden Ansprüche 1 sowie 3 bis 13, dadurch gekennz eichne t, dass die Rohoberfläche des Implantats CoCrMo und/oder Titan und/oder Zirkonium und/oder Legierungen davon aufweist.
15. Oberflächenschicht nach einem der vorhergehenden Ansprüche, dadurch gekennz eichnet, dass das Füllmaterial Substanzen umfasst, die aus einer Gruppe ausgewählt sind, die Folgendes umfasst: Calciumphosphat, insbesondere Hydroxylapatit und/oder Tricalciumphosphat, Bruschit, Calciumsulfat, Siliziumoxid, insbesondere in Form von Kieselsäuregel, vorzugsweise Kiesel-Xerogel, Titanoxid, Gelatine, Kollagen, extrazelluläre Matrixproteine, Wachstumsfaktor(en), knochenbildende Proteine, Hydrogel(e), Stoff(e) mit antibiotischer Wirkung, gegebenenfalls pharmakologisch wirksame Substanzen, wie insbesondere entzündungs- und/oder schmerzhemmende Substanzen, sowie Mischungen der vorgenannten Substanzen.
16. Oberflächenschicht nach Anspruch 15, dadurch gekennz eichnet, dass eine Partikelgröße von als Füllmaterial eingesetzten, gegebenenfalls kristallinen, Substanzen im Bereich von 0,005 μm bis 50 μm, vorzugsweise im Bereich von 0,01 μm bis 5 μm und besonders bevorzugt im Bereich von 0,03 μm bis 0,5 μm hegt.
17. Oberflächenschicht nach einem der vorhergehenden Ansprüche, da durch gekennz eichnet, dass das in die Poren der Gerüststruktur eingefüllte Füllmaterial Mikro- und Nanoporen mit einem durchschnittlichen freien Porenquerschnitt im Bereich von 0,1 nm bis 100 nm, vorzugsweise im Bereich von 0,3 nm bis 30 nm aufweist.
18. Verfahren zur Herstellung einer offenporigen biokompatiblen Oberflächenschicht für ein Implantat oder eines Implantats bestehend aus einer offenporigen biokompatiblen Oberflächenschicht, insbesondere Gelenk- oder Knochenersatzimplantat, gekennz eichnet durch folgende Schritte: a) Herstellen einer offenporigen biokompatiblen Oberflächenschicht in Form einer Gerüststruktur, gegebenenfalls an einer Rohoberfläche eines Implantat-Rohlings, und b) Füllen von Poren der offenporigen Oberflächenschicht mit einem, insbesondere bioaktiven, vorzugsweise resorbierbaren, Füllmaterial zumindest teilweise, vorzugsweise zu mindestens 30 %, und besonders bevorzugt vollständig.
19. Verfahren nach Anspruch 18, dadurch gekennz eichnet, dass
Schritt a) mittels Vakuum-Plasma-Spritzverfahren und/oder mittels PVD (physical vapour deposition) und/oder mittels CVD (chemical vapour deposition) und/oder mittels Sol-Gel- Verfahren und/oder mittels Sintern durchgeführt wird.
20. Verfahren nach einem der vorhergehenden Ansprüche 18 oder 19, da durch g.e kennz eichnet, dass die Gerüststruktur mittels eines Lichtbogens behandelt wird, der zwischen der Rohoberfläche des Implantat-Rohlings und/oder einer Zwischenschicht an dem Implantat-Rohling und/oder der Gerüststruktur an dem Implantat-Rohling, und einer Gegenelektrode während und/oder nach einem Aufbringen von Metall, insbesondere Titan- und/oder Compoundpartikel erzeugt wird.
21. Verfahren nach einem der vorhergehenden Ansprüche 18 bis 20, dadurch gekennz eichnet, dass
Schritt b) mittels folgender Schritte durchgeführt wird: b.l) Tauchen der Gerüststruktur in ein Sol-Bad, in welchem Füllmaterialsubstanzen gelöst und/oder dispergiert sind; b.2) Wärmebehandeln, Trocknen und Vernetzen des SoIs unter Ausbildung eines porösen Xerogels.
22. Verfahren nach einem der vorhergehenden Ansprüche 18 bis 21, dadurch gekennz eichnet, dass als Füllmaterial Substanzen verwendet werden, die aus einer Gruppe ausgewählt sind, die Folgendes umfasst: Calciutnphosphat, insbesondere Hydroxylapatit und/oder Tricalciumphosphat, Calciumsulfat, Siliziumoxid, insbesondere in Form von Kieselsäuregel, vorzugsweise Kiesel-Xerogel, Titanoxid, Gelatine, Kollagen, extrazelluläre Matrixproteine, Wachstumsfaktor(en), knochenbildende Proteine, Hydrogel(e), Stoff (e) mit antibiotischer Wirkung sowie Mischungen der vorgenannten Substanzen.
23. Implantat, insbesondere Gelenkersatzimplantat mit einer Oberflächenschicht oder bestehend aus einer Oberflächenschicht, dadurch gekennz eichn et, daß die Oberflächenschicht gemäß einem der Ansprüche 1 bis 17 ausgebildet und/oder nach einem Verfahren gemäß einem der Ansprüche 18 bis 22 hergestellt ist.
24. Verwendung einer Oberflächenschicht und/oder eines Implantats gemäß einem der Ansprüche 1 bis 17, und/oder hergestellt nach einem Verfahren gemäß einem der Ansprüche 18 bis 22 für Hüftschäfte, Schalen für Hüftgelenke, Femurkomponenten für einen Kniegelenkersatz, Tibiakomponenten für einen Kniegelenkersatz, Komponenten für einen Schultergelenkersatz, Komponenten für einen Ellbogengelenkersatz, Komponenten für einen Zehengelenkersatz, Komponenten für einen Fingergelenkersatz, für eine Komponente zur Fusion von Wirbelkörpern der Lumbalwirbelsäule, für Komponenten für einen Bandscheibenersatz, für transgingivale Implantatsysteme, für orthodontische Implantatsysteme, Zahn(ersatz)-implantate und Knochen(ersatz)-implantate.
EP09707895A 2008-02-05 2009-01-22 Offenporige biokompatible oberflächenschicht für ein implantat, verfahren zur herstellung und verwendung Withdrawn EP2237808A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102008007562 2008-02-05
DE102008044951A DE102008044951A1 (de) 2008-02-05 2008-08-29 Offenporige biokompatible Oberflächenschicht für ein Implantat, Verfahren zur Herstellung und Verwendung
PCT/EP2009/000386 WO2009097968A2 (de) 2008-02-05 2009-01-22 Offenporige biokompatible oberflächenschicht für ein implantat, verfahren zur herstellung und verwendung

Publications (1)

Publication Number Publication Date
EP2237808A2 true EP2237808A2 (de) 2010-10-13

Family

ID=40822277

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09707895A Withdrawn EP2237808A2 (de) 2008-02-05 2009-01-22 Offenporige biokompatible oberflächenschicht für ein implantat, verfahren zur herstellung und verwendung

Country Status (3)

Country Link
EP (1) EP2237808A2 (de)
DE (1) DE102008044951A1 (de)
WO (1) WO2009097968A2 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009023239A1 (de) * 2009-05-30 2011-01-13 John, Hendrik, Dipl.-Ing. Verfahren zur Herstellung und Bearbeitung eines medizinischen Implantats sowie gemäß dem Verfahren hergestelltes Implantat
GB201001830D0 (en) 2010-02-04 2010-03-24 Finsbury Dev Ltd Prosthesis
DE102012005293A1 (de) * 2012-03-15 2013-09-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Implantat und Verfahren zur Herstellung desselben
FR2993171B1 (fr) * 2012-07-11 2015-09-04 Rv Finances Cotyle pour prothese de hanche
EP2908875B1 (de) 2012-10-19 2017-09-20 Gerber, Thomas Osteokonduktive beschichtung von kunststoffimplantaten
CN104606716B (zh) * 2014-12-31 2017-02-01 上海杰视医疗科技有限公司 一种超高分子量聚乙烯复合材料及其制备方法
FR3038831B1 (fr) * 2015-07-16 2017-07-21 Spineart Sa Cage intervertebrale pour arthrodese
DE102017111784A1 (de) 2017-05-30 2018-12-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Beschichtetes Substrat mit titanhaltiger Beschichtung und modifizierter Titanoxidbeschichtung
CN110038170A (zh) * 2019-04-04 2019-07-23 凯斯蒂南京医疗器械有限公司 一种可降解聚氨酯复合物及其用途
CN109498845A (zh) * 2018-12-05 2019-03-22 湖南顶立科技有限公司 多孔口腔种植体及其制备方法
CN111840647B (zh) * 2019-04-25 2022-10-21 深圳兰度生物材料有限公司 可吸收屏障膜及其制备方法
CN110251182A (zh) * 2019-06-14 2019-09-20 凯斯蒂南京医疗器械有限公司 一种伞型组织封堵器
DE102020116929A1 (de) 2020-06-26 2021-12-30 Universität Rostock Endoprothese, Verfahren zu deren Herstellung und Verwendung einer Endoprothese
CN114732944B (zh) * 2022-04-07 2023-01-13 北京大学 一种复合结构锌基棒材及其制备方法
CN115105641B (zh) * 2022-06-20 2023-06-02 四川大学 一种可骨性愈合连接的皮下植入材料

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136029A (en) * 1997-10-01 2000-10-24 Phillips-Origen Ceramic Technology, Llc Bone substitute materials
US6451059B1 (en) * 1999-11-12 2002-09-17 Ethicon, Inc. Viscous suspension spinning process for producing resorbable ceramic fibers and scaffolds
DE10022162B4 (de) * 2000-05-09 2005-09-22 Deutsches Zentrum für Luft- und Raumfahrt e.V. Zementfreies Implantat und Verfahren zur Herstellung eines zementfreien Implantats
CA2573545A1 (en) * 2004-07-19 2006-02-23 Smith & Nephew, Inc. Pulsed current sintering for surfaces of medical implants
WO2006062518A2 (en) * 2004-12-08 2006-06-15 Interpore Spine Ltd. Continuous phase composite for musculoskeletal repair
DE102005052354A1 (de) 2005-11-02 2007-05-03 Plus Orthopedics Ag Offenporige biokompatible Oberflächenschicht für ein Implantat sowie Verfahren zur Herstellung und Verwendung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009097968A2 *

Also Published As

Publication number Publication date
WO2009097968A3 (de) 2010-04-29
WO2009097968A2 (de) 2009-08-13
DE102008044951A1 (de) 2009-08-06

Similar Documents

Publication Publication Date Title
EP2237808A2 (de) Offenporige biokompatible oberflächenschicht für ein implantat, verfahren zur herstellung und verwendung
Pei et al. 3D printed titanium scaffolds with homogeneous diamond-like structures mimicking that of the osteocyte microenvironment and its bone regeneration study
DE69328843T2 (de) Offenzellige Strukturen aus Tantal für schwammige Knochenimplantate unf für Zell- und Gewebe-Rezeptoren
DE69527957T2 (de) Biomaterial und implantat zur reparatur und ersatz von knochen
EP0204786B1 (de) Knochenersatzwerkstoff und seine verwendung
EP1515758B1 (de) OFFENPORÖSE METALLBESCHICHTUNG FüR GELENKERSATZIMPLANTATE SOWIE VERFAHREN ZUR HERSTELLUNG
DE69825911T2 (de) Knochersatzmaterial
EP0984745B1 (de) Knochen- und knorpel-ersatzstrukturen
EP0006544B1 (de) Implantierbare Knochenersatzwerkstoffe auf der Basis von Calciumphosphat-Keramik in einem Matrix-Material und Verfahren zu deren Herstellung
DE3106917C2 (de) Verfahren zur Herstellung eines Implantates als Knochenersatz
DE112007003309B4 (de) Knochenimplantat sowie Set zur Herstellung von Knochenimplantaten und seine Verwendung
EP1942961B1 (de) Verfahren zur Herstellung einer offenporigen biokompatiblen Oberflächenschicht für ein Implantat
EP0366018B1 (de) Metallspongiosa und Verfahren zu ihrer Herstellung
EP3538029B1 (de) Gelenkimplantat zur gewebeneubildung am gelenk
DE102004045410A1 (de) Knochenersatzimplantat für human- und veterinärmedizinische Anwendungen
EP3801395B1 (de) Verfahren und vorrichtung zur herstellung eines implantats
DE69328047T2 (de) Prothese und Verfahren zur deren Herstellung
WO2010097413A1 (de) Implantat, wenigstens teilweise bestehend aus einem verbundwerkstoff, zwischenverbundprodukt und verfahren zur herstellung eines implantats
DE2905647A1 (de) Als knochenimplantat ausgebildetes verankerungselement
EP3801394B1 (de) Gelenkimplantat zur gewebeneubildung am gelenk
DE102010028430B4 (de) Implantat als Knochenersatz mit einer seine Oberfläche zumindest teilweise bedeckenden offenmaschigen, dreidimensionalen Raumnetzstruktur
EP3946165A1 (de) Implantat aus mit biologisch aktivem spendermaterial durchsetzten trägermaterial und verfahren zu dessen herstellung
WO2015144760A1 (de) Verfahren zum aufbringen von geladenen teilchen auf ein implantat
DD300262A7 (de) Metallspongiosa

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100726

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20110803

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140627

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20141108