EP2090747A1 - Bord d'attaque de pièce de turbomachine constitué de matériau superélastique - Google Patents
Bord d'attaque de pièce de turbomachine constitué de matériau superélastique Download PDFInfo
- Publication number
- EP2090747A1 EP2090747A1 EP09152682A EP09152682A EP2090747A1 EP 2090747 A1 EP2090747 A1 EP 2090747A1 EP 09152682 A EP09152682 A EP 09152682A EP 09152682 A EP09152682 A EP 09152682A EP 2090747 A1 EP2090747 A1 EP 2090747A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sheet
- deformation
- leading edge
- turbomachine
- main
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 40
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 26
- 229910001285 shape-memory alloy Inorganic materials 0.000 claims abstract description 14
- 230000002441 reversible effect Effects 0.000 claims abstract description 9
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 8
- 230000004044 response Effects 0.000 claims abstract description 5
- 230000007704 transition Effects 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 2
- YOCUPQPZWBBYIX-UHFFFAOYSA-N copper nickel Chemical compound [Ni].[Cu] YOCUPQPZWBBYIX-UHFFFAOYSA-N 0.000 abstract description 2
- 238000000034 method Methods 0.000 abstract description 2
- 229910000881 Cu alloy Inorganic materials 0.000 abstract 1
- 230000035882 stress Effects 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 229910000734 martensite Inorganic materials 0.000 description 6
- 230000006378 damage Effects 0.000 description 4
- 230000002427 irreversible effect Effects 0.000 description 3
- 229910001000 nickel titanium Inorganic materials 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910000570 Cupronickel Inorganic materials 0.000 description 1
- 229910002482 Cu–Ni Inorganic materials 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- KOMIMHZRQFFCOR-UHFFFAOYSA-N [Ni].[Cu].[Zn] Chemical compound [Ni].[Cu].[Zn] KOMIMHZRQFFCOR-UHFFFAOYSA-N 0.000 description 1
- HZEWFHLRYVTOIW-UHFFFAOYSA-N [Ti].[Ni] Chemical compound [Ti].[Ni] HZEWFHLRYVTOIW-UHFFFAOYSA-N 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- KHYBPSFKEHXSLX-UHFFFAOYSA-N iminotitanium Chemical compound [Ti]=N KHYBPSFKEHXSLX-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 230000009528 severe injury Effects 0.000 description 1
- 239000008259 solid foam Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/147—Construction, i.e. structural features, e.g. of weight-saving hollow blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/20—Rotors
- F05B2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
- F05B2240/31—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor of changeable form or shape
- F05B2240/311—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor of changeable form or shape flexible or elastic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/10—Stators
- F05D2240/12—Fluid guiding means, e.g. vanes
- F05D2240/121—Fluid guiding means, e.g. vanes related to the leading edge of a stator vane
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/20—Rotors
- F05D2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
- F05D2240/303—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/50—Intrinsic material properties or characteristics
- F05D2300/505—Shape memory behaviour
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49316—Impeller making
- Y10T29/49336—Blade making
Definitions
- the present invention relates to a turbomachine part comprising a main part and a leading edge.
- upstream and downstream are defined relative to the direction of normal air flow along the room.
- length and height refer to the largest dimension and the smallest dimension of the part perpendicular to the direction of air flow, respectively.
- leading edge of a workpiece is meant that part of the workpiece which, in normal operation when it is subjected to a flow of air, is directly impacted by this flow.
- the leading edge is the most upstream part of the room.
- the blades are an example of parts that are subject to a flow of air.
- the flow of air circulating around the fixed or moving parts of a turbomachine can carry foreign bodies (chippings, pieces of ice, ...) that can impact these parts at high speed and damage them. In particular, it is the leading edge of these parts which undergoes the impacts, and is therefore undesirably deformed.
- This damage is particularly detrimental with respect to the vanes of the turbine, including OGV ( outlet guide vanes ) and IGV (inlet guide vanes ), which participate in creating the thrust developed by the turbomachine.
- a collision with a foreign body can affect both the structural integrity of the blade (creation of internal or external cracks, and delamination in the case of composite parts), hence a risk of rupture of the part and severe damage to parts of the downstream turbomachine.
- this collision almost systematically deforms the leading edge of the blade, which modifies its ideal aerodynamic profile and disrupts the flow of air around this blade, which leads to a decrease in performance. of the turbomachine.
- the present invention aims to remedy these drawbacks, or at least to mitigate them.
- the object of the invention is to propose a part that can recover its initial shape after an impact by a foreign body, and whose mechanical performance is not affected by this impact.
- the leading edge of the part is constituted, on at least a part of the length of the part, of a sheet of material which is fixed on the main part and which extends from the intrados on the extrados of the main part by providing a space between this sheet and the upstream end of the main part, the material being capable, below a maximum deformation ( ⁇ 2 ), of deforming reversible superelastic in response to an impact by a foreign body, without damaging the main part.
- the leading edge of the part under the effect of an impact by a foreign body, deforms but without damaging the main part of the part, which is its structural part.
- this leading edge is able to substantially return to its original shape before impact, even in case of impact of high energy.
- the superelastic material is a shape memory alloy in the austenite phase.
- the material is capable, above the maximum deformation ( ⁇ 2 ), of recovering, by heating above a transition temperature (T t ), its shape before deformation.
- the leading edge even strongly deformed (that is to say above the deformation ⁇ 2 ) following an impact, is capable, by heating the material constituting the leading edge to above a transition temperature, to substantially recover its initial shape before impact.
- the invention also relates to a method of manufacturing a turbomachine part comprising a main part having a leading edge.
- this method comprises: truncating the leading edge of the main part; fixing on this main part of a sheet of material which extends from the intrados to the extrados of the main part over at least part of its length so that the sheet reconstitutes the profile of the leading edge of the main part before the truncation of this leading edge, this material being capable, below a maximum deformation ( ⁇ 2 ), of reversibly deforming superelastically in response to impact by a foreign body, without damaging the main part.
- ⁇ 2 maximum deformation
- the piece having a leading edge is a blade.
- this dawn is an OGV ("outlet guide vane") or an IGV ("guide guide vane”).
- the invention applies to any turbomachine part having a leading edge and subjected to an air flow, such as for example an inlet housing arm.
- the figure 1 represents a turbine engine blade section.
- This blade 10 comprises an upstream end 20, a lower surface 30, an upper surface 50, and a downstream end 40.
- the upstream end 20 is the portion of the blade which is first touched by the air flow during normal operation. the turbomachine, which is in this case the leading edge of the dawn 10.
- the intrados 30 is the concave surface of the blade 10, namely the surface along which the flow of air circulating around the blade 10 generates an overpressure.
- the extrados 50 is the convex surface of the blade 10, namely the surface along which the airflow generates a depression.
- the blade 10 has substantially a curved plate shape that thickens from its downstream end 40 to its upstream end 20.
- the figure 2 shows a blade 10 according to the invention.
- This blade 10 comprises on the one hand a main part 15 having an upstream end 20, a lower surface 30, an upper surface 50, and a downstream end 40, on the other hand a sheet 60.
- the main part 15 is identical to the dawn of the figure 1 .
- the upstream end 20 of the main portion 15 is covered by the sheet 60.
- the sheet 60 extends in length in the direction D in which extends the upstream end 20 of the main portion 15.
- the sheet extends width in a plane that is perpendicular to this direction D (this direction D is perpendicular to the plane of the figure 2 ). Thus, in this plane, the sheet extends from a first edge 61 to a second edge 62, each of these edges extending in the direction D.
- the first edge 61 is fixed, over its entire length (this is in the direction D) on the extrados 50, near the upstream end 20, and the second edge 62 is fixed, throughout its length, on the intrados 30, near the upstream end 20.
- the sheet 60 is substantially U-shaped in a plane perpendicular to the direction D.
- these fasteners do not generate protuberances protruding from the surface of the workpiece, so as not to disturb the flow of air along the intrados 30 and the extrados 50.
- these fasteners can for example by gluing, brazing, welding, or riveting.
- the upstream end 20 of the main part is covered over its entire length (direction D) by the sheet 60.
- the sheet 60 may cover the upstream end 20 only over part of its length.
- the material in which the sheet 60 is manufactured is a superelastic material, that is, a material that is able to recover its original shape when the stress to which it had been subjected is removed (reversible deformation), and this for deformations well above the deformation corresponding to the usual elastic limit of alloys.
- the elastic limit that is to say the stress up to which the deformation is elastic reversible (conventional elasticity)
- the elastic limit is of the order of 0.1%.
- For a superelastic material it is of the order of several percent.
- the superelastic material of the sheet 60 is a shape memory alloy.
- shape memory alloys the superelasticity is due to the reversible transformation of the austenite phase (face-centered cubic crystal lattice) into the martensite phase (tetragonal crystalline lattice) at a substantially constant temperature.
- Shape memory alloys are for example copper-nickel alloys (Cu-Ni), copper-zinc-nickel (Cu-Zn-Ni) or nickel-titanium (Ni-Ti, Nitinol ®), optionally alloyed with d other elements (iron, niobium).
- the figure 4 gives an example of a stress-strain curve (or ⁇ ( ⁇ )) of a shape memory alloy. Note that this curve has three regions: for deformation ⁇ less than the minimum deformation ⁇ 1 (region I), the material is linear elastic (classical elasticity); for a deformation ⁇ between ⁇ 1 and a maximum deformation ⁇ 2 greater than the minimum deformation ⁇ 1 (region II), the material is superelastic (it deforms a lot under a constraint that increases little); for a deformation ⁇ greater than the maximum deformation ⁇ 2 (region III), the deformation is not reversible. Region II is the range of superelastic deformations. The maximum deformation ⁇ 2 may for example vary between 3% and 10%.
- the shape memory alloy which constitutes the sheet 60 is in austenite.
- the energy of the impact by a foreign body causes the metallurgical transformation of this alloy into martensite, and causes the reversible superelastic deformation of the sheet 60 (that is to say that the deformation is in the deformation range [ ⁇ 1 ; ⁇ 2 ]).
- the alloy After impact, the alloy returns to its initial shape (before impact).
- the space 70 constitutes an empty cavity.
- the cavity 70 is of sufficient size that the sheet 60 can deform without touching the upstream end 20 the main part 15, or if it touches it, without causing any damage to the mechanical integrity of the main part 15.
- the retreating distance of the sheet 60 depends on the energy and shape of the impact projectile, the thickness of the sheet, and the size of the part.
- the recoil distance is for example between 0.1 mm and 2 mm (millimeters).
- the sheet has for example a thickness of between 0.1 and 0.5 mm.
- the upstream end 20 of the main portion 15 may be truncated to form an upstream face 25 which is substantially flat.
- This embodiment is illustrated on the figure 3 .
- the sheet 60 can thus be fixed on the main part 15 so that it reconstructs the profile of the upstream end 20 (leading edge) of the main part 15 before the truncation of this upstream end 20.
- a part 10 whose leading edge consists of a sheet 60 of superelastic material, the shape and the volume of the part 10 being substantially identical to the initial shape and volume of the main part 15 before truncation of its end upstream 20. In this way, the aerodynamic characteristics of the part 10 are preserved.
- the space 70 may be filled with a filling material whose rigidity is substantially less than the stiffness E 0 of the material of the main part 15.
- This filling material for example a solid foam
- the blade 10 can withstand impacts of larger energy foreign bodies (that is to say until the impacts that generate in the sheet 60 stresses ⁇ less than ⁇ 1 ) while practically deforming.
- the material of the sheet 60 will not enter the superelastic domain II (domain of deformations greater than the minimum deformation ⁇ 1 and less than the maximum deformation ⁇ 2 ) than for significant energy impacts.
- the sheet 60 will retain longer its ability to deform superelastically. Indeed, it is known that the shape memory alloys age beyond a given number of superelastic deformation cycles, this aging resulting in a degradation of the ability of such alloys to return to their original shape after deformation.
- the austenite-martensite transformation temperatures of the shape memory alloy constituting the sheet 60 must be less than the temperature operating range of the part 10, the sheet 60 forms the leading edge. Indeed, in the opposite case, the superelastic effect (which is solely due to the application of a mechanical stress), is disturbed, and the sheet 60 does not return to its original shape before impact. In this temperature operating range, the sheet 60 is in the austenite phase. In a turbomachine, this temperature range is typically -50 ° C to 130 ° C for so-called "cold" parts, especially upstream of the combustion chamber.
- the leading edge may consist of any superelastic material which, subjected to deformations greater than the maximum deformation ⁇ 2 , is able to recover its initial shape (before deformation) by heating above a transition temperature T t .
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Architecture (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
- La présente invention concerne une pièce de turbomachine comportant une partie principale et un bord d'attaque.
- Dans la description qui suit les termes "amont" et "aval" sont définis par rapport au sens de circulation normal de l'air le long de la pièce. Les termes "longueur" et "hauteur" désignent la plus grande dimension et la plus petite dimension de la pièce perpendiculairement à la direction de circulation de l'air, respectivement.
- Par bord d'attaque d'une pièce, on entend la partie de la pièce qui, en fonctionnement normal lorsqu'elle est soumise à un flux d'air, est impactée directement par ce flux. Le bord d'attaque est donc la partie la plus amont de la pièce. Dans une turbomachine, les aubes sont un exemple de pièces qui sont soumises à un flux d'air.
- Le flux d'air qui circule autour des pièces fixes ou mobiles d'une turbomachine peut charrier des corps étrangers (gravillons, morceaux de glace,...) qui peuvent venir impacter à grande vitesse ces pièces et les endommager. En particulier, c'est le bord d'attaque de ces pièces qui subit les impacts, et est donc déformé de façon indésirable. Cet endommagement est particulièrement préjudiciable en ce qui concerne les aubes de la turbine, notamment les OGV (outlet guide vanes) et IGV (inlet guide vanes), qui participent à création de la poussée développée par la turbomachine. En effet, une collision avec un corps étranger peut d'une part affecter l'intégrité structurelle de l'aube (création de fissures internes ou externes, et de délaminage dans le cas de pièces en matériaux composites), d'où un risque de rupture de la pièce et de dommages sévères aux parties de la turbomachine en aval. D'autre part, cette collision déforme presque systématiquement le bord d'attaque de l'aube, ce qui modifie son profil aérodynamique idéal et perturbe l'écoulement du flux d'air autour de cette aube, ce qui conduit à une diminution des performances de la turbomachine.
- Il est donc indispensable de protéger le bord d'attaque d'une pièce de turbomachine des impacts de corps étrangers que cette pièce peut subir. Cette protection est actuellement effectuée en appliquant sur le bord d'attaque de la pièce une couche métallique en acier ou alliage de titane qui suit le profil du bord d'attaque et est en contact avec ce bord d'attaque. Cette couche a pour rôle d'absorber le plus d'énergie possible de l'impact avec un corps étranger, afin de limiter l'endommagement subi par la pièce. Cependant, la pièce subit malgré tout un endommagement à la suite d'impacts répétés, et la surface de la couche est déformée de façon permanente, ce qui modifie de façon préjudiciable le profil aérodynamique de la pièce. Par ailleurs, un seul impact est souvent suffisamment énergétique pour déformer la couche au-delà de sa limite élastique (c'est-à-dire en y causant des déformations supérieures à la déformation élastique maximale du matériau, qui est alors déformé dans le domaine plastique, de façon irréversible).
- La présente invention vise à remédier à ces inconvénients, ou tout au moins à les atténuer.
- L'invention vise à proposer une pièce qui puisse reprendre sa forme initiale après un impact par un corps étranger, et dont les performances mécaniques ne soient pas affectées par cet impact.
- Ce but est atteint grâce au fait que le bord d'attaque de la pièce est constitué, sur une partie au moins de la longueur de la pièce, d'une feuille de matériau qui est fixée sur la partie principale et qui s'étend de l'intrados à l'extrados de la partie principale en ménageant un espace entre cette feuille et l'extrémité amont de la partie principale, le matériau étant capable, en dessous d'une déformation maximale (ε2), de se déformer de façon réversible superélastique en réponse à un impact par un corps étranger, sans endommager la partie principale.
- Grâce à ces dispositions, le bord d'attaque de la pièce, sous l'effet d'un impact par un corps étranger, se déforme mais sans endommager la partie principale de la pièce, qui est sa partie structurale. De plus, grâce aux propriétés superélastiques du matériau constituant le bord d'attaque, ce bord d'attaque est apte à reprendre sensiblement sa forme initiale avant impact, même en cas d'impact de forte énergie.
- Par exemple, le matériau superélastique est un alliage à mémoire de forme en phase austénite.
- Avantageusement, le matériau est capable, au dessus de la déformation maximale (ε2), de reprendre, par chauffage au dessus d'une température de transition (Tt), sa forme avant déformation.
- Grâce à ces dispositions, le bord d'attaque, même déformé fortement (c'est-à-dire au dessus de la déformation ε2) suite à un impact, est capable, par chauffage du matériau constituant le bord d'attaque au dessus d'une température de transition, de reprendre sensiblement sa forme initiale avant impact.
- L'invention concerne également un procédé de fabrication d'une pièce de turbomachine comportant une partie principale possédant un bord d'attaque.
- Selon l'invention, ce procédé comprend : la troncature du bord d'attaque de la partie principale; la fixation sur cette partie principale d'une feuille de matériau qui s'étend de l'intrados à l'extrados de la partie principale sur une partie au moins de sa longueur de telle sorte que la feuille reconstitue le profil du bord d'attaque de la partie principale avant la troncature de ce bord d'attaque, ce matériau étant capable, en dessous d'une déformation maximale (ε2), de se déformer de façon réversible superélastique en réponse à un impact par un corps étranger, sans endommager la partie principale.
- L'invention sera bien comprise et ses avantages apparaîtront mieux, à la lecture de la description détaillée qui suit, d'un mode de réalisation représenté à titre d'exemple non limitatif. La description se réfère aux dessins annexés sur lesquels :
- la
figure 1 représente une vue en perspective d'une section d'une aube de turbomachine selon l'art antérieur, - la
figure 2 est une vue en coupe transversale d'une aube de turbomachine selon l'invention, - la
figure 3 est une vue en coupe transversale d'un autre mode de réalisation d'une aube de turbomachine selon l'invention, - la
figure 4 est un exemple de courbe contrainte-déformation d'un alliage à mémoire de forme. - La description qui suit considère le cas où la pièce possédant un bord d'attaque est une aube. Par exemple, cette aube est une OGV ("outlet guide vane") ou une IGV ("inlet guide vane"). Cependant, l'invention s'applique à toute pièce de turbomachine possédant un bord d'attaque et soumise à un flux d'air, comme par exemple un bras de carter d'entrée.
- La
figure 1 représente une section d'aube 10 de turbomachine. Cette aube 10 comprend une extrémité amont 20, un intrados 30, un extrados 50, et une extrémité aval 40. L'extrémité amont 20 est la partie de l'aube qui est touchée en premier par le flux d'air en fonctionnement normal de la turbomachine, et qui constitue dans ce cas le bord d'attaque de l'aube 10. Sur lesfigures 1 à 3 , ce flux d'air se déplace de la droite vers la gauche, selon la flèche. L'intrados 30 est la surface concave de l'aube 10, à savoir la surface le long de laquelle le flux d'air circulant autour de l'aube 10 génère une surpression. L'extrados 50 est la surface convexe de l'aube 10, à savoir la surface le long de laquelle le flux d'air génère une dépression. Ainsi, l'aube 10 a sensiblement une forme de plaque incurvée qui s'épaissit de son extrémité aval 40 vers son extrémité amont 20. - La
figure 2 montre une aube 10 selon l'invention. Cette aube 10 comprend d'une part une partie principale 15 possédant une extrémité amont 20, un intrados 30, un extrados 50, et une extrémité aval 40, d'autre part une feuille 60. La partie principale 15 est identique à l'aube de lafigure 1 . L'extrémité amont 20 de la partie principale 15 est recouverte par la feuille 60. La feuille 60 s'étend en longueur dans la direction D dans laquelle s'étend l'extrémité amont 20 de la partie principale 15. La feuille s'étend en largeur dans un plan qui est perpendiculaire à cette direction D (cette direction D est perpendiculaire au plan de lafigure 2 ). Ainsi, dans ce plan, la feuille s'étend d'un premier bord 61 à un second bord 62, chacun de ces bords s'étendant selon la direction D. Le premier bord 61 est fixé, sur toute sa longueur (c'est-à-dire selon la direction D) sur l'extrados 50, à proximité de l'extrémité amont 20, et le second bord 62 est fixé, sur toute sa longueur, sur l'intrados 30, à proximité de l'extrémité amont 20. Ainsi la feuille 60 a sensiblement une forme en U dans un plan perpendiculaire à la direction D. - Il est important que ces fixations ne génèrent pas de protubérances dépassant de la surface de la pièce, afin de ne pas perturber l'écoulement de l'air le long de l'intrados 30 et de l'extrados 50. Ainsi, ces fixations peuvent se faire par exemple par collage, par brasage, par soudage, ou par rivetage.
- L'extrémité amont 20 de la partie principale est recouverte sur toute sa longueur (direction D) par la feuille 60. Alternativement, la feuille 60 peut ne recouvrir l'extrémité amont 20 que sur une partie de sa longueur.
- Le matériau dans lequel la feuille 60 est fabriquée est un matériau superélastique, c'est-à-dire un matériau qui est capable de reprendre sa forme initiale lorsque la contrainte à laquelle il avait été soumis est retirée (déformation réversible), et ce pour des déformations bien supérieures à la déformation correspondant à la limite élastique usuelle d'alliages. Ainsi, pour un alliage ordinaire la limite élastique, c'est-à-dire la contrainte jusqu'à laquelle la déformation est réversible élastique (élasticité classique), est de l'ordre de 0,1%. Pour un matériau superélastique, il est de l'ordre de plusieurs pourcents.
- Par exemple, le matériau superélastique de la feuille 60 est un alliage à mémoire de forme. Dans les alliages à mémoire de forme, la superélasticité est due à la transformation réversible de la phase austénite (réseau cristallin cubique faces centrées) en la phase martensite (réseau cristallin tétragonal) à température sensiblement constante. Les alliages à mémoire de forme sont par exemple des alliages cuivre-nickel (Cu-Ni), cuivre-zinc-nickel (Cu-Zn-Ni), ou nickel-titane (Ni-Ti, Nitinol®), éventuellement alliés avec d'autres éléments (fer, niobium).
- La
figure 4 donne un exemple de courbe contrainte-déformation (ou σ(ε)) d'un alliage à mémoire de forme. On note que cette courbe comporte trois régions : pour une déformation ε inférieure à la déformation minimale ε1 (région I), le matériau est linéaire élastique (élasticité classique); pour une déformation ε comprise entre ε1 et une déformation maximale ε2 supérieure à la déformation minimale ε1 (région II), le matériau est superélastique (il se déforme beaucoup sous une contrainte qui augmente peu); pour une déformation ε supérieure à la déformation maximale ε2 (région III), la déformation n'est pas réversible. La région II constitue la plage des déformations superélastiques. La déformation maximale ε2 peut par exemple varier entre 3% et 10%. - Avant application d'une contrainte σ (c'est-à-dire avant impact), l'alliage à mémoire de forme qui constitue la feuille 60 est en austénite. L'énergie de l'impact par un corps étranger provoque la transformation métallurgique de cet alliage en martensite, et entraîne la déformation superélastique réversible de la feuille 60 (c'est-à-dire que la déformation est dans la plage de déformation [ε1; ε2]). Après impact, l'alliage revient donc à sa forme initiale (avant impact).
- Afin d'accommoder la déformation de la feuille 60 résultant de l'impact, il existe un espace 70 entre la feuille 60 et l'extrémité amont 20 de la partie principale 15, comme représenté sur la
figure 2 . L'espace 70 constitue une cavité vide. Ainsi, la cavité 70 a une taille suffisante pour que la feuille 60 puisse se déformer sans toucher l'extrémité amont 20 de la partie principale 15, ou si elle la touche, sans y causer de dommages préjudiciables à l'intégrité mécanique de la partie principale 15. - La distance de recul de la feuille 60 dépend de l'énergie et de la forme du projectile d'impact, de l'épaisseur de la feuille, et de la taille de la pièce. La distance de recul est par exemple comprise entre 0,1 mm et 2 mm (millimètres). La feuille a par exemple une épaisseur comprise entre 0,1 et 0,5 mm.
- Afin d'aménager la cavité 70, l'extrémité amont 20 de la partie principale 15 peut être tronquée pour former une face amont 25 qui est sensiblement plane. Ce mode de réalisation est illustré sur la
figure 3 . La feuille 60 peut ainsi être fixée sur la partie principale 15 de telle sorte qu'elle reconstitue le profil de l'extrémité amont 20 (bord d'attaque) de la partie principale 15 avant la troncature de cette extrémité amont 20. Ainsi, on obtient une pièce 10 dont le bord d'attaque est constitué d'une feuille 60 en matériau superélastique, la forme et le volume de la pièce 10 étant sensiblement identiques à la forme et au volume initiaux de la partie principale 15 avant troncature de son extrémité amont 20. De la sorte, les caractéristiques aérodynamiques de la pièce 10 sont conservées. - Alternativement, l'espace 70 peut être rempli par un matériau de remplissage dont la rigidité est sensiblement inférieure à la rigidité E0 du matériau de la partie principale 15. Ce matériau de remplissage (par exemple une mousse solide) permet une fixation plus aisée de la feuille 60 sur la partie principale 15, et fournit un support mécanique à cette feuille 60.
- Avantageusement, la rigidité E du matériau de la feuille 60, dans le cas où ce matériau est soumis à une déformation ε inférieure à la déformation minimale ε1 (région I), est de l'ordre de grandeur de la rigidité E0 du matériau de la partie principale 15. En conséquence, la déformation ε de la feuille 60 restera dans le domaine élastique I (déformations inférieures à la déformation minimale ε1) jusqu'à une contrainte σ plus élevée, en l'espèce égale à la contrainte σ1=E·ε1. Ainsi, l'aube 10 pourra résister à des impacts de corps étrangers d'énergie plus importantes (c'est-à-dire jusqu'aux impacts qui génèrent dans la feuille 60 des contraintes σ inférieures à σ1) en ne se déformant pratiquement pas, et le matériau de la feuille 60 n'entrera dans le domaine superélastique II (domaine des déformations supérieures à la déformation minimale ε1 et inférieures à la déformation maximale ε2) que pour des impacts d'énergie importante. Ainsi, la feuille 60 conservera plus longtemps sa capacité à se déformer de façon superélastique. En effet, il est connu que les alliages à mémoire de forme vieillissent au-delà d'un nombre donné de cycles de déformations superélastiques, ce vieillissement se traduisant par une dégradation de la capacité de tels alliages à reprendre leur forme initiale après déformation.
- Les températures de transformation austénite-martensite de l'alliage à mémoire de forme constituant la feuille 60 doivent être inférieures à la plage de fonctionnement en température de la pièce 10 dont la feuille 60 forme le bord d'attaque. En effet, dans le cas contraire, l'effet superélastique (qui est uniquement dû à l'application d'une contrainte mécanique), est perturbé, et la feuille 60 ne revient pas à sa forme initiale avant impact. Dans cette plage de fonctionnement en température, la feuille 60 est donc en phase austénite. Dans une turbomachine, cette plage de températures est typiquement de -50°C à 130°C pour des pièces dites "froides", notamment en amont de la chambre de combustion.
- Il est possible que certains impacts particulièrement énergétiques (masse ou vitesse plus importantes du corps étranger) génèrent dans certaines zones de la feuille 60 des déformations ε3 supérieures à la déformation maximale ε2 (région III). Dans ces zones, le matériau subit une déformation partiellement irréversible, la déformation irréversible correspondant à |ε3 - ε2|. Dans le cas d'alliages à mémoire de forme, l'énergie de l'impact a fait passer, dans ces zones, le matériau de phase austénite en phase martensite, et le matériau y est donc, après impact, en phase martensite. Cette déformation irréversible rémanente peut donc être rendue réversible si les zones déformées sont chauffées au dessus de la température de transition Tt qui est la borne maximale de la plage de températures de transition de la martensite vers l'austénite pour l'alliage à mémoire de forme. La température de transition Tt est une caractéristique intrinsèque de l'alliage à mémoire de forme.
- D'une manière générale, le bord d'attaque peut être constitué de tout matériau superélastique qui, soumis à des déformations supérieures à la déformation maximale ε2, est apte à reprendre sa forme initiale (avant déformation) par chauffage au dessus d'une température de transition Tt.
Claims (10)
- Pièce (10) de turbomachine comportant une partie principale (15) et un bord d'attaque, caractérisée en ce que ledit bord d'attaque est constitué, sur une partie au moins de la longueur de ladite pièce, d'une feuille (60) de matériau qui est fixée sur ladite partie principale (15) et qui s'étend de l'intrados (30) à l'extrados (50) de ladite partie principale (15) en ménageant un espace (70) entre ladite feuille et l'extrémité amont (20) de ladite partie principale (15), ledit matériau étant capable, en dessous d'une déformation maximale (ε2), de se déformer de façon réversible superélastique en réponse à un impact par un corps étranger, sans endommager ladite partie principale (15).
- Pièce (10) de turbomachine selon la revendication 1 caractérisée en ce que ledit matériau est un alliage à mémoire de forme en phase austénite.
- Pièce (10) de turbomachine selon la revendication 1 ou 2 caractérisée en ce que la rigidité dudit matériau est de l'ordre de grandeur de la rigidité du matériau de ladite partie principale (15) lorsque ledit matériau est soumis à une déformation inférieure à une déformation minimale (ε1), cette déformation minimale (ε1) étant inférieure à la déformation maximale (ε2).
- Pièce (10) de turbomachine selon l'une quelconque des revendications 1 à 3 caractérisée en ce que ledit matériau étant capable, au dessus de ladite déformation maximale (ε2), de reprendre, par chauffage au dessus d'une température de transition (Tt), sa forme avant déformation.
- Pièce (10) de turbomachine selon l'une quelconque des revendications 1 à 4 caractérisée en ce que ledit espace (70) constitue une cavité vide.
- Pièce (10) de turbomachine selon l'une quelconque des revendications 1 à 5 caractérisée en ce que l'extrémité amont (20) de ladite partie principale (15) est une face amont (25) sensiblement plane.
- Pièce (10) de turbomachine selon l'une quelconque des revendications 1 à 6 caractérisée en ce que ladite feuille (60) recouvre l'extrémité amont (20) de ladite partie principale (15) sur toute sa longueur.
- Pièce (10) de turbomachine selon l'une quelconque des revendications 1 à 7 caractérisée en ce que ladite pièce (10) est une aube.
- Turbomachine comportant une pièce selon l'une quelconque des revendications 1 à 8.
- Procédé de fabrication d'une pièce (10) de turbomachine comportant une partie principale (15) possédant un bord d'attaque caractérisé en ce qu'il comprend : la troncature du bord d'attaque de ladite partie principale (15); la fixation sur ladite partie principale (15) d'une feuille (60) de matériau qui s'étend de l'intrados (30) à l'extrados (50) de ladite partie principale (15) sur une partie au moins de la longueur de ladite partie principale, de telle sorte que ladite feuille (60) reconstitue le profil du bord d'attaque de ladite partie principale (15) avant la troncature de ce bord d'attaque, ledit matériau étant capable, en dessous d'une déformation maximale (ε2), de se déformer de façon réversible superélastique en réponse à un impact par un corps étranger, sans endommager la partie principale (15).
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0850935A FR2927652B1 (fr) | 2008-02-14 | 2008-02-14 | Bord d'attaque de piece de turbomachine constitue de materiau superelastique |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2090747A1 true EP2090747A1 (fr) | 2009-08-19 |
EP2090747B1 EP2090747B1 (fr) | 2011-09-21 |
Family
ID=40090157
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09152682A Active EP2090747B1 (fr) | 2008-02-14 | 2009-02-12 | Bord d'attaque de pièce de turbomachine constitué de matériau superélastique |
Country Status (6)
Country | Link |
---|---|
US (1) | US20090208342A1 (fr) |
EP (1) | EP2090747B1 (fr) |
JP (1) | JP5172735B2 (fr) |
CA (1) | CA2653565A1 (fr) |
FR (1) | FR2927652B1 (fr) |
RU (1) | RU2486347C2 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2623715A3 (fr) * | 2012-01-04 | 2014-06-11 | General Electric Company | Entretoise d'échappement avec bord d'attaque en alliage à mémoire de forme |
US9808367B2 (en) | 2004-11-19 | 2017-11-07 | Fulfillium, Inc. | Methods, devices, and systems for obesity treatment |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010036042B3 (de) | 2010-08-31 | 2012-02-16 | Lufthansa Technik Ag | Verfahren zum Rekonturieren einer Kompressor- oder Turbinenschaufel für eine Gasturbine |
USD748054S1 (en) * | 2013-02-19 | 2016-01-26 | Tnp Co., Ltd. | Wind turbine blade |
WO2014158245A1 (fr) | 2013-03-14 | 2014-10-02 | Hodgson Benedict N | Profil aérodynamique avec renfort de bord d'attaque |
FR3014943B1 (fr) * | 2013-12-18 | 2019-03-29 | Safran Aircraft Engines | Piece de turbomachine a surface non-axisymetrique |
US20170130585A1 (en) * | 2015-11-09 | 2017-05-11 | General Electric Company | Airfoil with energy absorbing edge guard |
BE1023299B1 (fr) * | 2016-01-21 | 2017-01-26 | Safran Aero Boosters S.A. | Aube statorique |
BE1023295B1 (fr) * | 2016-01-21 | 2017-01-26 | Safran Aero Boosters S.A. | Aube statorique |
CN107420349B (zh) * | 2017-09-14 | 2019-03-01 | 西安交通大学 | 一种预旋条件下低流动损失的离心压缩机进口导叶结构的设计方法 |
CN114961873B (zh) * | 2021-02-25 | 2024-05-31 | 中国航发商用航空发动机有限责任公司 | 可恢复变形的叶片及包含其的涡扇发动机 |
US11988103B2 (en) * | 2021-10-27 | 2024-05-21 | General Electric Company | Airfoils for a fan section of a turbine engine |
US12065943B2 (en) * | 2021-11-23 | 2024-08-20 | General Electric Company | Morphable rotor blades and turbine engine systems including the same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1320539A (en) * | 1970-12-10 | 1973-06-13 | Secr Defence | Aerofoil-shaped blade for a fluid flow machine |
GB2218473A (en) | 1988-05-10 | 1989-11-15 | Mtu Muenchen Gmbh | Composite propeller blade |
EP1577422A1 (fr) | 2004-03-16 | 2005-09-21 | General Electric Company | Structures de protection résistantes à l'érosion et à l'abrasion pour composants de moteur à turbine |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4326833A (en) * | 1980-03-19 | 1982-04-27 | General Electric Company | Method and replacement member for repairing a gas turbine engine blade member |
RU1313055C (ru) * | 1984-01-09 | 1995-12-10 | Запорожское машиностроительное конструкторское бюро "Прогресс" | Композиционная лопатка турбомашины |
US4738594A (en) * | 1986-02-05 | 1988-04-19 | Ishikawajima-Harima Jukogyo Kabushiki Kaisha | Blades for axial fans |
RU1795151C (ru) * | 1990-06-11 | 1993-02-15 | Производственное объединение "Ярославский электромашиностроительный завод" | Крыльчатка бытового вентил тора |
US5486096A (en) * | 1994-06-30 | 1996-01-23 | United Technologies Corporation | Erosion resistant surface protection |
US5725354A (en) * | 1996-11-22 | 1998-03-10 | General Electric Company | Forward swept fan blade |
DE102005061673A1 (de) * | 2005-12-21 | 2007-07-05 | Rolls-Royce Deutschland Ltd & Co Kg | Vorderkantenausbildung für die Verdichterschaufeln von Gasturbinentriebwerken |
FR2950382B1 (fr) * | 2009-09-21 | 2013-07-19 | Snecma | Piece comportant une structure et un element en alliage a memoire de forme |
-
2008
- 2008-02-14 FR FR0850935A patent/FR2927652B1/fr not_active Expired - Fee Related
-
2009
- 2009-02-12 CA CA002653565A patent/CA2653565A1/fr not_active Abandoned
- 2009-02-12 EP EP09152682A patent/EP2090747B1/fr active Active
- 2009-02-13 US US12/370,914 patent/US20090208342A1/en not_active Abandoned
- 2009-02-13 JP JP2009030753A patent/JP5172735B2/ja active Active
- 2009-02-13 RU RU2009105144/06A patent/RU2486347C2/ru active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1320539A (en) * | 1970-12-10 | 1973-06-13 | Secr Defence | Aerofoil-shaped blade for a fluid flow machine |
GB2218473A (en) | 1988-05-10 | 1989-11-15 | Mtu Muenchen Gmbh | Composite propeller blade |
EP1577422A1 (fr) | 2004-03-16 | 2005-09-21 | General Electric Company | Structures de protection résistantes à l'érosion et à l'abrasion pour composants de moteur à turbine |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9808367B2 (en) | 2004-11-19 | 2017-11-07 | Fulfillium, Inc. | Methods, devices, and systems for obesity treatment |
EP2623715A3 (fr) * | 2012-01-04 | 2014-06-11 | General Electric Company | Entretoise d'échappement avec bord d'attaque en alliage à mémoire de forme |
Also Published As
Publication number | Publication date |
---|---|
RU2009105144A (ru) | 2010-08-20 |
JP5172735B2 (ja) | 2013-03-27 |
FR2927652B1 (fr) | 2010-03-26 |
JP2009191847A (ja) | 2009-08-27 |
EP2090747B1 (fr) | 2011-09-21 |
CA2653565A1 (fr) | 2009-08-14 |
RU2486347C2 (ru) | 2013-06-27 |
FR2927652A1 (fr) | 2009-08-21 |
US20090208342A1 (en) | 2009-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2090747B1 (fr) | Bord d'attaque de pièce de turbomachine constitué de matériau superélastique | |
EP2324205B1 (fr) | Dispositif amortisseur de vibrations pour attaches d'aubes de turbomachine, turbomachine et moteurs associes | |
EP1999020B1 (fr) | Structure pour levre d'entree d'air de nacelle a degivrage electrique comprenant une zone d'attenuation acoustique | |
EP3315721B1 (fr) | Renfort de bord d'attaque d'une aube de turbomachine | |
WO2011033206A1 (fr) | Piece comportant une structure et un element en alliage a memoire de forme | |
EP2368019B1 (fr) | Joint d'étanchéité de plateforme de rotor de turbomachine | |
EP1811131B1 (fr) | Ensemble de redresseurs fixes sectorise pour un compresseur de turbomachine | |
FR2802573A1 (fr) | Dispositif d'evacuation d'air chaud pour capot d'entree d'air de moteur a reaction, a circuit de degivrage | |
FR2994708A1 (fr) | Aube a bord renforce pour une turbomachine | |
WO2017055727A1 (fr) | Aube comprenant un bouclier de bord d'attaque et procede de fabrication de l'aube | |
FR2868123A1 (fr) | Structure d'entree d'air pour moteur d'aeronef | |
CA2649397C (fr) | Aube bi-pale avec lames | |
EP2971738A1 (fr) | Turbomachine, telle qu'un turboréacteur ou un turbopropulseur d'avion | |
FR3063776A1 (fr) | Agencement de palier pour un arbre d'entrainement d'une turbomachine, et une turbomachine comportant un tel agencement de palier | |
EP3394397A1 (fr) | Bouclier de bord d'attaque | |
EP3213025A1 (fr) | Echangeur de chaleur et turbomoteur comportant un tel echangeur | |
FR3039855A1 (fr) | Aube comprenant un corps d'aube en materiau composite et un bouclier de bord d'attaque | |
EP1564381B1 (fr) | Levier de commande du calage angulaire d'une aube dans une turbomachine | |
EP2872782B1 (fr) | Aube de turbomachine ayant un profil configuré de manière à obtenir des propriétés aérodynamiques et mécaniques améliorées | |
FR2956728A1 (fr) | Ventilation d'un capteur solaire thermique | |
CA2865695A1 (fr) | Aube de turbomachine comportant un insert de protection de la tete de l'aube | |
FR2994717A1 (fr) | Aube a bord renforce pour une turbomachine | |
FR2991372A1 (fr) | Roue de turbine dans une turbomachine | |
EP2888452B1 (fr) | Moteur à turbine à gaz comprenant une pièce composite et une pièce métallique reliées par un dispositif de fixation souple | |
FR2668729A1 (fr) | Brasage de pieces en materiaux presentant des coefficients differents de dilatation thermique. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20090212 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
17Q | First examination report despatched |
Effective date: 20100316 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602009002639 Country of ref document: DE Effective date: 20111117 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20120622 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602009002639 Country of ref document: DE Effective date: 20120622 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Owner name: SAFRAN AIRCRAFT ENGINES, FR Effective date: 20170717 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240123 Year of fee payment: 16 Ref country code: GB Payment date: 20240123 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240123 Year of fee payment: 16 |