WO2011033206A1 - Piece comportant une structure et un element en alliage a memoire de forme - Google Patents

Piece comportant une structure et un element en alliage a memoire de forme Download PDF

Info

Publication number
WO2011033206A1
WO2011033206A1 PCT/FR2010/051840 FR2010051840W WO2011033206A1 WO 2011033206 A1 WO2011033206 A1 WO 2011033206A1 FR 2010051840 W FR2010051840 W FR 2010051840W WO 2011033206 A1 WO2011033206 A1 WO 2011033206A1
Authority
WO
WIPO (PCT)
Prior art keywords
memory alloy
shape memory
alloy element
substructures
preform
Prior art date
Application number
PCT/FR2010/051840
Other languages
English (en)
Inventor
Adrien Fabre
Pierrick Jean
Jean-Pierre Lombard
Original Assignee
Snecma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snecma filed Critical Snecma
Priority to US13/497,134 priority Critical patent/US8974884B2/en
Publication of WO2011033206A1 publication Critical patent/WO2011033206A1/fr
Priority to US14/606,251 priority patent/US9902142B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0012Mechanical treatment, e.g. roughening, deforming, stretching
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/26Antivibration means not restricted to blade form or construction or to blade-to-blade connections or to the use of particular materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • B32B37/18Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0036Heat treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/16Form or construction for counteracting blade vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • F04D29/324Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/668Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps damping or preventing mechanical vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/021Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant characterised by their composition, e.g. comprising materials providing for particular spring properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0012Mechanical treatment, e.g. roughening, deforming, stretching
    • B32B2038/0028Stretching, elongating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0036Heat treatment
    • B32B2038/0044Heat treatment for creating local stresses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2603/00Vanes, blades, propellers, rotors with blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/96Preventing, counteracting or reducing vibration or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/505Shape memory behaviour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2224/00Materials; Material properties
    • F16F2224/02Materials; Material properties solids
    • F16F2224/0258Shape-memory metals, e.g. Ni-Ti alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/22Nonparticulate element embedded or inlaid in substrate and visible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23Sheet including cover or casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23Sheet including cover or casing
    • Y10T428/239Complete cover or casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the present invention relates to a part comprising a structure.
  • a structure is subjected to aerodynamic stresses caused by a flow of fluid, for example air, around this structure.
  • aerodynamic stresses caused by a flow of fluid, for example air
  • This is the case for a structure which is an aeronautical turbomachine part, for example a fan blade.
  • These solicitations can vibrate the structure.
  • Such a structure also has its own vibratory modes related to its mechanical properties (mainly its stiffness and mass distributions). It can then be established an unstable coupling between the vibrations generated in the structure by the aerodynamic stresses, and the vibratory characteristics of this structure, by interaction between the structure and the fluid flowing around it. This coupling phenomenon is called floating.
  • the appearance or not of the floating in a structure subject to aerodynamic stresses depends on the balance of the sum of two energies: the aerodynamic energy E A and the mechanical dissipation energy of the structure E M.
  • the aerodynamic energy E A is the energy transmitted by the fluid to the structure through its flow around it.
  • the energy of mechanical dissipation of the structure E M is the energy which is dissipated mechanically by the structure.
  • This dissipation depends on the intrinsic mechanical properties of the structure. In the case of a composite material structure, these mechanical properties depend on the nature of the materials composing the composite structure, and the internal architecture of this structure, that is to say the arrangement between them of the different materials that compose it. This arrangement can exist at one or more scales; mesoscopic (short / long fibers, particles), macroscopic (weaving, braiding, layers / folds).
  • the floating of a structure is an undesirable phenomenon because it leads the structure to enter resonance modes where the amplitudes of vibration of the structure increase uncontrollably, which can lead to the ruin of the structure.
  • the present invention aims to remedy this disadvantage.
  • the object of the invention is to propose a part comprising a structure, for example a composite structure, for which the vibration levels are reduced for a large variety of free (floating) or forced solicitations of asynchronous, synchronous or transient type.
  • the part comprises at least one shape memory alloy element which is prestressed and embedded at least partially inside this structure, this shape memory alloy being able to dissipate the energy. mechanical structure of this structure when it vibrates in a given frequency band.
  • the shape memory alloy element (s) (AMF) give the structure an internal damping function of the vibrations to which this structure is subjected. This results in an increase in the mechanical dissipation energy of the structure E M , and therefore a decrease in the risk of floating of this structure.
  • the invention also relates to a method of manufacturing a composite material structure with a shape memory alloy element within it, this structure being composed of several substructures.
  • this process is characterized by the fact that
  • the shape memory alloy element is placed on one of the substructures,
  • the shape memory alloy element is fixed within the structure, said substructures being chosen from a group comprising a laminate of unidirectional folds, a woven composite, a braided composite, a homogeneous material, a coating of the following type; film, a coating like paint layer,
  • FIG. 1 shows the behavior of a shape memory alloy used in a structure according to the invention
  • FIG. 2 is a diagrammatic sectional view of a part according to the invention with a composite structure comprising folds,
  • FIG. 3A schematically represents a part according to the invention with a composite structure comprising braided fibers
  • FIG. 3B schematically represents a part according to the invention with a composite structure comprising woven fibers
  • FIG. 4 is a schematic sectional view of a part according to the invention with a structure comprising a plurality of composite substructures
  • FIG. 5 shows a fan blade according to the invention in which AMF wires are oriented and positioned in the zones of maximum deformation
  • FIG. 6 is an example of a law of behavior of an AMF material with prestressing.
  • composite material structure is a structure composed of at least two materials whose mechanical properties are dissimilar.
  • one of the materials is a reinforcement, which is embedded in the other material that is the matrix.
  • the arrangement between the reinforcement and the matrix may exist at one or more scales; mesoscopic (continuous fibers forming a unidirectional fold, or short fibers or particles in a matrix), macroscopic (weaving or braiding of fibers in a matrix, superposition of layers made of woven / braided fibers or folds).
  • the structure of composite material may also consist of a core of homogeneous material located inside a casing made of another homogeneous material or composite material.
  • This heart can be of a less rigid material than this envelope, for example this heart may be foam.
  • the composite material structure can also be made of two materials, one of the materials is a coating that at least partially covers the other material.
  • This coating is for example a film, which can serve as protection against erosion or ultraviolet, or a paint, which can serve as a protection against ultraviolet.
  • this coating may consist of a film, for example polyurethane, on the underside of the part, and a paint on the extrados face.
  • the other material may be a homogeneous material or a composite material.
  • the invention is described below in the case where the structure is a composite material structure.
  • a structure of composite material in particular an elongated structure
  • a fluid flow for example air
  • the interaction between this flow and the structure can induce vibrations in the room.
  • parameters which include the physical properties and the flow velocity of the fluid, the mechanical properties of the materials constituting the structure, and the internal structure of the structure (geometry and arrangement of these different materials), it can be establish in the room a floating, which is an undesirable regime of vibrations, as explained above. This floating is likely to lead to damage and ruin of the structure.
  • the inventors insert inside the structure, at least partially embedded in this structure, at least one shape memory alloy element (AMF), in particular wires or sheets.
  • AMF shape memory alloy element
  • AMFs have a non-linear behavior under mechanical stress, which is due to a reversible austenite / martensite phase change within the crystal lattice of the AMF. This particularity of MFAs being known, we simply recall the main principles.
  • the stress-strain curve ⁇ ( ⁇ ) of an AMF follows a certain path during the application of the stress (curve 1), and a different path during the relaxation of the stress (curve 2). ).
  • the structure returns to its original form (the deformation p is elastic), but the structure dissipated energy internally during this loading cycle (hysteresis effect). This energy is equal to the area between curve 1 and curve 2.
  • an AMF when subjected to repeated stresses, for example because of vibrations, it dissipates energy by hysteresis at each solicitation cycle.
  • the AMF elements are embedded, partially or totally, in the structure so that the deformations of the structure are transmitted to these elements, so that these elements take up the constraints on the structure and thus play their role of damper.
  • the AMF elements are further prestressed, that is to say stressed during their insertion into the composite structure, this constraint being removed only after the elements are linked to the surrounding structure, such as so that there is a constraint in these elements when the structure is at rest.
  • This preload has the effect of shifting the hysteresis cycle (see Figure 1) of an AMF element over a range of constraints different from that of the non prestressed element.
  • FIG. 6 gives an example of a constitutive law (strain-strain ⁇ ( ⁇ )) of an AMF material with prestressing, illustrating the offset hysteresis cycle.
  • the stress ⁇ is expressed in MPa (10 6 Pascal) and the strain ⁇ in%.
  • This preload makes it possible to maximize the damping function of the AMF elements so that these elements are active at the maximum stresses generated during a float.
  • the AMF element (s) are prestressed in tension.
  • each point of the AMF element is subjected to a voltage stress, this constraint not necessarily being homogeneous within the AMF element.
  • This prestress is for example applied mechanically by increasing the distance between two opposite ends of the AMF element.
  • a first end of this element is held fixed, and the other opposite end is moved away from this first end.
  • two opposite ends of this element are moved away from each other.
  • this element is a wire
  • these ends are the longitudinal ends of the wire.
  • the prestressing may also be applied thermally by heating the AMF element to a temperature greater than that of the surrounding structure.
  • the heating of the AMF element causes an expansion of this element, and therefore the generation of a voltage stress field in this element.
  • the heating of this element can also be carried out by circulating an electric current through this element, this circulation leading to the heating of the element by Joule effect.
  • the geometry, the insertion locations, and the method of insertion of these elements vary.
  • a prestress is applied to the shape memory alloy element (s), the shape memory alloy element (s) are placed on one of the substructures, the at least partially the shape memory alloy element (s) by another of the substructures, the shape memory alloy element (s) and the structure are fixed together and the prestressing is released.
  • the shape memory alloy element or elements are thus placed at the interface between the substructures.
  • the AMF element (s) can be placed between the folds 20, as illustrated in FIG. 2.
  • the AMF element after having deposited one of the folds, it is deposited on this fold one or more AMF elements, then cover the whole with another fold, oriented in one direction identical or different.
  • These AMF elements may be one or more wires, or a leaflet. This assembly is then polymerized so as to form a solid block within which the AMF element (s) are embedded.
  • one or more wires in
  • AMF 10 can be inserted between a first braid 21 made during a first braiding pass of the preform and a second braid 22 made during a second braiding pass before densification of this preform (the densification is for example carried out by a infusion, injection, or chemical vapor infiltration).
  • the substructures are selected from a group consisting of a unidirectional ply laminate, a woven composite, a plaited composite, a homogeneous material, a film-like coating, a paint-like coating.
  • the AMF element (s) may be placed on the substructure and covered, at least partially, by this coating which can be a film, or a coat of paint.
  • the AMF element (s) can be inserted into this preform.
  • one or more AMF threads 10 may, after having been prestressed, be inserted directly into the 3D woven preform (in 3 dimensions) before densification of this preform and AMF threads.
  • This preform can also be a 2D woven preform (in two dimensions).
  • the preform is then densified. Prestressing is released after densification.
  • the preform can be directly made with woven or braided fibers, at least one of which is a shape memory alloy wire that has been preloaded beforehand. The preform thus formed is then densified and then the prestress is released.
  • FIG. 4 shows the case where AMF wires 10 are placed in a propeller blade 40, at the interface between the composite material spar 42 and a foam core 41, at the interface between the envelope 44 and material composite and a body 43 foam, and the interface between the envelope 44 of composite material and the spar 42 of composite material.
  • the composite structure in which the AMF element (s) is inserted may be an aeronautical turbomachine part.
  • this part is a mobile blade or fixed fan, a blade or fixed compressor or LP turbine (low pressure) or turbine HP (high pressure).
  • the part can also be a propeller blade or a turbomachine casing.
  • AMF elements can be placed in several areas of the structure.
  • the AMF element or elements are placed in one or more zones of strong deformations of the composite structure, and oriented in the direction of maximum deformation. These zones are previously identified in a known manner by modeling, for example by finite elements, or by tests. Thus, the effectiveness of AMF elements to dampen vibrations is optimized.
  • FIG. 5 shows the case of a fan blade 50 where AMF wires 10 (visible in transparency) are orientated and positioned in the zones of maximum deformations within the structure, for example in particular:
  • the AMF elements can also be sheets, in which case the damping effect of the AMF element occurs in any direction in the plane of the sheet.
  • the AMF elements while embedded in the composite structure, may be located near the surface of this structure. This positioning leads to a maximization of the deformations of the AMF elements.
  • the composite materials used in the composite structure are, for example, organic matrix composites, or high temperature composites (for example a ceramic or metal matrix composite).
  • AMFs are chosen based on the operating temperature of the composite structure, so that this operating temperature is within the range of AMF specific temperature in which the hysteresis effect (Figure 1) occurs.
  • the AMFs used in the composite structure are, for example, Ni-Ti, Ni-Ti-Hf, or Ni-Ti-Pd, or Ti-Au-Cu, or Hf-Pd, or Ru-Nb, or Ru- Your.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Laminated Bodies (AREA)

Abstract

L'invention concerne une pièce comportant une structure et au moins un élément en alliage à mémoire de forme (10) qui est précontraint et noyé au moins partiellement à l'intérieur de la structure. Cet alliage en mémoire de forme (10) est apte à dissiper l'énergie mécanique de cette structure lorsque celle-ci vibre dans une bande de fréquences donnée.

Description

PIECE COMPORTANT UNE STRUCTURE ET
UN ELEMENT EN ALLIAGE A MEMOIRE DE FORME
La présente invention concerne une pièce comportant une structure.
Dans certaines applications, une structure est soumise à des sollicitations aérodynamiques causées par un écoulement de fluide, par exemple de l'air, autour de cette structure. C'est le cas pour une structure qui est une pièce de turbomachine aéronautique, par exemple une aube de soufflante. Ces sollicitations peuvent faire vibrer la structure. Une telle structure possède par ailleurs ses propres modes vibratoires liés à ses propriétés mécaniques (essentiellement ses distributions de raideur et de masse). Il peut alors s'établir un couplage instable entre les vibrations générées dans la structure par les sollicitations aérodynamiques, et les caractéristiques vibratoires de cette structure, par action réciproque entre la structure et le fluide qui s'écoule autour d'elle. Ce phénomène de couplage est appelé flottement. L'apparition ou non du flottement dans une structure soumise à des sollicitations aérodynamiques dépend du bilan de la somme de deux énergies : l'énergie aérodynamique EA et l'énergie de dissipation mécanique de la structure EM.
L'énergie aérodynamique EA est l'énergie transmise par le fluide à la structure de par son écoulement autour d'elle.
L'énergie de dissipation mécanique de la structure EM est l'énergie qui est dissipée mécaniquement par la structure. Cette dissipation dépend des propriétés mécaniques intrinsèques de la structure. Dans le cas d'une structure en matériau composite, ces propriétés mécaniques dépendent de la nature des matériaux composant la structure composite, et de l'architecture interne de cette structure, c'est-à-dire de l'agencement entre eux des différents matériaux qui la composent. Cet agencement peut exister à une ou plusieurs échelles ; mésoscopique (fibres courtes/longues, particules), macroscopique (tissage, tressage, couches/plis).
Il y a risque de flottement de la structure lorsque (-EA)>EM.
Le flottement d'une structure est un phénomène indésirable car il conduit la structure à entrer dans des modes de résonance où les amplitudes de vibration de la structure augmentent de façon incontrôlée, ce qui peut conduire à la ruine de la structure. La présente invention vise à remédier à cet inconvénient.
L'invention vise à proposer une pièce comportant une structure, par exemple une structure composite, pour laquelle les niveaux de vibration sont diminués pour une grande variété de sollicitations libres (flottement) ou forcées de type asynchrone, synchrone ou transitoire.
Ce but est atteint grâce au fait que la pièce comporte au moins un élément en alliage à mémoire de forme qui est précontraint et noyé au moins partiellement à l'intérieur de cette structure, cet alliage en mémoire de forme étant apte à dissiper l'énergie mécanique de cette structure lorsque celle-ci vibre dans une bande de fréquences donnée.
Grâce à ces dispositions, le ou les éléments en alliage à mémoire de forme (AMF) confèrent à la structure une fonction d'amortissement interne des vibrations auxquelles cette structure est soumise. Il en résulte une augmentation de l'énergie de dissipation mécanique de la structure EM, et donc une diminution du risque de flottement de cette structure.
L'invention concerne également un procédé de fabrication d'une structure en matériau composite avec un élément en alliage à mémoire de forme en son sein, cette structure étant composée de plusieurs sous- structures.
Selon l'invention, ce procédé est caractérisé par le fait que
- On fournit plusieurs sous-structures,
- On applique une précontrainte à l'élément en alliage à mémoire de forme,
- On place l'élément en alliage à mémoire de forme sur une des sous- structures,
- On recouvre au moins partiellement l'élément en alliage à mémoire de forme par une autre des sous-structures,
- On fixe l'élément en alliage à mémoire de forme au sein de la structure, lesdites sous-structures étant choisies dans un groupe comprenant un stratifié de plis unidirectionnels, un composite tissé, un composite tressé, un matériau homogène, un revêtement de type film, un revêtement de type couche de peinture,
- On relâche ladite précontrainte.
L'invention sera bien comprise et ses avantages apparaîtront mieux, à la lecture de la description détaillée qui suit, d'un mode de réalisation représenté à titre d'exemple non limitatif. La description se réfère aux dessins annexés sur lesquels ;
- la figure 1 montre le comportement d'un alliage à mémoire de forme utilisé dans une structure selon l'invention,
- la figure 2 est une vue en coupe schématique d'une pièce selon l'invention avec une structure composite comportant des plis,
- la figure 3A représente schématiquement une pièce selon l'invention avec une structure composite comportant des fibres tressées,
- la figure 3B représente schématiquement une pièce selon l'invention avec une structure composite comportant des fibres tissées,
- la figure 4 est une vue en coupe schématique d'une pièce selon l'invention avec une structure comportant plusieurs sous- structures composites,
- la figure 5 montre une aube de soufflante selon l'invention où des fils AMF sont orientés et positionnés dans les zones de déformations maximales,
- la figure 6 est un exemple d'une loi de comportement d'un matériau AMF avec précontrainte.
On considère une structure qui peut être en matériau composite, ou en un matériau homogène, y compris un alliage. Cette structure n'est cependant pas elle-même un alliage à mémoire de forme.
Dans la présente demande, on entend par structure en matériau composite une structure composée d'au moins deux matériaux dont les propriétés mécaniques sont dissimilaires.
Par exemple, l'un des matériaux est un renforcement, qui est noyé dans l'autre matériau qui est la matrice. L'agencement entre le renforcement et la matrice peut exister à une ou plusieurs échelles ; mésoscopique (fibres continues formant un pli unidirectionnel, ou fibres courtes ou particules dans une matrice), macroscopique (tissage ou tressage de fibres dans une matrice, superposition de couches constituées de fibres tissées/tressées ou de plis).
La structure en matériau composite peut également être constituée d'un cœur en matériau homogène situé à l'intérieur d'une enveloppe en un autre matériau homogène ou en matériau composite. Ce cœur peut être en un matériau moins rigide que cette enveloppe, par exemple ce c ur peut être en mousse.
La structure en matériau composite peut également être constituée de deux matériaux, l'un des matériaux est un revêtement qui recouvre au moins partiellement l'autre matériau. Ce revêtement est par exemple un film, qui peut servir de protection contre l'érosion ou les ultra-violets, ou une peinture, qui peut servir de protection contre les ultra-violets. En particulier, ce revêtement peut être constitué d'un film, par exemple en polyuréthane, sur la face intrados de la pièce, et d'une peinture sur la face extrados. L'autre matériau peut être un matériau homogène ou un matériau composite.
On décrit ci-dessous l'invention dans le cas où la structure est une structure en matériau composite.
Lorsqu'une structure en matériau composite, notamment une structure de forme allongée, est placée dans un écoulement de fluide, par exemple de l'air, l'interaction entre cet écoulement et la structure peut induire des vibrations dans la pièce. Pour certaines plages de paramètres, qui comprennent les propriétés physiques et la vitesse d'écoulement du fluide, les propriétés mécaniques des matériaux constituant la structure, et la structure interne de la structure (géométrie et agencement de ces différents matériaux), il peut s'établir dans la pièce un flottement, qui est un régime indésirable de vibrations, comme expliqué plus haut. Ce flottement est susceptible de conduire à un endommagement et à la ruine de la structure.
Afin d'empêcher ce flottement, les inventeurs insèrent à l'intérieur de la structure, noyé au moins en partie dans cette structure, au moins un élément en alliage à mémoire de forme (AMF), notamment des fils ou des feuillets.
Les AMF ont un comportement non-linéaire sous sollicitation mécanique, qui est dû à un changement de phase austénite/martensite réversible au sein du réseau cristallin de l'AMF. Cette particularité des AMF étant connue, on en rappelle simplement les grands principes.
Comme illustré en figure 1, la courbe contrainte-déformation σ(ε) d'un AMF suit un certain trajet lors de l'application de la contrainte (courbe 1), et un trajet différent lors de la relaxation de la contrainte (courbe 2). La structure revient à sa forme initiale (la déformation p est élastique), mais la structure a dissipé de l'énergie de façon interne lors de ce cycle de chargement (effet d'hystérésis). Cette énergie est égale à la surface comprise entre la courbe 1 et la courbe 2.
Ainsi, lorsqu'un AMF est soumis à des sollicitations répétées, par exemple à cause de vibrations, il dissipe de l'énergie par hystérésis à chaque cycle de sollicitation.
En insérant des éléments en AMF dans une structure, on peut ainsi, par dissipation d'énergie par hystérésis, réduire les vibrations indésirables de cette structure (ce qui revient à augmenter l'énergie de dissipation mécanique de la structure EM), et donc réduire les risques de flottement de la structure.
Les éléments en AMF sont noyés, partiellement ou totalement, dans la structure de telle sorte que les déformations de la structure sont transmises à ces éléments, afin que ces éléments reprennent les contraintes subies par la structure et jouent ainsi leur rôle d'amortisseur. Avantageusement, il existe une bonne adhérence entre les éléments en AMF et les zones de la structure avec laquelle ces éléments sont en contact, de façon à ce que les déformations de la structure sont transmises plus efficacement à ces éléments.
Les éléments en AMF sont en outre précontraints, c'est-à-dire soumis à une contrainte lors de leur insertion dans la structure composite, cette contrainte n'étant supprimée qu'après que les éléments sont liés à la structure environnante, de telle sorte qu'il subsiste une contrainte dans ces éléments lorsque la structure est au repos. Cette précontrainte a pour effet de décaler le cycle d'hystérésis (voir figure 1) d'un élément en AMF sur une plage de contraintes différente de celle de l'élément non précontraint. La figure 6 donne un exemple d'une loi de comportement (contrainte-déformation σ(ε)) d'un matériau AMF avec précontrainte, illustrant le cycle d'hystérésis décalé. La contrainte σ est exprimée en MPa (106 Pascal) et la déformation ε en %.
Cette précontrainte permet de maximiser la fonction d'amortissement des éléments en AMF de telle sorte que ces éléments soient actifs aux contraintes maximales générées lors d'un flottement.
Par exemple, le ou les éléments en AMF sont précontraints en tension. Ainsi, chaque point de l'élément en AMF est soumis à une contrainte en tension, cette contrainte n'étant pas nécessairement homogène au sein de l'élément en AMF.
Cette précontrainte est par exemple appliquées mécaniquement par augmentation de la distance entre deux extrémités opposées de l'élément en AMF. Ainsi, on maintient fixe une première extrémité de cet élément, et on déplace l'autre extrémité opposée en l'éloignant de cette première extrémité. Alternativement, on éloigne l'une de l'autre deux extrémités opposées de cet élément. Dans le cas où cet élément est un fil, ces extrémités sont les extrémités longitudinales du fil.
La précontrainte peut également être appliquée thermiquement par chauffage de l'élément en AMF à une température supérieure à celle de la structure qui l'entoure.
Dans ce cas, le chauffage de l'élément en AMF (par exemple en le plaçant dans un four) provoque une dilatation de cet élément, et donc la génération d'un champ de contrainte en tension dans cet élément.
Le chauffage de cet élément peut également être effectué par circulation d'un courant électrique au travers de cet élément, cette circulation conduisant au chauffage de l'élément par effet Joule.
Selon l'architecture de la structure en matériau composite dans laquelle on place le ou les éléments en AMF, la géométrie, les lieux d'insertion, et le procédé d'insertion de ces éléments varient.
Lorsque la structure est composée de plusieurs sous-structures, on applique une précontrainte à l'élément ou aux éléments en alliage à mémoire de forme, on place le ou les éléments en alliage à mémoire de forme sur une des sous-structures, on recouvre au moins partiellement le ou les éléments en alliage à mémoire de forme par une autre des sous- structures, on fixe ensemble le ou les éléments en alliage à mémoire de forme et la structure, puis on relâche la précontrainte.
Le ou les éléments en alliage à mémoire de forme sont ainsi placés à l'interface entre les sous-structures.
Ainsi, lorsque le matériau composite de la structure comprend un stratifié de plis unidirectionnels, le ou les éléments en AMF 10 peuvent être placés entre les plis 20, comme illustré en figure 2. Ainsi, après avoir déposé un des plis, on dépose sur ce pli un ou plusieurs éléments en AMF, puis on recouvre le tout par un autre pli, orienté selon une direction identique ou différente. Ces éléments en AMF peuvent être un ou plusieurs fils, ou un feuillet. On polymérise ensuite cet ensemble de façon à former un bloc solide à l'intérieur duquel le ou les éléments en AMF sont noyés.
Comme illustré en figure 3A, un ou plusieurs fils (et/ou un feuillet) en
AMF 10 peuvent être insérés entre une première tresse 21 réalisée lors d'une première passe de tressage de la préforme et une deuxième tresse 22 réalisée lors d'une deuxième passe de tressage avant densification de cette préforme (la densification est par exemple réalisée par une infusion, une injection, ou une infiltration chimique en phase vapeur).
En général, les sous-structures sont choisies dans un groupe comprenant un stratifié de plis unidirectionnels, un composite tissé, un composite tressé, un matériau homogène, un revêtement de type film, un revêtement de type couche de peinture.
Ainsi, dans le cas où la structure est composée d'une sous-structure recouverte au moins partiellement d'un revêtement, le ou les éléments en AMF peuvent être placés sur la sous-structure et recouverts, au moins partiellement, par ce revêtement qui peut être un film, ou une couche de peinture.
Lorsque le matériau composite de la structure comprend une préforme constituée d'un tissage ou tressage de fibres, le ou les éléments en AMF peuvent être insérés au sein de cette préforme.
Comme illustré en figure 3B, un ou plusieurs fils en AMF 10 peuvent, après avoir été précontraints, être insérés directement dans la préforme tissée 3D (en 3 dimensions) 30 avant densification de cette préforme et des fils en AMF. Cette préforme peut également être une préforme tissée 2D (en deux dimensions).
La préforme est ensuite densifiée. La précontrainte est relâchée après densification.
Alternativement, la préforme peut être directement réalisée avec des fibres tissées ou tressées dont au moins une est un fil en alliage à mémoire de forme qui a été préalablement précontraint. On densifie ensuite la préforme ainsi réalisée, puis on relâche la précontrainte.
La figure 4 montre le cas où des fils en AMF 10 sont placés dans une pale d'hélice 40, à l'interface entre le longeron 42 en matériau composite et un noyau 41 en mousse, à l'interface entre l'enveloppe 44 en matériau composite et un corps 43 en mousse, et à l'interface entre l'enveloppe 44 en matériau composite et le longeron 42 en matériau composite.
La structure en composite dans laquelle est insérée le ou les éléments en AMF peut être une pièce de turbomachine aéronautique. Par exemple cette pièce est une aube mobile ou fixe de soufflante, une aube mobile ou fixe de compresseur ou de turbine BP (basse pression) ou de turbine HP (haute pression). La pièce peut aussi être une pale d'hélice ou un carter de turbomachine.
Les éléments AMF peuvent être placés en plusieurs zones de la structure.
Avantageusement, le ou les éléments AMF sont placés dans une/des zones de fortes déformations de la structure composite, et orientés selon la direction de déformation maximale. Ces zones sont préalablement identifiées de façon connue par modélisation, par exemple par éléments finis, ou par des essais. Ainsi, l'efficacité des éléments en AMF pour amortir les vibrations est optimisée. La figure 5 montre le cas d'une aube fan 50 où des fils en AMF 10 (visibles en transparence) sont orientés et positionnés dans les zones de déformations maximales au sein de la structure, par exemple notamment :
- au niveau du pied d'aube parallèlement au bord d'attaque,
- au niveau du sommet de l'aube parallèlement à la face d'extrémité du sommet de l'aube,
Les éléments en AMF peuvent également être des feuillets, auquel cas l'effet amortissant de l'élément AMF se produit dans n'importe quelle direction dans le plan du feuillet.
Les éléments en AMF, tout en étant noyés dans la structure composite, peuvent être situés près de la surface de cette structure. Ce positionnement entraîne une maximisation des déformations des éléments en AMF.
Les matériaux composites utilisés dans la structure composite sont par exemple des composites à matrice organique, ou des composites à haute température (par exemple un composite à matrice céramique ou métallique). Idéalement, les AMF sont choisis en fonction de la température de fonctionnement de la structure composite, de telle sorte que cette température de fonctionnement se situe dans la gamme de température spécifique à l'AMF dans laquelle l'effet d'hystérésis (figure 1) se produit.
Les ÂMF utilisés dans la structure composite sont par exemple des alliages Ni-Ti, ou Ni-Ti-Hf, ou Ni-Ti-Pd, ou Ti-Au-Cu, ou Hf-Pd, ou Ru-Nb, ou Ru -Ta.

Claims

REVENDICATIONS
1. Pièce comportant une structure et au moins un élément en alliage à mémoire de forme (10) qui est précontraint et noyé au moins partiellement à l'intérieur de ladite structure, ledit alliage en mémoire de forme étant apte à dissiper l'énergie mécanique de cette structure lorsque celle-ci vibre dans une bande de fréquences donnée.
2. Pièce selon la revendication 1 caractérisée en ce que ledit élément est précontraint en tension.
3. Pièce selon la revendication 1 ou 2 caractérisée en ce que lesdits éléments en alliage à mémoire de forme (10) sont placés en plusieurs zones de ladite structure.
4. Pièce selon l'une quelconque des revendications 1 à 3 caractérisée en ce que ladite structure comprend au moins un matériau composite.
5. Pièce selon la revendication 4 caractérisée en ce que ledit au moins un matériau composite comprend un stratifié de plis unidirectionnels (20), ledit au moins un élément en alliage à mémoire de forme (10) étant placé entre lesdits plis.
6. Pièce selon la revendication 4 ou 5 caractérisée en ce que ledit au moins un matériau composite comprend une préforme (30) en fibres, ledit au moins un élément en alliage à mémoire de forme ( 10) étant placé au sein de ladite préforme (30).
7. Pièce selon l'une quelconque des revendications 1 à 6 caractérisée en ce que ladite structure est composée de plusieurs sous- structures, ledit au moins un élément en alliage à mémoire de forme (10) étant placé à au moins une des interfaces entre lesdites sous-structures.
8. Pièce selon la revendication 7 caractérisée en ce que lesdites sous-structures sont choisies entre un stratifié de plis unidirectionnels, un composite tissé, un composite tressé, un matériau homogène, un revêtement de type film, un revêtement de type couche de peinture.
9. Pièce selon l'une quelconque des revendications 1 à 8 caractérisée en ce que ledit au moins un élément en alliage à mémoire de forme (10) est choisi entre un fil et un feuillet.
10. Pièce selon l'une quelconque des revendications 1 à 9 caractérisée en ce qu'elle est une pièce de turbomachine aéronautique.
11, Procédé de fabrication d'une structure en matériau composite avec au moins un élément en alliage à mémoire de forme (10) en son sein, ladite structure étant composée de plusieurs sous-structures, ledit procédé étant caractérisé en ce que
- On fournit plusieurs sous-structures,
- On applique une précontrainte audit élément en alliage à mémoire de forme (10),
- On place ledit au moins un élément en alliage à mémoire de forme ( 10) sur une desdites sous-structures,
- On recouvre au moins partiellement ledit au moins un élément en alliage à mémoire de forme (10) par une autre desdites sous- structures,
- On fixe ensemble ledit élément en alliage à mémoire de forme (10) et ladite structure, lesdites sous-structures étant choisies dans un groupe comprenant un stratifié de plis unidirectionnels, un composite tissé, un composite tressé, un matériau homogène, un revêtement de type film, un revêtement de type couche de peinture,
- On relâche ladite précontrainte.
12. Procédé de fabrication d'une structure fibreuse avec au moins un élément en alliage à mémoire de forme (10) en son sein, caractérisé en ce que
- On fournit une préforme (30) de fibres tissées ou tressées,
- On applique une précontrainte audit élément en alliage à mémoire de forme ( 10),
- On insère ledit au moins un élément en alliage à mémoire de forme (10) au sein de la dite préforme (30),
- On densifie ladite préforme (30) et ledit au moins un élément en alliage à mémoire de forme (10),
- On relâche ladite précontrainte.
13. Procédé de fabrication d'une structure fibreuse avec un élément en alliage à mémoire de forme (10) en son sein, caractérisé en ce que
- On réalise une préforme (30) avec des fibres tissées ou tressées, au moins une de ces fibres étant un fil en alliage à mémoire de forme ,
- On applique une précontrainte audit au moins un fil,
- On densifie ladite préforme (30),
- On relâche ladite précontrainte.
14. Procédé de fabrication selon l'une quelconque des revendications 11 à 13 caractérisé en ce que ladite précontrainte est appliquée mécaniquement par augmentation de la distance entre deux extrémités opposées dudit élément en AMF.
15. Procédé de fabrication selon l'une quelconque des revendications 11 à 14 caractérisé en ce que ladite précontrainte est appliquée thermiquement par chauffage dudit élément en AMF à une température supérieure à celle de ladite structure.
16. Procédé de fabrication selon la revendication 15 caractérisé en ce que le chauffage dudit élément en AMF est effectué par circulation d'un courant électrique au travers de cet élément.
PCT/FR2010/051840 2009-09-21 2010-09-03 Piece comportant une structure et un element en alliage a memoire de forme WO2011033206A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/497,134 US8974884B2 (en) 2009-09-21 2010-09-03 Part comprising a structure and a shape memory alloy element
US14/606,251 US9902142B2 (en) 2009-09-21 2015-01-27 Part comprising a structure and a shape memory alloy element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0956469A FR2950382B1 (fr) 2009-09-21 2009-09-21 Piece comportant une structure et un element en alliage a memoire de forme
FR0956469 2009-09-21

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/497,134 A-371-Of-International US8974884B2 (en) 2009-09-21 2010-09-03 Part comprising a structure and a shape memory alloy element
US14/606,251 Division US9902142B2 (en) 2009-09-21 2015-01-27 Part comprising a structure and a shape memory alloy element

Publications (1)

Publication Number Publication Date
WO2011033206A1 true WO2011033206A1 (fr) 2011-03-24

Family

ID=42134662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/051840 WO2011033206A1 (fr) 2009-09-21 2010-09-03 Piece comportant une structure et un element en alliage a memoire de forme

Country Status (3)

Country Link
US (2) US8974884B2 (fr)
FR (1) FR2950382B1 (fr)
WO (1) WO2011033206A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2993896A1 (fr) * 2012-07-26 2014-01-31 Snecma Procede de collage et de decollement entre deux pieces utilisant un adhesif charge
US9441636B2 (en) 2011-08-25 2016-09-13 Rolls-Royce Plc Rotor for a compressor of a gas turbine
FR3035938A1 (fr) * 2015-05-06 2016-11-11 Peugeot Citroen Automobiles Sa Dispositif de suspension pour vehicule automobile, comprenant des ressorts en materiau composite et en alliage a memoire de forme
CN106762813A (zh) * 2017-03-31 2017-05-31 中航商用航空发动机有限责任公司 一种风扇叶片
CN111894909A (zh) * 2020-05-20 2020-11-06 南京航空航天大学 一种基于记忆合金的风扇鸟撞后小不平衡自动配平组件及控制方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2927652B1 (fr) * 2008-02-14 2010-03-26 Snecma Bord d'attaque de piece de turbomachine constitue de materiau superelastique
US8844281B2 (en) * 2011-02-28 2014-09-30 GM Global Technology Operations LLC Shape memory alloy heat engines and energy harvesting systems
US9650898B2 (en) * 2012-12-27 2017-05-16 United Technologies Corporation Airfoil with variable profile responsive to thermal conditions
US9981421B2 (en) * 2014-07-16 2018-05-29 The Boeing Company Adaptive composite structure using shape memory alloys
EP3115553A1 (fr) 2015-07-06 2017-01-11 General Electric Technology GmbH Composant mécanique avec élément amortisseur de mémoire thermique pour turbomachine thermique
CN105464910B (zh) * 2015-12-16 2018-04-03 西北工业大学 形状记忆纤维混杂复合材料风力发电机叶片及其制作方法
BE1023299B1 (fr) * 2016-01-21 2017-01-26 Safran Aero Boosters S.A. Aube statorique
US10465703B2 (en) * 2016-04-11 2019-11-05 United Technologies Corporation Airfoil
WO2017205315A1 (fr) 2016-05-25 2017-11-30 General Electric Company Support de palier de turbine
US10428825B2 (en) 2016-11-14 2019-10-01 United Technologies Corporation Airfoil structure having a shape memory alloy actuator
CA3000360C (fr) 2017-04-14 2020-05-26 General Electric Company Assemblage de support dote d'un element de renfort variable
US11105223B2 (en) 2019-08-08 2021-08-31 General Electric Company Shape memory alloy reinforced casing
US11420755B2 (en) 2019-08-08 2022-08-23 General Electric Company Shape memory alloy isolator for a gas turbine engine
US11021998B2 (en) 2019-08-08 2021-06-01 General Electric Company Shape memory alloy sleeve support assembly for a bearing
US11274557B2 (en) 2019-11-27 2022-03-15 General Electric Company Damper assemblies for rotating drum rotors of gas turbine engines
US11280219B2 (en) 2019-11-27 2022-03-22 General Electric Company Rotor support structures for rotating drum rotors of gas turbine engines
US11486349B2 (en) * 2020-01-10 2022-11-01 General Electric Company Methods for manufacturing blade structures
US11365636B2 (en) 2020-05-25 2022-06-21 General Electric Company Fan blade with intrinsic damping characteristics
US11828235B2 (en) 2020-12-08 2023-11-28 General Electric Company Gearbox for a gas turbine engine utilizing shape memory alloy dampers
US11867082B2 (en) * 2021-04-21 2024-01-09 General Electric Company Rotor blade with detachable tip
US11674399B2 (en) 2021-07-07 2023-06-13 General Electric Company Airfoil arrangement for a gas turbine engine utilizing a shape memory alloy
US11668317B2 (en) 2021-07-09 2023-06-06 General Electric Company Airfoil arrangement for a gas turbine engine utilizing a shape memory alloy
US11821319B2 (en) * 2021-07-27 2023-11-21 General Electric Company Frangible airfoil with shape memory alloy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030156942A1 (en) * 2002-02-19 2003-08-21 The Boeing Company Blades having coolant channels lined with a shape memory alloy and an associated fabrication method
US20040051219A1 (en) * 2002-09-13 2004-03-18 Yang Sherwin Method for vibration damping using superelastic alloys
EP1577422A1 (fr) * 2004-03-16 2005-09-21 General Electric Company Structures de protection résistantes à l'érosion et à l'abrasion pour composants de moteur à turbine
GB2438185A (en) * 2006-05-17 2007-11-21 Rolls Royce Plc An apparatus for preventing ice accretion

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5662294A (en) * 1994-02-28 1997-09-02 Lockheed Martin Corporation Adaptive control surface using antagonistic shape memory alloy tendons
US20070175583A1 (en) * 2006-01-31 2007-08-02 Mosallam Ayman S Technique for prestressing composite members and related apparatuses

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030156942A1 (en) * 2002-02-19 2003-08-21 The Boeing Company Blades having coolant channels lined with a shape memory alloy and an associated fabrication method
US20040051219A1 (en) * 2002-09-13 2004-03-18 Yang Sherwin Method for vibration damping using superelastic alloys
EP1577422A1 (fr) * 2004-03-16 2005-09-21 General Electric Company Structures de protection résistantes à l'érosion et à l'abrasion pour composants de moteur à turbine
GB2438185A (en) * 2006-05-17 2007-11-21 Rolls Royce Plc An apparatus for preventing ice accretion

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9441636B2 (en) 2011-08-25 2016-09-13 Rolls-Royce Plc Rotor for a compressor of a gas turbine
FR2993896A1 (fr) * 2012-07-26 2014-01-31 Snecma Procede de collage et de decollement entre deux pieces utilisant un adhesif charge
US9802380B2 (en) 2012-07-26 2017-10-31 Snecma Method of sticking together and un-sticking two parts by means of a filled adhesive
FR3035938A1 (fr) * 2015-05-06 2016-11-11 Peugeot Citroen Automobiles Sa Dispositif de suspension pour vehicule automobile, comprenant des ressorts en materiau composite et en alliage a memoire de forme
CN106762813A (zh) * 2017-03-31 2017-05-31 中航商用航空发动机有限责任公司 一种风扇叶片
CN106762813B (zh) * 2017-03-31 2019-09-17 中国航发商用航空发动机有限责任公司 一种风扇叶片
CN111894909A (zh) * 2020-05-20 2020-11-06 南京航空航天大学 一种基于记忆合金的风扇鸟撞后小不平衡自动配平组件及控制方法
CN111894909B (zh) * 2020-05-20 2021-10-22 南京航空航天大学 一种基于记忆合金的风扇鸟撞后小不平衡自动配平组件及控制方法

Also Published As

Publication number Publication date
FR2950382B1 (fr) 2013-07-19
FR2950382A1 (fr) 2011-03-25
US8974884B2 (en) 2015-03-10
US20150144256A1 (en) 2015-05-28
US20120183718A1 (en) 2012-07-19
US9902142B2 (en) 2018-02-27

Similar Documents

Publication Publication Date Title
WO2011033206A1 (fr) Piece comportant une structure et un element en alliage a memoire de forme
EP2324205B1 (fr) Dispositif amortisseur de vibrations pour attaches d'aubes de turbomachine, turbomachine et moteurs associes
EP1693551B1 (fr) Dispositif de positionnement d'une aube et disque aubage comportant un tel dispositif
FR2996525A1 (fr) Element constitutif d’une nacelle a protection contre le givre amelioree
EP2090747B1 (fr) Bord d'attaque de pièce de turbomachine constitué de matériau superélastique
FR2943102A1 (fr) Aube en materiau composite comportant un dispositif d'amortissement.
EP2388195B1 (fr) Dispositif de dissipation thermique pour équipement spatial, notamment pour satellite
EP2037082A1 (fr) Dispositif d'amortissement pour aube en matériau composite
EP2268482B1 (fr) Peau amortissante de protection de pieces composites
EP2938537B1 (fr) Dispositif d'absorption d'énergie pour élément de structure d'aéronef
FR3000463A1 (fr) Dispositif d'absorption d'energie pour element de structure d'aeronef
EP3873724A1 (fr) Hybridation des fibres du renfort fibreux d'une aube de soufflante
FR2964426A1 (fr) Aube mobile en materiau composite
FR2902689A1 (fr) Panneau raidi a raidisseurs composites a sensibilite aux chocs diminuee
FR2951223A1 (fr) Amortissement d'une piece tournante par dispositif piezoelectrique dissipatif semi-actif commute.
WO2012022889A1 (fr) Chambre de combustion munie d'un element tubulaire
FR3070425B1 (fr) Element aubage profile d'un ensemble propulsif en composite stratifie
EP2632797B1 (fr) Structure de bord d'attaque notamment pour entrée d'air de nacelle de moteur d'aéronef
EP4211336A1 (fr) Hybridation des fibres du renfort fibreux d'une aube de soufflante avec des fibres élastiques
FR2995004A1 (fr) Aube de turbomachine en materiau composite et son attache sur un disque de rotor
EP3803056A1 (fr) Tissu comprenant des fibres d'aramide pour protéger une aube contre les impacts
EP3899209A1 (fr) Piece en composite a renfort fibreux avec une resistance aux vibrations augmentee
FR3108665A1 (fr) Rotor de soufflante comprenant des aubes à centre de gravité en amont
FR3004215A1 (fr) Ecran de protection pour carter de turbomachine
FR3141722A1 (fr) Aube en materiau composite et son procede de fabrication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10763810

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13497134

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10763810

Country of ref document: EP

Kind code of ref document: A1