EP2089341A1 - Matériau pour applications tribologiques - Google Patents

Matériau pour applications tribologiques

Info

Publication number
EP2089341A1
EP2089341A1 EP07820119A EP07820119A EP2089341A1 EP 2089341 A1 EP2089341 A1 EP 2089341A1 EP 07820119 A EP07820119 A EP 07820119A EP 07820119 A EP07820119 A EP 07820119A EP 2089341 A1 EP2089341 A1 EP 2089341A1
Authority
EP
European Patent Office
Prior art keywords
ceramic
copper
preform
metal
copper alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07820119A
Other languages
German (de)
English (en)
Inventor
Gert Lindemann
Matthias Leonhardt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2089341A1 publication Critical patent/EP2089341A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5127Cu, e.g. Cu-CuO eutectic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • F16D69/027Compositions based on metals or inorganic oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00362Friction materials, e.g. used as brake linings, anti-skid materials

Definitions

  • the present invention relates to a material for tribological applications according to the preamble of claim 1.
  • MMC Metal-Matrix Composites
  • Preform MMC materials are more resistant to corrosion and wear than cast MMC materials.
  • Brake discs and brake drums have been made from cast-MMC aluminum-based materials since 1997.
  • the rear axle brake drums of the VW small car model Lupo 3L are made of a material with the brand name Duralcan. This material is composed of 80% by volume of an aluminum casting alloy and 20% by volume of ceramic particles (SiC) and is produced by the so-called "stir-casting" process described in US Pat. No.
  • Object of the present invention is therefore to provide a material for tribological applications, in particular as a brake disc or drum, which despite high weight has a high temperature resistance and also ensures a significant improvement in wear and corrosion resistance.
  • a metal-ceramic composite material is provided in particular for tribological applications, comprising a preform made of a ceramic material, as well as a metal component copper or a copper alloy, the proportion of ceramic ranging between 30 and 80 vol.% And the proportion of Copper or copper alloy ranges between 20% and 70% by volume.
  • the significantly higher achievable ceramic content of up to 80% by volume compared with cast MMCs has an advantageous effect on the wear and corrosion resistance of the materials. This leads to a longer service life, higher optical brilliance and improved braking comfort.
  • a significantly higher operating temperature is also possible compared to aluminum-based materials.
  • the materials according to the invention can therefore be used as brake materials for a significantly expanded vehicle segment.
  • the proportion of copper or copper alloy on the metal-ceramic composite is particularly preferably 25-60 vol .-%.
  • the ceramic material used for the preform are oxides (eg TiO 2 , Al 2 O 3 ), carbides (eg SiC, TiC, WC, B 4 C), nitrides (eg Si 3 N 4 , BN, AlN, ZrN, TiN), borides (eg TiB 2 ) and / or silicates in question.
  • the ceramic material is preferably present in the production of the preform in particle or fiber form.
  • these ceramics may also serve as reinforcing or functional elements (e.g., SiC or AIN for improving thermal conductivity, ceramic fibers for improving fracture toughness and strength, etc.).
  • SiC or AIN for improving thermal conductivity
  • ceramic fibers for improving fracture toughness and strength, etc.
  • the preform has a porous ceramic basic structure, into which the copper melt or the molten alloy is infiltrated, an intimate connection between the preform and the solidifying metal results. In doing so, inter- - A -
  • the strength and toughness of the body is further increased.
  • the proportion of ceramic on the metal-ceramic composite is particularly preferably 40-75% by volume.
  • a component for tribological applications in particular in vehicle construction, provided, comprising a metal-ceramic composite material according to one of the preceding claims.
  • brake disks or drums are considered here as components, but also other components which have to endure high mechanical and thermal loads, at the same time have a low specific weight and, moreover, have to be resistant to corrosion, in particular in the automotive, motorcycle and aircraft industries shipbuilding.
  • the components preferably have a thermal conductivity ()> 70 W / m K in order to avoid high thermal gradients or high thermal stresses, which may occur as a result of the high energy input during the friction stress. This is particularly caused by the copper content, since copper has a very high specific thermal conductivity.
  • the strength of the components is> 200 MPa, preferably> 350 MPa. This is where the higher ceramic content compared to Cast-MMCs comes into play.
  • a maximum service temperature of> 800 ° C is desired. This is also achieved by the copper content, since copper and copper alloys have higher melting points than aluminum or aluminum alloys.
  • the porosity of the preform amounts to 20-70% by volume, preferably 25-60% by volume.
  • Porosity is to be understood as meaning the ratio of the volume of all cavities of a porous solid to its outer volume, the cavities being generally networked together and being in exchange or interconnected with the atmosphere surrounding the porous solid (so-called open porosity). It is therefore a measure of how much space the actual solid fills within a certain volume or which cavities it leaves in this volume.
  • the pores are usually filled with air. Due to the porosity of a preform, therefore, the volume fractions of the ceramic and metal components of a preform MMC to be expected later are usually determined.
  • Solidification of the molten metal in the infiltration front must also be ensured that the ceramic preform has one of the melting temperature near temperature, the temperature difference should not be greater than 35O 0 C, preferably not greater than 100 0 C.
  • the casting tool should preferably be preheated, and direct contact between the casting tool and preform should be avoided, e.g. by spacers or lining with an insulating material such as ceramic paper or fleece.
  • An additional measure may be to surround the preheated ceramic preform with an insulating sheath, for example with ceramic paper or fleece or a steel hollow body adapted to the shape.
  • the infiltration with molten metal is reaction-assisted or non-reactive, ie there is only a reaction limited to the surface zone of the ceramic phase or there is no reaction between metal and ceramic. phase instead.
  • the infiltration quality can be improved and the infiltration pressure can be lowered (the cause of this is the released reaction heat or the changed surface tension due to the newly formed interface phase).
  • one or more pore formers are added to the ceramic material prior to sintering. These are usually elongated, easily burnable materials that burn during sintering, creating a network of channels and pores that facilitate subsequent infiltration of the molten metal and allow intimate bonding between the preform and the solidifying metal.
  • the channels produced in this way can have widths of 2 to 50 ⁇ m, preferably 5 to 30 ⁇ m. By the channels filling in the finished body metal channels, the strength and toughness of the body is further increased.
  • the pore formers have a significant influence on the setting of a specific porosity.
  • pore formers can also be used in particular in the production of ceramic preforms in order to produce a network of pore channels, which result in a better infiltrability of the preform; the pore channels act as infiltration channels here.
  • the resulting metal channels increase the strength and toughness of the material.
  • cellulose flakes or fibers having a volume fraction of 1 to 30%, preferably 2 to 20%.
  • pore formers z.
  • Ru ß- particles rice starch or organic macromolecules, such. Fullerenes or nanotubes conceivable.
  • pore formers are all those materials which burn, disintegrate or outgas during sintering, thus creating voids in the material.
  • melt of copper or copper alloy is infiltrated by applying an external pressure.
  • gas pressure infiltration or melt infiltration by means of the known technique of "squeeze casting" are possible here as possible processes
  • the mechanical strength of the obtained Cu-MMC material was determined to be 384 MPa, the thermal conductivity of 91 W / m K.
  • the corrosion rate of this Cu MMC in water at 35 0 C by a factor of 28 lower than in gray cast iron and the wear rate is to 2 orders of magnitude lower than that of gray cast iron.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Powder Metallurgy (AREA)
  • Braking Arrangements (AREA)

Abstract

L'invention concerne un matériau composite métal-céramique destiné en particulier à des applications tribologiques, ce matériau comprenant une préforme constituée d'un matériau céramique et du cuivre ou un alliage de cuivre comme composant métallique. La proportion de céramique est comprise entre 30 et 80 % en volume et la proportion de cuivre ou d'alliage de cuivre entre 20 et 70 % en volume.
EP07820119A 2006-10-30 2007-09-11 Matériau pour applications tribologiques Withdrawn EP2089341A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006051201A DE102006051201A1 (de) 2006-10-30 2006-10-30 Werkstoff für tribologische Anwendungen
PCT/EP2007/059512 WO2008052833A1 (fr) 2006-10-30 2007-09-11 Matériau pour applications tribologiques

Publications (1)

Publication Number Publication Date
EP2089341A1 true EP2089341A1 (fr) 2009-08-19

Family

ID=38686855

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07820119A Withdrawn EP2089341A1 (fr) 2006-10-30 2007-09-11 Matériau pour applications tribologiques

Country Status (6)

Country Link
US (1) US20110003680A1 (fr)
EP (1) EP2089341A1 (fr)
JP (1) JP2010508442A (fr)
DE (1) DE102006051201A1 (fr)
RU (1) RU2009120391A (fr)
WO (1) WO2008052833A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2844449B1 (fr) 2012-05-02 2020-09-02 Intellectual Property Holdings, LLC Préforme de céramique et procédé
DE202014004765U1 (de) 2014-06-10 2014-09-09 Procon Gmbh Verschleißfester Formkörper aus keramikpartikelverstärktem Leichtmetall
EP3209471A4 (fr) 2014-10-20 2018-06-27 Intellectual Property Holdings, LLC Préforme en céramique et procédé correspondant
EP3397873B1 (fr) 2015-12-31 2022-09-07 Intellectual Property Holdings, LLC Procédé de fabrication d'un élément rotatif de disque de frein à ventilation fait d'un matériau composite à matrice métallique
CN108698122B (zh) 2016-02-04 2021-11-26 知识产权控股有限责任公司 用于形成金属基质复合物构件的装置及方法
US10830296B2 (en) 2017-04-21 2020-11-10 Intellectual Property Holdings, Llc Ceramic preform and method
US10851020B2 (en) 2018-01-23 2020-12-01 Dsc Materials Llc Machinable metal matrix composite and method for making the same
US11001914B2 (en) 2018-01-23 2021-05-11 Dsc Materials Llc Machinable metal matrix composite and method for making the same
CN108359825B (zh) * 2018-02-11 2019-07-26 太原理工大学 一种陶瓷-石墨烯增强铜基复合材料的制备方法
CN113737050B (zh) * 2021-08-25 2023-01-03 湖南稀土金属材料研究院有限责任公司 铜合金及其制备方法和应用

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5224533A (en) * 1989-07-18 1993-07-06 Lanxide Technology Company, Lp Method of forming metal matrix composite bodies by a self-generated vaccum process, and products produced therefrom
US5735332A (en) * 1992-09-17 1998-04-07 Coors Ceramics Company Method for making a ceramic metal composite
US5676907A (en) * 1992-09-17 1997-10-14 Coors Ceramics Company Method for making near net shape ceramic-metal composites
US5614043A (en) * 1992-09-17 1997-03-25 Coors Ceramics Company Method for fabricating electronic components incorporating ceramic-metal composites
US5511603A (en) * 1993-03-26 1996-04-30 Chesapeake Composites Corporation Machinable metal-matrix composite and liquid metal infiltration process for making same
US5755272A (en) * 1993-12-02 1998-05-26 Massachusetts Institute Of Technology Method for producing metal matrix composites using electromagnetic body forces
JPH1129379A (ja) * 1997-02-14 1999-02-02 Ngk Insulators Ltd 半導体ヒートシンク用複合材料及びその製造方法
US20030050707A1 (en) * 1997-03-31 2003-03-13 Richard L. Landingham Novel cermets and molten metal infiltration method and process for their fabrication
DE19917175A1 (de) * 1999-04-16 2000-10-19 Daimler Chrysler Ag Verfahren zum Herstellen eines Bauteiles und Bauteil
JP2001270792A (ja) * 2000-03-27 2001-10-02 Ngk Insulators Ltd 金属・セラミックス複合体の製造方法及びセラミックス多孔体の製造方法
US20030234929A1 (en) * 2002-06-24 2003-12-25 Applied Materials, Inc. Method and system to reduce/detect a presence of gas in a flow of a cleaning fluid
DE10350035A1 (de) * 2003-10-27 2005-05-25 Robert Bosch Gmbh Verfahren zur Herstellung eines Verbundbauteils und metall-keramisches Bauteil
JP4945245B2 (ja) * 2003-11-25 2012-06-06 エム キューブド テクノロジーズ, インコーポレイテッド 炭化ホウ素複合体およびその製造方法
DE102005019662A1 (de) * 2004-05-19 2005-12-08 Ceramtec Ag Innovative Ceramic Engineering Verfahren zur Herstellung von Metall-Keramik-Verbundwerkstoffen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008052833A1 *

Also Published As

Publication number Publication date
DE102006051201A1 (de) 2008-05-08
US20110003680A1 (en) 2011-01-06
JP2010508442A (ja) 2010-03-18
WO2008052833A1 (fr) 2008-05-08
RU2009120391A (ru) 2010-12-10

Similar Documents

Publication Publication Date Title
EP2089341A1 (fr) Matériau pour applications tribologiques
EP1751320B1 (fr) Piece d'usure constituee d'une matiere composite contenant du diamant
DE4413306C1 (de) Verfahren zur Verstärkung eines Bauteils und Anwendung des Verfahrens
EP1357310B1 (fr) Matériau composite avec fibres de reinforcement en carbone
EP1685081B1 (fr) Procede de production d'un element composite et element metal-ceramique
DE102011012142B3 (de) Aluminium-Matrixverbundwerkstoff, Halbzeug aus dem Aluminium-Matrixverbundwerkstoff und Verfahren zu dessen Herstellung
EP2086707A1 (fr) Procédé de production d'un corps en matériaux composites métal-céramique
DE102017203076A1 (de) Verbundwerkstoffe mit sehr hoher Verschleißbeständigkeit
EP1433553B1 (fr) Procédé pour la fabrication d'un matériau composite
DE19606689A1 (de) Verfahren zur Herstellung eines Verbunderzeugnisses auf Basis eines Leichtmetalls oder einer Leichtmetallegierung
DE102009050025A1 (de) Keramikbremsscheibe
EP1390321B1 (fr) Materiau composite metal-ceramique et procede de production dudit materiau
DE102012217214A1 (de) Verfahren zur Herstellung von Bauteilen aus MMC's (Metallmatrix - Verbundwerkstoffen) mit einem unter Inertgasatmosphäre schmelzverdüsten Pulver
DE10130395A1 (de) Reibwerkstoff und Verfahren zu seiner Herstellung sowie Reibelement
DE102010055791A1 (de) Verfahren zur Fertigung von Bauteilen aus Refraktärmetallen
WO2008086930A1 (fr) Préformes céramiques pour la fabrication de matériaux composites métal-céramique
DE10354655A1 (de) Verfahren zur Herstellung eines Verbundbauteils und metall-keramisches Bauteil
WO2004043875A2 (fr) Composites ceramique-metal ou metal-ceramique
WO2004022802A1 (fr) Procede de production d'un element constitutif, element constitutif correspondant et utilisation
DE102020007981B4 (de) Verfahren zur Herstellung von Bauteilen aus einem Aluminium-Matrix-Komposit-Verbundwerkstoff sowie danach erhältliches Bauteil
DE102014002583B3 (de) Verfahren zur Herstellung eines verschleißbeständigen Leichtmetall-Bauteils
EP3775602B1 (fr) Utilisation des garnitures de friction pour disques de frein en aluminium
DE69534107T2 (de) Mmc und flüssigmetallinfiltrationsverfahren
EP0928654A1 (fr) Procédé de fabrication des pièces composites avec des matériaux liquides ou semi liquides
DE10117394A1 (de) Metall-keramische Bremsscheibe und Verfahren zu ihrer Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090602

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090817

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140401