EP2089341A1 - Werkstoff für tribologische anwendungen - Google Patents
Werkstoff für tribologische anwendungenInfo
- Publication number
- EP2089341A1 EP2089341A1 EP07820119A EP07820119A EP2089341A1 EP 2089341 A1 EP2089341 A1 EP 2089341A1 EP 07820119 A EP07820119 A EP 07820119A EP 07820119 A EP07820119 A EP 07820119A EP 2089341 A1 EP2089341 A1 EP 2089341A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- ceramic
- copper
- preform
- metal
- copper alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000463 material Substances 0.000 title claims abstract description 29
- 239000000919 ceramic Substances 0.000 claims abstract description 39
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000010949 copper Substances 0.000 claims abstract description 19
- 229910000881 Cu alloy Inorganic materials 0.000 claims abstract description 18
- 229910052802 copper Inorganic materials 0.000 claims abstract description 18
- 239000002131 composite material Substances 0.000 claims abstract description 13
- 229910010293 ceramic material Inorganic materials 0.000 claims abstract description 10
- 229910052751 metal Inorganic materials 0.000 claims description 16
- 239000002184 metal Substances 0.000 claims description 16
- 238000005245 sintering Methods 0.000 claims description 10
- 238000001764 infiltration Methods 0.000 claims description 9
- 230000008595 infiltration Effects 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 239000000155 melt Substances 0.000 claims description 5
- 238000002844 melting Methods 0.000 claims description 5
- 230000008018 melting Effects 0.000 claims description 5
- 229910018565 CuAl Inorganic materials 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- 229910016344 CuSi Inorganic materials 0.000 claims description 2
- 229910002535 CuZn Inorganic materials 0.000 claims description 2
- 238000010276 construction Methods 0.000 claims description 2
- 150000001247 metal acetylides Chemical class 0.000 claims description 2
- 150000004767 nitrides Chemical class 0.000 claims description 2
- 150000004760 silicates Chemical class 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 239000011156 metal matrix composite Substances 0.000 description 10
- 239000011148 porous material Substances 0.000 description 10
- 230000007797 corrosion Effects 0.000 description 8
- 238000005260 corrosion Methods 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 238000005266 casting Methods 0.000 description 5
- 229910001060 Gray iron Inorganic materials 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000626 liquid-phase infiltration Methods 0.000 description 2
- 230000002028 premature Effects 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 238000009716 squeeze casting Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000012700 ceramic precursor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000009715 pressure infiltration Methods 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 229940100486 rice starch Drugs 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000009714 stir casting Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/51—Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
- C04B41/5127—Cu, e.g. Cu-CuO eutectic
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/009—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/85—Coating or impregnation with inorganic materials
- C04B41/88—Metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D69/00—Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
- F16D69/02—Composition of linings ; Methods of manufacturing
- F16D69/027—Compositions based on metals or inorganic oxides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00241—Physical properties of the materials not provided for elsewhere in C04B2111/00
- C04B2111/00362—Friction materials, e.g. used as brake linings, anti-skid materials
Definitions
- the present invention relates to a material for tribological applications according to the preamble of claim 1.
- MMC Metal-Matrix Composites
- Preform MMC materials are more resistant to corrosion and wear than cast MMC materials.
- Brake discs and brake drums have been made from cast-MMC aluminum-based materials since 1997.
- the rear axle brake drums of the VW small car model Lupo 3L are made of a material with the brand name Duralcan. This material is composed of 80% by volume of an aluminum casting alloy and 20% by volume of ceramic particles (SiC) and is produced by the so-called "stir-casting" process described in US Pat. No.
- Object of the present invention is therefore to provide a material for tribological applications, in particular as a brake disc or drum, which despite high weight has a high temperature resistance and also ensures a significant improvement in wear and corrosion resistance.
- a metal-ceramic composite material is provided in particular for tribological applications, comprising a preform made of a ceramic material, as well as a metal component copper or a copper alloy, the proportion of ceramic ranging between 30 and 80 vol.% And the proportion of Copper or copper alloy ranges between 20% and 70% by volume.
- the significantly higher achievable ceramic content of up to 80% by volume compared with cast MMCs has an advantageous effect on the wear and corrosion resistance of the materials. This leads to a longer service life, higher optical brilliance and improved braking comfort.
- a significantly higher operating temperature is also possible compared to aluminum-based materials.
- the materials according to the invention can therefore be used as brake materials for a significantly expanded vehicle segment.
- the proportion of copper or copper alloy on the metal-ceramic composite is particularly preferably 25-60 vol .-%.
- the ceramic material used for the preform are oxides (eg TiO 2 , Al 2 O 3 ), carbides (eg SiC, TiC, WC, B 4 C), nitrides (eg Si 3 N 4 , BN, AlN, ZrN, TiN), borides (eg TiB 2 ) and / or silicates in question.
- the ceramic material is preferably present in the production of the preform in particle or fiber form.
- these ceramics may also serve as reinforcing or functional elements (e.g., SiC or AIN for improving thermal conductivity, ceramic fibers for improving fracture toughness and strength, etc.).
- SiC or AIN for improving thermal conductivity
- ceramic fibers for improving fracture toughness and strength, etc.
- the preform has a porous ceramic basic structure, into which the copper melt or the molten alloy is infiltrated, an intimate connection between the preform and the solidifying metal results. In doing so, inter- - A -
- the strength and toughness of the body is further increased.
- the proportion of ceramic on the metal-ceramic composite is particularly preferably 40-75% by volume.
- a component for tribological applications in particular in vehicle construction, provided, comprising a metal-ceramic composite material according to one of the preceding claims.
- brake disks or drums are considered here as components, but also other components which have to endure high mechanical and thermal loads, at the same time have a low specific weight and, moreover, have to be resistant to corrosion, in particular in the automotive, motorcycle and aircraft industries shipbuilding.
- the components preferably have a thermal conductivity ()> 70 W / m K in order to avoid high thermal gradients or high thermal stresses, which may occur as a result of the high energy input during the friction stress. This is particularly caused by the copper content, since copper has a very high specific thermal conductivity.
- the strength of the components is> 200 MPa, preferably> 350 MPa. This is where the higher ceramic content compared to Cast-MMCs comes into play.
- a maximum service temperature of> 800 ° C is desired. This is also achieved by the copper content, since copper and copper alloys have higher melting points than aluminum or aluminum alloys.
- the porosity of the preform amounts to 20-70% by volume, preferably 25-60% by volume.
- Porosity is to be understood as meaning the ratio of the volume of all cavities of a porous solid to its outer volume, the cavities being generally networked together and being in exchange or interconnected with the atmosphere surrounding the porous solid (so-called open porosity). It is therefore a measure of how much space the actual solid fills within a certain volume or which cavities it leaves in this volume.
- the pores are usually filled with air. Due to the porosity of a preform, therefore, the volume fractions of the ceramic and metal components of a preform MMC to be expected later are usually determined.
- Solidification of the molten metal in the infiltration front must also be ensured that the ceramic preform has one of the melting temperature near temperature, the temperature difference should not be greater than 35O 0 C, preferably not greater than 100 0 C.
- the casting tool should preferably be preheated, and direct contact between the casting tool and preform should be avoided, e.g. by spacers or lining with an insulating material such as ceramic paper or fleece.
- An additional measure may be to surround the preheated ceramic preform with an insulating sheath, for example with ceramic paper or fleece or a steel hollow body adapted to the shape.
- the infiltration with molten metal is reaction-assisted or non-reactive, ie there is only a reaction limited to the surface zone of the ceramic phase or there is no reaction between metal and ceramic. phase instead.
- the infiltration quality can be improved and the infiltration pressure can be lowered (the cause of this is the released reaction heat or the changed surface tension due to the newly formed interface phase).
- one or more pore formers are added to the ceramic material prior to sintering. These are usually elongated, easily burnable materials that burn during sintering, creating a network of channels and pores that facilitate subsequent infiltration of the molten metal and allow intimate bonding between the preform and the solidifying metal.
- the channels produced in this way can have widths of 2 to 50 ⁇ m, preferably 5 to 30 ⁇ m. By the channels filling in the finished body metal channels, the strength and toughness of the body is further increased.
- the pore formers have a significant influence on the setting of a specific porosity.
- pore formers can also be used in particular in the production of ceramic preforms in order to produce a network of pore channels, which result in a better infiltrability of the preform; the pore channels act as infiltration channels here.
- the resulting metal channels increase the strength and toughness of the material.
- cellulose flakes or fibers having a volume fraction of 1 to 30%, preferably 2 to 20%.
- pore formers z.
- Ru ß- particles rice starch or organic macromolecules, such. Fullerenes or nanotubes conceivable.
- pore formers are all those materials which burn, disintegrate or outgas during sintering, thus creating voids in the material.
- melt of copper or copper alloy is infiltrated by applying an external pressure.
- gas pressure infiltration or melt infiltration by means of the known technique of "squeeze casting" are possible here as possible processes
- the mechanical strength of the obtained Cu-MMC material was determined to be 384 MPa, the thermal conductivity of 91 W / m K.
- the corrosion rate of this Cu MMC in water at 35 0 C by a factor of 28 lower than in gray cast iron and the wear rate is to 2 orders of magnitude lower than that of gray cast iron.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- General Engineering & Computer Science (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Powder Metallurgy (AREA)
- Braking Arrangements (AREA)
Abstract
Die Erfindung betrifft einen Metall-Keramik-Verbundwerkstoff insbesondere für tribologische Anwendungen, aufweisend eine Preform aus einem Keramikwerkstoff, und als Metallkomponente Kupfer oder eine Kupferlegierung, wobei der Keramikanteil im Bereich zwischen einschließlich 30 und 80 Vol.-% und der Anteil des Kupfers oder der Kupferlegierung im Bereich zwischen einschließlich 20 und 70 Vol.-% liegt.
Description
Beschreibung
Titel
Werkstoff für tribologische Anwendungen
Die vorliegende Erfindung betrifft einen Werkstoff für tribologische Anwendungen gemäß dem Oberbegriff des Anspruchs 1.
Stand der Technik
Steigende Anforderungen an tribologische, d.h. auf Reibung beanspruchte Bauteile, insbesondere an die in Fahrzeugen eingesetzten Bremsscheiben oder -trommeln, erfordern Werkstoffe mit hoher Korrosions- und Verschleißbeständigkeit, hoher Wärmeleitfähigkeit und hoher mechanischer Festigkeit, sowie hoher Temperaturbeständigkeit bis hin zu Temperaturen von 9000C.
Üblicherweise für solche Einsatzzwecke verwendete Materialien, wie z.B. Grauguss, können diese Anforderungen, insbesondere in Bezug auf Korrosions- und Verschleißbeständigkeit, bereits häufig schon jetzt, insbesondere jedoch für zukünftig zu erwartende Anforderungsprofile, nicht mehr erfüllen.
Ein neuer Materialansatz sind Verbundwerkstoffe auf Basis korrosionsbeständiger Metallphasen und verschleißmindernder Keramikanteiler, insbesondere sogenannte Metall- Keramik- Verbundwerkstoffe (z. B. „Metal-Matrix Composites" = MMC). Man unterscheidet hierbei einerseits „Cast- M M C"- Werkstoffe, bei welchen bis zu 20 Vol.-% keramische Fasern oder Partikel der zu vergießenden Metallphase untergemischt werden, und andererseits „Preform-MMC"- Materialien, zu deren Herstellung poröse keramische Vorkörper (sog. Preforms) mit einer Metallschmelze unter Aufbringung eines äußeren Druckes infiltriert werden.
Im Ergebnis entstehen im letzteren Fall interpenetrierende Netzwerke aus Keramik- und Metallphase mit realisierbaren Keramikanteilen von bis zu 80 Vol.-%. Der hohe Keramikanteil bedingt,
dass Preform-MMC-Werkstoffe gegenüber Cast-MMC- Werkstoffen korrosions- und verschleiß- resistenter sind.
Schon seit 1997 werden Bremsscheiben und Bremstrommeln aus Cast-MMC Werkstoffen auf Aluminiumbasis hergestellt. Beispielsweise sind die Hinterachs-Bremstrommeln des VW- Kleinwagenmodells Lupo 3L aus einem Werkstoff mit dem Markennamen Duralcan gefertigt. Dieser Werkstoff setzt sich aus 80 Vol.-% einer Aluminium-Gusslegierung und 20 Vol.-% Keramikpartikel (SiC) zusammen und wird mit dem sogenannten „Stir- Casting- Verfahren" hergestellt, das in der US 4865806 be- schrieben ist. Vorteilhaft ist dabei die durch den überwiegenden Einsatz einer Aluminiumlegierung erzielte niedrige Dichte des Materials (2,8 g/cm3 gegenüber Bremsscheiben aus dem Standardmaterial Grauguss von 7,2 g/cm3). Nachteilig wirkt sich bei diesem Materialansatz der für Cast-MMCs charakteristische niedrige Keramikanteil aus, der das Potenzial zur Steigerung der Verschleiß- beständigkeit stark einschränkt.
Hinzu kommt, dass im Allgemeinen für aluminiumbasierte Cast- und Preform-MMC-Materialien gilt, dass die niedrige Schmelz- und Erweichungstemperatur der relevanten Aluminiumlegierun- gen von unter 6000C einen Einsatz als Bremsenmaterial für schwere und leistungsstarke Fahrzeuge, also insbesondere Mittel- und Oberklassefahrzeuge, SUV, Vans und Sportwagen, ausschließt, da hier hohe Bremstemperaturen zu erwarten sind. Dies ist durch den hohen Energieübertrag auf die Reibfläche der Bremsscheibe bzw. -trommel während des Bremsvorgangs begründet, der zu Temperaturen von über 7000C führen kann.
Offenbarung der Erfindung
Aufgabe der vorliegenden Erfindung ist es daher, einen Werkstoffe für tribologische Anwendungen, insbesondere als Bremsscheibe oder Trommel, bereitzustellen, der trotz geringen Gewichts eine hohe Temperaturbeständigkeit aufweist und überdies eine deutliche Verbesserung der Verschleiß- und Korrosionsbeständigkeit gewährleistet.
Diese Aufgabe wird mit den Merkmalen des vorliegenden Anspruchs 1 gelöst. Die Unteransprü- che geben bevorzugte Ausführungsformen an.
Demnach ist ein Metall-Keramik- Verbundwerkstoff insbesondere für tribologische Anwendungen, aufweisend ein Preform aus einem Keramikwerkstoff, sowie als Metallkomponente Kupfer oder eine Kupferlegierung, vorgesehen, wobei der Keramikanteil im Bereich zwischen ein- schließlich 30 und 80 Vol.-% und der Anteil des Kupfers oder der Kupferlegierung im Bereich zwischen einschließlich 20 und 70 Vol.-% liegt.
Der durch das Preform-Verfahren im Vergleich zu Cast-MMCs deutlich höhere erzielbare Keramikanteil von bis zu 80 Vol.-% wirkt sich vorteilhaft auf die Verschleiß- und Korrosionsbestän- digkeit der Materialien aus. Dies führt zu längerer Lebensdauer, höherer optische Brillanz und einem verbesserten Bremskomfort.
Durch Verwendung eines Preform-MMCs mit hochschmelzender Metallphase - nämlich Kupfer oder einer Kupferlegierung - wird überdies gegenüber aluminiumbasierten Werkstoffen eine deutlich höhere Einsatztemperatur ermöglicht. Die erfindungsgemäßen Werkstoffe sind daher als Bremsenmaterialien für ein signifikant erweitertes Fahrzeugsegment einsetzbar.
Besonders bevorzugt ist vorgesehen, dass es sich bei der Kupferlegierung um Cu-ETP, CuMgx, CuAIx, CuSix, CuZrx, CuTix, CuZnx oder CuAlxFeγNiz handelt.
Der Anteil des Kupfers oder der Kupferlegierung an dem Metall- Keramik- Verbundwerkstoff beträgt dabei besonders bevorzugt 25 - 60 Vol.-%.
Als Keramikwerkstoff für die Preform kommen Oxide (z.B. TiO2, AI2O3), Carbide (z.B. SiC, TiC, WC, B4C), Nitride (z.B. Si3N4, BN, AIN, ZrN, TiN), Boride (z.B. TiB2) und/oder Silikate in Frage. Der Keramikwerkstoff liegt bei der Herstellung des Preforms bevorzugt in Partikel- oder Faserform vor.
Ebenso können diese Keramikwerkstoffe auch als Verstärkungs- oder Funktionselemente die- nen (z.B. SiC oder AIN zur Verbesserung der Wärmeleitfähigkeit, Keramikfasern zur Verbesserung der Bruchzähigkeit und Festigkeit, etc).
Aufgrund der Tatsache, dass der Preform eine poröse keramische Grundstruktur aufweist, in welche die Kupferschmelze bzw. die geschmolzene Legierung infiltriert wird, ergibt sich eine innige Verbindung zwischen dem Preform und dem erstarrenden Metall. Dabei bilden sich inter-
- A -
penetrierende Netzwerke aus Metall und Keramik aus, wobei insbesondere durch das Metallnetzwerk die Festigkeit und Zähigkeit der Körper weiter erhöht wird.
Der Keramikanteil an dem Metall- Keramik- Verbundwerkstoff beträgt dabei besonders bevorzugt 40 - 75 Vol.-%.
Weiterhin ist ein Bauteil für tribologische Anwendungen, insbesondere im Fahrzeugbau, vorgesehen, aufweisend einen Metall- Keramik- Verbundwerkstoff gemäß einem der vorherigen Ansprüche. Als Bauteile kommen hier insbesondere Bremsscheiben oder -trommeln in Frage, aber auch andere Bauteile, die hohe mechanische und thermische Belastungen ertragen müssen, gleichzeitig ein geringes spezifisches Gewicht aufweisen sollen und überdies korrosionsresistent sein müssen, insbesondere im Automobil-, Motorrad-, Flugzeug- und Schiffsbau.
Die Bauteile weisen zur Vermeidung hoher thermischer Gradienten bzw. großer thermischer Spannungen, die in Folge des hohen Energieeintrages während der Reibbeanspruchung auftreten können, bevorzugt eine Wärmeleitfähigkeit ( ) > 70 W/m K auf. Dies wird insbesondere durch den Kupferanteil bewirkt, da Kupfer eine sehr hohe spezifische Wärmeleitfähigkeit aufweist.
Die Festigkeit der Bauteile beträgt > 200 MPa, bevorzugt > 350 MPa. Hier kommt der gegenüber Cast-MMCs höhere Keramikanteil zum Tragen.
Damit ein Einsatz bei schweren und leistungsstarken Kraftfahrzeugen möglich ist, wird eine maximale Einsatztemperatur > 8000C angestrebt. Dies wird ebenfalls durch den Kupferanteil er- reicht, da Kupfer und Kupferlegierungen höhere Schmelzpunkte haben als Aluminium oder Aluminiumlegierungen.
Weiterhin ist ein Verfahren zur Herstellung eines Metall- Keramik- Verbundwerkstoff gemäß einem der vorherigen Ansprüche, vorgesehen, aufweisend die folgenden Schritte:
a) Herstellen eines porösen keramischen Vorkörpers (Preform) durch Sintern, bevorzugt aus einem Keramikwerkstoff gemäß obiger Beschreibung (Sinterschritt); und
b) Infiltrieren der Preform mit einer Schmelze aus Kupfer oder einer Kupferlegierung, wobei die Preform zuvor auf eine Temperatur nahe der Schmelztemperatur des Kupfers bzw. der Kupferlegierung gebracht wurde (Infiltrationsschritt).
Die Porosität der Preform betrage dabei 20 - 70 Vol.-%, bevorzugt 25 - 60 Vol.-%. Unter Porosität soll das Verhältnis des Volumens aller Hohlräume eines porösen Festkörpers zu dessen äußerem Volumen verstanden werden, wobei die Hohlräume hierbei im Allgemeinen netzwerkartig miteinander verbunden sind und mit der den porösen Festkörper umgebenden Atmosphäre im Austausch stehen bzw. verbunden sind (sogenannte offene Porosität). Es handelt sich also um ein Maß dafür, wie viel Raum der eigentliche Feststoff innerhalb eines bestimmten Volumens ausfüllt bzw. welche Hohlräume er in diesem hinterlässt. Die Poren sind dabei in der Regel mit Luft gefüllt. Durch die Porosität einer Preform werden daher in der Regel bereits die später zu erwartenden Volumenanteile der Keramik- und der Metallkomponente eines Preform-MMCs festgelegt.
Zur Vermeidung von Thermoschocks und einem vorzeitigen
Erstarren der Metallschmelze in der Infiltrationsfront muss überdies gewährleistet sein, dass der keramische Vorkörper eine der Schmelztemperatur nahe Temperatur aufweist, wobei die Temperaturdifferenz nicht größer als 35O0C, bevorzugt nicht größer als 1000C sein sollte.
Dies kann beispielsweise bei Anwendung einer Schmelzinfiltration mittels Squeeze Casting durch ein Vorwärmen des Vorkörpers außerhalb des Gießwerkzeuges gewährleistet werden, wobei unmittelbar vor dem Infiltrationsprozess der Vorkörper in das Gießwerkzeug eingelegt wird.
Zur Vermeidung von Thermoschock und einem vorzeitigen Auskühlen des Vorkörpers sollte das Gießwerkzeug bevorzugt vorgewärmt sein, und ein direkter Kontakt zwischen Gießwerkzeug und Vorkörper sollte vermieden werden, z.B. durch Abstandshalter oder Auskleidung mit einem isolierenden Material wie Keramikpapier oder -Vlies.
Eine zusätzliche Maßnahme kann darin bestehen, den vorgewärmten keramischen Vorkörper mit einer isolierenden Umhüllung zu umgeben, z.B. mit Keramikpapier oder -Vlies oder einem der Form angepassten Stahlhohlkörper. Die Infiltration mit Metallschmelze erfolgt reaktionsun- terstützt oder nicht reaktiv, d.h. es findet lediglich eine auf die Oberflächenzone der Keramik- phase beschränkte Reaktion statt oder es findet keine Reaktion zwischen Metall- und Keramik-
phase statt. Durch eine Oberflächenreaktion der Keramikphase kann die Infiltrationsqualität verbessert und der Infiltrationsdruck erniedrigt werden (ursächlich hierfür ist die freigesetzte Reaktionswärme bzw. die veränderte Oberflächenspannung aufgrund der neu gebildeten Grenzflächenphase).
Weiterhin ist vorgesehen, dass dem Keramikwerkstoff vor dem Sintern ein oder mehrere Porenbildner zugegeben werden. Hierbei handelt es sich in der Regel um längliche, leicht ausbrennbare Stoffe, die während des Sinterns verbrennen und so ein Netzwerk von Kanälen und Poren erzeugen, das die anschließende Infiltration der Metallschmelze erleichtert und eine innige Verbindung zwischen der Preform und dem erstarrenden Metall ermöglicht. Die auf diese Weise erzeugten Kanäle können Breiten von 2 - 50 μm, bevorzugt 5 - 30 μm aufweisen. Durch die die Kanäle im fertigen Körper ausfüllenden Metallkanäle wird die Festigkeit und Zähigkeit der Körper weiter erhöht.
Die Porenbildner haben - neben den eingestellten Sinterparametern - einen wesentlichen Ein- fluss auf die Einstellung einer bestimmten Porosität. Porenbildner können aber auch insbesondere bei der Herstellung keramischer Preforms verwendet werden, um ein Netzwerk von Porenkanälen zu erzeugen, die eine bessere Infiltrierbarkeit des Vorkörpers zur Folge haben; die Po- renkanäle fungieren hier als Infiltrationskanäle. Zudem werden durch die so entstandenen Metallkanäle Festigkeit und Zähigkeit des Werkstoffes erhöht.
Besonderes bevorzugt werden hier Zelluloseplättchen oder -fasern mit einem Volumenanteil von 1 - 30 %, bevorzugt 2 - 20 % verwendet. Weiterhin sind als Porenbildner z. B. auch Ru ß- partikel, Reisstärke oder organische Makromoleküle, wie z.B. Fullerene oder Nanotubes denkbar. Im Wesentlichen eignen sich als Porenbildner all solche Materialien, die während des Sinterns verbrennen, zerfallen oder ausgasen und auf diese Weise Hohlräume in dem Material erzeugen.
Im Übrigen sind auch Stoffe denkbar, die beim Sintern Gas freisetzen und so eine Porenbildung hervorrufen. Hier käme z.B. NaHCO3 Jn Frage, das unter Hitze CO2 freisetzt.
Weiterhin ist vorgesehen, dass die Schmelze aus Kupfer oder Kupferlegierung unter Aufwendung eines äußeren Druckes infiltriert wird.
AIs mögliche Verfahren kommen hier insbesondere Gasdruckinfiltration oder Schmelzinfiltration mittels der bekannten Technik des „Squeeze Casting" in Frage
Beispiele
Ein keramischer Vorköper, bestehend aus TiO2, der eine Porosität von 50 Vol.-% aufwies, wurde mit einer Schmelze aus Cu-ETP im Squeeze Cast Verfahren infiltriert. Die mechanische Festigkeit des erhaltenen Cu-MMC Werkstoffes wurde mit 384 MPa bestimmt, die Wärmeleitfähigkeit mit 91 W/m K. Die Korrosionsrate dieses Cu- MMC in Wasser bei 350C ist um den Faktor 28 geringer als bei Grauguss und die Verschleißrate ist um 2 Größenordungen geringer als diejenige von Grauguss.
Claims
1. Metall- Keramik- Verbundwerkstoff insbesondere für tribologische Anwendungen, aufweisend
a) ein Preform aus einem Keramikwerkstoff, und b) als Metallkomponente Kupfer oder eine Kupferlegierung
wobei der Keramikanteil im Bereich zwischen einschließlich 30 und 80 Vol.-% und der Anteil des Kupfers oder der Kupferlegierung im Bereich zwischen einschließlich 20 und 70 Vol.-% liegt.
2. Metall- Keramik- Verbundwerkstoff gemäß Anspruch 1, dadurch gekennzeichnet, dass es sich bei der Kupferlegierung um eine Legierung ausgewählt aus der Gruppe enthaltend Cu-ETP, CuMgx, CuAIx, CuSix, CuZrx, CuTix, CuZnx und/oder oder CuAlxFeγNiz handelt.
3. Metall- Keramik- Verbundwerkstoff gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass es sich bei dem Keramikwerkstoff für die Preform um einen oder mehrere Werkstoffe ausgewählt aus der Gruppe bestehend aus Oxiden, Carbiden, Nitriden, Bonden und/oder Silikaten handelt.
4. Bauteil für tribologische Anwendungen, insbesondere im Fahrzeugbau, aufweisend einen Metall- Keramik- Verbundwerkstoff gemäß einem der vorherigen Ansprüche.
5. Verfahren zur Herstellung eines Metall- Keramik- Verbundwerkstoff gemäß einem der vor- herigen Ansprüche, aufweisend die folgenden Schritte:
a) Herstellen eines porösen keramischer Vorkörpers (Preform) durch Sintern, bevorzugt aus einem Keramikwerkstoff gemäß einem der vorherigen Ansprüche (Sinterschritt); sowie b) Infiltrieren der Preform mit einer Schmelze aus Kupfer oder einer Kupferlegierung, bevorzugt gemäß Anspruch 2, wobei die Preform zuvor auf eine Temperatur nahe der Schmelztemperatur des Kupfers bzw. der Kupferlegierung gebracht wurde (Infiltrationsschritt).
6. Verfahren gemäß Anspruch 5, dadurch gekennzeichnet, dass dem Keramikwerkstoff vor dem Sintern ein oder mehrere Porenbildner zugegeben werden.
7. Verfahren gemäß einem der Ansprüche 5 - 6, dadurch gekennzeichnet, dass die Schmelze aus Kupfer oder Kupferlegierung unter Aufwendung eines äußeren Druckes infiltriert wird.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006051201A DE102006051201A1 (de) | 2006-10-30 | 2006-10-30 | Werkstoff für tribologische Anwendungen |
PCT/EP2007/059512 WO2008052833A1 (de) | 2006-10-30 | 2007-09-11 | Werkstoff für tribologische anwendungen |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2089341A1 true EP2089341A1 (de) | 2009-08-19 |
Family
ID=38686855
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07820119A Withdrawn EP2089341A1 (de) | 2006-10-30 | 2007-09-11 | Werkstoff für tribologische anwendungen |
Country Status (6)
Country | Link |
---|---|
US (1) | US20110003680A1 (de) |
EP (1) | EP2089341A1 (de) |
JP (1) | JP2010508442A (de) |
DE (1) | DE102006051201A1 (de) |
RU (1) | RU2009120391A (de) |
WO (1) | WO2008052833A1 (de) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9429202B2 (en) | 2012-05-02 | 2016-08-30 | Intellectuall Property Holdings LLC | Ceramic preform and method |
DE202014004765U1 (de) | 2014-06-10 | 2014-09-09 | Procon Gmbh | Verschleißfester Formkörper aus keramikpartikelverstärktem Leichtmetall |
JP6672319B2 (ja) | 2014-10-20 | 2020-03-25 | インテレクチュアル プロパティ ホールディングス, エルエルシー | セラミックプリフォームおよび方法 |
WO2017117601A1 (en) | 2015-12-31 | 2017-07-06 | Intellectual Property Holdings, Llc | Method of making a metal matrix composite vented brake rotor |
EP3411167A1 (de) | 2016-02-04 | 2018-12-12 | Intellectual Property Holdings, LLC | Vorrichtung und verfahren zur herstellung einer fahrzeugkomponente aus metallmatrixverbund |
US10830296B2 (en) | 2017-04-21 | 2020-11-10 | Intellectual Property Holdings, Llc | Ceramic preform and method |
US11001914B2 (en) | 2018-01-23 | 2021-05-11 | Dsc Materials Llc | Machinable metal matrix composite and method for making the same |
US10851020B2 (en) | 2018-01-23 | 2020-12-01 | Dsc Materials Llc | Machinable metal matrix composite and method for making the same |
CN108359825B (zh) * | 2018-02-11 | 2019-07-26 | 太原理工大学 | 一种陶瓷-石墨烯增强铜基复合材料的制备方法 |
CN113737050B (zh) * | 2021-08-25 | 2023-01-03 | 湖南稀土金属材料研究院有限责任公司 | 铜合金及其制备方法和应用 |
CN118389896B (zh) * | 2024-06-17 | 2024-08-23 | 中南大学 | 一种三元改性复相陶瓷粉增强的铜基粉末冶金摩擦材料 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5224533A (en) * | 1989-07-18 | 1993-07-06 | Lanxide Technology Company, Lp | Method of forming metal matrix composite bodies by a self-generated vaccum process, and products produced therefrom |
US5614043A (en) * | 1992-09-17 | 1997-03-25 | Coors Ceramics Company | Method for fabricating electronic components incorporating ceramic-metal composites |
US5676907A (en) * | 1992-09-17 | 1997-10-14 | Coors Ceramics Company | Method for making near net shape ceramic-metal composites |
US5735332A (en) * | 1992-09-17 | 1998-04-07 | Coors Ceramics Company | Method for making a ceramic metal composite |
US5511603A (en) * | 1993-03-26 | 1996-04-30 | Chesapeake Composites Corporation | Machinable metal-matrix composite and liquid metal infiltration process for making same |
US5755272A (en) * | 1993-12-02 | 1998-05-26 | Massachusetts Institute Of Technology | Method for producing metal matrix composites using electromagnetic body forces |
JPH1129379A (ja) * | 1997-02-14 | 1999-02-02 | Ngk Insulators Ltd | 半導体ヒートシンク用複合材料及びその製造方法 |
US20030050707A1 (en) * | 1997-03-31 | 2003-03-13 | Richard L. Landingham | Novel cermets and molten metal infiltration method and process for their fabrication |
DE19917175A1 (de) * | 1999-04-16 | 2000-10-19 | Daimler Chrysler Ag | Verfahren zum Herstellen eines Bauteiles und Bauteil |
JP2001270792A (ja) * | 2000-03-27 | 2001-10-02 | Ngk Insulators Ltd | 金属・セラミックス複合体の製造方法及びセラミックス多孔体の製造方法 |
US20030234929A1 (en) * | 2002-06-24 | 2003-12-25 | Applied Materials, Inc. | Method and system to reduce/detect a presence of gas in a flow of a cleaning fluid |
DE10350035A1 (de) * | 2003-10-27 | 2005-05-25 | Robert Bosch Gmbh | Verfahren zur Herstellung eines Verbundbauteils und metall-keramisches Bauteil |
WO2005079207A2 (en) * | 2003-11-25 | 2005-09-01 | M Cubed Technologies, Inc. | Boron carbide composite bodies, and methods for making same |
DE102005019662A1 (de) * | 2004-05-19 | 2005-12-08 | Ceramtec Ag Innovative Ceramic Engineering | Verfahren zur Herstellung von Metall-Keramik-Verbundwerkstoffen |
-
2006
- 2006-10-30 DE DE102006051201A patent/DE102006051201A1/de not_active Withdrawn
-
2007
- 2007-09-11 JP JP2009535041A patent/JP2010508442A/ja active Pending
- 2007-09-11 US US12/308,495 patent/US20110003680A1/en not_active Abandoned
- 2007-09-11 EP EP07820119A patent/EP2089341A1/de not_active Withdrawn
- 2007-09-11 RU RU2009120391/03A patent/RU2009120391A/ru not_active Application Discontinuation
- 2007-09-11 WO PCT/EP2007/059512 patent/WO2008052833A1/de active Application Filing
Non-Patent Citations (1)
Title |
---|
See references of WO2008052833A1 * |
Also Published As
Publication number | Publication date |
---|---|
JP2010508442A (ja) | 2010-03-18 |
WO2008052833A1 (de) | 2008-05-08 |
RU2009120391A (ru) | 2010-12-10 |
US20110003680A1 (en) | 2011-01-06 |
DE102006051201A1 (de) | 2008-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2089341A1 (de) | Werkstoff für tribologische anwendungen | |
EP1751320B1 (de) | Verschleissteil aus einem diamanthaltigen verbundwerkstoff | |
DE69710880T2 (de) | Keramik-metall bremsenkomponenten-verbundwerkstoff und dessen herstellung | |
DE4413306C1 (de) | Verfahren zur Verstärkung eines Bauteils und Anwendung des Verfahrens | |
EP1357310B1 (de) | Verbundwerkstoff mit Verstärkungsfasern aus Kohlenstoff | |
EP1685081B1 (de) | Verfahren zur herstellung eines verbundbauteils und metall-keramisches bauteil | |
DE102011012142B3 (de) | Aluminium-Matrixverbundwerkstoff, Halbzeug aus dem Aluminium-Matrixverbundwerkstoff und Verfahren zu dessen Herstellung | |
EP2086707A1 (de) | Verfahren zur herstellung eines körpers aus metall-keramik-verbundwerkstoffen | |
DE102017203076A1 (de) | Verbundwerkstoffe mit sehr hoher Verschleißbeständigkeit | |
DE68916515T2 (de) | Verfahren zur Herstellung von Verbundmaterial mit einer Metallmatrix mit kontrollierter Verstärkungsphase. | |
DE102009050025A1 (de) | Keramikbremsscheibe | |
EP1433553B1 (de) | Verfahren zur Herstellung von Verbundwerkstoffen | |
DE19606689A1 (de) | Verfahren zur Herstellung eines Verbunderzeugnisses auf Basis eines Leichtmetalls oder einer Leichtmetallegierung | |
DE10130395A1 (de) | Reibwerkstoff und Verfahren zu seiner Herstellung sowie Reibelement | |
EP1390321B1 (de) | Metall-keramik-verbundwerkstoff und verfahren zu dessen herstellung | |
DE102012217214A1 (de) | Verfahren zur Herstellung von Bauteilen aus MMC's (Metallmatrix - Verbundwerkstoffen) mit einem unter Inertgasatmosphäre schmelzverdüsten Pulver | |
DE102010055791A1 (de) | Verfahren zur Fertigung von Bauteilen aus Refraktärmetallen | |
WO2008086930A1 (de) | Keramischer vorkörper zur herstellung von metall-keramik verbundwerkstoffen | |
EP3775602B1 (de) | Verwendung von reibbelägen für aluminiumbremsscheiben | |
DE10354655A1 (de) | Verfahren zur Herstellung eines Verbundbauteils und metall-keramisches Bauteil | |
EP1560799A2 (de) | Keramik-metall- oder metall-keramik-komposite | |
EP1525330A1 (de) | Verfahren zur herstellung eines bauteils, bauteil und verwendung | |
DE102020007981B4 (de) | Verfahren zur Herstellung von Bauteilen aus einem Aluminium-Matrix-Komposit-Verbundwerkstoff sowie danach erhältliches Bauteil | |
DE102014002583B3 (de) | Verfahren zur Herstellung eines verschleißbeständigen Leichtmetall-Bauteils | |
DE69534107T2 (de) | Mmc und flüssigmetallinfiltrationsverfahren |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20090602 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20090817 |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20140401 |