EP2089050A2 - Il-17b zur anwendung in der wundheilung - Google Patents
Il-17b zur anwendung in der wundheilungInfo
- Publication number
- EP2089050A2 EP2089050A2 EP07871415A EP07871415A EP2089050A2 EP 2089050 A2 EP2089050 A2 EP 2089050A2 EP 07871415 A EP07871415 A EP 07871415A EP 07871415 A EP07871415 A EP 07871415A EP 2089050 A2 EP2089050 A2 EP 2089050A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- csf
- wound
- tgf
- igf
- kgf
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000029663 wound healing Effects 0.000 title claims abstract description 47
- 208000027418 Wounds and injury Diseases 0.000 claims abstract description 103
- 206010052428 Wound Diseases 0.000 claims abstract description 88
- 238000000034 method Methods 0.000 claims abstract description 48
- 102000013691 Interleukin-17 Human genes 0.000 claims abstract description 12
- 108050003558 Interleukin-17 Proteins 0.000 claims abstract description 12
- 230000008439 repair process Effects 0.000 claims abstract description 7
- 230000000699 topical effect Effects 0.000 claims abstract description 5
- 102000008186 Collagen Human genes 0.000 claims description 17
- 108010035532 Collagen Proteins 0.000 claims description 17
- 102000004887 Transforming Growth Factor beta Human genes 0.000 claims description 17
- 108090001012 Transforming Growth Factor beta Proteins 0.000 claims description 17
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 claims description 17
- 238000011282 treatment Methods 0.000 claims description 17
- 229920001436 collagen Polymers 0.000 claims description 15
- 201000010099 disease Diseases 0.000 claims description 14
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 14
- 108090000385 Fibroblast growth factor 7 Proteins 0.000 claims description 13
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 claims description 13
- 230000014509 gene expression Effects 0.000 claims description 13
- 102000004218 Insulin-Like Growth Factor I Human genes 0.000 claims description 12
- 102000007651 Macrophage Colony-Stimulating Factor Human genes 0.000 claims description 12
- 108010046938 Macrophage Colony-Stimulating Factor Proteins 0.000 claims description 12
- 102100031372 Thymidine phosphorylase Human genes 0.000 claims description 11
- 108700023160 Thymidine phosphorylases Proteins 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 11
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 claims description 10
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 claims description 10
- 238000011200 topical administration Methods 0.000 claims description 10
- 102000048143 Insulin-Like Growth Factor II Human genes 0.000 claims description 9
- 108090001117 Insulin-Like Growth Factor II Proteins 0.000 claims description 9
- 102000006747 Transforming Growth Factor alpha Human genes 0.000 claims description 9
- 101800004564 Transforming growth factor alpha Proteins 0.000 claims description 9
- -1 CSF Proteins 0.000 claims description 7
- 206010028116 Mucosal inflammation Diseases 0.000 claims description 7
- 201000010927 Mucositis Diseases 0.000 claims description 7
- 208000004210 Pressure Ulcer Diseases 0.000 claims description 7
- 201000004681 Psoriasis Diseases 0.000 claims description 7
- 230000001154 acute effect Effects 0.000 claims description 6
- 239000006071 cream Substances 0.000 claims description 6
- 239000002671 adjuvant Substances 0.000 claims description 5
- 230000001684 chronic effect Effects 0.000 claims description 5
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 claims description 4
- 208000022559 Inflammatory bowel disease Diseases 0.000 claims description 4
- 229920002674 hyaluronan Polymers 0.000 claims description 4
- 229960003160 hyaluronic acid Drugs 0.000 claims description 4
- 230000001737 promoting effect Effects 0.000 claims description 4
- 229920002683 Glycosaminoglycan Polymers 0.000 claims description 3
- 239000005557 antagonist Substances 0.000 claims description 3
- 239000003937 drug carrier Substances 0.000 claims description 3
- 239000006260 foam Substances 0.000 claims description 3
- 238000007918 intramuscular administration Methods 0.000 claims description 3
- 238000007920 subcutaneous administration Methods 0.000 claims description 3
- 241000588724 Escherichia coli Species 0.000 claims description 2
- 206010012601 diabetes mellitus Diseases 0.000 claims description 2
- 238000001990 intravenous administration Methods 0.000 claims description 2
- 239000003094 microcapsule Substances 0.000 claims description 2
- 239000000843 powder Substances 0.000 claims description 2
- 239000003356 suture material Substances 0.000 claims description 2
- 102100028071 Fibroblast growth factor 7 Human genes 0.000 claims 8
- 101000959820 Homo sapiens Interferon alpha-1/13 Proteins 0.000 claims 4
- 102100040019 Interferon alpha-1/13 Human genes 0.000 claims 4
- 102100020880 Kit ligand Human genes 0.000 claims 4
- 101710177504 Kit ligand Proteins 0.000 claims 4
- 206010072170 Skin wound Diseases 0.000 claims 1
- 238000007912 intraperitoneal administration Methods 0.000 claims 1
- 239000008196 pharmacological composition Substances 0.000 claims 1
- 210000001519 tissue Anatomy 0.000 abstract description 34
- 230000008569 process Effects 0.000 abstract description 19
- 239000003102 growth factor Substances 0.000 abstract description 14
- 230000000694 effects Effects 0.000 abstract description 12
- 238000009472 formulation Methods 0.000 abstract description 10
- 102000004127 Cytokines Human genes 0.000 abstract description 9
- 108090000695 Cytokines Proteins 0.000 abstract description 9
- 230000035755 proliferation Effects 0.000 abstract description 9
- 239000008194 pharmaceutical composition Substances 0.000 abstract description 7
- 210000001612 chondrocyte Anatomy 0.000 abstract description 3
- 210000000988 bone and bone Anatomy 0.000 abstract description 2
- 210000004027 cell Anatomy 0.000 description 43
- 241000222732 Leishmania major Species 0.000 description 32
- 108090000623 proteins and genes Proteins 0.000 description 32
- 239000003814 drug Substances 0.000 description 31
- 229940124597 therapeutic agent Drugs 0.000 description 29
- 241000699670 Mus sp. Species 0.000 description 23
- 208000015181 infectious disease Diseases 0.000 description 21
- 235000018102 proteins Nutrition 0.000 description 21
- 102000004169 proteins and genes Human genes 0.000 description 21
- 230000006378 damage Effects 0.000 description 19
- 210000003491 skin Anatomy 0.000 description 19
- 208000014674 injury Diseases 0.000 description 17
- 238000011813 knockout mouse model Methods 0.000 description 17
- 210000002615 epidermis Anatomy 0.000 description 15
- 238000000338 in vitro Methods 0.000 description 15
- 210000002966 serum Anatomy 0.000 description 15
- BLFLLBZGZJTVJG-UHFFFAOYSA-N benzocaine Chemical compound CCOC(=O)C1=CC=C(N)C=C1 BLFLLBZGZJTVJG-UHFFFAOYSA-N 0.000 description 14
- 210000002950 fibroblast Anatomy 0.000 description 14
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 14
- 210000002919 epithelial cell Anatomy 0.000 description 13
- 230000035876 healing Effects 0.000 description 13
- 241001465754 Metazoa Species 0.000 description 12
- 210000002540 macrophage Anatomy 0.000 description 12
- 230000004044 response Effects 0.000 description 12
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 10
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 10
- 102000007644 Colony-Stimulating Factors Human genes 0.000 description 9
- 108010071942 Colony-Stimulating Factors Proteins 0.000 description 9
- 102000015696 Interleukins Human genes 0.000 description 9
- 108010063738 Interleukins Proteins 0.000 description 9
- 210000004207 dermis Anatomy 0.000 description 9
- 229920001184 polypeptide Polymers 0.000 description 9
- 102000004196 processed proteins & peptides Human genes 0.000 description 9
- 108090000765 processed proteins & peptides Proteins 0.000 description 9
- 206010009900 Colitis ulcerative Diseases 0.000 description 8
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 8
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 8
- 201000006704 Ulcerative Colitis Diseases 0.000 description 8
- 238000011161 development Methods 0.000 description 8
- 230000018109 developmental process Effects 0.000 description 8
- 210000002889 endothelial cell Anatomy 0.000 description 8
- 229940126864 fibroblast growth factor Drugs 0.000 description 8
- 230000003902 lesion Effects 0.000 description 8
- 239000004005 microsphere Substances 0.000 description 8
- 108020005544 Antisense RNA Proteins 0.000 description 7
- 102000004877 Insulin Human genes 0.000 description 7
- 108090001061 Insulin Proteins 0.000 description 7
- 108010050904 Interferons Proteins 0.000 description 7
- 102000014150 Interferons Human genes 0.000 description 7
- 206010042674 Swelling Diseases 0.000 description 7
- 150000001413 amino acids Chemical class 0.000 description 7
- 206010009887 colitis Diseases 0.000 description 7
- 239000003184 complementary RNA Substances 0.000 description 7
- 238000001727 in vivo Methods 0.000 description 7
- 229940125396 insulin Drugs 0.000 description 7
- 229940047122 interleukins Drugs 0.000 description 7
- 238000013508 migration Methods 0.000 description 7
- 230000008961 swelling Effects 0.000 description 7
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 7
- 208000011231 Crohn disease Diseases 0.000 description 6
- 238000002965 ELISA Methods 0.000 description 6
- 101800003838 Epidermal growth factor Proteins 0.000 description 6
- 102400001368 Epidermal growth factor Human genes 0.000 description 6
- 235000001014 amino acid Nutrition 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000002975 chemoattractant Substances 0.000 description 6
- 229940116977 epidermal growth factor Drugs 0.000 description 6
- 230000012010 growth Effects 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- 230000005012 migration Effects 0.000 description 6
- 230000003389 potentiating effect Effects 0.000 description 6
- 210000004927 skin cell Anatomy 0.000 description 6
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 5
- 102000003972 Fibroblast growth factor 7 Human genes 0.000 description 5
- 101000998181 Homo sapiens Interleukin-17B Proteins 0.000 description 5
- 102100033101 Interleukin-17B Human genes 0.000 description 5
- 206010028980 Neoplasm Diseases 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 210000002469 basement membrane Anatomy 0.000 description 5
- 230000004071 biological effect Effects 0.000 description 5
- 230000037396 body weight Effects 0.000 description 5
- 201000011510 cancer Diseases 0.000 description 5
- 238000002512 chemotherapy Methods 0.000 description 5
- 230000004069 differentiation Effects 0.000 description 5
- 238000010790 dilution Methods 0.000 description 5
- 239000012895 dilution Substances 0.000 description 5
- 210000000981 epithelium Anatomy 0.000 description 5
- 210000000224 granular leucocyte Anatomy 0.000 description 5
- 230000037313 granulation tissue formation Effects 0.000 description 5
- 230000017307 interleukin-4 production Effects 0.000 description 5
- 210000001165 lymph node Anatomy 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 210000001616 monocyte Anatomy 0.000 description 5
- 210000000440 neutrophil Anatomy 0.000 description 5
- 210000000952 spleen Anatomy 0.000 description 5
- 108091071338 17 family Proteins 0.000 description 4
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 4
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 4
- 101000599951 Homo sapiens Insulin-like growth factor I Proteins 0.000 description 4
- 206010061218 Inflammation Diseases 0.000 description 4
- 102100037852 Insulin-like growth factor I Human genes 0.000 description 4
- 101710175243 Major antigen Proteins 0.000 description 4
- 101001055320 Myxine glutinosa Insulin-like growth factor Proteins 0.000 description 4
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 4
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 4
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 210000001035 gastrointestinal tract Anatomy 0.000 description 4
- 230000004054 inflammatory process Effects 0.000 description 4
- 229940047124 interferons Drugs 0.000 description 4
- 239000006166 lysate Substances 0.000 description 4
- 239000003226 mitogen Substances 0.000 description 4
- 238000007911 parenteral administration Methods 0.000 description 4
- 231100000241 scar Toxicity 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 3
- 238000011725 BALB/c mouse Methods 0.000 description 3
- 241000283707 Capra Species 0.000 description 3
- 108010012236 Chemokines Proteins 0.000 description 3
- 206010061818 Disease progression Diseases 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- 206010063560 Excessive granulation tissue Diseases 0.000 description 3
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 3
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 102100037850 Interferon gamma Human genes 0.000 description 3
- 108010074328 Interferon-gamma Proteins 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- 108091034117 Oligonucleotide Proteins 0.000 description 3
- 206010057249 Phagocytosis Diseases 0.000 description 3
- 208000025865 Ulcer Diseases 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 230000033115 angiogenesis Effects 0.000 description 3
- 239000000427 antigen Substances 0.000 description 3
- 102000036639 antigens Human genes 0.000 description 3
- 108091007433 antigens Proteins 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 230000032823 cell division Effects 0.000 description 3
- 230000010261 cell growth Effects 0.000 description 3
- 210000001072 colon Anatomy 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 230000005750 disease progression Effects 0.000 description 3
- 239000003651 drinking water Substances 0.000 description 3
- 235000020188 drinking water Nutrition 0.000 description 3
- 210000002744 extracellular matrix Anatomy 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 210000001126 granulation tissue Anatomy 0.000 description 3
- 230000003394 haemopoietic effect Effects 0.000 description 3
- 238000009396 hybridization Methods 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 229940079322 interferon Drugs 0.000 description 3
- 210000002510 keratinocyte Anatomy 0.000 description 3
- 210000004400 mucous membrane Anatomy 0.000 description 3
- 210000000651 myofibroblast Anatomy 0.000 description 3
- 230000008782 phagocytosis Effects 0.000 description 3
- 230000000750 progressive effect Effects 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 238000007634 remodeling Methods 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 210000000130 stem cell Anatomy 0.000 description 3
- 230000004936 stimulating effect Effects 0.000 description 3
- 230000000638 stimulation Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 238000012384 transportation and delivery Methods 0.000 description 3
- 230000003827 upregulation Effects 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- 230000037314 wound repair Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 108010081589 Becaplermin Proteins 0.000 description 2
- 102000007350 Bone Morphogenetic Proteins Human genes 0.000 description 2
- 108010007726 Bone Morphogenetic Proteins Proteins 0.000 description 2
- 102000019034 Chemokines Human genes 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 206010011985 Decubitus ulcer Diseases 0.000 description 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 2
- 102000016359 Fibronectins Human genes 0.000 description 2
- 108010067306 Fibronectins Proteins 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- 229920002527 Glycogen Polymers 0.000 description 2
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 2
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 206010021143 Hypoxia Diseases 0.000 description 2
- 241001529936 Murinae Species 0.000 description 2
- OKIZCWYLBDKLSU-UHFFFAOYSA-M N,N,N-Trimethylmethanaminium chloride Chemical compound [Cl-].C[N+](C)(C)C OKIZCWYLBDKLSU-UHFFFAOYSA-M 0.000 description 2
- 108010025020 Nerve Growth Factor Proteins 0.000 description 2
- 102000007072 Nerve Growth Factors Human genes 0.000 description 2
- 102000003992 Peroxidases Human genes 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 238000002123 RNA extraction Methods 0.000 description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 210000001142 back Anatomy 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 230000017531 blood circulation Effects 0.000 description 2
- 229940112869 bone morphogenetic protein Drugs 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 229940047120 colony stimulating factors Drugs 0.000 description 2
- 210000002808 connective tissue Anatomy 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 230000008482 dysregulation Effects 0.000 description 2
- 230000003511 endothelial effect Effects 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 229940096919 glycogen Drugs 0.000 description 2
- 239000000122 growth hormone Substances 0.000 description 2
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 2
- 229920000669 heparin Polymers 0.000 description 2
- 229960002897 heparin Drugs 0.000 description 2
- 230000001146 hypoxic effect Effects 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 230000002458 infectious effect Effects 0.000 description 2
- 230000008595 infiltration Effects 0.000 description 2
- 238000001764 infiltration Methods 0.000 description 2
- 230000028709 inflammatory response Effects 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 210000000936 intestine Anatomy 0.000 description 2
- 102000007236 involucrin Human genes 0.000 description 2
- 108010033564 involucrin Proteins 0.000 description 2
- 210000002429 large intestine Anatomy 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000002297 mitogenic effect Effects 0.000 description 2
- 238000010172 mouse model Methods 0.000 description 2
- 210000000214 mouth Anatomy 0.000 description 2
- 208000013435 necrotic lesion Diseases 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 210000000963 osteoblast Anatomy 0.000 description 2
- 230000002018 overexpression Effects 0.000 description 2
- 206010033675 panniculitis Diseases 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 108040007629 peroxidase activity proteins Proteins 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000001959 radiotherapy Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 210000000813 small intestine Anatomy 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 210000004304 subcutaneous tissue Anatomy 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- 230000036269 ulceration Effects 0.000 description 2
- 208000016261 weight loss Diseases 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- LOGFVTREOLYCPF-KXNHARMFSA-N (2s,3r)-2-[[(2r)-1-[(2s)-2,6-diaminohexanoyl]pyrrolidine-2-carbonyl]amino]-3-hydroxybutanoic acid Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@H]1CCCN1C(=O)[C@@H](N)CCCCN LOGFVTREOLYCPF-KXNHARMFSA-N 0.000 description 1
- CPKVUHPKYQGHMW-UHFFFAOYSA-N 1-ethenylpyrrolidin-2-one;molecular iodine Chemical compound II.C=CN1CCCC1=O CPKVUHPKYQGHMW-UHFFFAOYSA-N 0.000 description 1
- NHBKXEKEPDILRR-UHFFFAOYSA-N 2,3-bis(butanoylsulfanyl)propyl butanoate Chemical compound CCCC(=O)OCC(SC(=O)CCC)CSC(=O)CCC NHBKXEKEPDILRR-UHFFFAOYSA-N 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- GAGWJHPBXLXJQN-UORFTKCHSA-N Capecitabine Chemical compound C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1[C@H]1[C@H](O)[C@H](O)[C@@H](C)O1 GAGWJHPBXLXJQN-UORFTKCHSA-N 0.000 description 1
- GAGWJHPBXLXJQN-UHFFFAOYSA-N Capecitabine Natural products C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1C1C(O)C(O)C(C)O1 GAGWJHPBXLXJQN-UHFFFAOYSA-N 0.000 description 1
- 208000017667 Chronic Disease Diseases 0.000 description 1
- 206010053567 Coagulopathies Diseases 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 102000012422 Collagen Type I Human genes 0.000 description 1
- 108010022452 Collagen Type I Proteins 0.000 description 1
- 206010011668 Cutaneous leishmaniasis Diseases 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- 206010012741 Diarrhoea haemorrhagic Diseases 0.000 description 1
- 206010014418 Electrolyte imbalance Diseases 0.000 description 1
- 102000009123 Fibrin Human genes 0.000 description 1
- 108010073385 Fibrin Proteins 0.000 description 1
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 1
- 102100024785 Fibroblast growth factor 2 Human genes 0.000 description 1
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102000018997 Growth Hormone Human genes 0.000 description 1
- 108010051696 Growth Hormone Proteins 0.000 description 1
- 206010021137 Hypovolaemia Diseases 0.000 description 1
- 102000003777 Interleukin-1 beta Human genes 0.000 description 1
- 108090000193 Interleukin-1 beta Proteins 0.000 description 1
- 102100033096 Interleukin-17D Human genes 0.000 description 1
- 108010066979 Interleukin-27 Proteins 0.000 description 1
- 108010002386 Interleukin-3 Proteins 0.000 description 1
- 102000000646 Interleukin-3 Human genes 0.000 description 1
- 102000004388 Interleukin-4 Human genes 0.000 description 1
- 108090000978 Interleukin-4 Proteins 0.000 description 1
- 108090001005 Interleukin-6 Proteins 0.000 description 1
- 102100023970 Keratin, type I cytoskeletal 10 Human genes 0.000 description 1
- 102100022905 Keratin, type II cytoskeletal 1 Human genes 0.000 description 1
- 108010070514 Keratin-1 Proteins 0.000 description 1
- 108010065038 Keratin-10 Proteins 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- 208000004554 Leishmaniasis Diseases 0.000 description 1
- 208000002720 Malnutrition Diseases 0.000 description 1
- 206010028124 Mucosal ulceration Diseases 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 229920000153 Povidone-iodine Polymers 0.000 description 1
- 108010076181 Proinsulin Proteins 0.000 description 1
- 230000006819 RNA synthesis Effects 0.000 description 1
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 1
- 208000028990 Skin injury Diseases 0.000 description 1
- 208000026137 Soft tissue injury Diseases 0.000 description 1
- 102000013275 Somatomedins Human genes 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 230000005867 T cell response Effects 0.000 description 1
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 1
- 206010047139 Vasoconstriction Diseases 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000012197 amplification kit Methods 0.000 description 1
- 210000003423 ankle Anatomy 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000002421 anti-septic effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 210000000436 anus Anatomy 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000008135 aqueous vehicle Substances 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000006696 biosynthetic metabolic pathway Effects 0.000 description 1
- 230000036765 blood level Effects 0.000 description 1
- 230000036770 blood supply Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 229960004117 capecitabine Drugs 0.000 description 1
- 230000004856 capillary permeability Effects 0.000 description 1
- 230000034196 cell chemotaxis Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000012292 cell migration Effects 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000035605 chemotaxis Effects 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000009668 clonal growth Effects 0.000 description 1
- 230000035602 clotting Effects 0.000 description 1
- 239000000501 collagen implant Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 230000030944 contact inhibition Effects 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 150000001945 cysteines Chemical class 0.000 description 1
- 238000001804 debridement Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000007560 devascularization Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 208000022602 disease susceptibility Diseases 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 150000002019 disulfides Chemical class 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 230000013020 embryo development Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- 210000005081 epithelial layer Anatomy 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229950003499 fibrin Drugs 0.000 description 1
- 230000003328 fibroblastic effect Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000027119 gastric acid secretion Effects 0.000 description 1
- 238000003633 gene expression assay Methods 0.000 description 1
- 230000009395 genetic defect Effects 0.000 description 1
- 235000001727 glucose Nutrition 0.000 description 1
- 230000009036 growth inhibition Effects 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 201000010536 head and neck cancer Diseases 0.000 description 1
- 208000014829 head and neck neoplasm Diseases 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000011132 hemopoiesis Effects 0.000 description 1
- 230000023597 hemostasis Effects 0.000 description 1
- 238000000703 high-speed centrifugation Methods 0.000 description 1
- 230000003054 hormonal effect Effects 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 206010020718 hyperplasia Diseases 0.000 description 1
- 210000003405 ileum Anatomy 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 230000007124 immune defense Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 210000004969 inflammatory cell Anatomy 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229940076264 interleukin-3 Drugs 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 210000004153 islets of langerhan Anatomy 0.000 description 1
- 230000003780 keratinization Effects 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 210000001821 langerhans cell Anatomy 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 230000004130 lipolysis Effects 0.000 description 1
- 208000020442 loss of weight Diseases 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 230000001071 malnutrition Effects 0.000 description 1
- 235000000824 malnutrition Nutrition 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 210000002752 melanocyte Anatomy 0.000 description 1
- 210000000716 merkel cell Anatomy 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 210000004877 mucosa Anatomy 0.000 description 1
- 210000003097 mucus Anatomy 0.000 description 1
- 210000001640 nerve ending Anatomy 0.000 description 1
- 210000001178 neural stem cell Anatomy 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 208000015380 nutritional deficiency disease Diseases 0.000 description 1
- 235000003715 nutritional status Nutrition 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 210000004789 organ system Anatomy 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000006320 pegylation Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 210000000578 peripheral nerve Anatomy 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 229960001621 povidone-iodine Drugs 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 208000037821 progressive disease Diseases 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000004224 protection Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 230000037309 reepithelialization Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000036573 scar formation Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000009645 skeletal growth Effects 0.000 description 1
- 208000017520 skin disease Diseases 0.000 description 1
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 210000000278 spinal cord Anatomy 0.000 description 1
- 210000003594 spinal ganglia Anatomy 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 208000003265 stomatitis Diseases 0.000 description 1
- 210000000434 stratum corneum Anatomy 0.000 description 1
- 210000002536 stromal cell Anatomy 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012385 systemic delivery Methods 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- 230000028016 temperature homeostasis Effects 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 210000003437 trachea Anatomy 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 230000005909 tumor killing Effects 0.000 description 1
- 231100000397 ulcer Toxicity 0.000 description 1
- 230000009452 underexpressoin Effects 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 210000005166 vasculature Anatomy 0.000 description 1
- 230000002227 vasoactive effect Effects 0.000 description 1
- 230000025033 vasoconstriction Effects 0.000 description 1
- 230000024883 vasodilation Effects 0.000 description 1
- 210000001835 viscera Anatomy 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000011534 wash buffer Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 230000010388 wound contraction Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/20—Interleukins [IL]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/18—Growth factors; Growth regulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/22—Hormones
- A61K38/30—Insulin-like growth factors, i.e. somatomedins, e.g. IGF-1, IGF-2
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0014—Skin, i.e. galenical aspects of topical compositions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/02—Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/06—Antipsoriatics
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- the human skin is composed of two distinct layers, the epidermis and dermis. Below these layers lies the subcutaneous tissue. The primary functions of these tissues are to provide protection, sensation, and thermoregulation to an animal. Secondarily, these layers protect the internal organs of the organism from shock or trauma by cushioning impacts from external forces and objects.
- the outermost layer of skin, the epidermis is approximately 0.04 mm thick, is avascular, is comprised of four cell types (keratinocytes, melanocytes, Langerhans cells, and Merkel cells), and is stratified into several epithelial cell layers (Leeson et al., (1985) Textbook of Histology, WB Saunders Co., Philadelphia).
- the inner-most epithelial layer of the epidermis is the basement membrane, which is in direct contact with, and anchors the epidermis to, the dermis. All epithelial cell division occurring in skin takes place at the basement membrane. After cell division, the epithelial cells migrate towards the outer surface of the epidermis.
- the cells undergo a process known as keratinization, whereby nuclei are lost and the cells are transformed into tough, flat, resistant non-living cells.
- Migration is completed when the cells reach the outermost epidermal structure, the stratum corneum, a dry, waterproof squamous cell layer that helps to prevent desiccation of the underlying tissue.
- This layer of dead epithelial cells is continuously being sloughed off and replaced by keratinized cells moving to the surface from the basement membrane. Because the epidermal epithelium is avascular, the basement membrane is dependent upon the dermis for its nutrient supply.
- the dermis is a highly vascularized tissue layer supplying nutrients to the epidermis.
- the dermis contains nerve endings, lymphatics, collagen protein, and connective tissue.
- the dermis is approximately 0.5 mm thick and is composed predominantly of fibroblasts and macrophages. These cell types are largely responsible for the production and maintenance of collagen, the protein found in all animal connective tissue, including the skin. Collagen is primarily responsible for the skin's resilient, elastic nature.
- the subcutaneous tissue, found beneath the collagen-rich dermis provides for skin mobility, insulation, calorie storage, and blood to the tissues above it.
- Wound healing is the process through which the repair of damaged tissue(s) is accomplished. Wounds in which there is little or no tissue loss are said to heal by first or primary intention, while deep wounds suffering tissue loss heal by second or secondary intention.
- the wound healing process is comprised of three different stages, referred to as inflammation, granulation tissue formation, and matrix formation and remodeling (Ten Dijke et al., (1989) Biotechnology, vol. 7: 793- 98).
- the clot itself is critical for eventual wound repair, as the provisional fibronectin matrix is used by fibroblasts and epithelial cells for ingress into the wound. Additionally, capillary permeability peripheral to the wound is increased, and because of the reduced blood flow, polymorphonuclear leukocytes (PMNs) adhere to the capillary walls and migrate into the wound, as do monocytes (Eckersley et al., (1988) British Medical Bulletin, vol. 44, No. 2: 423-36).
- PMNs polymorphonuclear leukocytes
- PMNS such as neutrophils
- PMNs and macrophages begin the process of cleaning the wound. This cleansing process is accomplished mostly through the phagocytosis of devitalized tissue and other debris.
- macrophages By days 3-5 post-injury, PMNs have largely been replaced by macrophages, which continue to remove dead and foreign material.
- Simpson and Ross J. Clin. Invest., vol 51 : 2009-273 showed that an almost total absence of PMNs in the wound site did not inhibit wound healing.
- the role of macrophages in wound repair may be critical (Diegelmann et al., (1981) Plast. Reconstr. Surg., vol. 68: 107-113).
- TGF- ⁇ transforming growth factor-beta
- PDGF platelet-derived growth factor
- Activated macrophages digest devitalized collagen and the fibrin clot. Dissolution of the clot allows the formation of granulation tissue in the wound site, the second wound-healing phase.
- Granulation tissue formation begins three to four days after the injury is inflicted and continues in the open wound until re-epithelialization has occurred. This stage is marked by the proliferation of fibroblasts and their migration into the wound site where they then produce an extracellular matrix, known as ground substance, comprised of collagen, fibronectin, and hyaluronic acid to replace the digested clot.
- This extracellular matrix serves as a scaffold upon which endothelial cells, fibroblasts, and macrophages are able to move. It is also utilized by myofibroblasts to promote wound closure by the process of wound contraction in full thickness wounds which heal by secondary intent.
- Myofibroblasts are derived through the differentiation of resident fibroblasts shortly after a full thickness wound is inflicted. These myofibroblasts align radially using the newly deposited extracellular matrix and in an association with matrix, called the fibronexus, contract and promote more rapid wound closure (Singer et al., (1984) J. Cell Biol., vol. 98: 2091-2106).
- Epithelial cells proliferate at the wound edges and migrate across the ground substance. Epithelial cells can move only over viable, vascular tissue. Migration is halted by contact inhibition among epithelial cells, which at this point divide and differentiate to reconstitute the epithelium (Hunt et al., (1979) Fundamentals of wound management, Appleton-Century-Crofts).
- angiogenesis the formation of new blood vessels produced by endothelial cell division and migration, also occurs as the result of hypoxic conditions in the wound.
- Knighton et al. ((1983) Science, vol. 221 : 1283-85) showed that macrophages, under hypoxic conditions, stimulate angiogenesis.
- the resultant increased vascularization increases blood flow and oxygenization in the wound.
- wound healing progresses into the matrix formation and remodeling phase, much of this newly formed vasculature regresses to leave a relatively avascular scar.
- r Collagen and matrix remodeling begin when granulation tissue formation begins and continues long after the wound has been covered by new epithelium and can continue for more than a year.
- This final stage of wound healing is characterized by devascularization and the replacement of granulation tissue and cells with a matrix comprised predominantly of type I collagen.
- This new relatively acellular, avascular tissue represents the scar. Scar formation primarily serves to restore tensile strength to the wounded tissue. However, the scar will not possess more than about 80% of the tensile strength that the tissue had prior to being injured.
- the Interleukins are a polypeptide family playing a major role in the body's immune response.
- the IL- 17 family is a subgroup of five interleukins that show 50-70% sequence homology to the first discovered member, IL- 17, now named IL- 17A. All share conserved cysteines that have been shown (at least for IL- 17F) to form a classic cysteine knot structural motif found in other growth factors such as bone morphogenetic proteins (BMPs), transforming growth factor beta (TGF- ⁇ ), nerve growth factors (NGF), and platelet-derived growth factor BB (PDGF-BB) (Hymowitz et al., (2001) EMBO J. 20(19):5332-41).
- BMPs bone morphogenetic proteins
- TGF- ⁇ transforming growth factor beta
- NGF nerve growth factors
- PDGF-BB platelet-derived growth factor BB
- IL-17A and IL17-F are primarily expressed in T-cells in response to antigenic and mitogenic stimulation.
- IL- 17B, IL-17C, IL-17D, and IL-17E are expressed in a wide assortment of tissues (Moseley et al., (2003) Cytokine & Growth Factor Rev. 14: 155-174). Similar to many growth factors, members of the IL- 17 family of ligands are expressed as tightly associated dimers (IL- 17B; Shi et al. (2000) J. Biol. Chem. 275 (25): 19167-76) or disulfide-bonded homodimers (IL- 17D; Starnes et al. J. Immunol.).
- IL- 17B (also known as zcyto7, CXl, and NERF) is strongly expressed in spinal cord tissue, specifically neurons and dorsal root ganglia, and weakly expressed in the trachea.
- Administration of the protein in vitro stimulates the proliferation of chondrocytes and osteoblasts.
- the gene is located on chromosome 5q32. It has been described extensively in U.S. Pat. Nos. 6,528,621; 6,500,928, and 6,630,571, the descriptions of which are hereby incorporated by reference.
- TNF- ⁇ tumor necrosis factor alpha
- IL- l ⁇ interleukin 1 beta
- PDGF Platelet-Derived Growth Factor
- FGF Fibroblast Growth Factor
- EGF Epidermal Growth Factor
- CSF Hematopoietic Colony Stimulating Factor
- GM-CSF Granulocyte Macrophage Colony Stimulating Factor
- TGF- ⁇ and TGF- ⁇ Transforming Growth Factors- ⁇ and - ⁇
- interleukins other than IL- 17B
- insulin insulin, Insulin- like Growth Factors I and II (IGF-I and IGF-II, respectively), Interferons (IFNs), KGF (Keratinocyte Growth Factor), Macrophage Colony Stimulating Factor (M-CSF), Platelet-Derived Endothelial Cell Growth Factor (PD-ECGF), and Stem Cell Factor (SCF)
- IFNs Interferons
- KGF Keratinocyte Growth Factor
- M-CSF Macrophage Colony Stimulating Factor
- PD-ECGF Platelet-Derived Endothelial Cell Growth Factor
- SCF Stem Cell Factor
- each of these growth factors mentioned above may be capable of acting as a mitogen, inhibitor, or chemoattractant for the cell types heavily involved in the wound healing process, i.e. monocyte/macrophage, neutrophil, fibroblast, and endothelial and epithelial cells, they have been studied extensively in animal wound healing models.
- the most studied growth factor in relation to wound healing, EGF has been found to accelerate the healing of surface wounds and burns when repeatedly applied to the wound site.
- PDGF and TGF- ⁇ increase the healing rate of incisional wounds when administered one time to the incision site shortly after the wound is made.
- no work describing the use of other factors, such as members of the IL- 17 family can be found in the literature.
- the object of the present invention is to provide a method for accelerating the wound healing process. Relating to wounds that will heal normally, the described method will accelerate this process. Concerning wounds that typically resist healing, this method will enable healing of these wounds as well. This method should reduce the time required for injury repair, and as such will lessen the time those burdened with injury will have to endure as their wounds heal.
- the present invention provides for a method of promoting accelerated wound healing in an injured patient by administering a therapeutically effective amount of IL- 17B to the patient at the wounded area.
- This can be accomplished by incorporating the therapeutic agent into various materials, including: collagen based creams, films, microcapsules, or powders; hyaluronic acid or other glycosaminoglycan-derived preparations; creams, foams, suture material; and wound dressings.
- the therapeutic agent can be incorporated into a pharmaceutically acceptable solution designed for topical administration. Further, the therapeutic agent can be formulated for parenteral administration.
- IL- 17B can also be incorporated into an admixture containing at least one of the following proteins: GM-CSF, CSF, EGF, FGF, G-CSF, IGF-I, IGF-II, insulin, an Interferon, an Interleukin, KGF, M-CSF, PD-ECGF, PDGF, SCF, TGF- ⁇ , and TGF- ⁇ . These admixtures are also effective in promoting accelerated wound healing in injured patients.
- Figure 1 is a graphical representation of the occurrence of heightened redness surrounding the wounds for wild-type and IL- 17B (zcyto7) knockout mice at two time points.
- Figure 2 indicates the fold overexpression of various cytokines/growth factors at the RNA level in the knockout mice as compared to wild-type.
- Figure 3 indicates the underexpression of various genes associated with normal fully differentiated epidermis at the RNA level in the knockout mice as compared to wild-type.
- the instant invention is based upon the discovery that I1-17B can accelerate the wound healing process for all wound types, particularly when administered topically, i.e. to the surface of the wound site. So delivered, all wound types, mechanical or thermal, acute or chronic, infected or sterile, undergo healing more rapidly than similar wounds left to heal naturally or which are treated with currently available methods. However, as mentioned previously, parenteral administration of polypeptides having a role in the wound healing process is also envisioned by the present invention.
- the term "injury” shall be defined as a wound which extends from the surface of a patient's skin into the underlying tissue, and in fact the injury may pass completely through the patient, leaving both entrance and exit wounds.
- "Patient” refers to a mammal which has suffered an injury as defined above.
- “Therapeutic agent” means a compound that produces a therapeutically desirable result, such as accelerated wound healing.
- the therapeutic agent is IL- 17B (zcyto7).
- the term "therapeutic agent” refers to a combination of IL-17B combined with at least one of the following compounds: a CSF, EGF, FGF, IGF-I, IGF-II, insulin, an Interferon, an Interleukin, KGF, M-CSF, PD-ECGF, PDGF, SCF, TGF- ⁇ , and TGF- ⁇ .
- accelerated wound healing is defined as the process of wound healing which, as the result of the administration of a therapeutic agent in accordance with the present invention, occurs more rapidly than in a wound not receiving treatment with the therapeutic agent.
- CSFs are hormone-like glycoproteins which regulate hematopoiesis and are required for the clonal growth and maturation of normal hematopoietic precursor cells found in the bone marrow. These factors are produced by a number of tissues.
- G-CSF granulocyte colony stimulating factor
- GM-CSF granulocyte-macrophage colony stimulating factor
- M-CSF macrophage colony stimulating factor
- multi-CSF also referred to as Interleukin-3 [Nicola et al., (1984) Proc. Nat. Acad. Sci. USA, vol. 81 : 3765-69], each accounting for the differentiation of particular immature progenitor cell types into mature cells. In addition, these factors are required for the maintenance of the mature cell types as well. In vitro, withdrawal of the appropriate CSF from culture leads to rapid degeneration of terminally differentiated hematopoietic cells dependent upon that CSF.
- G-CSF and GM-CSF Two particular CSFs that can be combined with IL- 17B are G-CSF and GM-CSF.
- EGF is a polypeptide growth factor (the mature, processed form is 53 amino acids in length (Gray et al., (1983) Nature, vol. 303: 722-25)). In humans, this protein inhibits gastric acid secretion while murine EGF is known to be mitogenic for a number of cell types, including endothelial, epithelial, and fibroblastic cells (Nakagawa et al., (1985) Differentiation, vol. 29: 284- 88).
- FGF comprises a family of single chain proteins 14-18kD in size which tightly bind the potent anticoagulant heparin.
- the 146 amino acid basic form (bFGF) is more stable and ten times more potent in stimulating mesodermal cells, such as fibroblasts, endothelial cells, and keratinocytes, than acidic FGF (aFGF). See Esch et al., (1985) Proc. Nat. Acad. Sci. USA, vol. 85: 6507-11).
- Insulin is a protein hormone secreted by the cells of the pancreatic islets. It is secreted in response to elevated blood levels of glucose, amino acids, fatty acids, and ketone bodies, promoting their efficient storage and use as cellular fuel by modulating the transport of metabolites and ions across cell membranes and by regulating various intracellular biosynthetic pathways. Insulin promotes the entry of glucose, fatty acids, and amino acids into cells. Additionally, it promotes glycogen, protein, and lipid synthesis while inhibiting glucogenesis, glycogen degradation, protein catabolism, and lipolysis. Insulin consists of ⁇ and ⁇ subunits linked by two disulfide bridges.
- IGF-I and IGF-II are members of a growth hormone-dependent family which mediate the effects of growth hormones. These proteins are known to be important in the regulation of skeletal growth. Both molecules have close structural homology to insulin and possess similar biological activities. IGF-I shares a 43% amino acid sequence homology with proinsulin, while IGF-II shares 60% homology with IGF-I. The IGFs are somewhat unique as compared to the other proteins described herein, in that there is essentially no detectable free IGF species present in the blood plasma of mammals. Instead, the IGFs are bound to specific carrier plasma proteins of higher molecular weight (Ooi et al., (1988) J. Endocr., vol. 118:7-18).
- IGF-I and PDGF when administered topically to wounds in pigs, synergize to promote more effective healing than when either factor is administered alone (Skoffner et al., (1988) Acta. Paediatr. Scand. (Suppl), vol. 347: 110-12).
- Interferons were first identified as proteins that render cells resistant to infection from a wide range of viruses. Three Interferon types have been identified, ⁇ -IFN, ⁇ -IFN, and ⁇ -IFN, which are produced by activated T and NK (natural killer) cells. ⁇ -IFN is comprised of a family of 15 or so closely related proteins while ⁇ -IFN and ⁇ -IFN exist as single species. In addition, a synthetic consensus ⁇ -IFN, designed to incorporate regions of commonality among all known ⁇ -IFN subtypes, is disclosed in U.S. Pat. No. 4,897,471, hereby incorporated by reference. All IFNs are growth inhibitory molecules playing an important role in the lymphokine cascade.
- ⁇ -IFN's activities include macrophage activation for enhanced phagocytosis and tumor killing capacity. At present, these proteins are mainly used in cancer therapy (Balkhill et al., (1987) Lancet, pg: 317-18).
- KGF is an epithelial cell specific mitogen secreted by normal stromal fibroblasts. In vitro, it has been demonstrated to be as potent as EGF in stimulating the proliferation of human keratinocytes (Marchese et al., (1990) J. Cell Physiol., vol. 144, No. 2: 326-32).
- M-CSF also known as CSF-I, is a homodimeric colony stimulating factor which acts solely on macrophage progenitors. This macrophage lineage specific protein is produced constitutively in vitro by fibroblasts and stromal cell lines. In vivo, unlike other CSFs, M-CSF appears early in embryogenesis, suggesting a potential developmental role for this polypeptide (DeLamarter, J., (1988) Biochemical Pharmacology, vol. 37, No. 16: 3057-62).
- PD-ECGF is a platelet derived endothelial cell mitogen having a molecular weight of approximately 45 kD. In contrast to the FGF family of endothelial cell mitogens, PD-ECGF does not bind heparin nor does it induce fibroblast proliferation. However, PD-ECGF does stimulate endothelial cell growth and chemotaxis in vitro and angiogenesis in vivo (Ishikawa et al., (1989) Nature, vol. 338: 557-61).
- PDGF is a potent stimulator of mesenchymal cell types, like fibroblasts and smooth muscle cells, but it does not stimulate the growth of epithelial or endothelial cells (Ross et al., (1986) Cell, vol. 45: 155-69). At low concentrations, PDGF acts as a chemoattractant for fibroblasts, and also as a chemoattractant and activating signal for monocytes and neutrophils (Deuel et al., (1982) J. Clin. Invest., vol. 69: 1046-49).
- SCF is a novel cellular growth factor that stimulates the growth of early hematopoietic progenitor cells, neural stem cells, and primordial germ stem cells (PCT/US90/05548, filed Sep. 28, 1990). SCF exhibits potent synergistic activities in conjunction with colony stimulating factors, resulting in increased numbers of colonies and colonies of greater size (Martin et al., (1990) Cell, vol. 63: 203-11). Thus, administration of SCF to mammals in pharmacologic doses, alone or in combination with other colony stimulating factors or other hematopoietic growth factors, may lead to the improvement of damaged cells in a number of divergent organ systems.
- TGF- ⁇ and TGF- ⁇ act synergistically to induce anchorage independent growth in certain cancer cell lines.
- TGF- ⁇ is comprised of a class of disulfide linked homodimeric proteins, each chain being composed of 112 amino acids (Sporn et al., (1987) J. Cell Biol., vol. 105: 1039-45). This dimeric protein produces many biological effects, such as mitogenesis, growth inhibition, and differentiation induction depending upon the assay used.
- TGF- ⁇ 1 is the most studied TGF- ⁇ species in relation to wound healing (Ten Dijke, supra). As a class, TGF- ⁇ is a potent monocyte and fibroblast chemoattractant.
- Topical administration shall be defined as the delivery of the therapeutic agent to the surface of the wound and adjacent epithelium.
- Parental administration is the systemic delivery of the therapeutic agent via injection to the patient.
- a "therapeutically effective amount" of a therapeutic agent within the meaning of the present invention will be determined by a patient's attending physician or veterinarian. Such amounts are readily ascertained by one of ordinary skill in the art and will enable accelerated wound healing when administered in accordance with the present invention.
- Factors which influence what a therapeutically effective amount will be include, the specific activity of the therapeutic agent being used, the wound type (mechanical or thermal, full or partial thickness, etc.), the size of the wound, the wound's depth (if full thickness), the absence or presence of infection, time elapsed since the injury's infliction, and the age, physical condition, existence of other disease states, and nutritional status of the patient. Additionally, other medication the patient may be receiving will effect the determination of the therapeutically effective amount of the therapeutic agent to administer.
- “Pharmaceutically acceptable” means that the components, in addition to the therapeutic agent, comprising the formulation are suitable for administration to the patient being treated in accordance with the present invention.
- wound dressings are any of a variety of materials utilized for covering and protecting a wound. Examples include occlusive dressings, adhesive dressings, antiseptic dressings, and protective dressings.
- a "cream” is a semisolid emulsion of the oil-in-water or water-in-oil type suitable for topical administration.
- creams and foams used will also be suitable for use with the therapeutic agents herein described.
- IL- 17B when administered as taught by the present invention in a therapeutically effective amount, significantly accelerates the wound healing process in all wound types. In natural wound systems, extracellular growth factors such as IL- 17B may be present in rate limiting quantities. Thus, parenteral and/or topical administration of such factors may promote accelerated wound healing.
- IL- 17B In vitro IL- 17B, is known to stimulate the proliferation of chondrocytes and osteoblasts. It may also induce the expression of other cytokines such as TGF- ⁇ and IL- l ⁇ . In vivo, administration of exogenous IL- 17B is believed to enhance an organism's ability to respond to injury.
- IL- 17B possessing comparable or enhanced in vivo biological activity can be used in accordance with the methods of the present invention.
- IL- 17B is preferably produced by recombinant methods which allows for alteration of the molecule to produce an analog.
- Such analogs may be generated by the deletion, insertion, or substitution of amino acids in the primary structure of the naturally occurring proteins, or by chemical modification, such as by pegylation, of the protein.
- an initial methionine codon is required for translation initiation.
- Other analogs may have greater in vitro and/or in vivo biological activity, exhibit greater pH or temperature stability, maintain biological activity over a broader range of environmental conditions, or may have longer half-lives or clearance times in vivo.
- IL- 17B To manufacture sufficient quantities of IL- 17B for commercial pharmaceutical application, these proteins are generally produced as the products of recombinant host cell expression. It is known that biologically active forms of IL- 17B can be recovered in large quantities from procaryotic hosts such as E. coli when such hosts, transformed with appropriate expression vectors encoding these polypeptides, are grown under conditions allowing expression of the exogenous gene. It is therefore preferred to utilize IL- 17B produced in this manner.
- the recombinant IL- 17B is formulated into a pharmaceutical formulation suitable for patient administration.
- formulations may include pharmaceutically acceptable adjuvants and diluents.
- a therapeutically effective amount of the therapeutic agent is delivered by the parenteral route, i.e. by subcutaneous, intravenous, intramuscular, or intraperitoneal injection. Wound treatment by parenteral injection may involve either single, multiple, or continuous administration of the therapeutic agent, depending upon various factors, including the injury type, severity, and location.
- the amount of topical IL- 17B to be administered can be determined by one of ordinary skill, but would be expected to range from about .05 to about 100 ⁇ g/cm 2 of IL-17B with the expected most effect range to be about 10 to about 75 ⁇ g/cm . In a preferred embodiment, the dosage is 50 ⁇ g/cm 2 .
- Other modes of administration such as parenteral, i.e., intramuscular or subcutaneous, would expected to be lower and based on ⁇ g per kg of patient body weight.
- recombinant IL- 17B should be topically administered to the wound site to promote accelerated wound healing in the patient.
- This topical administration can be as a single dose or as repeated doses given at multiple designated intervals. It will readily be appreciated by those skilled in the art that the preferred dosage regimen will vary with the type and severity of the injury being treated. For example, surgical incisional wounds cause little damage to surrounding tissues, as little energy is transmitted to the tissues from the object inflicting the injury. It has been found that a single topical administration of the therapeutic agent results in significantly more rapid healing than in identical wounds which go untreated. Where the wound is infected and chronically granulating, repeated daily application of the therapeutic agent has been found to produce more rapid wound healing than in similar wounds receiving no treatment. IL- 17B will be particularly useful in patients already suffering from diabetes, as glucose inbalance does make the patient more succeptible to skin injury.
- the therapeutic agent in a pharmaceutical formulation or composition.
- Such formulations comprise a therapeutically effective amount of the therapeutic agent with one or more pharmaceutically acceptable carriers and/or adjuvants.
- the carriers employed must be compatible with the other ingredients in the formulation.
- the formulation will not include oxidizing or reducing agents or other substances known to be incompatible with the described polypeptides. All formulation methods include the step of bringing the biologically active ingredient into association with the carrier(s) and/or adjuvant(s).
- the therapeutic agent of the instant invention will be formulated by bringing the agent into association with liquid carriers, finely divided solid carriers, or both.
- Formulations suitable for topical administration in accordance with the present invention comprise therapeutically effective amounts of the therapeutic agent with one or more pharmaceutically acceptable carriers and/or adjuvants.
- An aqueous or collagen-based carrier vehicle is preferred for topical administration of the therapeutic agents described by the present invention.
- a collagen-based carrier vehicle is preferred.
- An example of such a vehicle is Zyderm.RTM. (Collagen Corp., Palo Alto, Calif). If the wound being treated requires multiple applications of the therapeutic agent at designated intervals, it is preferred to utilize a pharmaceutically acceptable aqueous vehicle for delivery.
- Such materials include hyaluronic acid or other glycosaminoglycan-derived preparations, sutures, and wound dressings.
- the therapeutic agent used in accordance with the present invention is comprised of more than one protein, the resultant admixture is commonly administered in the same fashion as formulations comprising only one polypeptide as the therapeutic agent.
- IL- 17B in the wound healing area is the use in treating mucositis associated with chemotherapy.
- Mucositis occurs when cancer treatments break down the rapidly divided epithelial cells lining the GI tract, particularly in the oral cavity, leaving the mucosal tissue open to ulceration and infection. Mucositis can occur anywhere along the digestive tract from the mouth to the anus. Oral mucositis is probably the most common debilitating complication of cancer surgery, chemotherapy, and radiation. It occurs in 20-40% of patients treated with chemotherapy alone and up to 50% of patients receiving combination radiation and chemotherapy, especially those with head and neck cancer.
- Drugs such as doxorubicin, paclitaxel, and capecitabine are commonly used in breast cancer and frequently associated with oral and GI mucositis.
- mucositis can be mild requiring little intervention to severe (hypovolemia, electrolyte abnormalities, and malnutrition) that may result in fatal complications.
- IL- 17B knockout mice Based on the wound healing effects on IL- 17B knockout mice described below in the examples, administration of IL- 17B to patients undergoing chemotherapy or radiation therapy will prophylactically prevent such a syndrome or alternatively, speed healing from those suffering from mucositis due to cancer treatments.
- a further specific use IL- 17B is the treatment and/or prevention of pressure ulcers.
- a pressure ulcer is an area of skin that breaks down when a patient stays in one position for too long without shifting your weight. This is common with those that use a wheelchair or are bedridden, even for a short period of time (for example, after surgery or an injury). The constant pressure against the skin reduces the blood supply to that area, and the affected tissue dies. A pressure ulcer starts as reddened skin but gets progressively worse, forming a blister, then an open sore, and finally a crater. The most common places for pressure ulcers are over bony prominences (bones close to the skin) like the elbow, heels, hips, ankles, shoulders, back, and the back of the head.
- IBD Inflammatory Bowel Disease
- Ulcerative colitis is an inflammatory disease of the large intestine, also called the colon.
- ulcerative colitis the inner lining - or mucosa - of the intestine becomes inflamed and develops ulcers.
- Ulcerative colitis is often the most severe in the rectal area, which can cause frequent diarrhea. Mucus and blood often appear in the stool if the lining of the colon is damaged. Crohn's disease differs from ulcerative colitis in the areas of the bowel it involves - it most commonly affects the last part of the small intestine, the terminal ileum, and parts of the large intestine. However, Crohn's disease isn't limited to these areas and can attack any part of the digestive tract. Crohn's disease causes inflammation that extends much deeper into the layers of the intestinal wall than ulcerative colitis does. Crohn's disease generally tends to involve the entire bowel wall, whereas ulcerative colitis affects only the lining of the bowel. Based on the wound healing effects on IL- 17B knockout mice described below in the examples, administration of IL-17B to patients with ulcerative colitis or Crohn's Disease will speed healing from the damage present in the intestinal tracts of these patients.
- IL- 17B treatment may also be useful in the treatment of diseases where epithelial repair and/or proliferation have been dysregulated.
- psoriasis is a noncontagious, lifelong skin disease. According to the Naitonal Institutes of Health, as many as 7.5 million Americans have psoriasis. The most common form, plaque psoriasis, appears as raised, red patches or lesions covered with a silvery white buildup of dead skin cells, called scale. The production of the scale is throught to be a result of dysregulation of the usual wound healing responses in the epidermis.
- psoriasis develops when the immune system tells the body to over-react and accelerate the growth of skin cells. Normally, skin cells mature and are shed from the skin's surface every 28 to 30 days. When psoriasis develops, the skin cells mature in 3 to 6 days and move to the skin surface. Instead of being shed, the skin cells pile up, causing the visible lesions.
- antagonists to IL- 17B may be useful for treatment of this dysregulation of the skin cell growth cycle.
- Wild type or IL- 17B (zcyto7) homozygous knockout mice were anesthetized with isoflourane and the dorsum shaved and depilated. After 24hrs mice were anesthetized with isoflourane, and the dorsum cleaned with Povidone-Iodine and Isopropyl alcohol pads. Animals received either one or two full thickness wounds of 0.5cm 2 or lcm 2 ; these were induced on either flank by the surgical removal of a piece of full thickness dorsal skin. The wound area was then bandaged with a Johnson & Johnson Bioocclusive dressing and these dressings were removed at three days. Animals were examined daily and the size and physical appearance of the wounds assessed.
- a lcm 2 area of skin surrounding the 0.5cm 2 wound was surgically removed and these samples were processed for histological evaluation by formalin fixation or flash frozen in liquid nitrogen for RNA isolation. At various time points, final size and appearance observations were made. The animals were then euthanized and skin surrounding both wounds was collected for histological evaluation and RNA isolation as described in Example 2.
- Example 1 The observational experiments of Example 1 were supported by RNA-based expression measurements. Using a multiplex approach, the expression of 293 genes in normal and wounded tissue from wild type and knockout mice were examined. Multiplex gene expression assays of murine skin tissue samples were performed essentially as described by Yang et al. (Yang et al., "BADGE, BeadsArray for the Detection of Gene Expression, a High-Throughput Diagnostic Bioassay", GenomeResearch, 11 : 1888-1898 (2001)). Total RNA was prepared using a standard phenol:chloroform extraction protocol for tissues and converted to antisense RNA (aRNA) using Ambion MessageAmp aRNA Amplification kits (Ambion, Inc. Austin, TX), incorporating biotinylated UTP and CTP (PerkinElmer Life Sciences, Boston, MA). aRNA was quantified by absorbance at 260 nm.
- aRNA was prepared using a standard phenol:chloroform extraction protocol for tissues and converted
- Gene specific sense oligonucleotides (25-mers) were synthesized with 5'-amino uni- linkers and coupled to Luminex xMAP carboxylated microspheres according to the manufacturer's protocol (Luminex Corp., Austin, TX). Each gene specific oligonucleotide was coupled to a distinct colored/numbered microsphere; 1 nmole of oligonucleotide was coupled to 2.5 x 10 6 microspheres in a single reaction and suspended in 100 ⁇ l of 10 nM Tris/0.1 mM EDTA, pH 8.0. The microspheres were tittered using a hemacytometer.
- RNA to capture probe-coupled microspheres 5,000 microspheres of each gene were pooled, mixed, and suspended in 60 ⁇ l of hybridization buffer with 10 ⁇ g of aRNA that had been previously randomly fragmented by heating at 94°C for 35 min. The samples were hybridized at 60 0 C for 4-5 hours with constant mixing. Hybridizations were performed in 3M tetramethylammonium chloride (TMAC) (Sigma, St. Louis, MO), 50 mM Tris pH 8.0, and 4 mM EDTA, pH 8.0.
- TMAC tetramethylammonium chloride
- microspheres were analyzed on a Luminex 100 xMAP system (Luminex Corp., Austin, TX) and at least 200 events of each set of individually colored microspheres were counted.
- mice were female and age -matched.
- the C57Bl/6-congenic homozygous zcyto7 wild-type and zcyto7 gene -targeted (“zcyto7 knockout") mice were obtained from in-house stocks.
- the zcyto7 congenic lines had been derived by in-house backcrossing of heterozygous zcyto7 knockout mice (OzGene, Bentley, Australia) to C57B1/6 mice.
- C57B1/6 and BALB/c control mice were purchased from Charles River Laboratories, Wilmington, MA.
- Leishmania major (L. major, strain WHOM/IR/-/173) was cultured in vitro from frozen stocks. Infectious L. major promastigotes were prepared by PNA-selection performed by incubation of cultured promastigotes (4 x lOVml) with PNA-coated agarose beads (1 :20 dilution; Sigma, St. Louis, MO) followed by differential sedimentation to pellet PNA-bound promastigotes. Free promastigotes in the supernatant were collected, washed, counted and resuspended in PBS at the appropriate concentration for infection of mice.
- mice were killed and serum, spleens and draining popliteal lymph-nodes were collected for in vitro analysis.
- the BALB/c mice were killed and serum collected at week 6 post- infection due to the severity of their L. major disease at this time point. Spleens and lymph-nodes were not collected for in vitro analysis from BALB/c mice.
- L. major lysate antigen was prepared by repeated freeze-thaw of a sterile, high- density suspension of L. major promastigotes in PBS followed by high-speed centrifugation to remove debris. Lysate supernatants were stored in single-use aliquots at -80 0 C. Lack of residual viable L.
- the plates were developed by serial 1 hour incubations with biotinylated goat anti-mouse IgGl or IgG2a antibody (Southern Biotech, Brmingham, AL), streptavidin-horseradish peroxidase conjugate (Jackson Immunoresearch, West Grove, PA) and HRP substrate (TMB One Solution; Promega, Madison, WI). Color development was halted by addition of 0.1 N HCl. The absorbance of each well was read at both 450 & 630 nanometers using a Spectra MAX 190 ELISA plate reader (Molecular Devices, Sunnyvale, CA). Data are plotted as [A 450 - A 630 ] on the Y axis versus I/dilution of serum on the X axis.
- mice were resistant to L. major, developed limited footpad swelling that resolved by 8 weeks post-infection, and gained body weight normally as would be expected for this strain. They also developed ThI responses, characterized by a high ratio of IFN-gamma:IL-4 production to L. major antigen in vitro and a high ratio of IgG2a:IgGl L. major-specific antibody and an absence of IgE in their serum.
- C57Bl/6-congenic zcyto7 wild-type mice had an L. major disease phenotype that was indistinguishable from that of C57B1/6 control mice. They were resistant to L. major and developed moderate footpad swelling that resolved by 8 weeks post-infection. They also developed ThI responses, characterized by a high ratio of IFN-gamma:IL-4 production to L. major antigen in vitro and a high ratio of IgG2a:IgGl L. major-specific antibody and an absence of IgE in their serum.
- mice were resistant to L. major and gained body weight normally. However they developed significantly larger footpads that took significantly longer (> 12 weeks) to resolve than did footpads in C57B1/6 and zcyto7 wild-type mice. Development of small open lesions also developed on their footpads; no lesions were observed on the footpads of C57B1/6 and zcyto7 wild-type mice. They had larger spleens and draining lymph-nodes at 12-weeks, which is consistent with their having more severe symptoms of disease than the control mice at this time-point. They developed ThI responses, characterized by a high ratio of IFN- gamma:IL-4 production to L. major antigen in vitro and a high ratio of IgG2a:IgGl L. major-specific antibody and an absence of IgE in their serum antibody.
- IL17B knockout mice exhibit altered disease progression in a DSS colitis model [82]
- DSS dextran sulfate sodium
- This model induces an acute colitis which is manifest by bloody diarrhea, weight loss, shortening of the colon and mucosal ulceration with neutrophil infiltration.
- DSS-induced colitis is characterized histologically by infiltration of inflammatory cells into the lamina intestinal, with lymphoid hyperplasia, focal crypt damage, and epithelial ulceration. These changes are thought to develop due to a toxic effect of DSS on the epithelium and by phagocytosis of lamina limbalium and production of TNF-alpha and IFN-gamma.
- mice were treated with a 2-2.5% solution of reagent grade dextran sulfate sodium (DSS, MP Biochemicals, Solon, OH), molecular weight 36,000-50,000 administered ad libitum in drinking water. Animals received this DSS drinking water for 5 days and were then returned to normal water. Using this model both onset of colitis in response to DSS treatment and subsequent recovery after DSS withdrawal can be measured. Disease progression can be monitored during the course of the study by loss of weight. In a typical study normal mice will lose 5-10% of bodyweight within 7-8 days of initiating DSS treatment but will return to a normal weight after 5 days on non-DSS drinking water.
- DSS dextran sulfate sodium
- IL17B knockout mice exhibited an increased weight loss at the peak of disease.
- IL17B knockout mice exhibited a retarded recovery upon transfer to normal water: after 5 days on normal water wild type animals but not IL17B knockout mice had regained weight lost during the course of the study.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Immunology (AREA)
- Gastroenterology & Hepatology (AREA)
- Zoology (AREA)
- Dermatology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Diabetes (AREA)
- Molecular Biology (AREA)
- Endocrinology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicinal Preparation (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US86486706P | 2006-11-08 | 2006-11-08 | |
PCT/US2007/084151 WO2008073653A2 (en) | 2006-11-08 | 2007-11-08 | Il- 17b for use in wound healing |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2089050A2 true EP2089050A2 (de) | 2009-08-19 |
Family
ID=39415331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07871415A Withdrawn EP2089050A2 (de) | 2006-11-08 | 2007-11-08 | Il-17b zur anwendung in der wundheilung |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2089050A2 (de) |
JP (1) | JP2010509364A (de) |
CA (1) | CA2669109A1 (de) |
WO (1) | WO2008073653A2 (de) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6072789B2 (ja) * | 2011-07-28 | 2017-02-01 | イアン・エス・ザゴン | 上皮創傷の処置のための方法及び組成物 |
US20220281967A1 (en) * | 2019-08-02 | 2022-09-08 | Orega Biotech | Novel il-17b antibodies |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PL336470A1 (en) * | 1997-04-25 | 2000-06-19 | Zymogenetics Inc | Mammalian cytokin-like factor 7 |
WO1999003982A1 (en) * | 1997-07-16 | 1999-01-28 | Human Genome Sciences, Inc. | Interleukin-20 |
CA2365910A1 (en) * | 1999-04-09 | 2000-10-19 | Curagen Corporation | Human proteins and polynucleotides encoding them |
ATE541931T1 (de) * | 1999-12-23 | 2012-02-15 | Genentech Inc | Il-17-homologe polypeptide und ihre therapeutische verwendung |
WO2001064240A2 (en) * | 2000-02-29 | 2001-09-07 | Zymogenetics, Inc. | Methods for promoting production of myelin by schwann cells |
WO2002076386A2 (en) * | 2001-03-26 | 2002-10-03 | Zymogenetics, Inc. | Method of inducing proliferation of retinal stem cells |
US20040248097A1 (en) * | 2003-05-23 | 2004-12-09 | Ming-Shi Chang | Interleukin-20 variants and promoters |
CA2616831A1 (en) * | 2005-08-04 | 2007-02-15 | Zymogenetics, Inc. | Treatment of wounds using il-17b |
-
2007
- 2007-11-08 CA CA002669109A patent/CA2669109A1/en not_active Abandoned
- 2007-11-08 JP JP2009536488A patent/JP2010509364A/ja active Pending
- 2007-11-08 EP EP07871415A patent/EP2089050A2/de not_active Withdrawn
- 2007-11-08 WO PCT/US2007/084151 patent/WO2008073653A2/en active Application Filing
Non-Patent Citations (1)
Title |
---|
See references of WO2008073653A3 * |
Also Published As
Publication number | Publication date |
---|---|
CA2669109A1 (en) | 2008-06-19 |
WO2008073653A3 (en) | 2008-08-07 |
JP2010509364A (ja) | 2010-03-25 |
WO2008073653A2 (en) | 2008-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6689351B1 (en) | Use of GM-CSF to promote accelerated wound healing | |
JP5383198B2 (ja) | プロスタグランジンeおよび顆粒球マクロファージコロニー刺激因子の投与による創傷治癒の促進 | |
KR101033135B1 (ko) | 상처 치유용 조성물 및 그의 용도 | |
US7645733B2 (en) | Tissue protective cytokines for the treatment and prevention of sepsis and the formation of adhesions | |
US5202118A (en) | Method for promoting wound healing using IL-1 | |
JP4102437B2 (ja) | アクチビンおよびインヒビン刺激因子を含有する医薬組成物 | |
US20090285775A1 (en) | Treatment of wounds using il-17b | |
US20080159979A1 (en) | Treatment of wounds using il-17b | |
WO2008073653A2 (en) | Il- 17b for use in wound healing | |
EP0955056A1 (de) | Rekombinanter koloniestimulierender Faktor-1 zur Behandlung von Pilzinfektionen | |
EP0393140B1 (de) | Örtliche wundheilmittel, die interleukin-1-proteine enthalten | |
Ksander et al. | Exogenous transforming growth factor‐β2 enhances connective tissue formation in transforming growth factor‐β1—deficient, healing‐impaired dermal wounds in mice | |
JPH05509333A (ja) | 創傷治癒及び修復の修復段階を促進し、かつ感染した創傷及び糖尿病哺乳類の創傷の治癒を促進するためのil−4の用途 | |
JPH0782169A (ja) | 創傷治療剤 | |
Komarčević | Modern approach to wound management | |
CA2090121C (en) | Uses of colony stimulating factor-1 | |
Hassan et al. | A review of wound healing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20090608 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20091217 |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20100428 |