EP2086258A1 - Verfahren für einen HARQ-Aufwärtsverbindungsbetrieb bei Ablauf des Zeitanpassungszeitgebers - Google Patents
Verfahren für einen HARQ-Aufwärtsverbindungsbetrieb bei Ablauf des Zeitanpassungszeitgebers Download PDFInfo
- Publication number
- EP2086258A1 EP2086258A1 EP09001422A EP09001422A EP2086258A1 EP 2086258 A1 EP2086258 A1 EP 2086258A1 EP 09001422 A EP09001422 A EP 09001422A EP 09001422 A EP09001422 A EP 09001422A EP 2086258 A1 EP2086258 A1 EP 2086258A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- terminal
- data
- buffers
- harq
- timer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 101
- 238000004891 communication Methods 0.000 claims abstract description 22
- 239000000872 buffer Substances 0.000 claims description 54
- 238000011010 flushing procedure Methods 0.000 claims description 16
- 238000012545 processing Methods 0.000 claims description 13
- 230000007774 longterm Effects 0.000 abstract description 3
- 230000005540 biological transmission Effects 0.000 description 52
- 230000008569 process Effects 0.000 description 22
- 230000004044 response Effects 0.000 description 19
- 241000760358 Enodes Species 0.000 description 5
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 5
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000010295 mobile communication Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 101100521334 Mus musculus Prom1 gene Proteins 0.000 description 1
- 235000009421 Myristica fragrans Nutrition 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000001115 mace Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 229920001690 polydopamine Polymers 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 230000005477 standard model Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- CSRZQMIRAZTJOY-UHFFFAOYSA-N trimethylsilyl iodide Substances C[Si](C)(C)I CSRZQMIRAZTJOY-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1829—Arrangements specially adapted for the receiver end
- H04L1/1861—Physical mapping arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1822—Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W80/00—Wireless network protocols or protocol adaptations to wireless operation
- H04W80/02—Data link layer protocols
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1829—Arrangements specially adapted for the receiver end
- H04L1/1835—Buffer management
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1829—Arrangements specially adapted for the receiver end
- H04L1/1864—ARQ related signaling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1867—Arrangements specially adapted for the transmitter end
- H04L1/1874—Buffer management
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1867—Arrangements specially adapted for the transmitter end
- H04L1/1896—ARQ related signaling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/04—Error control
Definitions
- the present invention relates to a radio (wireless) communication system providing a radio communication service and a mobile terminal, and more particularly, to a method of an uplink HARQ operation of the mobile terminal in an Evolved Universal Mobile Telecommunications System (E-UMTS) or a Long Term Evolution (LTE) system.
- E-UMTS Evolved Universal Mobile Telecommunications System
- LTE Long Term Evolution
- FIG 1 shows an exemplary network structure of an Evolved Universal Mobile Telecommunications System (E-UMTS) as a mobile communication system to which a related art and the present invention are applied.
- E-UMTS Evolved Universal Mobile Telecommunications System
- the E-UMTS system is a system that has evolved from the existing UMTS system, and its standardization work is currently being performed by the 3GPP standards organization.
- the E-UMTS system can also be referred to as a LTE (Long-Term Evolution) system.
- LTE Long-Term Evolution
- the E-UMTS network can roughly be divided into an E-UTRAN and a Core Network (CN).
- the E-UTRAN generally comprises a terminal (i.e., User Equipment (UE)), a base station (i.e., eNode B), an Access Gateway (AG) that is located at an end of the E-UMTS network and connects with one or more external networks.
- the AG may be divided into a part for processing user traffic and a part for handling control traffic.
- an AG for processing new user traffic and an AG for processing control traffic can be communicated with each other by using a new interface.
- One eNode B may have one or more cells.
- An interface for transmitting the user traffic or the control traffic may be used among the eNode Bs.
- the CN may comprise an AG, nodes for user registration of other UEs, and the like. An interface may be used to distinguish the E-UTRAN and the CN from each other.
- the various layers of the radio interface protocol between the mobile terminal and the network may be divided into a layer 1 (L1), a layer 2 (L2) and a layer 3 (L3), based upon the lower three layers of the Open System Interconnection (OSI) standard model that is well-known in the field of communications systems.
- Layer 1 (L1) namely, the physical layer, provides an information transfer service to an upper layer by using a physical channel
- RRC Radio Resource Control
- L3 located in the lowermost portion of the Layer 3 (L3) performs the function of controlling radio resources between the terminal and the network.
- the RRC layer exchanges RRC messages between the terminal and the network.
- the RRC layer may be located by being distributed in network nodes such as the eNode B, the AG, and the like, or may be located only in the eNode B or the AG.
- FIG. 2 shows exemplary control plane architecture of a radio interface protocol between a terminal and a UTRAN (UMTS Terrestrial Radio Access Network) according to the 3GPP radio access network standard.
- the radio interface protocol as shown in Fig. 2 is horizontally comprised of a physical layer, a data link layer, and a network layer, and vertically comprised of a user plane for transmitting user data and a control plane for transferring control signaling.
- the protocol layer in Fig. 2 may be divided into L1 (Layer 1), L2 (Layer 2), and L3 (Layer 3) based upon the lower three layers of the Open System Interconnection (OSI) standards model that is widely known in the field of communication systems.
- OSI Open System Interconnection
- the physical layer uses a physical channel to provide an information transfer service to a higher layer.
- the physical layer is connected with a medium access control (MAC) layer located thereabove via a transport channel, and data is transferred between the physical layer and the MAC layer via the transport channel. Also, between respectively different physical layers, namely, between the respective physical layers of the transmitting side (transmitter) and the receiving side (receiver), data is transferred via a physical channel.
- MAC medium access control
- the Medium Access Control (MAC) layer of Layer 2 provides services to a radio link control (RLC) layer (which is a higher layer) via a logical channel.
- RLC radio link control
- the RLC layer of Layer 2 supports the transmission of data with reliability. It should be noted that if the RLC functions are implemented in and performed by the MAC layer, the RLC layer itself may not need to exist.
- the PDCP layer of Layer 2 performs a header compression function that reduces unnecessary control information such that data being transmitted by employing Internet Protocol (IP) packets, such as IPv4 or IPv6, can be efficiently sent over a radio interface that has a relatively small bandwidth.
- IP Internet Protocol
- the Radio Resource Control (RRC) layer located at the lowermost portion of Layer 3 is only defined in the control plane, and handles the control of logical channels, transport channels, and physical channels with respect to the configuration, re-configuration and release of radio bearers (RB).
- the RB refers to a service that is provided by Layer 2 for data transfer between the mobile terminal and the UTRAN.
- channels used in downlink transmission for transmitting data from the network to the mobile terminal there is a Broadcast Channel (BCH) used for transmitting system information, and a downlink Shared Channel (SCH) used for transmitting user traffic or control messages.
- BCH Broadcast Channel
- SCH downlink Shared Channel
- a downlink multicast, traffic of broadcast service or control messages may be transmitted via the downlink SCH or via a separate downlink Multicast Channel (MCH).
- RACH Random Access Channel
- SCH uplink Shared Channel
- PBCH Physical Broadcast Channel
- PMCH Physical Multicast Channel
- PDSCH Physical Downlink Shared Channel
- PDCCH Physical Downlink Control Channel
- uplink physical channels for transmitting information transferred via the channels used in uplink transmission over a radio interface between the network and the terminal, there is a Physical Uplink Shared Channel (PUSCH) for transmitting uplink SCH information, a Physical Random Access Channel (PRACH) for transmitting RACH information, and a Physical Uplink Control Channel (PUCCH) for transmitting control information provided by the first and second layers, such as a HARQ ACK or NACK, a Scheduling Request (SR), a Channel Quality Indicator (CQI) report, and the like.
- PUSCH Physical Uplink Shared Channel
- PRACH Physical Random Access Channel
- PUCCH Physical Uplink Control Channel
- a HARQ operation is performed in a MAC (Medium Access Control) layer for an effective data transmission.
- MAC Medium Access Control
- FIG. 4 is an exemplary view showing a HARQ operation method for an effective data transmission.
- a base station or eNB may transmit downlink scheduling information (referred as 'DL scheduling information' hereafter) through a PDCCH (Physical Downlink Control Channel) in order to provide data to a terminal (UE) during a HARQ operation.
- the DL scheduling information may include a UE identifier (UE ID), a UE group identifier (Group ID), an allocated radio resource assignment, a duration of the allocated radio resource assignment, a transmission parameter (e.g., Modulation method, payload size, MIMO related information, etc), HARQ process information, a redundancy version, or a new data indicator (NID), etc.
- UE ID UE identifier
- Group ID UE group identifier
- an allocated radio resource assignment e.g., a duration of the allocated radio resource assignment
- a transmission parameter e.g., Modulation method, payload size, MIMO related information, etc
- the terminal performs multiple HARQ processes
- the multiple HARQ processes are operated synchronously. Namely, each HARQ process is allocated synchronously in every transmission time interval (TTI).
- TTI transmission time interval
- a HARQ process 1 may perform in a first transmission time interval (TTI 1)
- a HARQ process 2 may perform in TTI 2
- a HARQ process 8 may perform in TTI 8
- the HARQ process 1 may again perform in TTI 9
- the HARQ process 2 may again perform in TTI 10, etc.
- the HARQ processes are allocated in synchronous manner, a certain HARQ process associated with a TTI which receives a PDCCH for initial transmission of a particular data may be used for such data transmission. For example, if the terminal receives a PDCCH including an uplink scheduling information in Nth TTI, the terminal may actually transmit a data in N+4 TTI.
- the HARQ retransmission of the terminal is operated in a non-adaptive manner. That is, an initial transmission of a particular data is possible only when the terminal receives a PDCCH including an uplink scheduling information. However, the HARQ retransmission of the data can be possibly operated without receiving the PDCCH, as next TTI allocated to a corresponding HARQ process can be used with same uplink scheduling information.
- transmission parameters may be transmitted through a control channel such as a PDCCH, and these parameters may be varied with a channel conditions or circumstances. For example, if a current channel condition is better than a channel condition of an initial transmission, higher bit rate may be used by manipulating a modulation scheme or a payload size. In contrast, if a current channel condition is worst than a channel condition of an initial transmission, lower bit rate may be used.
- the terminal checks an uplink scheduling information by monitoring a PDCCH in every TTI. Then, the terminal transmits data through a PUSCH based on the uplink scheduling information. The terminal firstly generates the data in a MAC PDU format, and then stores it in a HARQ buffer. After that, the terminal transmits the data based on the uplink scheduling information. Later, the terminal waits to receive a HARQ feedback from a base station (eNB). If the terminal receives a HARQ NACK from the base station in response to the transmitted data, the terminal retransmits the data in a retransmission TTI of a corresponding HARQ process.
- eNB base station
- the terminal receives a HARQ ACK from the base station in response to the transmitted data, the terminal terminates to operate the retransmission of the HARQ.
- the terminal counts a number of transmissions (i.e. CURRENT_TX_NB) whenever the data is transmitted in a HARQ process. If the number of transmissions is reached to a maximum number of transmissions, which set by an upper layer, data in the HARQ buffer is flushed.
- the HARQ retransmission is performed according to a HARQ feedback from a base station, a data existence in the HARQ buffer, or a transmission time of a corresponding HARQ process.
- each of HARQ process may have a HARQ buffer respectively.
- the value in the NDI (New Data Indicator) field contained in the PDCCH may be used for the UE to determine whether the received data is an initial transmission data or a retransmitted data. More specifically, the NDI field is 1 bit field that toggles every time a new data is transmitted or received. (0 -> 1 -> 0 -> 1 -> ...) As such, the value in the NDI for the retransmitted data always has a same value used in an initial transmission. From this, the UE may know an existence of retransmitted data by comparing these values.
- the base station eNB
- the base station must manage or handle all data or signals, which are transmitted by the terminals within the cell, in order to prevent the interferences between the terminals. Namely, the base station must adjust or manage a transmission timing of the terminals upon each terminal's condition, and such adjustment can be called as the timing alignment maintenance.
- One of the methods for maintaining the timing alignment is a random access procedure.
- the base station receives a random access preamble transmitted from the terminal, and the base station can calculate a time alignment (Sync) value using the received random access preamble, where the time alignment value is to adjust (i.e., faster or slower) a data transmission timing of the terminal.
- the calculated time alignment value can be notified to the terminal by a random access response, and the terminal can update the data transmission timing based on the calculated time alignment value.
- the base station may receive a sounding reference symbol (SRS) transmitted from the terminal periodically or randomly, the base station may calculate the time alignment (Sync) value based on the SRS, and the terminal may update the data transmission timing according to the calculated time alignment value.
- SRS sounding reference symbol
- the base station may measure a transmission timing of the terminal though a random access preamble or SRS, and may notify an adjustable timing value to the terminal.
- the time alignment (Sync) value i.e., the adjustable timing value
- 'TAC' time advance command
- the TAC may be process in a MAC (Medium Access control) layer. Since the terminal does not camps on a fixed location, the transmission timing is frequently changed based on a terminal's moving location and/or a terminal's moving velocity. Concerning with this, if the terminal receives the time advance command (TAC) from the base station, the terminal expect that the time advance command is only valid for certain time duration.
- TAC time advance command
- a time alignment timer is used for indicating or representing the certain time duration.
- the time alignment timer is started when the terminal receives the TAC (time advance command) from the base station.
- the TAT value is transmitted to the terminal (UE) through a RRC (Radio Resource Control) signal such as system information (SI) or a radio bearer reconfiguration.
- SI system information
- the terminal if the terminal receives a new TAC from the base station during an operation of the TAT, the TAT is restarted. Further, the terminal does not transmit any other uplink data or control signal (e.g., data on physical uplink shared channel (PUSCH), control signal on Physical uplink control channel (PUCCH)) except for the random access preamble when the TAT is expired or not running.
- PUSCH physical uplink shared channel
- PUCCH Physical uplink control channel
- a MAC layer of the terminal and base station handles a time alignment (synchronize) management.
- the TAC is generated in the MAC layer of the base station, and the MAC layer of the terminal receives the TAC through a MAC message from the base station.
- the base station transmits the MAC message including the TAC in a HARQ process, and the terminal attempts to receive the data.
- the terminal transmits a NACK signal to the base station if the terminal fails to decode the data.
- the terminal receives an uplink scheduling information through a PDCCH for a transmission of data 1. Then, the terminal transmits the data 1 to the base station using the HARQ process. In response to the transmitted data 1, the terminal receives a NACK from the base station. Therefore the terminal has to retransmit the data 1, however, the TAT of the terminal can be expired before a retransmission of the data 1. In this situation, the terminal can not possibly retransmit the data 1 due to expiry of the TAT. Therefore, the terminal restarts the TAT after receiving a TAC from the base station though a random access channel (RACH) procedure.
- RACH random access channel
- the terminal still transmits data 1 at a transmission timing of the HARQ process because the data 1 is still stored in a HARQ buffer of the terminal.
- the transmission of the data 1 is not expected by the base station, this data transmission can be collided with other data transmission by other terminals.
- an object of the present invention is to provide a method of processing data for a HARQ (Hybrid Automatic Repeat reQuest) in a wireless communication system, and more particularly, for an optimized uplink HARQ operation when time alignment timer is not running or at an expiry of time alignment timer.
- HARQ Hybrid Automatic Repeat reQuest
- a method of processing data for a HARQ (Hybrid Automatic Repeat Request) operation in a wireless communication system comprising: receiving an uplink Grant from a network; generating a data unit based on the received uplink grant; storing the generated data unit into a plurality of buffers; and flushing the stored data unit in the plurality of buffers when a timer expires.
- HARQ Hybrid Automatic Repeat Request
- a method of processing data for a HARQ (Hybrid Automatic Repeat Request) operation in a wireless communication system comprising: receiving an uplink Grant from a network; generating a data unit based on the received uplink grant; storing the generated data unit into a plurality of buffers; and flushing the stored data in the plurality of buffers when the timer is not running.
- HARQ Hybrid Automatic Repeat Request
- a method of processing data for a HARQ (Hybrid Automatic Repeat Request) operation in a wireless communication system comprising: receiving an uplink Grant from a network; generating a data unit based on the received uplink grant; storing the generated data unit into a plurality of buffers; determining whether or not a timer is running; determining whether a command for starting the timer is received; and flushing the stored data in the plurality of buffers when it is determined that the timer is not running and the command is received.
- HARQ Hybrid Automatic Repeat Request
- this disclosure is shown to be implemented in a mobile communication system, such as a UMTS developed under 3GPP specifications, this disclosure may also be applied to other communication systems operating in conformity with different standards and specifications.
- a terminal may perform a random access procedure in the following cases: 1) when the terminal performs an initial access because there is no RRC Connection with a base station (or eNB), 2) when the terminal initially accesses to a target cell in a handover procedure, 3) when it is requested by a command of a base station, 4) when there is uplink data transmission in a situation where uplink time synchronization is not aligned or where a specific radio resource used for requesting radio resources is not allocated, and 5) when a recovery procedure is performed in case of a radio link failure or a handover failure.
- the base station allocates a dedicated random access preamble to a specific terminal, and the terminal performs a non-contention random access procedure which performs a random access procedure with the random access preamble.
- the terminal performs a non-contention random access procedure which performs a random access procedure with the random access preamble.
- there are two procedures in selecting the random access preamble one is a contention based random access procedure in which the terminal randomly selects one within a specific group for use, another is a non-contention based random access procedure in which the terminal uses a random access preamble allocated only to a specific terminal by the base station.
- the difference between the two random access procedures is that whether or not a collision problem due to contention occurs, as described later.
- the non-contention based random access procedure may be used, as described above, only in the handover procedure or when it is requested by the command of the base station.
- Figure 5 shows an operation procedure between a terminal and a base station in a contention based random access procedure.
- a terminal in the contention based random access randomly may select a random access preamble within a group of random access preambles indicated through system information or a handover command, may select PRACH resources capable of transmitting the random access preamble, and then may transmit the selected random access preamble to a base station (Step 1).
- the terminal may attempt to receive a response with respect to its random access preamble within a random access response reception window indicated through the system information or the handover command (Step 2). More specifically, the random access response information is transmitted in a form of MAC PDU, and the MAC PDU may be transferred on the Physical Downlink Shared Channel (PDSCH). In addition, the Physical Downlink Control Channel (PDCCH) is also transferred such that the terminal appropriately receives information transferred on the PDSCH. That is, the PDCCH may include information about a terminal that should receive the PDSCH, frequency and time information of radio resources of the PDSCH, a transfer format of the PDSCH, and the like.
- the PDCCH may include information about a terminal that should receive the PDSCH, frequency and time information of radio resources of the PDSCH, a transfer format of the PDSCH, and the like.
- the terminal may appropriately receive the random access response transmitted on the PDSCH according to information of the PDCCH.
- the random access response may include a random access preamble identifier (ID), an UL Grant, a temporary C-RNTI, a Time Alignment Command, and the like.
- the random access preamble identifier is included in the random access response in order to notify terminals to which information such as the UL Grant, the temporary C-RNTI, and the Time Alignment Command would be valid (available, effective) because one random access response may include random access response information for one or more terminals.
- the random access preamble identifier may be identical to the random access preamble selected by the terminal in Step 1.
- the terminal may process each of the information included in the random access response. That is, the terminal applies the Time Alignment Command, and stores the temporary C-RNTI.
- the terminal uses the UL Grant so as to transmit data stored in a buffer of the terminal or newly generated data to the base station (Step 3).
- a terminal identifier should be essentially included in the data which is included in the UL Grant (message 3). This is because, in the contention based random access procedure, the base station may not determine which terminals are performing the random access procedure, but later the terminals should be identified for contention resolution.
- two different schemes may be provided to include the terminal identifier.
- a first scheme is to transmit the terminal's cell identifier through the UL Grant if the terminal has already received a valid cell identifier allocated in a corresponding cell prior to the random access procedure.
- the second scheme is to transmit the terminal's unique identifier (e.g., S-TMSI or random ID) if the terminal has not received a valid cell identifier prior to the random access procedure.
- the unique identifier is longer than the cell identifier.
- the terminal After transmitting the data with its identifier through the UL Grant included in the random access response, the terminal waits for an indication (instruction) of the base station for the contention resolution. That is, the terminal attempts to receive the PDCCH so as to receive a specific message (Step 4).
- the terminal attempts to receive the PDCCH so as to receive a specific message (Step 4).
- the terminal determines that the random access procedure has been successfully (normally) performed, thus to complete the random access procedure.
- the terminal checks data (message 4) transferred by the PDSCH that the PDCCH indicates. If the unique identifier of the terminal is included in the data, the terminal determines that the random access procedure has been successfully (normally) performed, thus to complete the random access procedure.
- Figure 6 shows an operation procedure between a terminal and a base station in a non-contention based random access procedure.
- the random access procedure is determined to be successfully performed by receiving the random access response information in the non-contention based random access procedure, thus to complete the random access process.
- the non-contention based random access procedure may be performed in the following two cases: one is the handover procedure, and the other is a request by the command of the base station.
- the contention based random access procedure may also be performed in those two cases.
- First, for the non-contention based random access procedure it is important to receive, from the base station, a dedicated random access preamble without having any possibility of contention.
- a handover command and a PDCCH command may be used to assign the random access preamble.
- the terminal transmits the preamble to the base station. Thereafter, the method for receiving the random access response information is the same as that in the above-described contention based random access procedure.
- the present invention proposes a method of flushing data in all HARQ buffer of the terminal when a time alignment timer (TAT) is not running or is expired.
- TAT time alignment timer
- Figure 7 shows an exemplary view of flushing data in HARQ buffer at an expiry of time alignment timer (TAT) according to the present invention.
- TAT time alignment timer
- the present invention proposes to flush all HARQ buffers at the TAT expiry. More detailed description of Figure 7 will be given as following.
- the terminal may receive a PDCCH (Physical Downlink Control Channel) including an uplink scheduling information (i.e. UL grant) for a data transmission of an uplink.
- the PDCCH may include a C-RNTI (Cell-Radio Network Temporary Identifier) or Semi-Persistent Scheduling C-RNTI (SPS C-RNTI).
- C-RNTI Cell-Radio Network Temporary Identifier
- SPS C-RNTI Semi-Persistent Scheduling C-RNTI
- the terminal may generate a MAC PDU (referred as MAC PDU-1 hereafter) according to the received uplink scheduling information, and may store the generated MAC PDU-1 in a corresponding HARQ buffer. Further, the terminal may transmit the stored MAC PDU-1 to the base station at a transmission timing of a corresponding HARQ process. After the MAC PDU-1 is transmitted, the terminal may wait to receive a HARQ feedback from the base station. At this moment, the time alignment timer (TAT) of the terminal may expire. According to the present invention, the terminal may flush data in all HARQ buffers including a HARQ buffer having the MAC PDU-1 at the time of TAT expiry.
- TAT time alignment timer
- Figure 8 shows an exemplary view of flushing data in HARQ buffer when a time alignment timer (TAT) is not running according to the present invention.
- TAT time alignment timer
- the present invention proposes to flush all HARQ buffers when the TAT is not running. More detailed description of Figure 8 will be given as following.
- the terminal may flush data in all HARQ buffers.
- a current TAT of the terminal is not running and there is no data in all HARQ buffers.
- the terminal may further receive a PDCCH including an uplink scheduling information for an uplink data transmission.
- the PDCCH may include a C-RNTI (Cell-Radio Network Temporary Identifier) or Semi-Persistent Scheduling C-RNTI (SPS C-RNTI).
- the terminal may generate a MAC PDU (referred as MAC PDU-2 hereafter) according to the received uplink scheduling information, and may store the generated MAC PDU-2 in a corresponding HARQ buffer.
- MAC PDU-2 referred as MAC PDU-2 hereafter
- the terminal may flush data in all HARQ because the TAT of the terminal is not running.
- Figure 9 shows an exemplary view of flushing data in HARQ buffer by receiving a new timing advance command (TAC) when a time alignment timer (TAT) is not running according to the present invention.
- TAC timing advance command
- TAT time alignment timer
- the present invention proposes to flush all HARQ buffers when the terminal receives a new TAC while a TAT of the terminal is not running after its expiration. More detailed description of Figure 9 will be given as following. After the TAT is expired, the terminal may flush data in all HARQ buffers. While the TAT is not running, the terminal may further receive a PDCCH including an uplink scheduling information for an uplink data transmission.
- the PDCCH may include a C-RNTI (Cell-Radio Network Temporary Identifier) or Semi-Persistent Scheduling C-RNTI (SPS C-RNTI).
- the terminal may generate a MAC PDU (referred as MAC PDU-3 hereafter) according to the received uplink scheduling information, and may store the generated MAC PDU-3 in a corresponding HARQ buffer.
- the terminal may attempt to transmit the MAC PDU-3 to the base station. However, since the TAT is not running, the terminal may not transmit the MACE PDU-3.
- the MAC PDU-3 is kept in the corresponding HARQ buffer.
- the terminal may receive a new TAC.
- the terminal may receive the new TAC by a random access response during the random access channel (RACH) procedure.
- RACH random access channel
- the terminal may notify RRC of PUCCH/SRS release and may clear any configured downlink assignment and uplink grants.
- the present disclosure may provide a method of processing data for a HARQ (Hybrid Automatic Repeat Request) operation in a wireless communication system, the method comprising: receiving an uplink Grant from a network; generating a data unit based on the received uplink grant; storing the generated data unit into a plurality of buffers; and flushing the stored data unit in the plurality of buffers when a timer expires, wherein the timer is a Time Alignment Timer (TAT), the uplink grant is received on a PDCCH (Physical Downlink Control Channel), the uplink grant includes at least one of uplink scheduling information, a C-RNTI (Cell-Radio Network Temporary Identifier), and a Semi-persistent Scheduling C-RNTI, the data unit is MAC PDU (Medium Access Control Protocol Data Unit), and the plurality of buffers is all uplink HARQ buffers.
- TAT Time Alignment Timer
- PDCCH Physical Downlink Control Channel
- the uplink grant includes at least one
- the present invention may provide a method of processing data for a HARQ (Hybrid Automatic Repeat Request) operation in a wireless communication system, the method comprising: receiving an uplink Grant from a network; generating a data unit based on the received uplink grant; storing the generated data unit into a plurality of buffers; and flushing the stored data in the plurality of buffers when the timer is not running, wherein the timer is a time Alignment timer (TAT), the uplink grant is received on a PDCCH (Physical Downlink Control Channel), the uplink grant includes at least one of uplink scheduling information, a C-RNTI (Cell-Radio Network Temporary Identifier), and a Semi-persistent Scheduling C-RNTI, the data unit is MAC PDU (Medium Access Control Protocol Data Unit), and the plurality of buffers is all uplink HARQ buffers.
- TAT time Alignment timer
- the uplink grant is received on a PDCCH (Physical Downlink Control Channel
- the present invention may provide a method of processing data for a HARQ (Hybrid Automatic Repeat Request) operation in a wireless communication system, the method comprising: receiving an uplink Grant from a network; generating a data unit based on the received uplink grant; storing the generated data unit into a plurality of buffers; determining whether or not a timer is running; determining whether a command for starting the timer is received; and flushing the stored data in the plurality of buffers when it is determined that the timer is not running and the command is received, wherein the command is a Timing Advance Command (TAC).
- TAC Timing Advance Command
- the present disclosure is described in the context of mobile communications, the present disclosure may also be used in any wireless communication systems using mobile devices, such as PDAs and laptop computers equipped with wireless communication capabilities (i.e. interface). Moreover, the use of certain terms to describe the present disclosure is not intended to limit the scope of the present disclosure to a certain type of wireless communication system. The present disclosure is also applicable to other wireless communication systems using different air interfaces and/or physical layers, for example, TDMA, CDMA, FDMA, WCDMA, OFDM, EV-DO, Wi-Max, Wi-Bro, etc.
- the exemplary embodiments may be implemented as a method, apparatus or article of manufacture using standard programming and/or engineering techniques to produce software, firmware, hardware, or any combination thereof.
- article of manufacture refers to code or logic implemented in hardware logic (e.g., an integrated circuit chip, Field Programmable Gate Array (FPGA), Application Specific Integrated Circuit (ASIC), etc.) or a computer readable medium (e.g., magnetic storage medium (e.g., hard disk drives, floppy disks, tape, etc.), optical storage (CD-ROMs, optical disks, etc.), volatile and non-volatile memory devices (e.g., EEPROMs, ROMs, PROMs, RAMs, DRAMs, SRAMs, firmware, programmable logic, etc.).
- FPGA Field Programmable Gate Array
- ASIC Application Specific Integrated Circuit
- Code in the computer readable medium may be accessed and executed by a processor.
- the code in which exemplary embodiments are implemented may further be accessible through a transmission media or from a file server over a network.
- the article of manufacture in which the code is implemented may comprise a transmission media, such as a network transmission line, wireless transmission media, signals propagating through space, radio waves, infrared signals, etc.
- a transmission media such as a network transmission line, wireless transmission media, signals propagating through space, radio waves, infrared signals, etc.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
- Detection And Prevention Of Errors In Transmission (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14003021.4A EP2836007B1 (de) | 2008-02-01 | 2009-02-02 | Verfahren für einen HARQ-Aufwärtsverbindungsbetrieb bei Ablauf des Zeitanpassungszeitgebers |
EP13003661.9A EP2665306B1 (de) | 2008-02-01 | 2009-02-02 | Verfahren für einen HARQ-Aufwärtsverbindungsbetrieb bei Ablauf des Zeitanpassungszeitgebers |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US2531108P | 2008-02-01 | 2008-02-01 | |
US8715308P | 2008-08-07 | 2008-08-07 | |
KR1020090007145A KR101531419B1 (ko) | 2008-02-01 | 2009-01-29 | 시간동기 타이머의 만료 시 상향링크 harq의 동작 방법 |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14003021.4A Division EP2836007B1 (de) | 2008-02-01 | 2009-02-02 | Verfahren für einen HARQ-Aufwärtsverbindungsbetrieb bei Ablauf des Zeitanpassungszeitgebers |
EP13003661.9A Division EP2665306B1 (de) | 2008-02-01 | 2009-02-02 | Verfahren für einen HARQ-Aufwärtsverbindungsbetrieb bei Ablauf des Zeitanpassungszeitgebers |
EP13003661.9 Division-Into | 2013-07-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2086258A1 true EP2086258A1 (de) | 2009-08-05 |
EP2086258B1 EP2086258B1 (de) | 2013-10-23 |
Family
ID=40512427
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13003661.9A Active EP2665306B1 (de) | 2008-02-01 | 2009-02-02 | Verfahren für einen HARQ-Aufwärtsverbindungsbetrieb bei Ablauf des Zeitanpassungszeitgebers |
EP09001422.6A Active EP2086258B1 (de) | 2008-02-01 | 2009-02-02 | Verfahren für einen HARQ-Aufwärtsverbindungsbetrieb bei Ablauf des Zeitanpassungszeitgebers |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13003661.9A Active EP2665306B1 (de) | 2008-02-01 | 2009-02-02 | Verfahren für einen HARQ-Aufwärtsverbindungsbetrieb bei Ablauf des Zeitanpassungszeitgebers |
Country Status (6)
Country | Link |
---|---|
US (5) | US8312336B2 (de) |
EP (2) | EP2665306B1 (de) |
JP (1) | JP5044702B2 (de) |
KR (1) | KR101531419B1 (de) |
CN (1) | CN101933281B (de) |
WO (1) | WO2009096745A2 (de) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2131517A2 (de) * | 2008-06-03 | 2009-12-09 | Innovative Sonic Limited | Verfahren und Vorrichtung zur Verbesserung der HARQ-Uplink-Übertragung |
EP2166802A1 (de) * | 2008-09-19 | 2010-03-24 | LG Electronics | Verfahren zum Übertragen und Empfangen von Signalen unter Berücksichtigung des Zeitsynchronisierungszeitgebers und Benutzergerät dafür |
GB2463558A (en) * | 2008-09-17 | 2010-03-24 | Lg Electronics Inc | Harq processing method based on maximum number of transmissions |
CN101998418A (zh) * | 2009-08-11 | 2011-03-30 | 大唐移动通信设备有限公司 | 一种提高网络覆盖性能的方法、系统和装置 |
WO2011069561A1 (en) * | 2009-12-11 | 2011-06-16 | Nokia Corporation | Synchronised data transmissions |
WO2011159312A1 (en) * | 2010-06-18 | 2011-12-22 | Research In Motion Limited | Method for re-synchronizing an uplink between an access device and a user agent |
US8208416B2 (en) | 2008-09-29 | 2012-06-26 | Research In Motion Limited | Uplink resynchronization for use in communication systems |
CN101998417B (zh) * | 2009-08-11 | 2013-04-24 | 电信科学技术研究院 | 一种提高网络覆盖性能的方法、系统和装置 |
US8503436B2 (en) | 2008-08-21 | 2013-08-06 | Lg Electronics Inc. | Method of triggering status report in wireless communication system and receiver |
US8750218B2 (en) | 2008-09-29 | 2014-06-10 | Blackberry Limited | Message processing in communication systems |
US8934459B2 (en) | 2010-01-08 | 2015-01-13 | Interdigital Patent Holdings, Inc. | Maintaining time alignment with multiple uplink carriers |
US9088912B2 (en) | 2010-09-07 | 2015-07-21 | Innovative Sonic Corporation | Method for reducing overhead in a measurement report from a user equipment configured with carrier aggregation to a network in a wireless communication system |
EP2509379A4 (de) * | 2010-04-12 | 2016-12-21 | Zte Corp | Terminplanungsverfahren und -system |
EP2469954A4 (de) * | 2009-08-17 | 2017-01-18 | NTT DOCOMO, Inc. | Mobilkommunikationsverfahren, funkbasisstation und mobilstation |
US10085227B2 (en) | 2013-01-28 | 2018-09-25 | Empire Technology Development Llc | Maintaining uplink synchronization |
CN111181708A (zh) * | 2012-04-12 | 2020-05-19 | 北京三星通信技术研究有限公司 | 数据处理的方法及设备 |
Families Citing this family (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101531419B1 (ko) | 2008-02-01 | 2015-06-24 | 엘지전자 주식회사 | 시간동기 타이머의 만료 시 상향링크 harq의 동작 방법 |
WO2009101816A1 (ja) * | 2008-02-14 | 2009-08-20 | Panasonic Corporation | 無線通信基地局装置、無線通信中継局装置、無線通信端末装置、無線通信システム及び無線通信方法 |
WO2009126902A2 (en) * | 2008-04-11 | 2009-10-15 | Interdigital Patent Holdings, Inc. | Methods for transmission time interval bundling in the uplink |
WO2010016669A2 (en) * | 2008-08-04 | 2010-02-11 | Samsung Electronics Co., Ltd. | Signal transmission method and apparatus for user equipment in mobile communication system |
JP5154523B2 (ja) * | 2008-08-27 | 2013-02-27 | 創新音▲速▼股▲ふん▼有限公司 | Sps機能のharqプロセスを処理する方法及び装置 |
KR101122095B1 (ko) * | 2009-01-05 | 2012-03-19 | 엘지전자 주식회사 | 불필요한 재전송 방지를 위한 임의접속 기법 및 이를 위한 단말 |
US8199666B2 (en) * | 2009-02-02 | 2012-06-12 | Texas Instruments Incorporated | Transmission of acknowledge/not-acknowledge with repetition |
CN102474886B (zh) | 2009-08-12 | 2014-11-19 | 交互数字专利控股公司 | 基于争用的上行链路数据传输方法和设备 |
KR101164117B1 (ko) * | 2009-09-04 | 2012-07-12 | 엘지전자 주식회사 | 무선 통신 시스템상에서 물리 하향 채널의 모니터링 동작을 효율적으로 제어하는 방법 |
JP5048746B2 (ja) * | 2009-12-09 | 2012-10-17 | シャープ株式会社 | 通信システム、移動局装置、無線リンク状態管理方法及び集積回路 |
JP4861535B2 (ja) * | 2010-03-30 | 2012-01-25 | シャープ株式会社 | 移動通信システム、基地局装置、移動局装置、移動通信方法および集積回路 |
US8594072B2 (en) * | 2010-03-31 | 2013-11-26 | Qualcomm Incorporated | User equipment based method to improve synchronization shift command convergence in TD-SCDMA uplink synchronization |
JP5307112B2 (ja) * | 2010-12-17 | 2013-10-02 | シャープ株式会社 | 移動局装置、基地局装置、無線通信システム、制御方法及び集積回路 |
JP5982403B2 (ja) | 2011-01-18 | 2016-08-31 | サムスン エレクトロニクス カンパニー リミテッド | 移動通信システムで端末の性能を報告する方法及び装置 |
WO2012106843A1 (en) * | 2011-02-11 | 2012-08-16 | Renesas Mobile Corporation | Signaling method to enable controlled tx deferring in mixed licensed and unlicensed spectrum carrier aggregation in future lte-a networks |
US9615338B2 (en) | 2011-02-15 | 2017-04-04 | Samsung Electronics Co., Ltd. | Power headroom report method and apparatus of UE |
KR102073027B1 (ko) | 2011-04-05 | 2020-02-04 | 삼성전자 주식회사 | 반송파 집적 기술을 사용하는 무선통신시스템에서 복수 개의 타임 정렬 타이머 운용 방법 및 장치 |
EP2676475B1 (de) | 2011-02-15 | 2022-04-06 | Samsung Electronics Co., Ltd. | Leistungsreservebericht |
JP6125437B2 (ja) | 2011-02-21 | 2017-05-10 | サムスン エレクトロニクス カンパニー リミテッド | 端末送信電力量を效率的に報告する方法及び装置 |
KR101995293B1 (ko) | 2011-02-21 | 2019-07-02 | 삼성전자 주식회사 | 반송파 집적 기술을 사용하는 시분할 무선통신시스템에서 부차반송파의 활성화 또는 비활성화 방법 및 장치 |
CN107017970B (zh) | 2011-04-05 | 2020-07-14 | 三星电子株式会社 | 载波聚合系统中的终端和基站及其方法 |
CA2834104C (en) * | 2011-04-21 | 2017-06-13 | Yanling Lu | Method for maintaining time advance timer, base station and terminal equipment |
KR20140013035A (ko) * | 2011-04-25 | 2014-02-04 | 엘지전자 주식회사 | 캐리어 병합을 위한 오류 제어 방법 및 이를 위한 장치 |
EP2709292B1 (de) | 2011-05-10 | 2021-09-29 | Samsung Electronics Co., Ltd. | Verfahren und vorrichtung zum anbringen eines zeitsynchronisierungszeitgebers in einem drahtlosen kommunikationssystem mittels eines trägeraggregationsverfahrens |
KR101556050B1 (ko) | 2011-06-28 | 2015-09-25 | 엘지전자 주식회사 | Tdd시스템에서 통신 방법 및 장치 |
US9949221B2 (en) * | 2011-07-27 | 2018-04-17 | Sharp Kabushiki Kaisha | Devices for multi-cell communications |
US9794900B2 (en) * | 2011-07-29 | 2017-10-17 | Htc Corporation | Method of handling uplink timing and related communication device |
CN102958003B (zh) * | 2011-08-30 | 2016-03-30 | 华为技术有限公司 | 组呼的方法及设备 |
EP3937551A3 (de) * | 2012-01-25 | 2022-02-09 | Comcast Cable Communications, LLC | Direktzugriffskanal in einer drahtlosen mehrträgerkommunikation mit zeitvorlaufsgruppen |
EP2810509B1 (de) * | 2012-01-31 | 2019-09-25 | Nokia Technologies Oy | Verfahren und vorrichtung zur konservierung physikalischer uplink-steuerkanalressourcen |
US9526091B2 (en) * | 2012-03-16 | 2016-12-20 | Intel Corporation | Method and apparatus for coordination of self-optimization functions in a wireless network |
WO2014067064A1 (zh) * | 2012-10-30 | 2014-05-08 | 华为技术有限公司 | 数据传输方法、装置、终端及基站 |
US20140192767A1 (en) * | 2012-12-14 | 2014-07-10 | Futurewei Technologies, Inc. | System and Method for Small Traffic Transmissions |
CN109451576B (zh) * | 2012-12-31 | 2021-04-09 | 华为技术有限公司 | 一种数据传输方法及基站 |
US9014143B2 (en) * | 2013-02-20 | 2015-04-21 | Qualcomm Incorporated | Methods and apparatus for accessing dormant cells |
US9398579B2 (en) | 2013-05-03 | 2016-07-19 | Qualcomm Incorporated | Systems and methods for downlink frequency domain multiplexing transmissions |
US10326577B2 (en) * | 2013-08-13 | 2019-06-18 | Qualcomm Incorporated | Harq design for LTE in unlicensed spectrum utilizing individual ACK/NACK |
CN105264810B (zh) * | 2013-10-16 | 2018-11-16 | 华为技术有限公司 | 数据传输方法、装置和设备 |
US9673938B2 (en) * | 2014-01-24 | 2017-06-06 | Htc Corporation | Method for configuring table of network apparatus in LTE TDD system and network apparatus using the same |
WO2015113214A1 (en) * | 2014-01-28 | 2015-08-06 | Mediatek Singapore Pte. Ltd. | Methods for enhanced harq mechanism |
CN105634663B (zh) * | 2014-11-07 | 2019-10-18 | 中兴通讯股份有限公司 | 数据传输处理方法及装置 |
WO2016122162A1 (en) * | 2015-01-28 | 2016-08-04 | Lg Electronics Inc. | Method for transmitting a mac pdu on sl-dch in a d2d communication system and device therefor |
US10320530B2 (en) * | 2016-10-25 | 2019-06-11 | Telefonaktiebolaget Lm Ericsson (Publ) | Indication of hybrid automatic repeat request feedback by synchronization signal |
WO2018084565A1 (en) * | 2016-11-04 | 2018-05-11 | Lg Electronics Inc. | Method and user equipment for transmitting uplink signals |
CN108289325B (zh) * | 2017-01-09 | 2022-03-01 | 中兴通讯股份有限公司 | 上行和下行传输对齐的方法及装置 |
CN111290875B (zh) * | 2018-12-10 | 2023-06-09 | 深圳市中兴微电子技术有限公司 | Harq数据存储管理方法、装置和harq数据缓存器 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040223507A1 (en) * | 2003-05-07 | 2004-11-11 | Ravi Kuchibhotla | ACK/NACK determination reliability for a communication device |
WO2005112327A2 (en) | 2004-05-07 | 2005-11-24 | Interdigital Technology Corporation | Implementing a data lifespan timer for enhanced dedicated channel transmissions |
GB2429605A (en) | 2005-08-24 | 2007-02-28 | Ipwireless Inc | Allocating downlink code sequence associated with an uplink code resource identifier |
Family Cites Families (91)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5959980A (en) * | 1995-06-05 | 1999-09-28 | Omnipoint Corporation | Timing adjustment control for efficient time division duplex communication |
US6505253B1 (en) * | 1998-06-30 | 2003-01-07 | Sun Microsystems | Multiple ACK windows providing congestion control in reliable multicast protocol |
JP2001320417A (ja) | 2000-05-11 | 2001-11-16 | Nec Corp | 送信制御方式及びその方法 |
JP2002176395A (ja) | 2000-12-07 | 2002-06-21 | Sakai Yasue | アナログフィルタ |
KR100369940B1 (ko) | 2001-01-12 | 2003-01-30 | 한국전자통신연구원 | 망 전송 수단을 이용한 단말기/기지국 rrc 의 데이터전송 요구 인지 방법 |
US7151944B2 (en) | 2001-09-27 | 2006-12-19 | Nortel Networks Limited | Method and apparatus for using synchronous CDMA in a mobile environment |
JP4372549B2 (ja) * | 2001-11-16 | 2009-11-25 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 無線通信システム |
DE60239500D1 (de) * | 2001-11-24 | 2011-04-28 | Lg Electronics Inc | Verfahren zur Übertragung von Paketdaten in komprimierter Form in einem Kommunikationssystem |
KR100840733B1 (ko) * | 2002-01-05 | 2008-06-24 | 엘지전자 주식회사 | 통신 시스템에서 패킷 데이터 처리하는 방법 그 시스템 및 그 수신 장치 |
KR100747464B1 (ko) * | 2002-01-05 | 2007-08-09 | 엘지전자 주식회사 | 고속하향링크패킷접속(hsdpa)시스템을 위한타이머를 이용한 교착상황 회피방법 |
CN1245041C (zh) | 2002-02-01 | 2006-03-08 | 华硕电脑股份有限公司 | 利用harq进程的接收状态避免停顿的方法 |
TWI220820B (en) * | 2002-02-01 | 2004-09-01 | Asustek Comp Inc | Stall avoidance schemes using HARQ process receiving status |
DE60213196T2 (de) * | 2002-02-13 | 2006-11-23 | Matsushita Electric Industrial Co., Ltd., Kadoma | Verfahren zum Übertragen von Datenpaketen unter Verwendung der Protokolle RTP und RTCP |
KR100896484B1 (ko) | 2002-04-08 | 2009-05-08 | 엘지전자 주식회사 | 이동통신시스템에서 데이터 전송 무선통신방법 및 무선통신장치 |
KR100876765B1 (ko) * | 2002-05-10 | 2009-01-07 | 삼성전자주식회사 | 이동 통신 시스템에서 데이터 재전송 장치 및 방법 |
DE60312432T2 (de) | 2002-05-10 | 2008-01-17 | Innovative Sonic Ltd. | Verfahren zur bestimmten Auslösung einer PDCP-Sequenznummern-Synchronisierungsprozedur |
US6901063B2 (en) | 2002-05-13 | 2005-05-31 | Qualcomm, Incorporated | Data delivery in conjunction with a hybrid automatic retransmission mechanism in CDMA communication systems |
KR100876730B1 (ko) * | 2002-07-08 | 2008-12-31 | 삼성전자주식회사 | 광대역 부호 분할 다중 접속 통신 시스템의 효율적인 초기전송 포맷 결합 인자 설정 방법 |
US7227856B2 (en) | 2002-08-13 | 2007-06-05 | Innovative Sonic Limited | Method for handling timers after an RLC reset or re-establishment in a wireless communications system |
US7433336B1 (en) * | 2002-08-27 | 2008-10-07 | Broadcom Corporation | Method and apparatus for distributing data to a mobile device using plural access points |
US7269760B2 (en) * | 2003-02-05 | 2007-09-11 | Innovative Sonic Limited | Scheme to discard an erroneous PDU received in a wireless communication system |
JP2004274170A (ja) | 2003-03-05 | 2004-09-30 | Ntt Docomo Inc | 通信システム、端末装置、無線通信装置、情報送信装置、中継装置、管理サーバ及び通信方法 |
US7376119B2 (en) * | 2003-04-25 | 2008-05-20 | Lucent Technologies Inc. | Method of controlling downlink transmission timing in communication systems |
JP2004364217A (ja) * | 2003-06-09 | 2004-12-24 | Matsushita Electric Ind Co Ltd | パケット通信装置 |
WO2005015857A1 (en) * | 2003-08-08 | 2005-02-17 | Samsung Electronics Co., Ltd. | Method and apparatus for configuring protocols for a multimedia broadcast/multicast service |
EP1507352B1 (de) * | 2003-08-14 | 2007-01-31 | Matsushita Electric Industrial Co., Ltd. | Zeitüberwachung von Packetwiedersendungen während eines sanften Weiterreichens |
KR101000390B1 (ko) * | 2003-09-03 | 2010-12-13 | 엘지전자 주식회사 | 이동 통신 시스템에서의 패킷 데이터 스케줄링 방법 |
SE0302685D0 (sv) * | 2003-10-07 | 2003-10-07 | Ericsson Telefon Ab L M | Method and arrangement in a telecommunication system |
WO2005048517A1 (en) * | 2003-11-12 | 2005-05-26 | Philips Intellectual Property & Standards Gmbh | Data packet transmission |
AU2003280933A1 (en) * | 2003-11-14 | 2005-06-06 | Zte Corporation | A packet scheduling method for wireless communication system |
EP1545040B1 (de) * | 2003-12-19 | 2009-04-22 | Panasonic Corporation | HARQ Protokoll mit synchronen Wiederholungen |
EP1721405B1 (de) * | 2003-12-29 | 2014-04-02 | Electronics and Telecommunications Research Institute | Verfahren zum weitersenden eines pakets in einem mobilkommunikationssystem und auf einem computerlesbaren medium aufgezeichnetes programm dafür |
KR101048256B1 (ko) | 2004-03-31 | 2011-07-08 | 엘지전자 주식회사 | 이동통신 시스템의 중요도에 따른 데이터 전송방법 |
US7885245B2 (en) | 2004-07-19 | 2011-02-08 | Interdigital Technology Corporation | Method and apparatus for enhanced uplink multiplexing |
KR20060023870A (ko) | 2004-09-10 | 2006-03-15 | 삼성전자주식회사 | 이동 단말의 액세스 데이터에 대한 송신 전력 제어를 위한이동통신 시스템 및 방법 |
US7693110B2 (en) * | 2004-09-16 | 2010-04-06 | Motorola, Inc. | System and method for downlink signaling for high speed uplink packet access |
US20060062223A1 (en) | 2004-09-17 | 2006-03-23 | Nokia Corporation | Delay-reduced stall avoidance mechanism for reordering a transport block |
US7525908B2 (en) * | 2004-09-24 | 2009-04-28 | M-Stack Limited | Data unit management in communications |
US7804850B2 (en) * | 2004-10-01 | 2010-09-28 | Nokia Corporation | Slow MAC-e for autonomous transmission in high speed uplink packet access (HSUPA) along with service specific transmission time control |
KR101075613B1 (ko) * | 2004-11-18 | 2011-10-21 | 삼성전자주식회사 | 상향링크 패킷 데이터 서비스에서 패킷 재정렬을 위한패킷 폐기 정보 전달 방법 및 장치 |
KR100703504B1 (ko) * | 2004-12-02 | 2007-04-03 | 삼성전자주식회사 | 무선 통신 시스템에서 자동 재전송 시스템 및 방법 |
JP2006203265A (ja) | 2004-12-24 | 2006-08-03 | Ntt Docomo Inc | 受信装置、送信装置、通信システム及び通信方法 |
JP2006245887A (ja) | 2005-03-02 | 2006-09-14 | Kddi Corp | 無線mac処理部における送信パケットスケジューリング方法、プログラム及び無線通信装置 |
KR101137327B1 (ko) * | 2005-05-06 | 2012-04-19 | 엘지전자 주식회사 | 상향링크 채널 스케쥴링을 위한 제어정보 전송 방법 및상향링크 채널 스케쥴링 방법 |
US7673211B2 (en) * | 2005-05-23 | 2010-03-02 | Telefonaktiebolaget L M Ericsson (Publ) | Automatic repeat request (ARQ) protocol having multiple complementary feedback mechanisms |
US7916751B2 (en) | 2005-06-21 | 2011-03-29 | Interdigital Technology Corporation | Method and apparatus for efficient operation of an enhanced dedicated channel |
ATE538554T1 (de) * | 2005-08-16 | 2012-01-15 | Panasonic Corp | Verfahren und vorrichtungen für das zurücksetzen einer sendesequenznummer (tsn) |
TWI398118B (zh) | 2005-09-21 | 2013-06-01 | Innovative Sonic Ltd | 無線通訊系統重建發射邊處理控制協定資料單元的方法及裝置 |
US7768962B2 (en) | 2005-11-01 | 2010-08-03 | Nokia Corporation | HSUPA HARQ process flushing |
EP1788751A1 (de) | 2005-11-16 | 2007-05-23 | High Tech Computer Corp. | Ein Verfahren zum Bearbeiten von RLC SDUs während eines RLC Resets und RLC- Wiederherstellung in einem UMTS System |
KR100912784B1 (ko) | 2006-01-05 | 2009-08-18 | 엘지전자 주식회사 | 데이터 송신 방법 및 데이터 재전송 방법 |
JP2007208635A (ja) | 2006-02-01 | 2007-08-16 | Matsushita Electric Ind Co Ltd | ノード、パケット通信方法、及びパケット通信システム |
KR101276024B1 (ko) | 2006-03-21 | 2013-07-30 | 삼성전자주식회사 | 고속 순방향 패킷 접속 시스템의 프로토콜 데이터 전송방법 및 장치 |
KR101259514B1 (ko) | 2006-03-23 | 2013-05-06 | 삼성전자주식회사 | 이기종 이동통신 시스템 간의 무손실 핸드오버 방법 및장치 |
KR100943590B1 (ko) | 2006-04-14 | 2010-02-23 | 삼성전자주식회사 | 이동 통신 시스템에서 상태 보고의 송수신 방법 및 장치 |
JP2007288746A (ja) | 2006-04-20 | 2007-11-01 | Ntt Docomo Inc | 通信端末及びデータ送信方法 |
KR101224334B1 (ko) * | 2006-05-08 | 2013-01-18 | 삼성전자주식회사 | 고속 데이터 처리를 위한 재전송 장치 및 방법 |
KR20070109313A (ko) * | 2006-05-10 | 2007-11-15 | 삼성전자주식회사 | 고속 데이터 처리를 위한 효율적인 재전송 요청 장치 및방법 |
US20070293157A1 (en) * | 2006-06-20 | 2007-12-20 | Telefonaktiebolaget L M Ericsson (Publ) | Mobile Assisted Timing Alignment |
WO2007148928A1 (en) * | 2006-06-22 | 2007-12-27 | Samsung Electronics Co., Ltd. | Method for maintaining uplink timing synchronization in a mobile communication system and user equipment apparatus for the same |
EP1871138A2 (de) | 2006-06-22 | 2007-12-26 | Innovative Sonic Limited | Verfahren und Vorrichtung zur Nummerierung von Sicherheitssequenzen in einem drahtlosen Kommunikationssystem |
TW200803272A (en) | 2006-06-22 | 2008-01-01 | Innovative Sonic Ltd | Method and apparatus for detection local NACK in a wireless communications system |
US8848618B2 (en) * | 2006-08-22 | 2014-09-30 | Qualcomm Incorporated | Semi-persistent scheduling for traffic spurts in wireless communication |
KR20080018055A (ko) | 2006-08-23 | 2008-02-27 | 삼성전자주식회사 | 패킷 데이터 송수신 방법 및 장치 |
ES2632503T3 (es) * | 2006-10-02 | 2017-09-13 | Lg Electronics Inc. | Método para retransmitir datos en el sistema multiportadora |
US7778151B2 (en) * | 2006-10-03 | 2010-08-17 | Texas Instruments Incorporated | Efficient scheduling request channel for wireless networks |
EP2092772B1 (de) * | 2006-12-04 | 2011-07-27 | Koninklijke Philips Electronics N.V. | Kommunikationsverfahren zwischen kanälen in drahtlosen netzwerken mit mehreren kanälen |
WO2008085811A2 (en) * | 2007-01-04 | 2008-07-17 | Interdigital Technology Corporation | Method and apparatus for hybrid automatic repeat request transmission |
JP5087939B2 (ja) | 2007-02-02 | 2012-12-05 | 富士通株式会社 | 無線通信装置、送信方法 |
US8503423B2 (en) | 2007-02-02 | 2013-08-06 | Interdigital Technology Corporation | Method and apparatus for versatile MAC multiplexing in evolved HSPA |
KR20090121299A (ko) | 2007-02-02 | 2009-11-25 | 인터디지탈 테크날러지 코포레이션 | 플렉시블 rlc pdu 크기에 대하여 rlc를 개선하는 방법 및 장치 |
USRE47721E1 (en) * | 2007-02-05 | 2019-11-05 | Nec Corporation | Wireless communication system, its base station and mobile station, communication synchronization management method and timer control program therefor |
JP5140300B2 (ja) | 2007-03-23 | 2013-02-06 | 株式会社エヌ・ティ・ティ・ドコモ | 移動局、無線基地局及び同期確立方法 |
US8218526B2 (en) * | 2007-04-30 | 2012-07-10 | Texas Instruments Incorporated | Uplink synchronization maintenance principles in wireless networks |
KR101486352B1 (ko) * | 2007-06-18 | 2015-01-26 | 엘지전자 주식회사 | 무선 통신 시스템의 단말에서의 상향링크 동기 상태 제어방법 |
EP2015478B1 (de) * | 2007-06-18 | 2013-07-31 | LG Electronics Inc. | Verfahren zur Durchführung von Aufwärtsstreckensynchronisation in einem drahtlosen Kommunikationssystem |
WO2009018318A2 (en) * | 2007-08-02 | 2009-02-05 | Interdigital Patent Holdings, Inc. | Packet data convergence protocol procedures |
WO2009045913A2 (en) | 2007-09-28 | 2009-04-09 | Interdigital Patent Holdings, Inc. | Method and apparatus for generating radio link control protocol data units |
EP2193621B1 (de) * | 2007-09-28 | 2019-06-12 | Rakuten, Inc. | Verfahren und vorrichtung zur unterstützung von uplink-protokolländerungen |
EP2204057B1 (de) * | 2007-09-28 | 2016-12-21 | InterDigital Patent Holdings, Inc. | Betrieb von steuerprotokolldateneinheiten in einem paketdatenkonvergenzprotokoll |
US20090086657A1 (en) * | 2007-10-01 | 2009-04-02 | Comsys Communication & Signal Processing Ltd. | Hybrid automatic repeat request buffer flushing mechanism |
ATE505883T1 (de) | 2007-11-01 | 2011-04-15 | Ericsson Telefon Ab L M | Begrenzung der rlc-fenstergrösse in einer hsdpa- flusssteuerung |
CN101843026B (zh) * | 2007-11-02 | 2014-04-09 | 艾利森电话股份有限公司 | 用于处理无线通信系统中的差错控制消息的方法和设备 |
US8401017B2 (en) * | 2008-01-03 | 2013-03-19 | Sunplus Mmobile Inc. | Wireless communication network using an enhanced RLC status PDU format |
US8504046B2 (en) * | 2008-01-03 | 2013-08-06 | Telefonaktiebolaget Lm Ericsson (Publ) | Fast radio link recovery after handover failure |
US20090175175A1 (en) * | 2008-01-04 | 2009-07-09 | Interdigital Patent Holdings, Inc. | Radio link control reset using radio resource control signaling |
ES2393829T5 (es) | 2008-01-07 | 2016-03-08 | Idtp Holdings, Inc. | Reporte de estado para el protocolo de retransmisión |
KR101531419B1 (ko) * | 2008-02-01 | 2015-06-24 | 엘지전자 주식회사 | 시간동기 타이머의 만료 시 상향링크 harq의 동작 방법 |
KR100925333B1 (ko) * | 2008-03-14 | 2009-11-04 | 엘지전자 주식회사 | 랜덤 액세스 과정에서 상향링크 동기화를 수행하는 방법 |
EP3297303B1 (de) * | 2008-09-29 | 2019-11-20 | BlackBerry Limited | Uplink-resynchronisation zur verwendung in kommunikationssystemen |
CN102273309B (zh) * | 2009-01-08 | 2015-02-11 | Lg电子株式会社 | 在随机接入过程期间处理时间对准命令的方法 |
-
2009
- 2009-01-29 KR KR1020090007145A patent/KR101531419B1/ko active IP Right Grant
- 2009-01-30 US US12/363,263 patent/US8312336B2/en active Active
- 2009-01-30 WO PCT/KR2009/000478 patent/WO2009096745A2/en active Application Filing
- 2009-01-30 CN CN2009801035043A patent/CN101933281B/zh active Active
- 2009-01-30 JP JP2010540596A patent/JP5044702B2/ja active Active
- 2009-02-02 EP EP13003661.9A patent/EP2665306B1/de active Active
- 2009-02-02 EP EP09001422.6A patent/EP2086258B1/de active Active
-
2012
- 2012-10-04 US US13/645,302 patent/US8812925B2/en not_active Ceased
-
2014
- 2014-07-31 US US14/448,701 patent/US9049018B2/en active Active
-
2015
- 2015-04-22 US US14/693,549 patent/US9425926B2/en active Active
- 2015-04-30 US US14/701,162 patent/USRE49442E1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040223507A1 (en) * | 2003-05-07 | 2004-11-11 | Ravi Kuchibhotla | ACK/NACK determination reliability for a communication device |
WO2005112327A2 (en) | 2004-05-07 | 2005-11-24 | Interdigital Technology Corporation | Implementing a data lifespan timer for enhanced dedicated channel transmissions |
GB2429605A (en) | 2005-08-24 | 2007-02-28 | Ipwireless Inc | Allocating downlink code sequence associated with an uplink code resource identifier |
Non-Patent Citations (4)
Title |
---|
"3GPP TS 36.321, V8.0.0, Medium Access Control Protocol Specification", 20071201, 1 December 2007 (2007-12-01), XP002521635 * |
3GPP DRAFT; R2-080153_MAC_CONTROL PROCEDURE_TA_CONTROL_R2, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. tsg_ran\WG2_RL2\TSGR2_60bis\Docs, no. Sevilla, Spain; 20080114, 8 January 2008 (2008-01-08), XP050138033 * |
LG ELECTRONICS: "Handling of Nacked Date in HARQ Buffer When UL State is Out of Sync", 3GPP TSG-RAN WG2 #63, R2-084392, 18 August 2008 (2008-08-18) - 22 August 2008 (2008-08-22), pages 1 - 2, XP002523066, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_63/Docs/> [retrieved on 20090408] * |
NTT DOCOMO ET AL: "UL SRS resource release at TA Timer expiry", 3GPP DRAFT; R2-080454, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. tsg_ran\WG2_RL2\TSGR2_60bis\Docs, no. Sevilla, Spain; 20080114, 8 January 2008 (2008-01-08), XP050138302 * |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2131517A3 (de) * | 2008-06-03 | 2010-01-20 | Innovative Sonic Limited | Verfahren und Vorrichtung zur Verbesserung der HARQ-Uplink-Übertragung |
EP2131517A2 (de) * | 2008-06-03 | 2009-12-09 | Innovative Sonic Limited | Verfahren und Vorrichtung zur Verbesserung der HARQ-Uplink-Übertragung |
US8503436B2 (en) | 2008-08-21 | 2013-08-06 | Lg Electronics Inc. | Method of triggering status report in wireless communication system and receiver |
GB2463558A (en) * | 2008-09-17 | 2010-03-24 | Lg Electronics Inc | Harq processing method based on maximum number of transmissions |
GB2463558B (en) * | 2008-09-17 | 2011-01-19 | Lg Electronics Inc | Harq processing method based on maximum number of transmissions |
US8432865B2 (en) | 2008-09-19 | 2013-04-30 | Lg Electronics Inc. | Method for transmitting and receiving signals in consideration of time alignment timer and user equipment for the same |
EP2166802A1 (de) * | 2008-09-19 | 2010-03-24 | LG Electronics | Verfahren zum Übertragen und Empfangen von Signalen unter Berücksichtigung des Zeitsynchronisierungszeitgebers und Benutzergerät dafür |
GB2462011B (en) * | 2008-09-19 | 2011-01-05 | Lg Electronics Inc | Method for transmitting and receiving signals in consideration of time alignment timer and user equipment for the same |
US10966185B2 (en) | 2008-09-19 | 2021-03-30 | Lg Electronics Inc. | Method for transmitting and receiving signals in consideration of time alignment timer and user equipment for the same |
US9144068B2 (en) | 2008-09-19 | 2015-09-22 | Lg Electronics Inc. | Method for transmitting and receiving signals in consideration of time alignment timer and user equipment for the same |
US8243672B2 (en) | 2008-09-19 | 2012-08-14 | Lg Electronics Inc. | Method for transmitting and receiving signals in consideration of time alignment timer and user equipment for the same |
US8891418B2 (en) | 2008-09-29 | 2014-11-18 | Blackberry Limited | Uplink resynchronization for use in communication systems |
US8441970B1 (en) | 2008-09-29 | 2013-05-14 | Research In Motion Limited | Uplink resynchronization for use in communication system |
US8208416B2 (en) | 2008-09-29 | 2012-06-26 | Research In Motion Limited | Uplink resynchronization for use in communication systems |
US8750218B2 (en) | 2008-09-29 | 2014-06-10 | Blackberry Limited | Message processing in communication systems |
US9030978B2 (en) | 2008-09-29 | 2015-05-12 | Blackberry Limited | Uplink resynchronization for use in communication systems |
CN101998418B (zh) * | 2009-08-11 | 2013-07-24 | 电信科学技术研究院 | 一种提高网络覆盖性能的方法、系统和装置 |
CN101998417B (zh) * | 2009-08-11 | 2013-04-24 | 电信科学技术研究院 | 一种提高网络覆盖性能的方法、系统和装置 |
CN101998418A (zh) * | 2009-08-11 | 2011-03-30 | 大唐移动通信设备有限公司 | 一种提高网络覆盖性能的方法、系统和装置 |
EP2469954A4 (de) * | 2009-08-17 | 2017-01-18 | NTT DOCOMO, Inc. | Mobilkommunikationsverfahren, funkbasisstation und mobilstation |
WO2011069561A1 (en) * | 2009-12-11 | 2011-06-16 | Nokia Corporation | Synchronised data transmissions |
US11722973B2 (en) | 2010-01-08 | 2023-08-08 | Interdigital Patent Holdings, Inc. | Maintaining time alignment with multiple uplink carriers |
US11272466B2 (en) | 2010-01-08 | 2022-03-08 | Interdigital Patent Holdings, Inc. | Maintaining time alignment with multiple uplink carriers |
US8934459B2 (en) | 2010-01-08 | 2015-01-13 | Interdigital Patent Holdings, Inc. | Maintaining time alignment with multiple uplink carriers |
US10477493B2 (en) | 2010-01-08 | 2019-11-12 | Interdigital Patent Holdings, Inc. | Maintaining time alignment with multiple uplink carriers |
US12082129B2 (en) | 2010-01-08 | 2024-09-03 | Interdigital Patent Holdings, Inc. | Maintaining time alignment with multiple uplink carriers |
EP2509379A4 (de) * | 2010-04-12 | 2016-12-21 | Zte Corp | Terminplanungsverfahren und -system |
EP3445101A1 (de) * | 2010-06-18 | 2019-02-20 | BlackBerry Limited | Verfahren zur resynchronisation einer uplink-verbindung zwischen einem zugangsvorrichtung und einem benutzeragent |
CN103026765B (zh) * | 2010-06-18 | 2016-05-18 | 黑莓有限公司 | 用于重新同步接入设备与用户代理之间的上行链路的方法 |
EP3855815A1 (de) * | 2010-06-18 | 2021-07-28 | BlackBerry Limited | Verfahren zur resynchronisation einer uplink-verbindung zwischen einer zugangsvorrichtung und einem benutzeragenten |
WO2011159312A1 (en) * | 2010-06-18 | 2011-12-22 | Research In Motion Limited | Method for re-synchronizing an uplink between an access device and a user agent |
CN103026765A (zh) * | 2010-06-18 | 2013-04-03 | 捷讯研究有限公司 | 用于重新同步接入设备与用户代理之间的上行链路的方法 |
US9088912B2 (en) | 2010-09-07 | 2015-07-21 | Innovative Sonic Corporation | Method for reducing overhead in a measurement report from a user equipment configured with carrier aggregation to a network in a wireless communication system |
CN111181708A (zh) * | 2012-04-12 | 2020-05-19 | 北京三星通信技术研究有限公司 | 数据处理的方法及设备 |
CN111181708B (zh) * | 2012-04-12 | 2022-09-02 | 北京三星通信技术研究有限公司 | 数据处理的方法及设备 |
US10085227B2 (en) | 2013-01-28 | 2018-09-25 | Empire Technology Development Llc | Maintaining uplink synchronization |
Also Published As
Publication number | Publication date |
---|---|
JP5044702B2 (ja) | 2012-10-10 |
EP2665306B1 (de) | 2017-07-26 |
US8812925B2 (en) | 2014-08-19 |
CN101933281A (zh) | 2010-12-29 |
EP2665306A1 (de) | 2013-11-20 |
KR101531419B1 (ko) | 2015-06-24 |
USRE49442E1 (en) | 2023-02-28 |
CN101933281B (zh) | 2013-06-12 |
US20090204862A1 (en) | 2009-08-13 |
US20130061105A1 (en) | 2013-03-07 |
US9425926B2 (en) | 2016-08-23 |
US8312336B2 (en) | 2012-11-13 |
WO2009096745A2 (en) | 2009-08-06 |
US20140341160A1 (en) | 2014-11-20 |
US9049018B2 (en) | 2015-06-02 |
WO2009096745A3 (en) | 2009-09-24 |
JP2011508559A (ja) | 2011-03-10 |
US20150229449A1 (en) | 2015-08-13 |
KR20090084720A (ko) | 2009-08-05 |
EP2086258B1 (de) | 2013-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9425926B2 (en) | Method of an uplink HARQ operation at an expiry of time alignment timer | |
US8243657B2 (en) | Method of downlink HARQ operation at an expiry of time alignment timer | |
US9066290B2 (en) | Method for reconfiguring time alignment timer | |
EP2186246B1 (de) | Verfahren für effektive direktzugriffs-neuversuche | |
US8493911B2 (en) | Method of restricting scheduling request for effective data transmission | |
AU2010203924B2 (en) | Method of handling time alignment command during a random access procedure | |
US9078236B2 (en) | Random access scheme for preventing unnecessary retransmission and user equipment for the same | |
EP2836007B1 (de) | Verfahren für einen HARQ-Aufwärtsverbindungsbetrieb bei Ablauf des Zeitanpassungszeitgebers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20090202 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20120726 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602009019561 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: H04W0028040000 Ipc: H04L0001180000 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H04L 1/18 20060101AFI20130327BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20130522 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: LG ELECTRONICS INC. |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 638063 Country of ref document: AT Kind code of ref document: T Effective date: 20131115 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602009019561 Country of ref document: DE Effective date: 20131219 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2438815 Country of ref document: ES Kind code of ref document: T3 Effective date: 20140120 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 638063 Country of ref document: AT Kind code of ref document: T Effective date: 20131023 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131023 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131023 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140223 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140123 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131023 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131023 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131023 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131023 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140224 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602009019561 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131023 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131023 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131023 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131023 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131023 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140202 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131023 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131023 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20140724 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20140202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140228 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140228 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602009019561 Country of ref document: DE Effective date: 20140724 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140202 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131023 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131023 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131023 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131023 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20090202 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131023 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240108 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240319 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20240105 Year of fee payment: 16 Ref country code: DE Payment date: 20240105 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20240105 Year of fee payment: 16 Ref country code: IT Payment date: 20240108 Year of fee payment: 16 Ref country code: FR Payment date: 20240112 Year of fee payment: 16 |