EP2083327B1 - Optische Systeme mit verbessertem Kollektor mit streifendem Einfall für EUV- und Röntgenstrahlungsanwendungen - Google Patents

Optische Systeme mit verbessertem Kollektor mit streifendem Einfall für EUV- und Röntgenstrahlungsanwendungen Download PDF

Info

Publication number
EP2083327B1
EP2083327B1 EP08001535.7A EP08001535A EP2083327B1 EP 2083327 B1 EP2083327 B1 EP 2083327B1 EP 08001535 A EP08001535 A EP 08001535A EP 2083327 B1 EP2083327 B1 EP 2083327B1
Authority
EP
European Patent Office
Prior art keywords
mirror
collector
radiation
optical system
euv
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08001535.7A
Other languages
English (en)
French (fr)
Other versions
EP2083327A1 (de
Inventor
Fabio Zocchi
Pietro Binda
Enrico Benedetti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Media Lario SRL
Original Assignee
Media Lario SRL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Media Lario SRL filed Critical Media Lario SRL
Priority to EP08001535.7A priority Critical patent/EP2083327B1/de
Priority to US12/735,525 priority patent/US8594277B2/en
Priority to JP2010543445A priority patent/JP5368477B2/ja
Priority to PCT/EP2009/000538 priority patent/WO2009095219A1/en
Publication of EP2083327A1 publication Critical patent/EP2083327A1/de
Application granted granted Critical
Publication of EP2083327B1 publication Critical patent/EP2083327B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/7015Details of optical elements
    • G03F7/70166Capillary or channel elements, e.g. nested extreme ultraviolet [EUV] mirrors or shells, optical fibers or light guides
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2201/00Arrangements for handling radiation or particles
    • G21K2201/06Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements
    • G21K2201/064Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements having a curved surface

Definitions

  • the present invention relates to reflective optical systems, and more particularly to improved collector optical systems for EUV and X-ray applications.
  • the invention has various applications in scenarios where EUV and X-ray radiation is used, but is particularly useful in lithography and imaging applications.
  • FIG. 1 A simplified block diagram of an EUV lithography system is shown in Fig. 1 (PRIOR ART).
  • the ultra-violet source 102 is normally an hot plasma the emission of which is collected by the collector 104 and delivered to an illuminator 106. The latter illuminates a mask or reticle 108 with the pattern to be transferred to the wafer 110. The image of the mask or reticle is projected onto the wafer 110 by the projection optics box 112.
  • EUV lithography systems are disclosed, for example, in US2004/0265712A1 , US2005/0016679A1 and US2005/01 55624A1 .
  • Each mirror 200 is a thin shell consisting of two sections (surfaces) 202, 204: the first one 202, closer to the source 102 is a hyperboloid whereas the second 204 is an ellipsoid, both with rotational symmetry, with a focus in common.
  • the light source 102 is placed in the focus of the hyperboloid different from the common focus.
  • the light from the source 102 is collected by the hyperbolic section 202, reflected onto the elliptic section 204 and then concentrated to the focus of the ellipsoid, different from the common focus, and known as intermediate focus (IF) 206.
  • IF intermediate focus
  • the performance of the collector 104 is mainly characterized by the collection efficiency and the far field intensity distribution.
  • the collection efficiency is the ratio between the light intensity at intermediate focus 206 and the power emitted by the source 102 into half a sphere.
  • the collection efficiency is related to the geometry of the collector 104, to the reflectivity of each mirror 200, to the spatial and angular distribution of the source 102, to the optical specifications of the illuminator.
  • the far field intensity distribution is the 2D spatial distribution of the light intensity beyond the intermediate focus 206 at distances that depends on the illuminator design but that are normally of the same order of magnitude as the distance between the source 102 and intermediate focus 206.
  • the collector 104 is normally used in conjunction with a hot plasma source 102.
  • the thermal load from UV radiation on the collector 104 is very high and a proper cooling system is required.
  • the cooling system is positioned on the back surface of each mirror 200 in the shadow area that is present on the back side of both the elliptical section 204 and the hyperbolic section 202 (see Fig. 2 (PRIOR ART)).
  • the purpose of the collector 104 in EUV sources is to transfer the largest possible amount of in-band power emitted from the plasma to the next optical stage, the illuminator 106, of the lithographic tool 100 (see Fig. 1 ), the collector efficiency being as defined hereinabove. For a given maximum collection angle on the source side, the collector efficiency is mainly determined by collected angle and by the reflectivity of the coating on the optical surface of the mirrors.
  • a problem with known systems is how to significantly increase collector efficiency.
  • the present invention seeks to address the aforementioned and other issues.
  • a further problem with known systems is that the degree of uniformity of far field intensity distribution for the collector is lower than it might be, thereby affecting collector efficiency.
  • the uniformity of the far field intensity distribution has a direct impact on the illumination uniformity on the mask or reticle 108, thus affecting the quality of the lithographic process.
  • the illuminator 106 is designed to partly compensate for the non-uniformity of the far field intensity distribution, there is a need for a design of the collector 104 that limits the nonuniformity of the far field intensity distribution.
  • the high spatial frequency variation of the far field intensity distribution may be difficult to compensate.
  • the main source of the high spatial frequency variation of the far field intensity distribution is the shadowing due to the thickness of the mirrors 200.
  • Such thickness is limited toward small values by mechanical and thermal considerations. Indeed, enough mechanical stiffness is required to the mirror 200 for manufacturing and integration purposes.
  • the thermal conductance of the mirror 200 must be high enough to transfer the high thermal load produced by the hot plasma to the location of the cooling system.
  • the shadowing due to the mirror thickness can be almost completely avoided with a suitable collector design, i.e. in some cases a collector design is possible whereby the shadowing at far field due to shell thickness is almost completely absent even if the thickness of the shells is not zero but, at the same time, realistic values (from a manufacturing and thermal point of view) are used for the mirror thickness.
  • the use of extended sources 102 helps in reducing the nonuniformity of the far field intensity distribution due to mirror thickness.
  • the illuminator 106 and source 102 specifications do not allow a collector design with the above property.
  • limitations of the optical aperture at the intermediate focus 206 prevent part of the light filling the dips in the far field intensity distribution.
  • US 2008/013680 A1 describes a collector arranged to achieve a homogeneity of illumination of +/-15%.
  • the collector of US 2008/013680 A1 comprises eight mirror shells, each shell representing a Wolter system. Each mirror shell comprises a hyperboloid mirror segment and an ellipsoid mirror segment, both having a conical shape.
  • a collector optical system for extreme ultraviolet (EUV) and X-ray applications in which EUV or X-ray radiation from a radiation source is directed to an image focus to form a far-field intensity distribution, comprising a plurality of mirrors arranged in nested and symmetric configuration about an optical axis that extends through the radiation source, with each mirror having at least first and second reflective surfaces configured to respectively successively grazingly reflect the radiation to form the far-field intensity distribution, characterised in that at least one of the first and second reflective surfaces comprises a polynomial corrective shape arranged to redirect part of the radiation incident thereon in a direction to fill dips in the far-field intensity distribution due to shadowing of the mirror thickness.
  • the or each mirror, the mirror is specified by Table A.1 hereinbelow, where 1 is the innermost mirror.
  • a total of 7 mirrors in nested configuration are provided.
  • the or each mirror comprises a Wolter I mirror.
  • the first reflective surface, closest to the source has a hyperbolic section.
  • the second reflective surface, furthest from the source has an elliptical section.
  • the second reflective surface elliptical section is obtained by rotating an elliptical profile around an axis that is not an axis of symmetry of the ellipse.
  • the or each mirror two of more of the mirrors each have a different geometry.
  • the or each mirror comprises an electroformed monolithic component, and wherein the first and second reflective surfaces are each provided on a respective one of two contiguous sections of the mirror.
  • one or more of the mirrors has mounted thereon, for example on the rear side thereof, one or more devices for the thermal management of the mirror, for example cooling lines, Peltier cells and temperature sensors.
  • one or more devices for the thermal management of the mirror for example cooling lines, Peltier cells and temperature sensors.
  • one or more of the mirrors has mounted thereon, for example on the rear side thereof, one or more devices for the mitigation of debris from the source, for example erosion detectors, solenoids and RF sources.
  • one or more devices for the mitigation of debris from the source for example erosion detectors, solenoids and RF sources.
  • collector optical system for EUV lithography comprising the system of any of claims 1 to 5 of the appended claims.
  • an EUV lithography system comprising: a radiation source, for example a LPP source, the collector optical system of any of claims 1 to 5 of the appended claims; an optical condenser; and a reflective mask.
  • an imaging optical system for EUV or X-ray imaging comprising the system of any of claims 1 to 5 of the appended claims.
  • An advantage of the invention is to compensate the high spatial frequency variation of the far field intensity distribution when this is not possible by a proper design of the Wolter I configuration.
  • the present invention involves suitable correction of the nominal shape of each mirror such that part of the light is redirected in a direction that fills the dips in the far field intensity distribution.
  • This correction can be applied to either the elliptical or hyperbolic part of each Wolter I mirror or to both parts.
  • the correction can be mathematically described by its power expansion up to a given order obtaining a polynomial correction.
  • the amount of the correction must be carefully chosen case by case to optimise the far field intensity distribution. Indeed, a wrong or excessive correction can increase the depth of the dips or produce unwanted peaks at some positions of the far field intensity distribution.
  • references to an "image focus” are references to an image focus or an intermediate focus.
  • collector 104 The design and construction of the collector 104 according to the invention is as set out above in relation to Figs 1 and 2 , except as described hereinafter.
  • Figure 3 depicts an embodiment of a nested collector in accordance with one aspect of the invention. This embodiment is the same as described with reference to Figs 1 and 2 , except as described below.
  • the design here is of a 7-mirror nested Wolter I collector, and the corresponding specifications are listed in Table A.1. However, it will be appreciated by skilled persons that any suitable number of mirrors may be used.
  • the far field intensity distribution simulated by ray tracing for a spherical extended source with a FWHM of 0.5 mm and without the inclusion of the present invention is shown in Fig. 4 .
  • the 6 dips 402 in the far field intensity distribution that are evident in Fig. 4 are due to the shadowing of the mirror thickness.
  • the shadow of the outermost mirror is of course not evident in Fig. 4 .
  • ⁇ r i z k i c 1 z + c 2 z 2 + c 3 z 3
  • ⁇ r i (z) is the variation in the mirror radius
  • z is the position along the optical axis in millimeters measured starting from the joint point between the hyperbolic and the elliptical section of each mirror and pointing from the intermediate focus to the source.
  • the subscript i in the above equation enumerates the mirrors from 1 (innermost mirror) to 7 (outermost mirror).
  • FIG. 5 An example of the above correction for mirror #5 is shown in Fig. 5 .
  • the result of the ray tracing of the collector of Fig. 3 with the corrections given in Table A.2 and Table A.3 is shown in Fig. 6 . It can be noted that the dips in the far field distribution due to the shadowing of the mirror thickness have disappeared.
  • the present invention has been here described with reference to a Wolter I optical design for the collector configuration. However, it may be equally well applied to any optical configuration based on nested mirrors, including, in particular, pure elliptical designs.
  • collector optics for imaging e.g. EUV or X-ray
  • imaging systems incorporating such optics the design of such imaging optics and imaging systems is discussed in, for example, European patent application no. EP 1 882 984 A1 .

Claims (6)

  1. Ein optisches Kollektor-System (104) für den Einsatz von extremer ultravioletter Strahlung (EUV) und Röntgenstrahlung, bei welcher die Ultraviolett-Strahlung oder Röntgenstrahlung von einer Strahlungsquelle (102) aus auf einen Bildfokus gerichtet ist, um eine entfernte Feld-Intensitätsverteilung zu bewirken, einschliessend eine Mehrzahl von Spiegeln (200), die um die optische Achse, welche durch die Strahlungsquelle verläuft, in einer symmetrischen und verschachtelten Konfiguration angeordnet sind, wobei jeder Spiegel wengistens erste und zweite reflektierende Oberflächen (202, 204) aufweist, die so konfiguriert sind, dass sie sukzessive respektive streifend die Strahlung reflektieren und so eine entfernte Feldintensitäts Verteilung erzeugen, dadurch gekennzeichnet, dass wenigstens eine der ersten und zweiten reflektierenden Oberflächen eine polynomische korrigierende Form-Anordnung einschliessen, um einen Teil des lokal auftreffenden Strahls in eine Richtung umzuleiten, um Einbrüche in der entfernten Intensiontätsverteilung aufzufüllen, welche durch die Schatten der Spiegeldicken auftreten.
  2. Optisches Kollektor-System nach Anspruch 1, wobei die besagte korrigierende Form-Anordnung beschrieben ist durch Δ r i z = k i c 1 z + c 2 z 2 + c 3 z 3
    Figure imgb0004
    wobei Δri (z) eine Variation des Spiegel-Radius ist, z ist die Position längs der optischen Achse gemessen von Vereinigungspunkt zwischen dem hyperbolischen und dem elliptischen Abschnitt jedes Spiegels und in Richtung vom Zwischen-Fokus zur Strahlungsquelle gesehen, der Index i bezeichnet die Nummer des Spiegels vom innersten zum äussersten Spiegel, und die Werte für die Parameter ki, c1, c2, und c3 sind in der folgenen Tabelle A.2 und A.3 aufgeführt: Tabelle A.2 Spiegel k Hyperbolie Ellipse 1 0.3 0.2 2 0.3 0.5 3 0.3 0.7 4 0.3 0.8 5 0.3 1 6 0.3 1 7 0.3 1
    Tabelle A.3 Parameter Hyperbolie Ellipse c1 0.001 0.00005 c2 -0.00001 -0.00000035 c3 -0.00000001 -0.0000000005
  3. Optisches Kollektor-System nach einem der Ansprüche 1 oder 2, wobei die erste und zweite reflektierende Oberfläche hyperbolische (202) respektive elliptische (204) Abschnitte einschliesst, und die erste reflektierende Oberfläche näher an der Strahlungsquelle (102) angeordnet ist als die zweite reflektierende Oberfläche.
  4. Optisches Kollektor-System nach einem der Ansprüche 1 bis 3, wobei jeder Spiegel (200) eine elektrogeformte monolithische Komponente einschliesst, und wobei die erste und die zweite reflektierende Oberfläche jeweils entsprechend auf einer von zwei aufeinanderfolgenden Abschnitten des Spiegels angeordnet ist.
  5. Optisches Kollektor-System nach einem der Ansprüche 1 bis 4, wobei einer oder mehrere Spiegel (200) ein jeweils auf dem Spiegel montiertes thermisches Steuergerät aufweist.
  6. EUV Lithografie System, einschliessend:
    • eine Strahlungsquelle (102);
    • ein optisches Kollektorsystem (104) wie in einem der Ansprüche 1 bis 5 beansprucht;
    • einen optischen Kondensor, angeordnet sodass er geeignet ist zum Sammeln von eingesammelter Strahlung vom Kollektorsystem; und
    • eine reflektierende Maske (108), angeordnet sodass sie geeignet ist, kondensierte Strahlung vom optishcen Kondensor zu empfangen.
EP08001535.7A 2008-01-28 2008-01-28 Optische Systeme mit verbessertem Kollektor mit streifendem Einfall für EUV- und Röntgenstrahlungsanwendungen Active EP2083327B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP08001535.7A EP2083327B1 (de) 2008-01-28 2008-01-28 Optische Systeme mit verbessertem Kollektor mit streifendem Einfall für EUV- und Röntgenstrahlungsanwendungen
US12/735,525 US8594277B2 (en) 2008-01-28 2009-01-28 Grazing incidence collector optical systems for EUV and X-ray applications
JP2010543445A JP5368477B2 (ja) 2008-01-28 2009-01-28 Euv及びx線用の改良斜入射集光光学系
PCT/EP2009/000538 WO2009095219A1 (en) 2008-01-28 2009-01-28 Improved grazing incidence collector optical systems for euv and x-ray applications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08001535.7A EP2083327B1 (de) 2008-01-28 2008-01-28 Optische Systeme mit verbessertem Kollektor mit streifendem Einfall für EUV- und Röntgenstrahlungsanwendungen

Publications (2)

Publication Number Publication Date
EP2083327A1 EP2083327A1 (de) 2009-07-29
EP2083327B1 true EP2083327B1 (de) 2017-11-29

Family

ID=39798147

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08001535.7A Active EP2083327B1 (de) 2008-01-28 2008-01-28 Optische Systeme mit verbessertem Kollektor mit streifendem Einfall für EUV- und Röntgenstrahlungsanwendungen

Country Status (4)

Country Link
US (1) US8594277B2 (de)
EP (1) EP2083327B1 (de)
JP (1) JP5368477B2 (de)
WO (1) WO2009095219A1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8330131B2 (en) 2010-01-11 2012-12-11 Media Lario, S.R.L. Source-collector module with GIC mirror and LPP EUV light source
US8587768B2 (en) 2010-04-05 2013-11-19 Media Lario S.R.L. EUV collector system with enhanced EUV radiation collection
US8686381B2 (en) 2010-06-28 2014-04-01 Media Lario S.R.L. Source-collector module with GIC mirror and tin vapor LPP target system
US8344339B2 (en) 2010-08-30 2013-01-01 Media Lario S.R.L. Source-collector module with GIC mirror and tin rod EUV LPP target system
US8258485B2 (en) 2010-08-30 2012-09-04 Media Lario Srl Source-collector module with GIC mirror and xenon liquid EUV LPP target system
US20120050707A1 (en) 2010-08-30 2012-03-01 Media Lario S.R.L Source-collector module with GIC mirror and tin wire EUV LPP target system
US20120050706A1 (en) 2010-08-30 2012-03-01 Media Lario S.R.L Source-collector module with GIC mirror and xenon ice EUV LPP target system
DE102010039965B4 (de) * 2010-08-31 2019-04-25 Carl Zeiss Smt Gmbh EUV-Kollektor
US8746975B2 (en) 2011-02-17 2014-06-10 Media Lario S.R.L. Thermal management systems, assemblies and methods for grazing incidence collectors for EUV lithography
US9377695B2 (en) 2011-02-24 2016-06-28 Asml Netherlands B.V. Grazing incidence reflectors, lithographic apparatus, methods for manufacturing a grazing incidence reflector and methods for manufacturing a device
US8731139B2 (en) 2011-05-04 2014-05-20 Media Lario S.R.L. Evaporative thermal management of grazing incidence collectors for EUV lithography
DE102013002064A1 (de) 2012-02-11 2013-08-14 Media Lario S.R.L. Quell-kollektor-module für euv-lithographie unter verwendung eines gic-spiegels und einer lpp-quelle
DE102012220465A1 (de) * 2012-11-09 2014-05-15 Carl Zeiss Smt Gmbh EUV-Kollektor
WO2014170093A2 (en) * 2013-04-17 2014-10-23 Asml Netherlands B.V. Radiation collector, radiation source and lithographic apparatus
CN103869633B (zh) * 2014-04-11 2015-08-05 哈尔滨工业大学 极紫外光刻光源收集及照明系统
CN104570623A (zh) * 2015-02-16 2015-04-29 哈尔滨工业大学 Xe介质毛细管放电检测用极紫外光源的光学收集系统
CN107561609B (zh) * 2017-08-22 2019-10-01 哈尔滨工业大学 一种复制制造Wolter-I型反射镜的工艺

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10138313A1 (de) 2001-01-23 2002-07-25 Zeiss Carl Kollektor für Beleuchtugnssysteme mit einer Wellenlänge < 193 nm
US6972421B2 (en) * 2000-06-09 2005-12-06 Cymer, Inc. Extreme ultraviolet light source
DE10158216A1 (de) * 2001-11-28 2003-06-18 Carlos Alberto Valenzuela Spiegel, optisches Abbildungssystem und deren Verwendung
SG109523A1 (en) * 2002-08-15 2005-03-30 Asml Netherlands Bv Lithographic projection apparatus and reflector assembly for use in said apparatus
US7217940B2 (en) * 2003-04-08 2007-05-15 Cymer, Inc. Collector for EUV light source
US6841322B1 (en) 2003-06-30 2005-01-11 Intel Corporation Detecting erosion in collector optics with plasma sources in extreme ultraviolet (EUV) lithography systems
US7230258B2 (en) 2003-07-24 2007-06-12 Intel Corporation Plasma-based debris mitigation for extreme ultraviolet (EUV) light source
US7423275B2 (en) 2004-01-15 2008-09-09 Intel Corporation Erosion mitigation for collector optics using electric and magnetic fields
FR2871622B1 (fr) * 2004-06-14 2008-09-12 Commissariat Energie Atomique Dispositif de generation de lumiere dans l'extreme ultraviolet et application a une source de lithographie par rayonnement dans l'extreme ultraviolet
WO2007003359A1 (de) 2005-07-01 2007-01-11 Carl Zeiss Smt Ag Kollektoreinheit für ein beleuchtungssystem mit wellenlängen ≤ 193 nm
EP1938150B1 (de) * 2005-10-18 2011-03-23 Carl Zeiss SMT GmbH Kollektor für beleuchtungssysteme mit einer wellenlänge </= 193 nm
JP5076349B2 (ja) * 2006-04-18 2012-11-21 ウシオ電機株式会社 極端紫外光集光鏡および極端紫外光光源装置
US7910900B2 (en) * 2006-07-20 2011-03-22 Carl Zeiss Smt Gmbh Collector for an illumination system
EP1901126B1 (de) * 2006-09-15 2011-10-12 Media Lario s.r.l. Optisches Kollektorsystem

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FABIO E. ZOCCHI ET AL: "Optical designs of grazing incidence collector for extreme ultraviolet lithography", JOURNAL OF MICROLITHOGRAPHY, MICROFABRICATION, AND MICROSYSTEMS, vol. 6, no. 4, 1 January 2007 (2007-01-01), pages 043002, XP055012855, ISSN: 1537-1646, DOI: 10.1117/1.2811949 *

Also Published As

Publication number Publication date
US20110043779A1 (en) 2011-02-24
JP5368477B2 (ja) 2013-12-18
WO2009095219A1 (en) 2009-08-06
JP2011511435A (ja) 2011-04-07
US8594277B2 (en) 2013-11-26
EP2083327A1 (de) 2009-07-29

Similar Documents

Publication Publication Date Title
EP2083327B1 (de) Optische Systeme mit verbessertem Kollektor mit streifendem Einfall für EUV- und Röntgenstrahlungsanwendungen
EP1901126B1 (de) Optisches Kollektorsystem
CN111512188B (zh) 用于投射光刻系统的光瞳分面反射镜、光学系统和照明光学系统
US7244954B2 (en) Collector having unused region for illumination systems using a wavelength ≦193 nm
US7321126B2 (en) Collector with fastening devices for fastening mirror shells
JP5077724B2 (ja) マイクロリソグラフィツール用の反射照明システム
JP4990287B2 (ja) 波長が193nm以下の照明システム用集光器
KR20060039876A (ko) 마이크로 인쇄술용 조명 시스템
JP2009527113A (ja) マイクロリソグラフィ照明システム、及びこの種の照明システムを含む投影露光装置
JP5220136B2 (ja) 照明光学系、露光装置およびデバイス製造方法
JP2010257998A (ja) 反射投影光学系、露光装置、及びデバイスの製造方法
JP2002107630A (ja) 6枚の反射鏡を用いたマイクロリソグラフィ用の投影光学系
TW201616245A (zh) 用於投影曝光系統的照明光學單元
JP2000162415A (ja) 反射鏡の製造方法又は反射型照明装置又は半導体露光装置
JP6931469B2 (ja) 照明光学系、露光装置、およびデバイス製造方法
US20050207039A1 (en) Optical element for forming an arc-shaped illumination field
TW201842415A (zh) 在euv光譜區域中操作光學物鏡
Fermé Adaptive X Ray Mirrors for Synchrotron Facilities
JP2731959B2 (ja) X線露光装置
EP1470450A1 (de) Optisches element zur bildung eines bogenförmigen feldes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20100120

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20100504

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170728

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 950930

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171215

Ref country code: CH

Ref legal event code: NV

Representative=s name: FELBER UND PARTNER AG, CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008053130

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 950930

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008053130

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180128

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20180830

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080128

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180329

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230127

Year of fee payment: 16

Ref country code: CZ

Payment date: 20230126

Year of fee payment: 16

Ref country code: CH

Payment date: 20230125

Year of fee payment: 16

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240123

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240123

Year of fee payment: 17

Ref country code: CZ

Payment date: 20240126

Year of fee payment: 17

Ref country code: CH

Payment date: 20240201

Year of fee payment: 17