EP2082628B1 - Betatron comprising a yoke made of composite powder - Google Patents

Betatron comprising a yoke made of composite powder Download PDF

Info

Publication number
EP2082628B1
EP2082628B1 EP07818057.7A EP07818057A EP2082628B1 EP 2082628 B1 EP2082628 B1 EP 2082628B1 EP 07818057 A EP07818057 A EP 07818057A EP 2082628 B1 EP2082628 B1 EP 2082628B1
Authority
EP
European Patent Office
Prior art keywords
betatron
inner yoke
yoke
parts
powder composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07818057.7A
Other languages
German (de)
French (fr)
Other versions
EP2082628A1 (en
Inventor
Jörg BERMUTH
Georg Geus
Gregor Hess
Urs VIEHBÖCK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Smiths Heimann GmbH
Original Assignee
Smiths Heimann GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smiths Heimann GmbH filed Critical Smiths Heimann GmbH
Publication of EP2082628A1 publication Critical patent/EP2082628A1/en
Application granted granted Critical
Publication of EP2082628B1 publication Critical patent/EP2082628B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H11/00Magnetic induction accelerators, e.g. betatrons
    • H05H11/04Biased betatrons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma

Definitions

  • the present invention relates to a betatron, in particular for generating X-ray radiation in an X-ray inspection system, with a magnetic flux leading yoke, which consists at least partially of a powder composite material.
  • X-ray inspection systems When checking large-volume items such as containers and vehicles for inadmissible content such as weapons, explosives or contraband, X-ray inspection systems are known to be used. X-rays are generated and directed to the object. The X-radiation attenuated by the object is measured by means of a detector and analyzed by an evaluation unit. Thus, it can be concluded on the nature of the object.
  • Such an X-ray inspection system is for example from the European patent EP 0 412 190 B1 known.
  • Betatrons are used to generate X-rays with the energy of more than 1 MeV necessary for the test.
  • These are circular accelerators in which electrons are held in a circular path by a magnetic field. A change in this magnetic field creates an electric field that accelerates the electrons in their orbit. From the so-called Wideröe condition, a stable nominal orbit radius is determined as a function of the course of the magnetic field and its temporal change. The accelerated electrons are directed to a target, where they produce a bremsstrahlung upon impact, the spectrum of which depends, among other things, on the energy of the electrons.
  • betatron consists of a two-part inner yoke, in which the end faces of the two inner yoke parts are spaced apart. By means of two main field coils is a generated magnetic field in the inner yoke.
  • An outer yoke connects the two mutually remote ends of the inner yoke parts and closes the magnetic circuit.
  • an evacuated betatron tube is arranged, in which the electrons to be accelerated revolve.
  • the end faces of the inner yoke parts are formed in such a way that the magnetic field generated by the main field coil forces the electrons into a circular path and, moreover, focuses them on the plane in which this circular path lies.
  • the yokes consist of laminated cores, which are formed in particular from transformer sheets.
  • the inner yoke must be made very precisely in order to achieve the greatest possible homogeneity of the magnetic field in the area of the betatron tube.
  • the production of the yokes from laminated cores is therefore complicated and expensive, in addition, often result in the stratification of the sheets column.
  • a mechanical reworking of the laminated core leads to a "smearing" of the surface, which in operation has increased eddy current losses.
  • a cleaning of the surface, for example by an etching process is a common method to remove this layer, but disadvantageous for reasons of environmental protection and occupational safety.
  • US 2,297,305 discloses a betatron with poles of iron powder. It is therefore the object of the present invention to provide a betatron with magnetic yokes which do not have the aforementioned disadvantages.
  • Claim 8 relates to an X-ray inspection system using a betatron according to the invention.
  • a betatron according to the present invention comprises a rotationally symmetrical inner yoke of two spaced-apart parts, an outer yoke connecting the two inner yoke parts, at least one main field coil and one between them Inner yoke parts arranged, torus-shaped betatron tube.
  • the inner yoke and / or outer yoke consists at least partially of a powder composite material.
  • Powder composite materials are soft magnetic materials.
  • a powder in the context of this document is based on an iron or iron powder alloy and is pressed into shaped parts using a binder. These moldings have a high and isotropic resistivity. In addition, saturation phenomena are avoided even at high operating currents. A reduced noise development results when using magnetostriction-free alloys.
  • the choice of the composition of the powder composite material is left to the person skilled in the art, for example, depending on the requirements of the betatron.
  • the yokes or yoke parts which consist of a powder composite material, can be directly post-processed mechanically, without the need for further, for example etching, after-treatment.
  • the surfaces of the yokes or yoke parts become much smoother and more reproducible than when produced from laminated cores, resulting in greater homogeneity of the magnetic field formed by the yokes.
  • the isotropic material properties of the powder composite lead to lower eddy currents and thus to lower power losses and a higher efficiency in the operation of the betatrone.
  • the inner yoke is made entirely of a powder composite material. This is advantageous since the production of this rotationally symmetrical component made of a powder composite material, in contrast to the production from sheet metal, is less complicated and error-prone.
  • the outer yoke preferably consists of laminated cores, in particular of transformer sheets. Since the outer yoke does not have to be rotationally symmetrical and the requirements for the homogeneities of the magnetic field are small in comparison to the inner yoke, one production of the outer yoke is one or more Sheet metal packages possible. Alternatively, the outer yoke consists wholly or partly of a powder composite material.
  • the betatron has at least one round plate between the inner yoke parts, wherein the round plate is arranged so that its longitudinal axis coincides with the rotational symmetry axis of the inner yoke. Due to the permeability of the blank material, the magnetic field in the area of the blanks is stronger than in the blank-free air gap between the end faces of the inner yoke parts. This results in the possibility of influencing the Wideröe condition and thus the orbital radius of the accelerated electron within the betatron tube by the design of the Ronde (n).
  • the blanks preferably consist of a powder composite material.
  • the inner yoke parts are configured and arranged such that their opposite end faces are mirror-symmetrical to each other.
  • the plane of symmetry is advantageously oriented so that the rotational symmetry axis of the inner yoke is perpendicular to it. This leads to an advantageous field distribution in the air gap between the end faces, through which the electrons in the betatron tube are held in a circular path.
  • the betatron according to the invention is advantageously used in an X-ray inspection system for security checking of objects. Electrons are injected into the betatron and accelerated before being directed to a target made of tantalum, for example. There, the electrons generate X-radiation with a known spectrum. The X-radiation is directed to the object, preferably a container and / or a vehicle, and modified there, for example, by scattering or transmission attenuation. The modified X-radiation is measured by an X-ray detector and analyzed by means of an evaluation unit. From the result, the nature or content of the object is deduced.
  • FIG. 1 shows the schematic structure of a preferred betatrone 1 in cross section. It consists inter alia of a rotationally symmetrical inner yoke of two spaced-apart parts 2a, 2b, an outer yoke 4 connecting the two inner yoke parts 2a, 2b, a torus-shaped betatron tube 5 arranged between the inner yoke parts 2a, 2b and two main field coils 6a and 6b.
  • the réellejochteile 2a, 2b are made entirely of a powder composite material, while the outer yoke is designed as a package of transformer sheet.
  • the outer yoke 4 is made of a powder composite material.
  • the main field coils 6a and 6b are arranged on shoulders of the inner yoke parts 2a and 2b, respectively.
  • the magnetic field generated by them passes through the inner yoke parts 2a and 2b, the magnetic circuit being closed by the outer yoke 4.
  • the shape of the inner and / or outer yoke can be selected by the skilled person depending on the application and of the in FIG. 1 specified form differ. Also, only one or more than two main field coils may be present.
  • the betatron 1 further comprises optional blanks 3 between the inner yoke parts 2a, 2b, wherein the longitudinal axis of the blanks 3 corresponds to the rotational symmetry axis of the inner yoke.
  • the number and / or shape of the blanks is left to the person skilled in the art.
  • the magnetic field passes partially through the blanks 3 and otherwise through an air gap.
  • the betatron tube 5 is arranged. It is an evacuated tube in which the electrons are accelerated.
  • the end faces of the inner yoke parts 2a and 2b have a shape selected such that the magnetic field between them focuses the electrons on a circular path. The design of the end faces is known in the art and is therefore not explained in detail.
  • the electrons strike a target and thereby generate X-radiation whose spectrum depends, among other things, on the final energy of the electrons and the material of the target.
  • the electrons are injected into the betatron tube 5 with an initial energy.
  • the magnetic field in the betatron 1 is continuously increased by the main field coils 6a and 6b. This creates an electric field that exerts an accelerating force on the electrons.
  • the electrons are forced due to the Lorentz force on a Soll Vietnamesebahn within the betatron tube 5.
  • the acceleration of the electrons is repeated periodically, resulting in a pulsed X-radiation.
  • the electrons are injected into the betatron tube 5 in a first step.
  • the electrons are accelerated by an increasing current in the main field coil 6a and 6b and thus an increasing magnetic field in the air gap between the inner yoke parts 2a and 2b in the circumferential direction of their circular path.
  • the accelerated electrons are ejected to generate the X-radiation on the target. This is followed by an optional pause before electrons are again injected into the betatron tube 5.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Particle Accelerators (AREA)
  • X-Ray Techniques (AREA)

Description

Die vorliegende Erfindung betrifft ein Betatron, insbesondere zur Erzeugung von Röntgenstrahlung in einer Röntgenprüfanlage, mit einem den magnetischen Fluss führenden Joch, das zumindest teilweise aus einem Pulververbundwerkstoff besteht.The present invention relates to a betatron, in particular for generating X-ray radiation in an X-ray inspection system, with a magnetic flux leading yoke, which consists at least partially of a powder composite material.

Bei der Überprüfung von großvolumigen Gegenständen wie Containern und Fahrzeugen auf unzulässige Inhalte wie Waffen, Sprengstoff oder Schmuggelware werden bekannterweise Röntgenprüfanlagen eingesetzt. Dabei wird Röntgenstrahlung erzeugt und auf den Gegenstand gerichtet. Die von dem Gegenstand abgeschwächte Röntgenstrahlung wird mittels eines Detektors gemessen und von einer Auswerteeinheit analysiert. Somit kann auf die Beschaffenheit des Gegenstandes geschlossen werden. Eine solche Röntgenprüfanlage ist beispielsweise aus der Europäischen Patentschrift EP 0 412 190 B1 bekannt.When checking large-volume items such as containers and vehicles for inadmissible content such as weapons, explosives or contraband, X-ray inspection systems are known to be used. X-rays are generated and directed to the object. The X-radiation attenuated by the object is measured by means of a detector and analyzed by an evaluation unit. Thus, it can be concluded on the nature of the object. Such an X-ray inspection system is for example from the European patent EP 0 412 190 B1 known.

Zur Erzeugung von Röntgenstrahlung mit der für die Überprüfung notwendigen Energie von mehr als 1 MeV werden Betatrons eingesetzt. Dabei handelt es sich um Kreisbeschleuniger, in denen Elektronen durch ein Magnetfeld auf einer Kreisbahn gehalten werden. Eine Veränderung dieses Magnetfeldes erzeugt ein elektrisches Feld, das die Elektronen auf ihrer Kreisbahn beschleunigt. Aus der sogenannten Wideröe-Bedingung bestimmt sich ein stabiler Sollbahnradius in Abhängigkeit vom Verlauf des Magnetfeldes und dessen zeitlicher Änderung. Die beschleunigten Elektronen werden auf ein Target gelenkt, wo sie beim Auftreffen eine Bremsstrahlung erzeugen, deren Spektrum unter anderem abhängig ist von der Energie der Elektronen.Betatrons are used to generate X-rays with the energy of more than 1 MeV necessary for the test. These are circular accelerators in which electrons are held in a circular path by a magnetic field. A change in this magnetic field creates an electric field that accelerates the electrons in their orbit. From the so-called Wideröe condition, a stable nominal orbit radius is determined as a function of the course of the magnetic field and its temporal change. The accelerated electrons are directed to a target, where they produce a bremsstrahlung upon impact, the spectrum of which depends, among other things, on the energy of the electrons.

Ein aus der Offenlegungsschrift DE 23 57 126 A1 bekanntes Betatron besteht aus einem zweiteiligen Innenjoch, bei dem sich die Stirnseiten der beiden Innenjochteile beabstandet gegenüberstehen. Mittels zweier Hauptfeldspulen wird ein magnetisches Feld im Innenjoch erzeugt. Ein Außenjoch verbindet die beiden voneinander entfernten Enden der Innenjochteile und schließt den magnetischen Kreis.One from the published patent application DE 23 57 126 A1 known betatron consists of a two-part inner yoke, in which the end faces of the two inner yoke parts are spaced apart. By means of two main field coils is a generated magnetic field in the inner yoke. An outer yoke connects the two mutually remote ends of the inner yoke parts and closes the magnetic circuit.

Zwischen den Stirnseiten der beiden Innenjochteile ist eine evakuierte Betatronröhre angeordnet, in der die zu beschleunigenden Elektronen kreisen. Die Stirnseiten der Innenjochteile sind derart ausgeformt, dass das von der Hauptfeldspule erzeugte Magnetfeld die Elektronen auf eine Kreisbahn zwingt und sie darüber hinaus auf die Ebene, in der diese Kreisbahn liegt, fokussiert. Zur Steuerung des magnetischen Flusses ist es bekannt, zwischen den Stirnseiten der Innenjochteile innerhalb der Betatronröhre einen ferromagnetischen Einsatz anzuordnen.Between the end faces of the two inner yoke parts an evacuated betatron tube is arranged, in which the electrons to be accelerated revolve. The end faces of the inner yoke parts are formed in such a way that the magnetic field generated by the main field coil forces the electrons into a circular path and, moreover, focuses them on the plane in which this circular path lies. To control the magnetic flux, it is known to arrange a ferromagnetic insert between the end faces of the inner yoke parts within the betatron tube.

Bei bekannten Betatrons bestehen die Joche aus Blechpaketen, die insbesondere aus Transformatorblechen gebildet werden. Dabei muss besonders das Innenjoch sehr präzise gefertigt sein, um eine größtmögliche Homogenität des Magnetfeldes im Bereich der Betatronröhre zu erzielen. Die Herstellung der Joche aus Blechpaketen ist daher aufwändig und teuer, darüber hinaus ergeben sich bei der Schichtung der Bleche oftmals Spalte. Eine mechanische Nachbearbeitung der Blechpakete führt zu einer "Verschmierung" der Oberfläche, was im Betrieb erhöhte Wirbelstromverluste zur Folge hat. Eine Reinigung der Oberfläche beispielsweise durch einen Ätzprozess ist ein übliches Verfahren um diese Schicht zu entfernen, jedoch aus Gründen des Umweltschutzes und der Arbeitssicherheit nachteilig.In known betatrons, the yokes consist of laminated cores, which are formed in particular from transformer sheets. In particular, the inner yoke must be made very precisely in order to achieve the greatest possible homogeneity of the magnetic field in the area of the betatron tube. The production of the yokes from laminated cores is therefore complicated and expensive, in addition, often result in the stratification of the sheets column. A mechanical reworking of the laminated core leads to a "smearing" of the surface, which in operation has increased eddy current losses. A cleaning of the surface, for example by an etching process is a common method to remove this layer, but disadvantageous for reasons of environmental protection and occupational safety.

US 2,297,305 offenbart ein Betatron mit Polstücke aus Eisen-Pulver. Es ist daher die Aufgabe der vorliegenden Erfindung, ein Betatron mit magnetischen Jochen bereitzustellen, die die vorgenannten Nachteile nicht aufweisen. US 2,297,305 discloses a betatron with poles of iron powder. It is therefore the object of the present invention to provide a betatron with magnetic yokes which do not have the aforementioned disadvantages.

Gelöst wird diese Aufgabe erfindungsgemäß durch die Merkmale des Patentanspruches 1. Vorteilhafte Ausgestaltungsformen sind den abhängigen Patentansprüchen 2 bis 7 zu entnehmen. Patentanspruch 8 betrifft eine Röntgenprüfanlage unter Verwendung eines erfindungsgemäßen Betatrons.This object is achieved according to the invention by the features of claim 1. Advantageous embodiments are given in the dependent claims 2 to 7. Claim 8 relates to an X-ray inspection system using a betatron according to the invention.

Ein Betatron nach der vorliegenden Erfindung weist ein rotationssymmetrisches Innenjoch aus zwei beabstandet angeordneten Teilen, ein die beiden Innenjochteile verbindendes Außenjoch, mindestens eine Hauptfeldspule sowie eine zwischen den Innenjochteilen angeordnete, Torus-förmige Betatronröhre auf. Erfindungsgemäß besteht das Innenjoch und/oder Außenjoch zumindest teilweise aus einem Pulververbundwerkstoff.A betatron according to the present invention comprises a rotationally symmetrical inner yoke of two spaced-apart parts, an outer yoke connecting the two inner yoke parts, at least one main field coil and one between them Inner yoke parts arranged, torus-shaped betatron tube. According to the invention, the inner yoke and / or outer yoke consists at least partially of a powder composite material.

Bei Pulververbundwerkstoffen handelt es sich um weichmagnetische Werkstoffe. Ein Pulver im Rahmen dieses Dokuments basiert auf einer Eisen- oder Eisenpulverlegierung und wird unter Verwendung eines Binders zu Formteilen verpresst. Diesen Formteilen ist ein hoher und isotroper spezifischer Widerstand zu eigen. Darüber hinaus werden auch bei hohen Betriebsströmen Sättigungserscheinungen vermieden. Eine reduzierte Geräuschentwicklung ergibt sich bei Verwendung magnetostriktionsfreier Legierungen. Die Wahl der Zusammensetzung des Pulververbundwerkstoffes bleibt dem ausführenden Fachmann überlassen, beispielsweise in Abhängigkeit von den Anforderungen an das Betatron.Powder composite materials are soft magnetic materials. A powder in the context of this document is based on an iron or iron powder alloy and is pressed into shaped parts using a binder. These moldings have a high and isotropic resistivity. In addition, saturation phenomena are avoided even at high operating currents. A reduced noise development results when using magnetostriction-free alloys. The choice of the composition of the powder composite material is left to the person skilled in the art, for example, depending on the requirements of the betatron.

Die aus einem Pulververbundwerkstoff bestehenden Joche beziehungsweise Jochteile können direkt mechanisch nachbearbeitet werden, ohne dass dadurch eine weitere, beispielsweise ätztechnische Nachbehandlung notwendig wird. Die Oberflächen der Joche beziehungsweise Jochteile werden deutlich glatter und reproduzierbarer als bei einer Herstellung aus Blechpaketen, wodurch sich eine größere Homogenität des durch die Joche geformten Magnetfeldes ergibt. Darüber hinaus führen die isotropen Materialeigenschaften des Pulververbundwerkstoffs zu geringeren Wirbelströmen und damit zu geringeren Verlustleistungen und einem höheren Wirkungsgrad beim Betrieb des Betatrons.The yokes or yoke parts, which consist of a powder composite material, can be directly post-processed mechanically, without the need for further, for example etching, after-treatment. The surfaces of the yokes or yoke parts become much smoother and more reproducible than when produced from laminated cores, resulting in greater homogeneity of the magnetic field formed by the yokes. In addition, the isotropic material properties of the powder composite lead to lower eddy currents and thus to lower power losses and a higher efficiency in the operation of the betatrone.

In einer Ausgestaltungsform der Erfindung besteht das Innenjoch vollständig aus einem Pulververbundwerkstoff. Dies ist vorteilhaft, da die Herstellung dieses rotationssymmetrischen Bauteils aus einem Pulververbundwerkstoff im Gegensatz zur Herstellung aus Blechen weniger aufwändig und fehleranfällig ist. Bevorzugt besteht das Außenjoch aus Blechpaketen, insbesondere aus Transformatorblechen. Da das Außenjoch nicht rotationssymmetrisch ausgestaltet sein muss und die Anforderungen an die Homogenitäten des Magnetfeldes im Vergleich zum Innenjoch gering sind, ist eine Herstellung des Außenjochs aus einem oder mehreren Blechpaketen möglich. Alternativ besteht auch das Außenjoch ganz oder teilweise aus einem Pulververbundwerkstoff.In one embodiment of the invention, the inner yoke is made entirely of a powder composite material. This is advantageous since the production of this rotationally symmetrical component made of a powder composite material, in contrast to the production from sheet metal, is less complicated and error-prone. The outer yoke preferably consists of laminated cores, in particular of transformer sheets. Since the outer yoke does not have to be rotationally symmetrical and the requirements for the homogeneities of the magnetic field are small in comparison to the inner yoke, one production of the outer yoke is one or more Sheet metal packages possible. Alternatively, the outer yoke consists wholly or partly of a powder composite material.

Optional weist das Betatron mindestens eine Ronde zwischen den Innenjochteilen auf, wobei die Ronde so angeordnet ist, dass ihre Längsachse mit der Rotationssymmetrieachse des Innenjochs zusammenfällt. Aufgrund der Permeabilität des Rondenwerkstoffes ist das Magnetfeld im Bereich der Ronden stärker als im rondenfreien Luftspalt zwischen den Stirnseiten der Innenjochteile. Dadurch ergibt sich die Möglichkeit, durch die Ausgestaltung der Ronde(n) die Wideröe-Bedingung und damit den Bahnradius des beschleunigten Elektrons innerhalb der Betatronröhre zu beeinflussen. Dabei bestehen die Ronden bevorzugt aus einem Pulververbundwerkstoff.Optionally, the betatron has at least one round plate between the inner yoke parts, wherein the round plate is arranged so that its longitudinal axis coincides with the rotational symmetry axis of the inner yoke. Due to the permeability of the blank material, the magnetic field in the area of the blanks is stronger than in the blank-free air gap between the end faces of the inner yoke parts. This results in the possibility of influencing the Wideröe condition and thus the orbital radius of the accelerated electron within the betatron tube by the design of the Ronde (n). The blanks preferably consist of a powder composite material.

In einer Ausgestaltungsform der Erfindung sind die Innenjochteile derart ausgestaltet und angeordnet, dass ihre gegenüberliegenden Stirnseiten zueinander spiegelsymmetrisch sind. Die Symmetrieebene ist dabei vorteilhaft so orientiert, dass die Rotationssymmetrieachse des Innenjochs senkrecht auf ihr steht. Dies führt zu einer vorteilhaften Feldverteilung im Luftspalt zwischen den Stirnseiten, durch die die Elektronen in der Betatronröhre auf einer Kreisbahn gehalten werden.In one embodiment of the invention, the inner yoke parts are configured and arranged such that their opposite end faces are mirror-symmetrical to each other. The plane of symmetry is advantageously oriented so that the rotational symmetry axis of the inner yoke is perpendicular to it. This leads to an advantageous field distribution in the air gap between the end faces, through which the electrons in the betatron tube are held in a circular path.

Das erfindungsgemäße Betatron wird vorteilhaft in einer Röntgenprüfanlage zur Sicherheitsüberprüfung von Objekten eingesetzt. Es werden Elektronen in das Betatron injiziert und beschleunigt, bevor sie auf ein beispielsweise aus Tantal bestehendes Target gelenkt werden. Dort erzeugen die Elektronen Röntgenstrahlung mit einem bekannten Spektrum. Die Röntgenstrahlung wird auf das Objekt, vorzugsweise einen Container und/oder ein Fahrzeug, gerichtet und dort beispielsweise durch Streuung oder Transmissionsdämpfung modifiziert. Die modifizierte Röntgenstrahlung wird von einem Röntgendetektor gemessen und mittels einer Auswerteeinheit analysiert. Aus dem Ergebnis wird auf die Beschaffenheit oder den Inhalt des Objekts geschlossen.The betatron according to the invention is advantageously used in an X-ray inspection system for security checking of objects. Electrons are injected into the betatron and accelerated before being directed to a target made of tantalum, for example. There, the electrons generate X-radiation with a known spectrum. The X-radiation is directed to the object, preferably a container and / or a vehicle, and modified there, for example, by scattering or transmission attenuation. The modified X-radiation is measured by an X-ray detector and analyzed by means of an evaluation unit. From the result, the nature or content of the object is deduced.

Die vorliegende Erfindung soll anhand eines Ausführungsbeispiels näher erläutert werden. Dabei zeigt

Figur 1
eine schematische Schnittdarstellung eines erfindungsgemäßen Betatrons.
The present invention will be explained in more detail with reference to an embodiment. It shows
FIG. 1
a schematic sectional view of a betatron according to the invention.

Figur 1 zeigt den schematischen Aufbau eines bevorzugten Betatrons 1 im Querschnitt. Es besteht unter anderem aus einem rotationssymmetrischen Innenjoch aus zwei beabstandet angeordneten Teilen 2a, 2b, einem die beiden Innenjochteile 2a, 2b verbindenden Außenjoch 4, einer zwischen den Innenjochteilen 2a, 2b angeordneten, Torus-förmigen Betatronröhre 5 sowie zwei Hauptfeldspulen 6a und 6b. Die Innenjochteile 2a, 2b bestehen vollständig aus einem Pulververbundwerkstoff, während das Außenjoch als Paket aus Transformatorblech ausgeführt ist. Alternativ besteht auch das Außenjoch 4 aus einem Pulververbundwerkstoff. FIG. 1 shows the schematic structure of a preferred betatrone 1 in cross section. It consists inter alia of a rotationally symmetrical inner yoke of two spaced-apart parts 2a, 2b, an outer yoke 4 connecting the two inner yoke parts 2a, 2b, a torus-shaped betatron tube 5 arranged between the inner yoke parts 2a, 2b and two main field coils 6a and 6b. The Innenjochteile 2a, 2b are made entirely of a powder composite material, while the outer yoke is designed as a package of transformer sheet. Alternatively, the outer yoke 4 is made of a powder composite material.

Aufgrund der Herstellung aus einem Pulververbundwerkstoff lassen sich auch komplexe Geometrien der Joche oder Jochteile präzise fertigen. Darüber hinaus verringern die isotropen Materialeigenschaften die Wirbelstromverluste im Joch.Due to the production from a powder composite material even complex geometries of the yokes or yoke parts can be manufactured precisely. In addition, the isotropic material properties reduce the eddy current losses in the yoke.

Die Hauptfeldspulen 6a und 6b sind auf Absätzen der Innenjochteile 2a beziehungsweise 2b angeordnet. Das von ihnen erzeugte Magnetfeld durchsetzt die Innenjochteile 2a und 2b, wobei der magnetische Kreis durch das Außenjoch 4 geschlossen wird. Die Form des Innen- und/oder Außenjochs kann vom Fachmann je nach Anwendungsfall gewählt werden und von der in Figur 1 angegeben Form abweichen. Auch können nur eine oder mehr als zwei Hauptfeldspulen vorhanden sein.The main field coils 6a and 6b are arranged on shoulders of the inner yoke parts 2a and 2b, respectively. The magnetic field generated by them passes through the inner yoke parts 2a and 2b, the magnetic circuit being closed by the outer yoke 4. The shape of the inner and / or outer yoke can be selected by the skilled person depending on the application and of the in FIG. 1 specified form differ. Also, only one or more than two main field coils may be present.

Das Betatron 1 weist weiterhin optionale Ronden 3 zwischen den Innenjochteilen 2a, 2b auf, wobei die Längsachse der Ronden 3 der Rotationssymmetrieachse des Innenjochs entspricht. Durch die Ausgestaltung Ronden 3 lässt sich das Magnetfeld zwischen den Stirnseiten der Innenjochteile und damit die Wideröe-Bedingung beeinflussen. Die Anzahl und/oder Form der Ronden ist dem implementierenden Fachmann überlassen.The betatron 1 further comprises optional blanks 3 between the inner yoke parts 2a, 2b, wherein the longitudinal axis of the blanks 3 corresponds to the rotational symmetry axis of the inner yoke. The embodiment blanks 3, the magnetic field between the end faces of the Innenjochteile and thus the Wideröe condition can be influenced. The number and / or shape of the blanks is left to the person skilled in the art.

Zwischen den Stirnseiten der Innenjochteile 2a und 2b verläuft das Magnetfeld teilweise durch die Ronden 3 und ansonsten durch einen Luftspalt. In diesem Luftspalt ist die Betatronröhre 5 angeordnet. Dabei handelt es sich um eine evakuierte Röhre, in der die Elektronen beschleunigt werden. Die Stirnseiten der Innenjochteile 2a und 2b weisen eine Form auf, die so gewählt ist, dass das Magnetfeld zwischen ihnen die Elektronen auf eine Kreisbahn fokussiert. Die Ausgestaltung der Stirnflächen ist dem Fachmann bekannt und wird daher nicht näher erläutert. Die Elektronen treffen am Ende des Beschleunigungsvorgangs auf ein Target und erzeugen dadurch eine Röntgenstrahlung, deren Spektrum unter anderem von der Endenergie der Elektronen und dem Material des Targets abhängt.Between the end faces of the inner yoke parts 2a and 2b, the magnetic field passes partially through the blanks 3 and otherwise through an air gap. In this Air gap, the betatron tube 5 is arranged. It is an evacuated tube in which the electrons are accelerated. The end faces of the inner yoke parts 2a and 2b have a shape selected such that the magnetic field between them focuses the electrons on a circular path. The design of the end faces is known in the art and is therefore not explained in detail. At the end of the acceleration process, the electrons strike a target and thereby generate X-radiation whose spectrum depends, among other things, on the final energy of the electrons and the material of the target.

Zur Beschleunigung werden die Elektronen mit einer Anfangsenergie in die Betatronröhre 5 eingeschossen. Während der Beschleunigungsphase wird das Magnetfeld im Betatron 1 durch die Hauptfeldspulen 6a und 6b fortlaufend erhöht. Dadurch wird ein elektrisches Feld erzeugt, das eine beschleunigende Kraft auf die Elektronen ausübt. Gleichzeitig werden die Elektronen auf Grund der Lorentzkraft auf eine Sollkreisbahn innerhalb der Betatronröhre 5 gezwungen.For acceleration, the electrons are injected into the betatron tube 5 with an initial energy. During the acceleration phase, the magnetic field in the betatron 1 is continuously increased by the main field coils 6a and 6b. This creates an electric field that exerts an accelerating force on the electrons. At the same time, the electrons are forced due to the Lorentz force on a Sollkreisbahn within the betatron tube 5.

Die Beschleunigung der Elektronen erfolgt periodisch wiederholt, wodurch sich eine gepulste Röntgenstrahlung ergibt. In jeder Periode werden in einem ersten Schritt die Elektronen in die Betatronröhre 5 injiziert. In einem zweiten Schritt werden die Elektronen durch einen steigenden Strom in den Hauptfeldspule 6a und 6b und somit ein ansteigendes Magnetfeld im Luftspalt zwischen den Innenjochteilen 2a und 2b in Umfangsrichtung ihrer Kreisbahn beschleunigt. In einem dritten Schritt werden die beschleunigten Elektronen zur Erzeugung der Röntgenstrahlung auf das Target ausgeschleust. Anschließend erfolgt eine optionale Pause, bevor erneut Elektronen in die Betatronröhre 5 injiziert werden.The acceleration of the electrons is repeated periodically, resulting in a pulsed X-radiation. In each period, the electrons are injected into the betatron tube 5 in a first step. In a second step, the electrons are accelerated by an increasing current in the main field coil 6a and 6b and thus an increasing magnetic field in the air gap between the inner yoke parts 2a and 2b in the circumferential direction of their circular path. In a third step, the accelerated electrons are ejected to generate the X-radiation on the target. This is followed by an optional pause before electrons are again injected into the betatron tube 5.

Claims (8)

  1. Betatron (1), in particular in an x-ray inspection apparatus, having
    - a rotationally symmetric inner yoke made of two parts (2a, 2b) that are arranged apart from one another,
    - an outer yoke (4) connecting the two inner yoke parts (2a, 2b),
    - at least one main field coil (6a, 6b), and
    - a toroidal betatron tube (5) arranged between the inner yoke parts (2a, 2b),
    characterized in that
    the inner yoke and/or the outer yoke consist(s) at least in part of a powder composite.
  2. Betatron (1) according to Claim 1, characterized in that the inner yoke consists entirely of a powder composite.
  3. Betatron (1) according to Claim 2, characterized in that the outer yoke (4) consists of sheet stacks.
  4. Betatron (1) according to Claim 2, characterized in that the outer yoke (4) consists of a powder composite.
  5. Betatron (1) according to any one of Claims 1 to 4, characterized by at least one circular lamination (3) between the inner yoke parts (2a, 2b), wherein the circular lamination (3) is arranged in such a way that the longitudinal axis thereof coincides with the axis of rotational symmetry of the inner yoke.
  6. Betatron (1) according to Claim 5, characterized in that at least one of the circular laminations (3) consists of a powder composite.
  7. Betatron (1) according to any one of Claims 1 to 6, characterized in that inner yoke parts (2a, 2b) are configured and arranged in such a way that their opposite end sides are mirror-symmetrical in relation to one another.
  8. X-ray inspection apparatus for performing a safety check on objects, having a betatron (1) according to any one of Claims 1 to 7 and a target for producing x-ray radiation, and also an x-ray detector and an evaluation unit.
EP07818057.7A 2006-10-28 2007-09-06 Betatron comprising a yoke made of composite powder Active EP2082628B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006050949A DE102006050949A1 (en) 2006-10-28 2006-10-28 Betatron for use in X-ray testing device, has torus-shaped betatron tube arranged between internal yoke parts, and internal yoke and/or external yoke consists of powder composite substance e.g. soft-magnetic materials
PCT/EP2007/007766 WO2008052615A1 (en) 2006-10-28 2007-09-06 Betatron comprising a yoke made of composite powder

Publications (2)

Publication Number Publication Date
EP2082628A1 EP2082628A1 (en) 2009-07-29
EP2082628B1 true EP2082628B1 (en) 2018-01-31

Family

ID=38828253

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07818057.7A Active EP2082628B1 (en) 2006-10-28 2007-09-06 Betatron comprising a yoke made of composite powder

Country Status (8)

Country Link
US (1) US7889839B2 (en)
EP (1) EP2082628B1 (en)
CN (1) CN101530004B (en)
CA (1) CA2668050C (en)
DE (1) DE102006050949A1 (en)
HK (1) HK1133987A1 (en)
RU (1) RU2009119595A (en)
WO (1) WO2008052615A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4216680A1 (en) * 2012-04-27 2023-07-26 Triumf Inc. Processes, systems, and apparatus for cyclotron production of technetium-99m

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE477724A (en) * 1940-11-13
US3841870A (en) * 1973-03-07 1974-10-15 Carpenter Technology Corp Method of making articles from powdered material requiring forming at high temperature
US3975689A (en) * 1974-02-26 1976-08-17 Alfred Albertovich Geizer Betatron including electromagnet structure and energizing circuit therefor
EP0412190B1 (en) * 1989-08-09 1993-10-27 Heimann Systems GmbH & Co. KG Device for transmitting fan-shaped radiation through objects
US5115459A (en) * 1990-08-15 1992-05-19 Massachusetts Institute Of Technology Explosives detection using resonance fluorescence of bremsstrahlung radiation
US5122662A (en) * 1990-10-16 1992-06-16 Schlumberger Technology Corporation Circular induction accelerator for borehole logging
CN1209037A (en) * 1997-08-14 1999-02-24 深圳奥沃国际科技发展有限公司 Longspan cyclotron

Also Published As

Publication number Publication date
CA2668050C (en) 2015-05-19
DE102006050949A1 (en) 2008-04-30
CA2668050A1 (en) 2008-05-08
US7889839B2 (en) 2011-02-15
WO2008052615A1 (en) 2008-05-08
EP2082628A1 (en) 2009-07-29
US20090262899A1 (en) 2009-10-22
HK1133987A1 (en) 2010-04-09
CN101530004A (en) 2009-09-09
CN101530004B (en) 2011-08-03
RU2009119595A (en) 2010-12-10

Similar Documents

Publication Publication Date Title
EP0195926B1 (en) Superconducting-magnet system for a particle accelerator in a synchrotron radiation source
WO2020119840A1 (en) Rotor for an electric motor, electric motor, and method for producing a rotor
EP1849169B1 (en) Transformer core comprising magnetic shielding
DE102016119654A1 (en) Process for producing a soft magnetic core material
DE2609485A1 (en) METHOD AND DEVICE FOR MAGNETIC FIELD TRIMMING IN AN ISOCHRON CYCLOTRON
EP2082628B1 (en) Betatron comprising a yoke made of composite powder
EP2082626B1 (en) Betatron comprising a removable accelerator block
EP2082624B1 (en) Betatron with a variable orbital radius
EP2082625B1 (en) Betatron comprising a contraction and expansion coil
EP3599619A1 (en) Target for producing x-ray radiation, x-ray emitter and method for producing x-ray radiation
EP2907146A2 (en) Scalable, highly dynamic electromagnetic linear drive with limited travel and low transverse forces
WO2008052617A1 (en) Lead shielding for a betatron
DE102010019577A1 (en) Structural element for a motor vehicle seat, comprises a first component and a second component, which have a form-closed connection or a form-closed and force-closed connection in an overlap region
DE102013221965A1 (en) Process for producing a molded part and electric machine with such a molded part
EP4075461A1 (en) Method of manufacturing an electric component
EP3373417A1 (en) Flow guiding element having a layered structure
DE102021133243A1 (en) Laminated core section with filigree braiding, method for producing a laminated core section, laminated core, active part and electrical machine
WO2022053316A1 (en) Transformer
EP3614541A1 (en) Method for producing a magnetic flux part for an electric or electronic component with grading of magnetic properties, part and component
DE102022121855A1 (en) Rotor disk and method for producing the same
WO2019091845A1 (en) Element for converting between at least one linearly polarized electromagnetic wave and at least one elliptically polarized electromagnetic wave in a waveguide
WO2019129491A1 (en) Magnetic core with yoke limb
DE102019200862A1 (en) Cable arrangement
WO1994001983A1 (en) Wiggler with concentric coil arrangement
EP1269609A1 (en) Method for producing an electric machine subassembly, subassembly produced according to said method, and electric machine with said subassembly

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090327

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20100414

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502007016050

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H05H0011000000

Ipc: H05H0011040000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H05H 11/04 20060101AFI20170719BHEP

INTG Intention to grant announced

Effective date: 20170804

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 968416

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007016050

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180131

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180501

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180430

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180531

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007016050

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20181102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180930

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 968416

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070906

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230713

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230703

Year of fee payment: 17

Ref country code: DE

Payment date: 20230712

Year of fee payment: 17