EP2082625B1 - Betatron comprising a contraction and expansion coil - Google Patents

Betatron comprising a contraction and expansion coil Download PDF

Info

Publication number
EP2082625B1
EP2082625B1 EP07802169.8A EP07802169A EP2082625B1 EP 2082625 B1 EP2082625 B1 EP 2082625B1 EP 07802169 A EP07802169 A EP 07802169A EP 2082625 B1 EP2082625 B1 EP 2082625B1
Authority
EP
European Patent Office
Prior art keywords
betatron
coil
inner yoke
radius
electrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07802169.8A
Other languages
German (de)
French (fr)
Other versions
EP2082625A1 (en
Inventor
Jörg BERMUTH
Georg Geus
Gregor Hess
Urs VIEHBÖCK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Smiths Heimann GmbH
Original Assignee
Smiths Heimann GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smiths Heimann GmbH filed Critical Smiths Heimann GmbH
Publication of EP2082625A1 publication Critical patent/EP2082625A1/en
Application granted granted Critical
Publication of EP2082625B1 publication Critical patent/EP2082625B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H11/00Magnetic induction accelerators, e.g. betatrons
    • H05H11/04Biased betatrons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma

Definitions

  • the present invention relates to a betatron with a contraction and expansion coil, in particular for generating X-radiation in an X-ray inspection system.
  • X-ray inspection systems When checking large-volume items such as containers and vehicles for inadmissible content such as weapons, explosives or contraband, X-ray inspection systems are known to be used. X-rays are generated and directed to the object. The X-radiation attenuated by the object is measured by means of a detector and analyzed by an evaluation unit. Thus, it can be concluded on the nature of the object.
  • Such an X-ray inspection system is for example from the European patent EP 0 412 190 B1 known.
  • Betatrons are used to generate X-rays with the energy of more than 1 MeV necessary for the test. These are circular accelerators in which electrons are accelerated in a circular path. The accelerated electrons are directed to a target, where they produce a bremsstrahlung upon impact, the spectrum of which depends, among other things, on the energy of the electrons.
  • betatron consists of a two-part inner yoke, in which the end faces of the two inner yoke parts are spaced apart. By means of two main field coils, a magnetic field is generated in the inner yoke. An outer yoke connects the two mutually remote ends of the inner yoke parts and closes the magnetic circuit.
  • an evacuated betatron tube is arranged, in which the electrons to be accelerated revolve.
  • the end faces of the inner yoke parts are formed in such a way that the magnetic field generated by the main field coil forces the electrons into a circular path and, moreover, focuses them on the plane in which this circular path lies.
  • the electrons are injected, for example by means of an electron gun in the betatron tube and the current through the main field coil and thus increases the strength of the magnetic field.
  • the changing magnetic field creates an electric field that accelerates the electrons in their orbit.
  • the Lorentz force on the electrons increases with the magnetic field strength equally. This keeps the electrons at the same orbit radius.
  • An electron moves in a circular path when the Lorentz force and the opposite centripetal force are directed towards the center of the orbit.
  • r s is the desired orbit radius of the electron
  • A is the area bounded by the nominal orbit radius r s
  • US 2,738,421 discloses an additional coil to obtain the magnetic field evenly.
  • the disadvantage of the known betatron is the fact that, for example due to manufacturing tolerances or the scattering of the electron gun, only a small part of the electrons injected into the betatron tube is focused on the desired circular path and thus accelerated to the final energy. This results in a reduced efficiency. In addition, the problem arises of discharging the accelerated electrons, that is to steer from the desired path to the target.
  • Claim 10 relates to an X-ray inspection system using a betatron according to the invention.
  • a betatron according to the present invention comprises a rotationally symmetrical inner yoke of two spaced-apart parts, an outer yoke connecting the two inner yoke parts, at least one main field coil, a torus-shaped betatron tube arranged between the opposite end faces of the inner yoke parts and at least one contraction and expansion coil ( CE coil), wherein each exactly one CE coil between the end face of a mecanicjochteils and the Betatronrschreibe is arranged and the radius of the CE coil is substantially equal to the nominal orbit radius of the electrons in the betatron tube.
  • the betatron additionally has at least one round plate between the inner yoke parts, wherein the round plate is arranged so that its longitudinal axis coincides with the rotational symmetry axis of the inner yoke.
  • the CE coil is energized.
  • This current flow is also called contraction pulse.
  • the magnetic field generated thereby changes the magnetic field between the inner yoke parts such that the Wideröe condition is disturbed and temporarily results in a changed nominal orbit radius.
  • the desired nominal orbit radius lies between the injection radius and the changed nominal orbit radius.
  • the electrons move in a spiral path toward the changed nominal orbit radius until they are at or near the desired nominal orbit radius.
  • the contraction pulse ends and the electrons are held on the stable circular path with the desired nominal orbit radius and accelerated.
  • the electron gun which injects the electrons into the betatron tube, gives the electrons in a funnel-shaped solid angle range with a certain Frequency distribution.
  • the duration of the contraction pulse it can be set from which part of this solid angle range the electrons are focused on the target circle path.
  • installation tolerances of the electron gun can be compensated.
  • a smaller nominal orbit radius fulfills the Wideröe condition by the magnetic field of the CE coil. This causes the electrons to travel on a path that tends to the desired orbit radius for the duration of the contraction pulse.
  • the electrons are directed to the target in the discharge phase.
  • the contraction and expansion coil is energized again.
  • the current flow through the CE coil during the ejection of the electrons is also referred to as the expansion pulse.
  • the main field coils generate a stronger magnetic field than during the injection phase.
  • the material of the yokes and the blanks is located in a non-linear region of the hysteresis curve, which describes the relationship between the exciting magnetic flux and the magnetic flux in the material.
  • the magnetic flux in the material is therefore proportional to the magnetic flux in the air between the inner yoke parts affects the contraction and expansion coil differently than during the injection phase. This leads to a disturbance of the Wideröe condition, which is now met again by a changed nominal orbit radius.
  • the electrons move on a spiral path to the changed nominal orbit radius and hit the target during this movement.
  • the magnetic field of the CE coil will alter the magnetic flux such that a larger radius will satisfy the Wideroe condition.
  • the electrons drift outward until they hit the target.
  • the terminals of a CE coil are connected to a current or voltage source and in at least one Line between the CE coil and the current or voltage source is arranged by a control electronics actuated switch.
  • the switch is, for example, a high-power semiconductor switch such as an IGBT (Insulated Gate Bipolar Transistor).
  • IGBT Insulated Gate Bipolar Transistor
  • the switch determines both the timing and duration of current flow through the coil.
  • the control electronics are preferably designed such that the switch-on and the switch-on of the switch, so the beginning and duration of the contraction or expansion pulse, are variable.
  • the same contraction and expansion coil is used both for focusing the electrons on the desired circular path during the injection phase and for discharging the electrons onto the target.
  • the space requirement is minimized compared to two separate coils, whereby a better insulation of the coil wire can be used.
  • a power electronics can be saved to power the coils.
  • the betatron has a detector for determining the intensity of the generated X-ray radiation.
  • the detector is preferably connected to the control electronics, so that the switch-on and the switch-on of the switch by means of the control electronics from the output signal of the detector can be determined.
  • the result is a control system that selects the contraction pulse so that the desired radiation intensity is achieved.
  • the opposite end faces of the inner yoke parts are designed and arranged mirror-symmetrically with respect to one another.
  • the plane of symmetry is advantageously oriented so that the rotational symmetry axis of the inner yoke is perpendicular to it. This leads to an advantageous field distribution in the air gap between the end faces, through which the electrons in the betatron tube are held in a circular path.
  • At least one main field coil is arranged on the inner yoke, in particular on a taper or a shoulder of the inner yoke.
  • the betatron has two main field coils, wherein a main field coil is arranged on each of the inner yoke parts. This leads to an advantageous distribution of the magnetic flux on the inner yoke parts.
  • the betatron according to the invention is advantageously used in an X-ray inspection system for security checking of objects. Electrons are injected into the betatron and accelerated before being directed to a target made of tantalum, for example. There, the electrons generate X-radiation with a known spectrum. The X-radiation is directed to the object, preferably a container and / or a vehicle, and modified there, for example, by scattering or transmission attenuation. The modified X-radiation is measured by an X-ray detector and analyzed by means of an evaluation unit. From the result, the nature or content of the object is deduced.
  • FIG. 1 shows the schematic structure of a preferred betatrone 1 in cross section. It consists inter alia of a rotationally symmetrical inner yoke of two spaced-apart parts 2a, 2b, four optional discs 3 between the inner yoke parts 2a, 2b, wherein the longitudinal axis of the discs 3 corresponds to the axis of rotational symmetry of the inner yoke, an outer yoke 4 connecting the two inner yoke members 2a, 2b a torus-shaped betatron tube 5 arranged between the inner yoke parts 2a, 2b, two main field coils 6a and 6b and one in FIG. 1 not shown control electronics 8.
  • the main field coils 6a and 6b are arranged on shoulders of the mecanicjochteile 2a and 2b respectively.
  • the magnetic field generated by them passes through the inner yoke parts 2a and 2b and the region between their opposite end faces, the magnetic circuit being closed by the outer yoke 4.
  • the shape of the inner and / or outer yoke can be selected by the skilled person depending on the application and of the in FIG. 1 specified form differ. Also, only one or more than two main field coils may be present. Another number and / or shape of the blanks is also possible.
  • the magnetic field passes partially through the blanks 3 and otherwise through an air gap.
  • the betatron tube 5 is arranged. It is an evacuated tube in which the electrons are accelerated.
  • the end faces of the inner yoke parts 2a and 2b have a shape selected such that the magnetic field between them focuses the electrons on a circular path. The design of the end faces is known in the art and is therefore not explained in detail.
  • the electrons strike a target and thereby generate X-radiation whose spectrum depends, among other things, on the final energy of the electrons and the material of the target.
  • the electrons are injected into the betatron tube 5 with an initial energy.
  • the magnetic field in the betatron 1 is continuously increased by the main field coils 6a and 6b. This creates an electric field that exerts an accelerating force on the electrons.
  • the electrons are forced due to the Lorentz force on a Soll Vietnamesebahn within the betatron tube 5.
  • the acceleration of the electrons is repeated periodically, resulting in a pulsed X-radiation.
  • the electrons are injected into the betatron tube 5 in a first step.
  • the electrons are accelerated by an increasing current in the main field coil 6a and 6b and thus an increasing magnetic field in the air gap between the inner yoke parts 2a and 2b in the circumferential direction of their circular path.
  • the accelerated electrons are ejected to generate the X-radiation on the target. This is followed by an optional pause before electrons are again injected into the betatron tube 5.
  • the radius r s that satisfies the equation 1 2 ⁇ d dt ⁇ B r s > d dt ⁇ B r s is satisfied, is the stable nominal orbit radius on which the electrons revolve.
  • the electron gun emits the electrons with a known aperture angle, the distribution of the electrons usually not being constant over this aperture angle.
  • the electron gun injects the electrons at an injection radius r l deviating from the nominal path radius r s . It is therefore necessary to first transfer the electrons from the injection radius r l to the nominal orbit radius r s .
  • the CE coils are in FIG. 1 indicated by three spiral turns, but any other configuration is possible.
  • the radius of the CE coils 7a and 7b is substantially equal to the nominal track radius r s of the electrons in the betatron tube 5.
  • CE coils 7a and 7b Due to the spatial extent of the CE coils 7a and 7b, their outer edges extend slightly beyond the nominal track radius r s .
  • the exact size and positioning of the CE coils is left to the person skilled in the art. However, it is the condition that the inner radius of the CE coils 7a and 7b is larger than the outer radius of the blanks 3, so that the magnetic field generated by them also passes through parts of the area outside of the blanks 3.
  • the central axes of the CE coils 7a and 7b coincide with the rotational symmetry axis of the inner yoke. Due to this arrangement and the size of the CE coils 7a and 7b, the magnetic field generated by them passes through a circular area whose radius is greater than the radius of the round blanks 3 and approximately in the range of the nominal orbit radius r s .
  • FIG. 2 shows qualitatively the course of the magnetic field B shown in solid lines over the radius, starting from the rotational symmetry axis of the inner yoke, and the injection radius r l of the electrons. Due to the magnetically active material of the blanks 3 results in an approximately constant magnetic field within the blanks 3. The magnetic field is significantly lower in the air outside the blanks and also falls off with increasing radius. In the illustrated magnetic field, the in FIG. 2 Plotted nominal orbit radius r s the Wiederöe condition.
  • the changed nominal track radius r s ' fulfills the Wiederöe condition. It follows that the electrons are drawn in a spiral path from the injection radius r l to the changed nominal path radius r s '. In this case, the electrons, for example, depending on their angle of entry into the betatron tube 5, pass the desired nominal orbit radius r s at different times. The electrons that are at the end of the contraction pulse on or near the desired nominal orbit radius r s , are accelerated in the following on this radius.
  • the end time of the contraction pulse can thus be selected from which part of the opening angle of the electron gun are the electrons, which are accelerated to the desired final energy.
  • the intensity of the X-ray radiation generated by the betatron 1 can be maximized and regulated.
  • the main field coils 6a and 6b generate the qualitatively in FIG. 3 shown in solid magnetic field B (r), whose course substantially from the magnetic field FIG. 2 equivalent.
  • the magnetic field is much stronger.
  • the material of the yokes and / or blanks is in a non-linear region of the hysteresis curve.
  • An X-ray detector not shown in the figures detects the intensity of the generated X-ray radiation and regularly transmits information about the intensity to the control electronics 8. This evaluates the intensity and determines therefrom the duration and the time of the contraction and expansion pulses for the next period the electron acceleration.
  • the FIG. 4 shows an example of a circuit for energizing the CE coil 7a, which is identical to the CE coil 7b transferable.
  • the CE coil 7a is connected to a voltage source 11 via a switch 9 which can be activated by the control electronics 8.
  • a switch 9 which can be activated by the control electronics 8.
  • multiple CE coils are connected via one or more switches to a common voltage source.
  • each CE coil is connected via a separate switch to a voltage source associated with the CE coil.

Description

Die vorliegende Erfindung betrifft ein Betatron mit einer Contraction- und Expansionspule, insbesondere zur Erzeugung von Röntgenstrahlung in einer Röntgenprüfanlage.The present invention relates to a betatron with a contraction and expansion coil, in particular for generating X-radiation in an X-ray inspection system.

Bei der Überprüfung von großvolumigen Gegenständen wie Containern und Fahrzeugen auf unzulässige Inhalte wie Waffen, Sprengstoff oder Schmuggelware werden bekannterweise Röntgenprüfanlagen eingesetzt. Dabei wird Röntgenstrahlung erzeugt und auf den Gegenstand gerichtet. Die von dem Gegenstand abgeschwächte Röntgenstrahlung wird mittels eines Detektors gemessen und von einer Auswerteeinheit analysiert. Somit kann auf die Beschaffenheit des Gegenstandes geschlossen werden. Eine solche Röntgenprüfanlage ist beispielsweise aus der Europäischen Patentschrift EP 0 412 190 B1 bekannt.When checking large-volume items such as containers and vehicles for inadmissible content such as weapons, explosives or contraband, X-ray inspection systems are known to be used. X-rays are generated and directed to the object. The X-radiation attenuated by the object is measured by means of a detector and analyzed by an evaluation unit. Thus, it can be concluded on the nature of the object. Such an X-ray inspection system is for example from the European patent EP 0 412 190 B1 known.

Zur Erzeugung von Röntgenstrahlung mit der für die Überprüfung notwendigen Energie von mehr als 1 MeV werden Betatrons eingesetzt. Dabei handelt es sich um Kreisbeschleuniger, in denen Elektronen auf einer Kreisbahn beschleunigt werden. Die beschleunigten Elektronen werden auf ein Target gelenkt, wo sie beim Auftreffen eine Bremsstrahlung erzeugen, deren Spektrum unter anderem abhängig ist von der Energie der Elektronen.Betatrons are used to generate X-rays with the energy of more than 1 MeV necessary for the test. These are circular accelerators in which electrons are accelerated in a circular path. The accelerated electrons are directed to a target, where they produce a bremsstrahlung upon impact, the spectrum of which depends, among other things, on the energy of the electrons.

Ein aus der Offenlegungsschrift DE 23 57 126 A1 bekanntes Betatron besteht aus einem zweiteiligen Innenjoch, bei dem sich die Stirnseiten der beiden Innenjochteile beabstandet gegenüberstehen. Mittels zweier Hauptfeldspulen wird ein magnetisches Feld im Innenjoch erzeugt. Ein Außenjoch verbindet die beiden voneinander entfernten Enden der Innenjochteile und schließt den magnetischen Kreis.One from the published patent application DE 23 57 126 A1 known betatron consists of a two-part inner yoke, in which the end faces of the two inner yoke parts are spaced apart. By means of two main field coils, a magnetic field is generated in the inner yoke. An outer yoke connects the two mutually remote ends of the inner yoke parts and closes the magnetic circuit.

Zwischen den Stirnseiten der beiden Innenjochteile ist eine evakuierte Betatronröhre angeordnet, in der die zu beschleunigenden Elektronen kreisen. Die Stirnseiten der Innenjochteile sind derart ausgeformt, dass das von der Hauptfeldspule erzeugte Magnetfeld die Elektronen auf eine Kreisbahn zwingt und sie darüber hinaus auf die Ebene, in der diese Kreisbahn liegt, fokussiert. Zur Steuerung des magnetischen Flusses ist es bekannt, zwischen den Stirnseiten der Innenjochteile innerhalb der Betatronröhre einen ferromagnetischen Einsatz anzuordnen.Between the end faces of the two inner yoke parts an evacuated betatron tube is arranged, in which the electrons to be accelerated revolve. The end faces of the inner yoke parts are formed in such a way that the magnetic field generated by the main field coil forces the electrons into a circular path and, moreover, focuses them on the plane in which this circular path lies. To control the magnetic flux, it is known to arrange a ferromagnetic insert between the end faces of the inner yoke parts within the betatron tube.

Die Elektronen werden beispielsweise mittels einer Elektronenkanone in die Betatronröhre injiziert und der Strom durch die Hauptfeldspule und damit die Stärke des Magnetfeldes erhöht. Durch das sich verändernde Magnetfeld wird ein elektrisches Feld erzeugt, das die Elektronen auf ihrer Kreisbahn beschleunigt. Gleichzeitig erhöht sich mit der Magnetfeldstärke gleichermaßen die Lorentzkraft auf die Elektronen. Dadurch werden die Elektronen auf dem gleichen Bahnradius gehalten. Ein Elektron bewegt sich auf einer Kreisbahn, wenn sich die zum Mittelpunkt der Kreisbahn gerichtete Lorentzkraft und die entgegengesetzte Zentripetalkraft aufheben. Daraus folgt die Wideröe'sche Bedingung 1 2 d dt < B r s > = d dt B r s

Figure imgb0001
mit < B r s > = 1 π r s 2 A B r dA
Figure imgb0002
The electrons are injected, for example by means of an electron gun in the betatron tube and the current through the main field coil and thus increases the strength of the magnetic field. The changing magnetic field creates an electric field that accelerates the electrons in their orbit. At the same time, the Lorentz force on the electrons increases with the magnetic field strength equally. This keeps the electrons at the same orbit radius. An electron moves in a circular path when the Lorentz force and the opposite centripetal force are directed towards the center of the orbit. From this follows the Wideroe condition 1 2 d dt < B r s > = d dt B r s
Figure imgb0001
With < B r s > = 1 π r s 2 A B r there
Figure imgb0002

Dabei ist rs der Sollbahnradius des Elektrons, A die vom Sollbahnradius rs begrenzte Fläche und <B(rs)> die über die Fläche A gemittelte Magnetfeldstärke. US 2 738 421 offenbart eine zusätliches Spule, um das Magnetfeld gleichmäßig zu erhalten.Here, r s is the desired orbit radius of the electron, A is the area bounded by the nominal orbit radius r s and <B (r s )> the magnetic field strength averaged over the area A. US 2,738,421 discloses an additional coil to obtain the magnetic field evenly.

Der Nachteil des bekannten Betatrons ist die Tatsache, dass beispielsweise aufgrund von Fertigungstoleranzen oder der Streuung der Elektronenkanone nur ein geringer Teil der in die Betatronröhre injizierten Elektronen auf die gewünschte Kreisbahn fokussiert und damit auf die Endenergie beschleunigt wird. Dadurch ergibt sich ein verminderter Wirkungsgrad. Außerdem stellt sich das Problem, die beschleunigten Elektronen auszuschleusen, also von der Sollbahn auf das Target zu lenken.The disadvantage of the known betatron is the fact that, for example due to manufacturing tolerances or the scattering of the electron gun, only a small part of the electrons injected into the betatron tube is focused on the desired circular path and thus accelerated to the final energy. This results in a reduced efficiency. In addition, the problem arises of discharging the accelerated electrons, that is to steer from the desired path to the target.

Es ist daher die Aufgabe der vorliegenden Erfindung, ein Betatron bereitzustellen, das die vorstehenden Nachteile nicht aufweist.It is therefore the object of the present invention to provide a betatron which does not have the above disadvantages.

Gelöst wird diese Aufgabe erfindungsgemäß durch die Merkmale des Patentanspruches 1. Vorteilhafte Ausgestaltungsformen sind den abhängigen Patentansprüchen 2 bis 9 zu entnehmen. Patentanspruch 10 betrifft eine Röntgenprüfanlage unter Verwendung eines erfindungsgemäßen Betatrons.This object is achieved according to the invention by the features of claim 1. Advantageous embodiments are given in the dependent claims 2 to 9. Claim 10 relates to an X-ray inspection system using a betatron according to the invention.

Ein Betatron nach der vorliegenden Erfindung weist ein rotationssymmetrisches Innenjoch aus zwei beabstandet angeordneten Teilen, ein die beiden Innenjochteile verbindendes Außenjoch, mindestens eine Hauptfeldspule, eine zwischen den gegenüberliegenden Stirnseiten der Innenjochteilen angeordnete, Torus-förmige Betatronröhre und mindestens eine Contraction- und Expansion-Spule (CE-Spule) auf, wobei jeweils genau eine CE-Spule zwischen der Stirnseite eines Innenjochteils und der Betatronröhre angeordnet ist und der Radius der CE-Spule im Wesentlichen gleich dem Sollbahnradius der Elektronen in der Betatronröhre ist. Bevorzugt weist das Betatron zusätzlich mindestens eine Ronde zwischen den Innenjochteilen auf, wobei die Ronde so angeordnet ist, dass ihre Längsachse mit der Rotationssymmetrieachse des Innenjochs zusammenfällt.A betatron according to the present invention comprises a rotationally symmetrical inner yoke of two spaced-apart parts, an outer yoke connecting the two inner yoke parts, at least one main field coil, a torus-shaped betatron tube arranged between the opposite end faces of the inner yoke parts and at least one contraction and expansion coil ( CE coil), wherein each exactly one CE coil between the end face of a Innenjochteils and the Betatronröhre is arranged and the radius of the CE coil is substantially equal to the nominal orbit radius of the electrons in the betatron tube. Preferably, the betatron additionally has at least one round plate between the inner yoke parts, wherein the round plate is arranged so that its longitudinal axis coincides with the rotational symmetry axis of the inner yoke.

Während der Injektionsphase, in der sich die Elektronen noch nicht auf der gewünschten Sollkreisbahn bewegen, wird die CE-Spule bestromt. Dieser Stromfluss wird auch als Contraction-Puls bezeichnet. Das dadurch erzeugte Magnetfeld verändert das Magnetfeld zwischen den Innenjochteilen derart, dass die Wideröe-Bedingung gestört wird und sich zeitweilig ein veränderter Sollbahnradius ergibt. Dabei liegt der gewünschte Sollbahnradius zwischen dem Injektionsradius und dem veränderten Sollbahnradius. Die Elektronen bewegen sich auf einer spiralförmigen Bahn in Richtung des veränderten Sollbahnradius, bis sie sich auf dem oder in der Nähe des gewünschten Sollbahnradius befinden. Zu diesem Zeitpunkt endet der Contraction-Puls und die Elektronen werden auf der stabilen Kreisbahn mit dem gewünschten Sollbahnradius gehalten und beschleunigt.During the injection phase, in which the electrons do not yet move on the desired Sollkreisbahn, the CE coil is energized. This current flow is also called contraction pulse. The magnetic field generated thereby changes the magnetic field between the inner yoke parts such that the Wideröe condition is disturbed and temporarily results in a changed nominal orbit radius. The desired nominal orbit radius lies between the injection radius and the changed nominal orbit radius. The electrons move in a spiral path toward the changed nominal orbit radius until they are at or near the desired nominal orbit radius. At this time, the contraction pulse ends and the electrons are held on the stable circular path with the desired nominal orbit radius and accelerated.

Die Elektronenkanone, die die Elektronen in die Betatronröhre injiziert, gibt die Elektronen in einem trichterförmigen Raumwinkelbereich mit einer bestimmten Häufigkeitsverteilung ab. Über die Dauer des Contraction-Pulses lässt sich einstellen, aus welchem Teil dieses Raumwinkelbereichs die Elektronen auf die Sollkreisbahn fokussiert werden. Darüber hinaus lassen sich gleichzeitig Einbautoleranzen der Elektronenkanone ausgleichen.The electron gun, which injects the electrons into the betatron tube, gives the electrons in a funnel-shaped solid angle range with a certain Frequency distribution. By means of the duration of the contraction pulse, it can be set from which part of this solid angle range the electrons are focused on the target circle path. In addition, at the same time installation tolerances of the electron gun can be compensated.

Ist der Einschussradius der Elektronen in die Betatronröhre größer als der Sollbahnradius während der Beschleunigung, so erfüllt durch das Magnetfeld der CE-Spule ein kleinerer Sollbahnradius die Wideröe-Bedingung. Dies führt dazu, dass sich die Elektronen für die Dauer des Contracion-Pulses auf einer Bahn bewegen, die zum gewünschten Sollbahnradius tendiert.If the radius of penetration of the electrons into the betatron tube is greater than the nominal orbit radius during acceleration, then a smaller nominal orbit radius fulfills the Wideröe condition by the magnetic field of the CE coil. This causes the electrons to travel on a path that tends to the desired orbit radius for the duration of the contraction pulse.

Am Ende des Beschleunigungsvorgangs werden die Elektronen in der Ausschleusephase auf das Target gelenkt. Dazu wird die Contraction- und Expansion-Spule wieder bestromt. Der Stromfluss durch die CE-Spule während der Ausschleusens der Elektronen wird auch als Expansion-Puls bezeichnet. Zu diesem Zeitpunkt erzeugen die Hauptfeldspulen ein stärkeres Magnetfeld als während der Injektionsphase. Der Werkstoff der Joche und der Ronden befindet sich in einem nichtlinearen Bereich der Hysteresekurve, die den Zusammenhang zwischen dem erregenden magnetischen Fluss und dem magnetischen Fluss im Werkstoff beschreibt Der magnetische Fluss im Werkstoff wird im Verhältnis zum magnetischen Fluss in der Luft zwischen den Innenjochteilen daher durch die Contraction- und Expansion-Spule anders beeinflusst als während der Injektionsphase. Dies führt zu einer Störung der Wideröe-Bedingung, die nun wieder von einem veränderten Sollbahnradius erfüllt wird. Die Elektronen bewegen sich auf einer spiralförmigen Bahn auf den veränderten Sollbahnradius zu und treffen bei dieser Bewegung auf das Target.At the end of the acceleration process, the electrons are directed to the target in the discharge phase. For this purpose, the contraction and expansion coil is energized again. The current flow through the CE coil during the ejection of the electrons is also referred to as the expansion pulse. At this time, the main field coils generate a stronger magnetic field than during the injection phase. The material of the yokes and the blanks is located in a non-linear region of the hysteresis curve, which describes the relationship between the exciting magnetic flux and the magnetic flux in the material. The magnetic flux in the material is therefore proportional to the magnetic flux in the air between the inner yoke parts affects the contraction and expansion coil differently than during the injection phase. This leads to a disturbance of the Wideröe condition, which is now met again by a changed nominal orbit radius. The electrons move on a spiral path to the changed nominal orbit radius and hit the target during this movement.

Befindet sich das Target beispielsweise außerhalb des Sollbahnradius, so verändert das Magnetfeld der CE-Spule den magnetischen Fluss derart, dass ein größerer Radius die Wideröe-Bedingung erfüllt. Die Elektronen driften dadurch nach Außen, bis sie auf das Target treffen.For example, if the target is outside the nominal orbit radius, the magnetic field of the CE coil will alter the magnetic flux such that a larger radius will satisfy the Wideroe condition. The electrons drift outward until they hit the target.

In einer vorteilhaften Ausgestaltungsform der Erfindung sind die Anschlüsse einer CE-Spule mit einer Strom- oder Spannungsquelle verbunden und in zumindest einer Leitung zwischen der CE-Spule und der Strom- oder Spannungsquelle ist ein durch eine Steuerelektronik betätigbarer Schalter angeordnet. Bei dem Schalter handelt es sich beispielsweise um einen Hochleistungs-Halbleiterschalter wie einen IGBT (Insulated Gate Bipolar Transistor). Durch den Schalter wird sowohl der Zeitpunkt als auch die Dauer des Stromflusses durch die Spule bestimmt. Mittels der Variation der Dauer des Contraction- und/oder Expansion-Pulses wird die Amplitude des maximalen Spulenstroms und dadurch die maximale Änderung des Magnetfeldes eingestellt. Dazu ist die Steuerelektronik bevorzugt derart ausgestaltet, dass der Einschaltzeitpunkt und die Einschaltdauer des Schalters, also der Beginn und die Dauer des Contraction- oder Expansion-Pulses, variabel sind.In an advantageous embodiment of the invention, the terminals of a CE coil are connected to a current or voltage source and in at least one Line between the CE coil and the current or voltage source is arranged by a control electronics actuated switch. The switch is, for example, a high-power semiconductor switch such as an IGBT (Insulated Gate Bipolar Transistor). The switch determines both the timing and duration of current flow through the coil. By means of the variation of the duration of the contraction and / or expansion pulse, the amplitude of the maximum coil current and thereby the maximum change of the magnetic field is set. For this purpose, the control electronics are preferably designed such that the switch-on and the switch-on of the switch, so the beginning and duration of the contraction or expansion pulse, are variable.

Erfindungsgemäß wird die gleiche Contraction- und Expansion-Spule sowohl für das Fokussieren der Elektronen auf die Sollkreisbahn während der Injektionsphase als auch für das Ausschleusen der Elektronen auf das Target verwendet. Somit wird der Platzbedarf im Vergleich zu zwei separaten Spulen minimiert, wodurch eine bessere Isolation des Spulendrahtes verwendet werden kann. Außerdem kann eine Leistungselektronik zur Versorgung der Spulen eingespart werden.According to the invention, the same contraction and expansion coil is used both for focusing the electrons on the desired circular path during the injection phase and for discharging the electrons onto the target. Thus, the space requirement is minimized compared to two separate coils, whereby a better insulation of the coil wire can be used. In addition, a power electronics can be saved to power the coils.

In einer Ausgestaltungsform der Erfindung weist das Betatron einen Detektor zur Ermittlung der Intensität der generierten Röntgenstrahlung auf. Der Detektor ist bevorzugt mit der Steuerungselektronik verbunden, damit der Einschaltzeitpunkt und die Einschaltdauer des Schalters mittels der Steuerelektronik aus dem Ausgangssignal des Detektors ermittelbar sind. Es ergibt sich ein Regelsystem, dass den Contraction-Puls so wählt, dass die gewünschte Strahlungsintensität erreicht wird.In one embodiment of the invention, the betatron has a detector for determining the intensity of the generated X-ray radiation. The detector is preferably connected to the control electronics, so that the switch-on and the switch-on of the switch by means of the control electronics from the output signal of the detector can be determined. The result is a control system that selects the contraction pulse so that the desired radiation intensity is achieved.

Bevorzugt sind die gegenüberliegenden Stirnseiten der Innenjochteile zueinander spiegelsymmetrisch ausgestaltet und angeordnet. Die Symmetrieebene ist dabei vorteilhaft so orientiert, dass die Rotationssymmetrieachse des Innenjochs senkrecht auf ihr steht. Dies führt zu einer vorteilhaften Feldverteilung im Luftspalt zwischen den Stirnseiten, durch die die Elektronen in der Betatronröhre auf einer Kreisbahn gehalten werden.Preferably, the opposite end faces of the inner yoke parts are designed and arranged mirror-symmetrically with respect to one another. The plane of symmetry is advantageously oriented so that the rotational symmetry axis of the inner yoke is perpendicular to it. This leads to an advantageous field distribution in the air gap between the end faces, through which the electrons in the betatron tube are held in a circular path.

Weiterhin bevorzugt ist mindestens eine Hauptfeldspule auf dem Innenjoch angeordnet, insbesondere auf einer Verjüngung oder einem Absatz des Innenjochs. Dies führt dazu, dass im Wesentlichen der gesamte von der Hauptfeldspule erzeugte magnetische Fluss durch das Innenjoch geführt wird. In vorteilhafter Weise weist das Betatron zwei Hauptfeldspulen auf, wobei auf jedem der Innenjochteile eine Hauptfeldspule angeordnet ist. Dies führt zu einer vorteilhaften Verteilung des magnetischen Flusses auf die Innenjochteile.Further preferably, at least one main field coil is arranged on the inner yoke, in particular on a taper or a shoulder of the inner yoke. As a result, substantially all the magnetic flux generated by the main field coil is passed through the inner yoke. Advantageously, the betatron has two main field coils, wherein a main field coil is arranged on each of the inner yoke parts. This leads to an advantageous distribution of the magnetic flux on the inner yoke parts.

Das erfindungsgemäße Betatron wird vorteilhaft in einer Röntgenprüfanlage zur Sicherheitsüberprüfung von Objekten eingesetzt. Es werden Elektronen in das Betatron injiziert und beschleunigt, bevor sie auf ein beispielsweise aus Tantal bestehendes Target gelenkt werden. Dort erzeugen die Elektronen Röntgenstrahlung mit einem bekannten Spektrum. Die Röntgenstrahlung wird auf das Objekt, vorzugsweise einen Container und/oder ein Fahrzeug, gerichtet und dort beispielsweise durch Streuung oder Transmissionsdämpfung modifiziert. Die modifizierte Röntgenstrahlung wird von einem Röntgendetektor gemessen und mittels einer Auswerteeinheit analysiert. Aus dem Ergebnis wird auf die Beschaffenheit oder den Inhalt des Objekts geschlossen.The betatron according to the invention is advantageously used in an X-ray inspection system for security checking of objects. Electrons are injected into the betatron and accelerated before being directed to a target made of tantalum, for example. There, the electrons generate X-radiation with a known spectrum. The X-radiation is directed to the object, preferably a container and / or a vehicle, and modified there, for example, by scattering or transmission attenuation. The modified X-radiation is measured by an X-ray detector and analyzed by means of an evaluation unit. From the result, the nature or content of the object is deduced.

Die vorliegende Erfindung soll anhand eines Ausführungsbeispiels näher erläutert werden. Dabei zeigen

Figur 1
eine schematische Schnittdarstellung durch ein erfindungsgemäßes Betatron,
Figur 2
einen qualitativen Verlauf der Magnetfeldstärke über dem Radius während der Injektionsphase,
Figur 3
einen qualitativen Verlauf der Magnetfeldstärke über dem Radius während der Ausschleusephase und
Figur 4
einen Stromkreis zur Ansteuerung einer CE-Spule.
The present invention will be explained in more detail with reference to an embodiment. Show
FIG. 1
a schematic sectional view through an inventive betatron,
FIG. 2
a qualitative course of the magnetic field strength over the radius during the injection phase,
FIG. 3
a qualitative course of the magnetic field strength over the radius during the Ausschleusephase and
FIG. 4
a circuit for driving a CE coil.

Figur 1 zeigt den schematischen Aufbau eines bevorzugten Betatrons 1 im Querschnitt. Es besteht unter anderem aus einem rotationssymmetrischen Innenjoch aus zwei beabstandet angeordneten Teilen 2a, 2b, vier optionalen Ronden 3 zwischen den Innenjochteilen 2a, 2b, wobei die Längsachse der Ronden 3 der Rotationssymmetrieachse des Innenjochs entspricht, einem die beiden Innenjochteile 2a, 2b verbindenden Außenjoch 4, einer zwischen den Innenjochteilen 2a, 2b angeordneten, Torus-förmigen Betatronröhre 5, zwei Hauptfeldspulen 6a und 6b sowie einer in Figur 1 nicht dargestellten Steuerelektronik 8. Die Hauptfeldspulen 6a und 6b sind auf Absätzen der Innenjochteile 2a beziehungsweise 2b angeordnet. Das von ihnen erzeugte Magnetfeld durchsetzt die Innenjochteile 2a und 2b sowie den Bereich zwischen ihren gegenüberliegenden Stirnseiten, wobei der magnetische Kreis durch das Außenjoch 4 geschlossen wird. Die Form des Innen- und/oder Außenjochs kann vom Fachmann je nach Anwendungsfall gewählt werden und von der in Figur 1 angegeben Form abweichen. Auch können nur eine oder mehr als zwei Hauptfeldspulen vorhanden sein. Eine andere Anzahl und/oder Form der Ronden ist ebenfalls möglich. FIG. 1 shows the schematic structure of a preferred betatrone 1 in cross section. It consists inter alia of a rotationally symmetrical inner yoke of two spaced-apart parts 2a, 2b, four optional discs 3 between the inner yoke parts 2a, 2b, wherein the longitudinal axis of the discs 3 corresponds to the axis of rotational symmetry of the inner yoke, an outer yoke 4 connecting the two inner yoke members 2a, 2b a torus-shaped betatron tube 5 arranged between the inner yoke parts 2a, 2b, two main field coils 6a and 6b and one in FIG. 1 not shown control electronics 8. The main field coils 6a and 6b are arranged on shoulders of the Innenjochteile 2a and 2b respectively. The magnetic field generated by them passes through the inner yoke parts 2a and 2b and the region between their opposite end faces, the magnetic circuit being closed by the outer yoke 4. The shape of the inner and / or outer yoke can be selected by the skilled person depending on the application and of the in FIG. 1 specified form differ. Also, only one or more than two main field coils may be present. Another number and / or shape of the blanks is also possible.

Zwischen den Stirnseiten der Innenjochteile 2a und 2b verläuft das Magnetfeld teilweise durch die Ronden 3 und ansonsten durch einen Luftspalt. In diesem Luftspalt ist die Betatronröhre 5 angeordnet. Dabei handelt es sich um eine evakuierte Röhre, in der die Elektronen beschleunigt werden. Die Stirnseiten der Innenjochteile 2a und 2b weisen eine Form auf, die so gewählt ist, dass das Magnetfeld zwischen ihnen die Elektronen auf eine Kreisbahn fokussiert. Die Ausgestaltung der Stirnflächen ist dem Fachmann bekannt und wird daher nicht näher erläutert. Die Elektronen treffen am Ende des Beschleunigungsvorgangs auf ein Target und erzeugen dadurch eine Röntgenstrahlung, deren Spektrum unter anderem von der Endenergie der Elektronen und dem Material des Targets abhängt.Between the end faces of the inner yoke parts 2a and 2b, the magnetic field passes partially through the blanks 3 and otherwise through an air gap. In this air gap, the betatron tube 5 is arranged. It is an evacuated tube in which the electrons are accelerated. The end faces of the inner yoke parts 2a and 2b have a shape selected such that the magnetic field between them focuses the electrons on a circular path. The design of the end faces is known in the art and is therefore not explained in detail. At the end of the acceleration process, the electrons strike a target and thereby generate X-radiation whose spectrum depends, among other things, on the final energy of the electrons and the material of the target.

Zur Beschleunigung werden die Elektronen mit einer Anfangsenergie in die Betatronröhre 5 eingeschossen. Während der Beschleunigungsphase wird das Magnetfeld im Betatron 1 durch die Hauptfeldspulen 6a und 6b fortlaufend erhöht. Dadurch wird ein elektrisches Feld erzeugt, das eine beschleunigende Kraft auf die Elektronen ausübt. Gleichzeitig werden die Elektronen auf Grund der Lorentzkraft auf eine Sollkreisbahn innerhalb der Betatronröhre 5 gezwungen.For acceleration, the electrons are injected into the betatron tube 5 with an initial energy. During the acceleration phase, the magnetic field in the betatron 1 is continuously increased by the main field coils 6a and 6b. This creates an electric field that exerts an accelerating force on the electrons. At the same time, the electrons are forced due to the Lorentz force on a Sollkreisbahn within the betatron tube 5.

Die Beschleunigung der Elektronen erfolgt periodisch wiederholt, wodurch sich eine gepulste Röntgenstrahlung ergibt. In jeder Periode werden in einem ersten Schritt die Elektronen in die Betatronröhre 5 injiziert. In einem zweiten Schritt werden die Elektronen durch einen steigenden Strom in den Hauptfeldspule 6a und 6b und somit ein ansteigendes Magnetfeld im Luftspalt zwischen den Innenjochteilen 2a und 2b in Umfangsrichtung ihrer Kreisbahn beschleunigt. In einem dritten Schritt werden die beschleunigten Elektronen zur Erzeugung der Röntgenstrahlung auf das Target ausgeschleust. Anschließend erfolgt eine optionale Pause, bevor erneut Elektronen in die Betatronröhre 5 injiziert werden.The acceleration of the electrons is repeated periodically, resulting in a pulsed X-radiation. In each period, the electrons are injected into the betatron tube 5 in a first step. In a second step, the electrons are accelerated by an increasing current in the main field coil 6a and 6b and thus an increasing magnetic field in the air gap between the inner yoke parts 2a and 2b in the circumferential direction of their circular path. In a third step, the accelerated electrons are ejected to generate the X-radiation on the target. This is followed by an optional pause before electrons are again injected into the betatron tube 5.

Für die Bahn der Elektronen in der Betatronröhre 5 gilt die oben angegebene Wideröe'sche Bedingung, die daraus resultiert, dass die Zentripetalkraft die Lorentzkraft aufwiegt. Derjenige Radius rs, der die Gleichung 1 2 d dt < B r s > = d dt B r s

Figure imgb0003

erfüllt, ist der stabile Sollbahnradius, auf dem die Elektronen umlaufen.For the orbit of the electrons in the betatron tube 5, the above-mentioned Wideröe condition applies, which results from the fact that the centripetal force outweighs the Lorentz force. The radius r s that satisfies the equation 1 2 d dt < B r s > = d dt B r s
Figure imgb0003

is satisfied, is the stable nominal orbit radius on which the electrons revolve.

Die Elektronenkanone emittiert die Elektronen mit einem bekannten Öffnungswinkel, wobei die Verteilung der Elektronen über diesen Öffnungswinkel üblicherweise nicht konstant ist. Darüber hinaus injiziert die Elektronenkanone die Elektronen auf einem vom Sollbahnradius rs abweichenden Injektionsradius rl. Es ist daher notwendig, zunächst die Elektronen vom Injektionsradius rl auf den Sollbahnradius rs zu überführen. Dazu dienen die beiden Contraction- und Expansion-Spulen 7a und 7b, die zwischen den Stirnseiten der Innenjochteile 2a beziehungsweise 2b und der Betatronröhre 5 angeordnet sind. Die CE-Spulen sind in Figur 1 durch drei spiralförmige Windungen angedeutet, wobei jedoch jede andere Ausgestaltung möglich ist. Der Radius der CE-Spulen 7a und 7b ist im Wesentlichen gleich dem Sollbahnradius rs der Elektronen in der Betatronröhre 5. Aufgrund der räumlichen Ausdehnung der CE-Spulen 7a und 7b erstrecken sich deren äußere Ränder geringfügig über dem Sollbahnradius rs hinaus. Die exakte Größe und Positionierung der CE-Spulen ist dem ausführenden Fachmann überlassen. Es ist jedoch die Bedingung einzuhalten, dass der Innenradius der CE-Spulen 7a und 7b größer ist als der Außenradius der Ronden 3, damit das von ihnen erzeugt Magnetfeld auch Teile des Bereichs außerhalb der Ronden 3 durchsetzt.The electron gun emits the electrons with a known aperture angle, the distribution of the electrons usually not being constant over this aperture angle. In addition, the electron gun injects the electrons at an injection radius r l deviating from the nominal path radius r s . It is therefore necessary to first transfer the electrons from the injection radius r l to the nominal orbit radius r s . Serve the two contraction and expansion coils 7a and 7b, which are arranged between the end faces of the Innenjochteile 2a and 2b and the betatron tube 5. The CE coils are in FIG. 1 indicated by three spiral turns, but any other configuration is possible. The radius of the CE coils 7a and 7b is substantially equal to the nominal track radius r s of the electrons in the betatron tube 5. Due to the spatial extent of the CE coils 7a and 7b, their outer edges extend slightly beyond the nominal track radius r s . The exact size and positioning of the CE coils is left to the person skilled in the art. However, it is the condition that the inner radius of the CE coils 7a and 7b is larger than the outer radius of the blanks 3, so that the magnetic field generated by them also passes through parts of the area outside of the blanks 3.

Die Mittelachsen der CE-Spulen 7a und 7b fallen mit der Rotationssymmetrieachse des Innenjochs zusammen. Auf Grund dieser Anordnung und der Größe der CE-Spulen 7a und 7b durchsetzt das von ihnen erzeugte Magnetfeld eine Kreisfläche, deren Radius größer ist als der Radius der Ronden 3 und etwa im Bereich des Sollbahnradius rs liegt.The central axes of the CE coils 7a and 7b coincide with the rotational symmetry axis of the inner yoke. Due to this arrangement and the size of the CE coils 7a and 7b, the magnetic field generated by them passes through a circular area whose radius is greater than the radius of the round blanks 3 and approximately in the range of the nominal orbit radius r s .

Figur 2 zeigt qualitativ den Verlauf des durchgezogen dargestellten Magnetfeldes B über dem Radius, ausgehend von der Rotationssymmetrieachse des Innenjochs, sowie den Injektionsradius rl der Elektronen. Auf Grund des magnetisch aktiven Werkstoffs der Ronden 3 ergibt sich ein annähernd konstantes Magnetfeld innerhalb der Ronden 3. Das Magnetfeld ist in der Luft außerhalb der Ronden deutlich geringer und fällt darüber hinaus mit zunehmendem Radius ab. Bei dem dargestellten Magnetfeld erfüllt der in Figur 2 eingezeichnete Sollbahnradius rs die Wiederöe-Bedingung. FIG. 2 shows qualitatively the course of the magnetic field B shown in solid lines over the radius, starting from the rotational symmetry axis of the inner yoke, and the injection radius r l of the electrons. Due to the magnetically active material of the blanks 3 results in an approximately constant magnetic field within the blanks 3. The magnetic field is significantly lower in the air outside the blanks and also falls off with increasing radius. In the illustrated magnetic field, the in FIG. 2 Plotted nominal orbit radius r s the Wiederöe condition.

Wird ein Strom, der so genannte Contraction-Puls, in die CE-Spulen 7a und 7b eingeprägt, so ergibt sich qualitativ der in Figur 2 gestrichelt dargestellte Verlauf B'(r) der Magnetfeldstärke über dem Radius als Überlagerung der Magnetfelder der Hauptfeldspulen 6a, 6b und der CE-Spulen 7a, 7b. Bei diesem resultierenden Magnetfeld erfüllt der veränderte Sollbahnradius rs' die Wiederöe-Bedingung. Daraus folgt, dass die Elektronen in einer spiralförmigen Bahn vom Injektionsradius rl auf den veränderten Sollbahnradius rs' gezogen werden. Dabei passieren die Elektronen beispielsweise in Abhängigkeit von ihrem Einschusswinkel in die Betatronröhre 5 den gewünschten Sollbahnradius rs zu unterschiedlichen Zeitpunkten. Die Elektronen, die sich am Ende des Contraction-Pulses auf oder in der Nähe des gewünschten Sollbahnradius rs befinden, werden im Folgenden auf diesem Radius beschleunigt.If a current, the so-called contraction pulse, is impressed into the CE coils 7a and 7b, the result is qualitatively the in FIG. 2 Dashed line B '(r) of the magnetic field strength over the radius as a superposition of the magnetic fields of the main field coils 6a, 6b and the CE coils 7a, 7b. In the case of this resulting magnetic field, the changed nominal track radius r s ' fulfills the Wiederöe condition. It follows that the electrons are drawn in a spiral path from the injection radius r l to the changed nominal path radius r s '. In this case, the electrons, for example, depending on their angle of entry into the betatron tube 5, pass the desired nominal orbit radius r s at different times. The electrons that are at the end of the contraction pulse on or near the desired nominal orbit radius r s , are accelerated in the following on this radius.

Durch die Wahl des Endzeitpunktes des Contraction-Pulses lässt sich somit auswählen, aus welchem Teil des Öffnungswinkels der Elektronenkanone die Elektronen stammen, die auf die gewünschte Endenergie beschleunigt werden. Damit ist die Intensität der durch das Betatron 1 erzeugten Röntgenstrahlung maximierbar und regelbar.By choosing the end time of the contraction pulse can thus be selected from which part of the opening angle of the electron gun are the electrons, which are accelerated to the desired final energy. Thus, the intensity of the X-ray radiation generated by the betatron 1 can be maximized and regulated.

Am Ende des Beschleunigungsvorgangs erzeugen die Hauptfeldspulen 6a und 6b das qualitativ in Figur 3 durchgezogen dargestellte Magnetfeld B(r), dessen Verlauf im Wesentlichen dem Magnetfeld aus Figur 2 entspricht. Auf Grund des höheren Stroms durch die Hauptfeldspulen 6a und 6b ist das Magnetfeld jedoch deutlich stärker. Darüber hinaus befindet sich das Material der Joche und/oder der Ronden in einem nichtlinearen Bereich der Hysteresekurve. Bei einer Bestromung der CE-Spulen 7a und 7b mit den sogenannten Expansion-Puls ergibt sich demnach das in Figur 3 gestrichelt dargestellte überlagerte Magnetfeld B"(r). Ausgehend von diesem überlagerten Magnetfeld erfüllt der veränderte Sollbahnradius rs" die Wiederöe-Bedingung. Daraus folgt, dass die Elektronen auf einer spiralförmigen Bahn vom während der Beschleunigung gültigen Sollbahnradius rs in Richtung des veränderten Sollbahnradius rs" driften. Während dieser Driftbewegung treffen die Elektronen auf das Target und erzeugen dabei Röntgenstrahlung.At the end of the acceleration process, the main field coils 6a and 6b generate the qualitatively in FIG. 3 shown in solid magnetic field B (r), whose course substantially from the magnetic field FIG. 2 equivalent. However, due to the higher current through the main field coils 6a and 6b, the magnetic field is much stronger. In addition, the material of the yokes and / or blanks is in a non-linear region of the hysteresis curve. When the CE coils 7a and 7b are energized with the so-called expansion pulse, the result in FIG FIG. 3 Superimposed magnetic field B "(r) shown in dashed lines, starting from this superimposed magnetic field, the changed nominal orbit radius r s " fulfills the Wiederöe condition. It follows that the electrons drift in the direction of the changed nominal track radius r s "on a spiral path from the nominal path radius r s valid during the acceleration During this drift movement, the electrons strike the target and thereby generate X-radiation.

Ein in den Figuren nicht eingezeichneter Röntgendetektor detektiert die Intensität der erzeugten Röntgenstrahlung und überträgt regelmäßig eine Information über die Intensität an die Steuerelektronik 8. Diese wertet die Intensität aus und bestimmt daraus die Dauer sowie den Zeitpunkt der Contraction- und Expansion-Pulse für die nächste Periode der Elektronenbeschleunigung.An X-ray detector not shown in the figures detects the intensity of the generated X-ray radiation and regularly transmits information about the intensity to the control electronics 8. This evaluates the intensity and determines therefrom the duration and the time of the contraction and expansion pulses for the next period the electron acceleration.

Die Figur 4 zeigt beispielhaft einen Stromkreis zur Bestromung der CE-Spule 7a, der identisch auf die CE-Spule 7b übertragbar ist. Die CE-Spule 7a wird über einen von der Steuerelektronik 8 ansteuerbaren Schalter 9 mit einer Spannungsquelle 11 verbunden. Wahlweise werden mehrere CE-Spulen über einen oder mehrere Schalter mit einer gemeinsamen Spannungsquelle verbunden. Weiterhin alternativ wird jede CE-Spule über einen separaten Schalter mit einer der CE-Spule zugeordneten Spannungsquelle verbunden.The FIG. 4 shows an example of a circuit for energizing the CE coil 7a, which is identical to the CE coil 7b transferable. The CE coil 7a is connected to a voltage source 11 via a switch 9 which can be activated by the control electronics 8. Optionally, multiple CE coils are connected via one or more switches to a common voltage source. Further alternatively, each CE coil is connected via a separate switch to a voltage source associated with the CE coil.

Claims (10)

  1. Betatron (1), in particular in an X-ray system, having
    - a rotation-symmetrical inner yoke composed of two spaced-apart parts (2a, 2b),
    - an outer yoke (4) connecting the two inner yoke parts (2a, 2b),
    - at least one main field coil (6a, 6b),
    - a torus-shaped betatron tube (5) arranged between the opposite end faces of the inner yoke parts (2a, 2b),
    - at least one contraction and expansion coil (CE coil; 7a, 7b), wherein in each case exactly one CE coil (7a, 7b) is arranged between the front end of an inner yoke part (2a, 2b) and the betatron tube (5), and the radius of the CE coil (7a, 7b) is substantially identical to the desired predetermined orbit radius of the electrons in the betatron tube (5),
    - an electron cannon which injects electrons at an injection radius into the betatron tube (5), and
    - control electronics (8) which control the power supply to the CE coil (7a, 7b),
    characterized in that the control electronics (8) are configured to supply power to the CE coil (7a, 7b) during the injection phase such that a temporarily changed predetermined orbit radius results, wherein the desired predetermined orbit radius lies between the injection radius and the changed predetermined orbit radius.
  2. Betatron (1) according to Claim 1, characterized in that the opposite end faces of the inner yoke parts (2a, 2b) are configured and arranged mirrorsymmetrically with respect to one another.
  3. Betatron (1) according to one of Claims 1 or 2, characterized in that at least one main field coil (6a, 6b) is arranged on the inner yoke, in particular on a tapering or a shoulder of the inner yoke.
  4. Betatron (1) according to Claim 3, characterized by two main field coils (6a, 6b), wherein one main field coil (6a, 6b) is arranged on each of the inner yoke parts (2a, 2b).
  5. Betatron according to one of Claims 1 to 4, characterized by at least one round plate (3) between the inner yoke parts (2a, 2b), wherein the round plate (3) is arranged such that its longitudinal axis coincides with the axis of rotational symmetry of the inner yoke.
  6. Betatron (1) according to one of Claims 1 to 5, characterized in that the ports of a CE coil (7a, 7b) are connected to a power or voltage source (11) and a switch (9), in particular an IGBT (insulated gate bipolar transistor), which is actuatable using the control electronics (8), is arranged in at least one line between the CE coil (7a, 7b) and the power or voltage source (11).
  7. Betatron (1) according to Claim 6, characterized in that the control electronics (8) are configured such that the turn-on point and the turn-on duration of the switch (9) are variable.
  8. Betatron (1) according to Claim 7, characterized by a detector for ascertaining the radiation intensity generated by the betatron (1).
  9. Betatron (1) according to Claim 8, characterized in that the detector is connected to the control electronics (8), and the switch-on point and the switch-on duration of the switch (9) are ascertainable from the output signal of the detector using the control electronics (8).
  10. X-ray system for security checks of objects, having a betatron (1) according to one of Claims 1 to 9 and a target for generating X-radiation and an X-ray detector and an evaluation unit.
EP07802169.8A 2006-10-28 2007-09-06 Betatron comprising a contraction and expansion coil Active EP2082625B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006050953A DE102006050953A1 (en) 2006-10-28 2006-10-28 Betatron for use in X-ray testing system, has contraction and expansion coil arranged between front side of inner yoke parts and betatron tube, where radius of coil is equal to reference turning radius of electrons in betatron tube
PCT/EP2007/007765 WO2008052614A1 (en) 2006-10-28 2007-09-06 Betatron comprising a contraction and expansion coil

Publications (2)

Publication Number Publication Date
EP2082625A1 EP2082625A1 (en) 2009-07-29
EP2082625B1 true EP2082625B1 (en) 2014-04-09

Family

ID=38686976

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07802169.8A Active EP2082625B1 (en) 2006-10-28 2007-09-06 Betatron comprising a contraction and expansion coil

Country Status (8)

Country Link
US (1) US8073107B2 (en)
EP (1) EP2082625B1 (en)
CN (1) CN101530001B (en)
CA (1) CA2668049C (en)
DE (1) DE102006050953A1 (en)
HK (1) HK1133988A1 (en)
RU (1) RU2516293C2 (en)
WO (1) WO2008052614A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108445546A (en) * 2014-05-15 2018-08-24 北京君和信达科技有限公司 A kind of list source bimodulus speed general formula movement target emanation inspection system and method
US20230269860A1 (en) * 2022-02-21 2023-08-24 Leidos Engineering, LLC High electron trapping ratio betatron

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2331788A (en) * 1942-01-20 1943-10-12 Gen Electric Magnetic induction accelerator
US2394070A (en) * 1942-06-02 1946-02-05 Gen Electric Magnetic induction accelerator
NL73372C (en) * 1946-12-11
NL72582C (en) * 1949-12-02
US2683804A (en) * 1951-02-14 1954-07-13 Gen Electric Megavoltmeter for induction electron accelerators
NL87569C (en) * 1951-06-29
US2738421A (en) * 1952-09-11 1956-03-13 Gen Electric Means for preventing the loss of charged particles injected into accelerator apparatus
US2803767A (en) * 1952-09-30 1957-08-20 Gen Electric Radiation sources in charged particle accelerators
US2803766A (en) * 1952-09-30 1957-08-20 Gen Electric Radiation sources in charged particle accelerators
EP0412190B1 (en) * 1989-08-09 1993-10-27 Heimann Systems GmbH &amp; Co. KG Device for transmitting fan-shaped radiation through objects
US5319314A (en) * 1992-09-08 1994-06-07 Schlumberger Technology Corporation Electron orbit control in a betatron
WO1998057335A1 (en) * 1997-06-10 1998-12-17 Adelphi Technology, Inc. Thin radiators in a recycled electron beam
RU2187913C2 (en) * 2000-10-09 2002-08-20 Научно-исследовательский институт интроскопии при Томском политехническом университете Induction accelerator pulsed power system
US7103137B2 (en) * 2002-07-24 2006-09-05 Varian Medical Systems Technology, Inc. Radiation scanning of objects for contraband
RU2229773C1 (en) * 2002-11-20 2004-05-27 Научно-исследовательский институт интроскопии при Томском политехническом университете Pulse-mode power system for demagnetized-core betatron
CN100359993C (en) * 2003-02-17 2008-01-02 三菱电机株式会社 Charged particle accelerator
US7638957B2 (en) * 2007-12-14 2009-12-29 Schlumberger Technology Corporation Single drive betatron

Also Published As

Publication number Publication date
CA2668049C (en) 2015-06-02
RU2516293C2 (en) 2014-05-20
DE102006050953A1 (en) 2008-04-30
US8073107B2 (en) 2011-12-06
EP2082625A1 (en) 2009-07-29
HK1133988A1 (en) 2010-04-09
CN101530001B (en) 2013-12-25
CA2668049A1 (en) 2008-05-08
CN101530001A (en) 2009-09-09
WO2008052614A1 (en) 2008-05-08
RU2009119594A (en) 2010-12-10
US20090268872A1 (en) 2009-10-29

Similar Documents

Publication Publication Date Title
EP0037051B1 (en) Linear accelerator for charged particles
DE2533346C3 (en) Linear accelerator arrangement
DE102011075210B4 (en) linear accelerator
DE102014219016B4 (en) Method for controlling a standing wave accelerator
EP2082625B1 (en) Betatron comprising a contraction and expansion coil
EP2484186B1 (en) Accelerator and method for actuating an accelerator
DE10156604A1 (en) Spatial angle focusing reflector for flight time mass spectrometer has field between last annular aperture and terminating aperture made weaker than between preceding reflector apertures
EP2082626B1 (en) Betatron comprising a removable accelerator block
EP2082624B1 (en) Betatron with a variable orbital radius
DE1121747B (en) Process for the production of an even distribution of the energy density in a pulsating beam of charged particles
DE2120931A1 (en) Particle pre-accelerator
EP2095696B1 (en) Circular accelerator with adjustable electron final energy
DE2255273C2 (en) Magnetic deflection yoke for parallel alignment of the diverging beams of a beam of electrically charged particles, especially in an electron accelerator
WO2007144058A1 (en) Modular linear accelerator
CH664045A5 (en) Quasi-optical gyro-klystron for producing milli-meter waves - comprising resonator, drift-zone, second resonator and two annular field-coils to generate magnetic field
DE102012209185B4 (en) High frequency source for a linear accelerator
EP2082628B1 (en) Betatron comprising a yoke made of composite powder
DE1098625B (en) Magnetic bundling system for bundled guidance of one (several) electron flow (s) by means of a homogeneous magnetic field along a larger distance, especially for traveling wave tubes
DE2247495C2 (en) Lauffeldtube
EP3321716A1 (en) Method for operating a linear accelerator and linear accelerator
DE3315020C1 (en) Acceleration path for the phase-free acceleration of charged particles
DE975093C (en) Arrangement with a braking field tube for generating very short electrical waves
DE953449C (en) Method for accelerating electrically charged particles
EP0428867A2 (en) Procedure for protecting an aperture during the production of electron beam pulses
DE898191C (en) Electron tubes for very short waves

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090327

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20100414

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140107

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 661925

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140415

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007012969

Country of ref document: DE

Effective date: 20140522

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140409

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140809

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140710

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140811

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007012969

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150112

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007012969

Country of ref document: DE

Effective date: 20150112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140906

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140906

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 661925

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070906

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230810

Year of fee payment: 17

Ref country code: GB

Payment date: 20230713

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230703

Year of fee payment: 17

Ref country code: DE

Payment date: 20230712

Year of fee payment: 17