EP2078140A2 - Procédé et dispositif d'utilisation de chaleur à basse température pour la production de courant - Google Patents

Procédé et dispositif d'utilisation de chaleur à basse température pour la production de courant

Info

Publication number
EP2078140A2
EP2078140A2 EP07785679A EP07785679A EP2078140A2 EP 2078140 A2 EP2078140 A2 EP 2078140A2 EP 07785679 A EP07785679 A EP 07785679A EP 07785679 A EP07785679 A EP 07785679A EP 2078140 A2 EP2078140 A2 EP 2078140A2
Authority
EP
European Patent Office
Prior art keywords
heat
carbon dioxide
source
pressure
condensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07785679A
Other languages
German (de)
English (en)
Inventor
Siegfried Westmeier
Daniel Nestke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technikum Corp
Original Assignee
Technikum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technikum Corp filed Critical Technikum Corp
Publication of EP2078140A2 publication Critical patent/EP2078140A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • F01K25/103Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Definitions

  • the invention relates to the additional use of low temperature heat for power generation using supercritical carbon dioxide as working fluid.
  • OCR Organic Rankine Cycle
  • heat is extracted from the process medium via a heat exchanger and used to generate steam.
  • a generator is driven.
  • the relaxed steam is usually used for preheating and then condensed.
  • the heat of condensation is released to the environment.
  • the efficiency is determined by the condensation temperature (ambient temperature) and the achievable evaporation temperature of about 300 K to 625 K.
  • the heat transfer is usually via a silicone oil circuit.
  • a modified version of the small power OCR method is also known as the edc method.
  • the edc process works with condensation temperatures from about 248 K to 350 K and uses specially adapted turbines.
  • the achievable efficiency of an ORC system is at a temperature level of 100 0 C about 6.5% and at a temperature level of 200 0 C about 13-14.
  • Carbon dioxide proposed at the triple point the solid-liquid mixture is produced by means of a chiller at oversupply and then serves in operation as a peak power plant to make the liquefaction of carbon dioxide.
  • load changes in the electrical network for example in the day-night rhythm can be compensated.
  • the actual working group also works with carbon dioxide. Data on achieved efficiencies are not indicated.
  • a disadvantage of this method is the relatively high required minimum temperature of over 200 0 C in the case of low-temperature heat and, in energy terms, the relatively low working pressure. Thus, in our experience, no high levels of efficiency in the production of electric energy can be achieved.
  • Also working with carbon dioxide as a working fluid is a process for
  • Geothermal utilization which is known from the patent US 3,875,749. This method operates only in the fluid area and in the gas area, the carbon dioxide is used as a working medium, absorbs heat in an underground storage in the compressed state and is then released via a turbine to perform work. Thereafter, a new compression takes place in the fluid area.
  • a disadvantage of the method described are the structurally very elaborate design of the underground heat exchanger and the risk of fatigue of the geothermal potential in the vicinity of the cavern by cooling.
  • the object of the invention is to develop a method and a plant for the application of the method, their efficiencies higher than in known - A -
  • thermodynamically available state region is limited by the triple point of carbon dioxide at about 217 K, corresponding to a pressure of about 0.55 MPa.
  • thermodynamic limits At the top there are no thermodynamic limits in terms of pressure or temperature.
  • other types of limitations are given for practical and material-technical reasons.
  • An additional advantage of the use of carbon dioxide over the OCR process results from the fact that the use of additional heat exchanger is omitted because the heat transfer medium is guided in the closed circuit, while it serves as a working medium in the same cycle. Further advantages of the selected heat carrier and working medium are given by the relatively low risk potential for humans and the environment, the relatively high availability. In addition, the possibility of storing large amounts of carbon dioxide and its meaningful use as a working medium atmosphere and climate relieved. Additional economic benefits are derived from the profits from the carbon trading trade, taking into account these savings potentials. This results in significant advantages over the ORC process and the Kalina process. Further advantages result from higher efficiencies and the problem-free combination of the method with other heating or cooling potentials, which make it possible to further increase the achievable efficiencies. This is achieved in particular by using near-surface earth cold potentials, as well as by the use of cooling potentials, the process-related in other ways
  • Relaxation processes especially in the relaxation of natural gas by lowering the temperature, and provide the necessary cooling energy to liquefy the carbon dioxide in the desired temperature range below 283 K.
  • the method is advantageously used as a combination of a natural gas power plant with naturally occurring heat and cooling potentials and thus allows, in addition to the intermediate storage of large amounts of carbon dioxide, also easily both a discontinuous operation and highly changing driving styles without significant start-up and adaptation times.
  • the construction of a memory for the carbon dioxide used for heat transfer is created, with the side effect that larger amounts of the resulting carbon dioxide during combustion can be stored in an environmentally friendly and sensible use.
  • the deposition of carbon dioxide is carried out by initial compression of purified power plant exhaust gases and their drying and cooling, which in piping systems in shallow strata at 281 to 283 K and pressures liquid carbon dioxide forming above 5 MPa is collected and passed into underground caverns. When exceeding this pressure mark in the cavern, the liquid carbon dioxide must be further compressed to build up the pressure accumulator until the desired final pressure is reached. Conveniently, the structure of the carbon dioxide storage takes place in the winter months, in which case air coolers can be used on the earth's surface, when at the operating pressure of 5 MPa, the outside temperature falls below 283 K.
  • Buffer 6 a pressure vessel is used.
  • the specified examples were calculated using the EBSILON Professional program.
  • the use of the now enlarged temperature range with the possible lower turbine outlet pressure leads directly to an efficiency improvement of about 1, 3%. This result is particularly interesting for areas with lower outdoor temperatures throughout the year, both in terms of geothermal energy use and in the use of low-temperature heat from power plants. In the process and the assumed process conditions is expected only with relatively low efficiencies. Nevertheless, they are at least 2% higher than comparable methods.
  • heat source 1 waste heat in the specified temperature levels and should be energetically utilized.
  • the fluid carbon dioxide is withdrawn from a substrate store designed as a buffer 6 with the temperatures given in the table and a pressure of 15 MPa and heated in the cogeneration plant to the temperatures also indicated.
  • the carbon dioxide is expanded via an expansion engine 2 to 4.5 MPa and drives the generator 3 at.
  • the relaxation takes place in a below 4.5 MPa near-surface pipe network as a cold source 4 with an ambient temperature of 281 K. Because of the relatively long residence time and the surrounding earth potential liquefaction takes place at these temperatures.
  • the liquid carbon dioxide is passed via an insulated line 9 to a liquid pump 5, also referred to as a liquid compressor, and here compressed to the pressure 15 MPa and stored in a buffer 6.
  • the compaction power is less than a third of the energy gained.
  • the net efficiency of the process is 12.5%. If, in addition or independently of this, a lower temperature potential is available, for example from natural gas expansion, efficiencies of up to 25% can be achieved at the indicated temperature of 373 K, depending on the available cooling capacity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

L'invention concerne l'utilisation auxiliaire de chaleur à basse température pour la production de courant en utilisant du dioxyde de carbone surcritique comme fluide de travail. Elle concerne un procédé et une installation d'application du procédé qui permettent d'obtenir un meilleur rendement qu'avec les procédés connus et dont la plage de travail comprend une bande de température plus large et une largeur normale telle qu'elle permet de garantir des modes de conduite en été et en hiver sans modifications de construction en même temps qu'une conception de construction simple, sans augmenter les menaces environnementales grâce à une consommation de matériaux comparativement réduite. Cela permet également de réduire les émissions de dioxyde de carbone. Le procédé consiste à extraire de la chaleur à basse température d'une source de chaleur (1) disponible, du dioxyde de carbone à une pression surcritique élevée servant de caloporteur, puis à effectuer une détente active au moyen d'une machine d'expansion (2) couplée à un générateur (3), ce qui fait refroidir le caloporteur, puis à liquéfier au moyen d'une source de froid (4) et à comprimer de nouveau à la pression de travail sous forme liquide.
EP07785679A 2006-07-31 2007-07-31 Procédé et dispositif d'utilisation de chaleur à basse température pour la production de courant Withdrawn EP2078140A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006035272A DE102006035272B4 (de) 2006-07-31 2006-07-31 Verfahren und Vorrichtung zur Nutzung von Niedertemperaturwärme zur Stromerzeugung
PCT/DE2007/001351 WO2008014774A2 (fr) 2006-07-31 2007-07-31 Procédé et dispositif d'utilisation de chaleur à basse température pour la production de courant

Publications (1)

Publication Number Publication Date
EP2078140A2 true EP2078140A2 (fr) 2009-07-15

Family

ID=38521920

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07785679A Withdrawn EP2078140A2 (fr) 2006-07-31 2007-07-31 Procédé et dispositif d'utilisation de chaleur à basse température pour la production de courant

Country Status (8)

Country Link
US (1) US20090266075A1 (fr)
EP (1) EP2078140A2 (fr)
KR (1) KR20090035735A (fr)
AU (1) AU2007280834A1 (fr)
CA (1) CA2662463A1 (fr)
DE (1) DE102006035272B4 (fr)
RU (1) RU2009106716A (fr)
WO (1) WO2008014774A2 (fr)

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8940265B2 (en) * 2009-02-17 2015-01-27 Mcalister Technologies, Llc Sustainable economic development through integrated production of renewable energy, materials resources, and nutrient regimes
US8063511B2 (en) * 2008-05-27 2011-11-22 Expansion Energy, Llc System and method for liquid air production, power storage and power release
US9097152B2 (en) 2009-02-17 2015-08-04 Mcalister Technologies, Llc Energy system for dwelling support
US8814983B2 (en) 2009-02-17 2014-08-26 Mcalister Technologies, Llc Delivery systems with in-line selective extraction devices and associated methods of operation
US8808529B2 (en) 2009-02-17 2014-08-19 Mcalister Technologies, Llc Systems and methods for sustainable economic development through integrated full spectrum production of renewable material resources using solar thermal
US9231267B2 (en) * 2009-02-17 2016-01-05 Mcalister Technologies, Llc Systems and methods for sustainable economic development through integrated full spectrum production of renewable energy
US8616323B1 (en) 2009-03-11 2013-12-31 Echogen Power Systems Hybrid power systems
WO2010121255A1 (fr) 2009-04-17 2010-10-21 Echogen Power Systems Système et procédé pour gérer des problèmes thermiques dans des moteurs à turbine à gaz
EP2446122B1 (fr) 2009-06-22 2017-08-16 Echogen Power Systems, Inc. Système et procédé pour gérer des problèmes thermiques dans un ou plusieurs procédés industriels
US9316404B2 (en) 2009-08-04 2016-04-19 Echogen Power Systems, Llc Heat pump with integral solar collector
US8096128B2 (en) 2009-09-17 2012-01-17 Echogen Power Systems Heat engine and heat to electricity systems and methods
US8813497B2 (en) 2009-09-17 2014-08-26 Echogen Power Systems, Llc Automated mass management control
US8869531B2 (en) 2009-09-17 2014-10-28 Echogen Power Systems, Llc Heat engines with cascade cycles
US8613195B2 (en) 2009-09-17 2013-12-24 Echogen Power Systems, Llc Heat engine and heat to electricity systems and methods with working fluid mass management control
IT1397145B1 (it) * 2009-11-30 2013-01-04 Nuovo Pignone Spa Sistema evaporatore diretto e metodo per sistemi a ciclo rankine organico.
FR2956153B1 (fr) * 2010-02-11 2015-07-17 Inst Francais Du Petrole Dispositif de controle d'un fluide de travail a bas point de congelation circulant dans un circuit ferme fonctionnant selon un cycle de rankine et procede utilisant un tel dispositif
CA2794500C (fr) 2010-03-30 2018-09-18 Stephen Lee Cunningham Moteur a pistons oscillants
KR101138223B1 (ko) * 2010-04-30 2012-04-24 한국과학기술원 혼합 가스를 이용한 임계점 이동을 통한 초임계 브레이튼 사이클의 효율 향상 시스템
US20120255312A1 (en) * 2010-09-27 2012-10-11 Air Products And Chemicals, Inc. Method and System to Produce Electric Power
WO2012049259A1 (fr) * 2010-10-14 2012-04-19 Energreen Heat Recovery As Procédé et système d'utilisation d'une source d'énergie à température relativement basse
US8783034B2 (en) 2011-11-07 2014-07-22 Echogen Power Systems, Llc Hot day cycle
US8857186B2 (en) 2010-11-29 2014-10-14 Echogen Power Systems, L.L.C. Heat engine cycles for high ambient conditions
US8616001B2 (en) 2010-11-29 2013-12-31 Echogen Power Systems, Llc Driven starter pump and start sequence
US9869272B1 (en) * 2011-04-20 2018-01-16 Martin A. Stuart Performance of a transcritical or supercritical CO2 Rankin cycle engine
EP2710086A4 (fr) * 2011-04-21 2015-03-11 Emmtech Energy Ab Fluide de travail pour cycle de rankine
CN102146814A (zh) * 2011-04-28 2011-08-10 罗良宜 超临界低温空气能发电装置
DE102011101788A1 (de) * 2011-05-17 2012-11-22 Alexander Oberhof Verfahren zur Erzeugung von elektrischer Energie
DE102011107284A1 (de) 2011-07-06 2013-01-10 Rwe Technology Gmbh Einrichtung zur Notkühlung einer Anlage für exotherme Prozesse
WO2013055391A1 (fr) 2011-10-03 2013-04-18 Echogen Power Systems, Llc Cycle de réfrigération du dioxyde de carbone
DE102011119977A1 (de) * 2011-12-02 2013-06-06 Alena von Lavante Vorrichtung und Verfahren zur Nutzung der Abwärme einer Brennkraftmaschine, insbesondere zur Nutzung der Abwärme eines Fahrzeugmotors
DE102011122271A1 (de) * 2011-12-23 2013-06-27 Interimo GmbH Kraftwerksanordnung mit einem Niedertemperaturkraftwerk, sowie Verfahren zum Betrieb desselben
US9038391B2 (en) * 2012-03-24 2015-05-26 General Electric Company System and method for recovery of waste heat from dual heat sources
CN102606240A (zh) * 2012-03-27 2012-07-25 中国科学院微电子研究所 一种利用co2发电的系统及方法
EP2839134B1 (fr) 2012-04-18 2018-07-25 Martin A. Stuart Moteur à piston oscillant polygonal
DE102012009459A1 (de) * 2012-05-11 2013-11-14 Peter Kreuter Vorrichtung zur Umwandlung thermischer Energie in mechanische Energie mittels eines Rankine-Kreisprozesses
CA2882290A1 (fr) 2012-08-20 2014-02-27 Echogen Power Systems, L.L.C. Circuit de fluide de travail super critique comprenant une turbopompe et une pompe de demarrage en une configuration en serie
US9341084B2 (en) 2012-10-12 2016-05-17 Echogen Power Systems, Llc Supercritical carbon dioxide power cycle for waste heat recovery
US9118226B2 (en) 2012-10-12 2015-08-25 Echogen Power Systems, Llc Heat engine system with a supercritical working fluid and processes thereof
WO2014063810A2 (fr) 2012-10-24 2014-05-01 Peter Kreuter Dispositif pour convertir de l'énergie thermique en énergie mécanique et véhicule automobile équipé d'un tel dispositif
WO2014081329A1 (fr) * 2012-11-20 2014-05-30 Siemens Aktiengesellschaft Procédé de création d'énergie électrique
US9752460B2 (en) 2013-01-28 2017-09-05 Echogen Power Systems, Llc Process for controlling a power turbine throttle valve during a supercritical carbon dioxide rankine cycle
WO2014117068A1 (fr) 2013-01-28 2014-07-31 Echogen Power Systems, L.L.C. Procédés permettant de réduire l'usure des composants d'un système de moteur thermique au démarrage
EP2964911B1 (fr) 2013-03-04 2022-02-23 Echogen Power Systems LLC Systèmes de moteur thermique possédant des circuits de dioxyde de carbone supercritique à haute énergie nette
WO2014171892A1 (fr) * 2013-04-18 2014-10-23 Lien Chiow Tan Moteur vert
KR101588929B1 (ko) * 2013-09-02 2016-01-27 서울대학교산학협력단 랭킨 사이클 장치 및 이를 포함하는 발전시스템
KR102084796B1 (ko) * 2013-09-30 2020-03-04 한국전력공사 초임계 이산화탄소를 이용한 전력 저장 및 생산 장치
DE102014101263B3 (de) * 2014-02-03 2015-07-02 Stephan Leyer Vorrichtung und Verfahren zum Speichern von Energie mit Hilfe von überkritischem Kohlendioxid
US10570777B2 (en) 2014-11-03 2020-02-25 Echogen Power Systems, Llc Active thrust management of a turbopump within a supercritical working fluid circuit in a heat engine system
KR101665687B1 (ko) * 2014-12-09 2016-10-12 연세대학교 산학협력단 초임계유체 저장부를 포함하는 초임계유체 발전시스템
CN104863653B (zh) * 2015-04-21 2016-02-24 中国石油大学(华东) 一种二氧化碳热能发电装置及方法
CN105971678B (zh) * 2016-05-10 2018-09-28 石家庄新华能源环保科技股份有限公司 一种利用超临界二氧化碳供能的系统
CN107939621B (zh) * 2017-12-01 2024-04-02 西安交通大学 基于翅片套管开发热干岩地热能的s-co2发电系统及方法
US11187112B2 (en) 2018-06-27 2021-11-30 Echogen Power Systems Llc Systems and methods for generating electricity via a pumped thermal energy storage system
CN112385125A (zh) * 2018-07-09 2021-02-19 西门子能源美国公司 超临界co2冷却的电机
EP4025778A4 (fr) * 2019-09-05 2022-11-09 Mulligan, Karl Peter Systèmes et procédés pour un moteur à piston comprenant un système de recirculation utilisant du dioxyde de carbone supercritique
CN110748391A (zh) * 2019-10-10 2020-02-04 东方电气集团东方汽轮机有限公司 超临界二氧化碳耦合lng冷能发电系统及方法
CN111306017A (zh) * 2020-04-03 2020-06-19 南京天加热能技术有限公司 一种地热能与太阳能有机朗肯循环的热电联供系统
US11435120B2 (en) 2020-05-05 2022-09-06 Echogen Power Systems (Delaware), Inc. Split expansion heat pump cycle
CN112211688A (zh) * 2020-09-22 2021-01-12 崔静思 极寒地带动力驱动系统及其驱动方法
CA3201373A1 (fr) 2020-12-09 2022-06-16 Timothy Held Systeme de stockage d'energie thermique electrique a trois reservoirs
CN117622438B (zh) * 2023-12-15 2024-04-30 中国科学院上海高等研究院 基于海洋温差的自主水下潜航器动力补给系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3875749A (en) * 1972-11-17 1975-04-08 Petru Baciu Geothermal power plant with high efficiency
DE3116308A1 (de) * 1981-04-24 1982-11-18 Wilhelm 2391 Oeversee Behnemann Umweltwaermekraftanlage
US4765143A (en) * 1987-02-04 1988-08-23 Cbi Research Corporation Power plant using CO2 as a working fluid
DE19632019C1 (de) * 1996-08-08 1997-11-20 Thomas Sturm Verfahren zum Betreiben einer Vorrichtung mit einer Wärmekraftmaschine
DE10228865A1 (de) * 2002-06-27 2004-01-15 Uehlin, Jürgen, Dipl.-Ing. Kollektor mit integrierter Expansionsmaschine und Generator zur Wandlung thermischer Solarstrahlung in Elektrizität
JP4321095B2 (ja) * 2003-04-09 2009-08-26 日立アプライアンス株式会社 冷凍サイクル装置
FR2881482B1 (fr) * 2005-02-02 2007-04-06 Inst Francais Du Petrole Procede de production d'energie mecanique a partir d'energie geothermique
DE102006035273B4 (de) * 2006-07-31 2010-03-04 Siegfried Dr. Westmeier Verfahren zum effektiven und emissionsarmen Betrieb von Kraftwerken, sowie zur Energiespeicherung und Energiewandlung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008014774A3 *

Also Published As

Publication number Publication date
KR20090035735A (ko) 2009-04-10
WO2008014774A3 (fr) 2009-08-20
DE102006035272B4 (de) 2008-04-10
AU2007280834A1 (en) 2008-02-07
CA2662463A1 (fr) 2008-02-07
RU2009106716A (ru) 2010-09-10
WO2008014774A2 (fr) 2008-02-07
US20090266075A1 (en) 2009-10-29
DE102006035272A1 (de) 2008-02-07

Similar Documents

Publication Publication Date Title
DE102006035272B4 (de) Verfahren und Vorrichtung zur Nutzung von Niedertemperaturwärme zur Stromerzeugung
DE102006035273B4 (de) Verfahren zum effektiven und emissionsarmen Betrieb von Kraftwerken, sowie zur Energiespeicherung und Energiewandlung
EP2634383B1 (fr) Procédé et agencement pour l'accumulation d'énergie
DE102014117659A1 (de) Kaltlatent-Exergiespeicher und thermodynamische Lade- und Entladeprozesse
EP2794068B1 (fr) Procédé et dispositif de production de froid, en particulier pour la récupération d'eau à partir de l'air
WO2012013289A2 (fr) Procédé et dispositif de stockage de courant
EP1706598B1 (fr) Procede pour transformer l'energie thermique generee par des machines frigorifiques
DE102004006837A1 (de) Stromgewinnung aus Luft
EP2415976B1 (fr) Moteur thermique destiné à transformer de l'énergie thermique en énergie mécanique ainsi que procédé de fonctionnement d'un tel moteur thermique
WO2022101348A1 (fr) Accumulateur d'énergie thermique pour le stockage d'énergie électrique
EP1941160A1 (fr) Procede et dispositif pour produire de l'energie mecanique ou electrique a partir de chaleur
WO2014086637A1 (fr) Procédé et dispositif de conversion d'énergie et de récupération d'eau
DE102013104868A1 (de) Verfahren und dazugehörige Anordnung zur Umwandlung von Niedertemperaturwärme in mechanische Energie
WO2008031613A2 (fr) Production d'électricité dans la plage de charge de base avec de l'énergie géothermique
WO2021139846A1 (fr) Procédé de liquéfaction et de stockage de co2 dans une centrale au co2
DE102019006184A1 (de) Vorrichtung zum Umwandeln von Wärmeenergie in kinetische Energie, durch die Nutzung einer Wärmepumpe mit einem Wärmekraftwerk
DE102013017527A1 (de) Anordnung eines pneumatischen Energiespeichers für Solarkraftwerke und Verfahren zur adiabatischen Energiespeicherung
DE102018007918A1 (de) Verfahren als Clausius-Rankine-Prozess mit regenerativer CO2-Zirkulation und Energiezuführ über Wärmepumpen
DE10355782A1 (de) Vorrichtung und Verfahren zum Ausführen eines thermischen Kreisprozesses
DE202010008126U1 (de) Wärmekraftmaschine zur Umwandlung von Wärmeenergie in mechanische Energie, die zur Erzeugung von Strom benutzt wird
WO1991019139A1 (fr) Procede d'utilisation de potentiels energetiques, notamment avec des ecarts reduits de temperature
DE2359813A1 (de) Vorrichtung zur verbesserung des wirkungsgrades von mit dampf betriebenen generatorturbinen
DE102022125604A1 (de) System und Verfahren zur Energiewandlung und Energiespeicherung
DE3321739A1 (de) Dampfkraftmaschinen-kreisprozess zur erhoehung des waermewirkungsgrades, insbesondere fuer dampfkraftwerke
DE102011121736A1 (de) Anordnung einer Vorrichtung zur energetischen Kopplung von Kompressionswärme und Entspannungskälte und Verfahren zur energetischen Nutzung dieses Kopplungsprinzips in thermodynamischen Prozessen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090422

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

R17D Deferred search report published (corrected)

Effective date: 20090820

RIC1 Information provided on ipc code assigned before grant

Ipc: F01K 25/10 20060101AFI20090901BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

DAX Request for extension of the european patent (deleted)
18D Application deemed to be withdrawn

Effective date: 20100202