EP2075506B1 - Brennkammerauskleidung - Google Patents

Brennkammerauskleidung Download PDF

Info

Publication number
EP2075506B1
EP2075506B1 EP08021918.1A EP08021918A EP2075506B1 EP 2075506 B1 EP2075506 B1 EP 2075506B1 EP 08021918 A EP08021918 A EP 08021918A EP 2075506 B1 EP2075506 B1 EP 2075506B1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
ceramic
metallic
air
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP08021918.1A
Other languages
English (en)
French (fr)
Other versions
EP2075506A2 (de
EP2075506A3 (de
Inventor
Miklos Dr. Gerendas
Sermed Sadig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Deutschland Ltd and Co KG
Original Assignee
Rolls Royce Deutschland Ltd and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls Royce Deutschland Ltd and Co KG filed Critical Rolls Royce Deutschland Ltd and Co KG
Publication of EP2075506A2 publication Critical patent/EP2075506A2/de
Publication of EP2075506A3 publication Critical patent/EP2075506A3/de
Application granted granted Critical
Publication of EP2075506B1 publication Critical patent/EP2075506B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/007Continuous combustion chambers using liquid or gaseous fuel constructed mainly of ceramic components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/06Arrangement of apertures along the flame tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03041Effusion cooled combustion chamber walls or domes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03042Film cooled combustion chamber walls or domes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03044Impingement cooled combustion chamber walls or subassemblies

Definitions

  • the invention relates to a combustion chamber for a gas turbine according to the features of the preamble of claim 1.
  • the invention relates to a combustion chamber for a gas turbine with a metallic support structure and with a plurality of distributed circumferentially arranged ceramic hollow profiles, which are fixed to the support structure.
  • This prior art is from the DE 195 02 730 A1 previously known.
  • the DE 195 02 730 A1 describes the ceramic lining of a combustion chamber with at least one uncooled wall plate, which consists of high-temperature-resistant structural ceramic and which is connected by means of a fastening element resiliently to a holding device.
  • the bonding surface between the fastener and the ceramic is shaped to provide minimal thermal stress.
  • the disadvantage is that only a convective cooling of the metallic wall is possible, which requires a high cooling air mass flow.
  • the fastener rests on the side facing the hot gas side and is thus exposed to elevated thermal loads.
  • the EP 0 943 867 B1 describes the ceramic lining of a combustion chamber with individual juxtaposed segments in the form of hollow chambers, which can also serve for flow guidance.
  • the ceramic lining can be fixed on the side facing the metallic structure.
  • the cavity can also be provided for cooling guidance and thus achieves higher Heat transfer rates; but this cooling technology is limited only to a convective cooling of the ceramic wall element directed towards the internal combustion chamber. Furthermore, it is not apparent how a dosage of the cooling air takes place and also a control of the local cooling mass flows in the continuous cavity is considered difficult. Another disadvantage is that the entire axial length is made in one piece. The result is that kinks must be mitgefertigt in one piece.
  • the EP 1 431 661 A1 which forms the closest prior art, discloses a plurality of metallic tubular hollow profiles arranged on a support structure on the circumference of a combustion chamber, which are rectilinear and designed as individual segments.
  • a metallic hollow body which is flowed through by cooling air arranged. The resulting heat transfer of the metallic materials results in optimum cooling under all operating conditions.
  • the EP 1 271 056 A1 shows a gas turbine combustor with hollow elements of metallic or ceramic materials.
  • the invention has for its object to provide a combustion chamber of the type mentioned for a gas turbine, which With a simple structure and simple, reliable application is inexpensive to produce and avoids the disadvantages of the prior art.
  • the ceramic, tubular hollow profiles are each formed in a straight line and are arranged as individual segments.
  • a metallic hollow body is arranged, which is preferably formed in the form of a hollow box.
  • On at least one wall air passage openings are provided on the metallic hollow body, which may be formed in the form of a perforation. Through this air passage openings escapes cooling air, which is introduced into the metallic hollow body.
  • the metallic hollow body is preferably arranged to form a gap in the ceramic hollow profile, so that the cooling air flowing through the air passage openings can be distributed in the ceramic hollow profile.
  • the ceramic hollow profile is provided on its wall facing a combustion chamber with additional air passage openings.
  • the air passage openings (perforation) of the metallic hollow body are preferably formed on the combustion chamber interior facing wall to ensure effective cooling of the ceramic hollow profile.
  • the metallic hollow body is preferably connected by means of a cooling air supply line to a cooling air system. Thus, cooling air leaks are avoided.
  • the ceramic hollow profile is formed as a straight profile and when several such ceramic hollow sections are arranged segment-like on the wall of the combustion chamber to form the curved contour of the combustion chamber is particularly favorable.
  • a metallic support structure 6 with segmented in the circumferential and axial direction ceramic tubular hollow sections 2, which can be produced from a section of a straight profile.
  • a one-sided perforated, air-flow, metallic hollow box 1 which is fastened by means of one or more fasteners 7 together with the ceramic hollow section 2 on the metallic support 6.
  • cooling air supply line 8 in the metallic support 6, the ceramic hollow sections 2 and the metallic hollow box 1 is provided, which is as close as possible to a fastener on this and several as centrally located between them.
  • the hollow box through which the cooling air flows serves to control the cooling air.
  • the air passage openings (perforation) 5 which indicates the flow-determining surface, a suitable amount of cooling air in the corresponding area provided for the ceramic hollow profile 2 can be adjusted. Because the metallic hollow box is completed and has only a cooling air supply line 8 and the air passage openings 5, no leakage currents occur.
  • the cooling air that emerges from the metallic hollow box bounces on the back of the ceramic lining 3 and thus significantly increases the heat transfer.
  • the air escapes thereafter at the ends of the ceramic hollow profile and, due to the axial segmentation, can serve for film cooling of the ceramic surface facing the hot gas, but also for protecting the metallic structure from hot gas penetration into the intermediate gaps.
  • a perforation of the hot gas side ceramic surface 9 is advantageous.
  • the one-sided perforated, air-flow, metallic hollow box allows a controlled cooling air distribution in the combustion chamber wall. There are no parasitic leakage currents. Through the perforation of the hollow box, the back of the ceramic surface facing the combustion chamber can be cooled tightly. As a result, the heat flow from the wall is significantly increased. By an additional perforation of the ceramic surface, the cooling effect can be increased again. If the holes for cooling air supply positioned as close as possible to the fasteners, no leakage currents can occur along the gaps between the individual components.
  • the segmented structure makes it possible to produce universally applicable ceramic components that can be used in combustion chambers of any size and shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

  • Die Erfindung bezieht sich auf eine Brennkammer für eine Gasturbine gemäß den Merkmalen des Oberbegriffs des Anspruchs 1.
  • Im Einzelnen bezieht sich die Erfindung auf eine Brennkammer für eine Gasturbine mit einer metallischen Tragstruktur sowie mit mehreren am Umfang verteilt angeordneten keramischen Hohlprofilen, welche an der Tragstruktur befestigt sind. Dieser Stand der Technik ist aus der DE 195 02 730 A1 vorbekannt.
  • Die DE 195 02 730 A1 beschreibt die keramische Auskleidung einer Brennkammer mit mindestens einer ungekühlten Wandplatte, die aus hochtemperaturbeständiger Strukturkeramik besteht und die mit Hilfe eines Befestigungselements federelastisch an eine Haltevorrichtung angebunden ist. Die Verbindungsfläche zwischen dem Befestigungselement und der Keramik ist so geformt, dass nur minimale thermische Spannungen entstehen.
  • Der Nachteil besteht darin, dass nur eine konvektive Kühlung der metallischen Wand möglich ist, die einen hohen Kühlluftmassenstrom erfordert. Hinzu kommt, dass das Befestigungselement auf der zum Heißgas hingewandten Seite aufliegt und somit erhöhten thermischen Belastungen ausgesetzt ist.
  • Die EP 0 943.867 B1 beschreibt die keramische Auskleidung einer Brennkammer mit einzelnen nebeneinander angeordneten Segmenten in Form von Hohlkammern, die auch zur Strömungsführung dienen können. Die keramische Auskleidung kann auf der zur metallischen Struktur gewandten Seite befestigt werden.
  • Zwar kann bei dieser Lösung der Hohlraum auch zur Kühlungsführung vorgesehen werden und erreicht damit höhere Wärmeübertragungsraten; aber diese Kühltechnik beschränkt sich lediglich auf eine konvektive Kühlung des zum Brenninnenraum gerichteten keramischen Wandelements. Desweiteren ist nicht ersichtlich, wie eine Dosierung der Kühlluft erfolgt und auch eine Kontrolle der lokalen Kühlmassenströme in dem durchgehenden Hohlraum wird als schwierig erachtet. Ein weiterer Nachteil ist, dass die gesamte axiale Baulänge aus einem Stück gefertigt wird. Das führt dazu, dass Knicke in einem Stück mitgefertigt werden müssen.
  • Beide vorbekannten Lösungen haben den Nachteil, dass federnd gelagerte elastische Befestigungselemente verwendet werden. Bei den bekannten Oszillationen in einem Triebwerk mit dementsprechend hohen Drücken führt das zu Schwingungen wie bei einem Feder-Masse-Schwingsystem.
  • Die EP 1 431 661 A1 , welche den nächstkommenden Stand der Technik bildet, offenbart mehrere am Umfang einer Brennkammer an einer Tragstruktur angeordnete metallische rohrförmige Hohlprofile, welche geradlinig ausgebildet und als einzelne Segmente ausgestaltet sind. In dem Hohlprofil ist jeweils ein metallischer Hohlkörper, welcher von Kühlluft durchströmt wird, angeordnet. Durch die sich ergebenden Wärmeübergänge der metallischen Materialien ergibt sich unter allen Betriebsbedingungen eine optimale Kühlung.
  • Die EP 1 271 056 A1 zeigt eine Gasturbinen-Brennkammer mit Hohlelementen aus metallischen oder keramischen Materialien.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Brennkammer der eingangs genannten Art für eine Gasturbine zu schaffen, welche bei einfachem Aufbau und einfacher, funktionssicherer Anwendbarkeit kostengünstig herstellbar ist und die Nachteile des Standes der Technik vermeidet.
  • Erfindungsgemäß wird die Aufgabe durch die Merkmalskombination des Anspruchs 1 gelöst, die Unteransprüche zeigen weitere vorteilhafte Ausgestaltungen der Erfindung.
  • Erfindungsgemäß ist somit vorgesehen, dass die keramischen, rohrförmigen Hohlprofile jeweils geradlinig ausgebildet sind und als einzelne Segmente angeordnet sind. In den keramischen Hohlprofilen ist jeweils ein metallischer Hohlkörper angeordnet, welcher bevorzugterweise in Form einer Hohlbox ausgebildet ist. An zumindest einer Wandung sind an dem metallischen Hohlkörper Luftdurchtrittsöffnungen vorgesehen, welche in Form einer Perforation ausgebildet sein können. Durch diese Luftdurchtrittsöffnungen entweicht Kühlluft, welche in den metallischen Hohlkörper eingeleitet wird.
  • Der metallische Hohlkörper ist bevorzugterweise unter Bildung eines Zwischenraums in dem keramischen Hohlprofil angeordnet, so dass die durch die Luftdurchtrittsöffnungen entströmende Kühlluft sich in dem keramischen Hohlprofil verteilen kann.
  • Das keramische Hohlprofil ist an seiner einer Brennkammer zugewandten Wandung mit zusätzlichen Luftdurchtrittsöffnungen versehen sein.
  • Die Luftdurchtrittsöffnungen (Perforation) des metallischen Hohlkörpers sind bevorzugterweise an der dem Brennkammerinnenraum zugewandten Wandung ausgebildet, um eine effektive Kühlung des keramischen Hohlprofils zu gewährleisten.
  • Der metallische Hohlkörper ist bevorzugterweise mittels einer Kühlluftzuleitung an ein Kühlluftsystem angeschlossen. Somit werden Kühlluft-Leckagen vermieden.
  • Besonders günstig ist es, wenn das keramische Hohlprofil als geradliniges Profil ausgebildet ist und wenn mehrere derartige keramische Hohlprofile segmentartig an der Wandung der Brennkammer angeordnet sind, um die gekrümmte Kontur der Brennkammer zu bilden.
  • Im Folgenden wird die Erfindung anhand von Ausführungsbeispielen in Verbindung mit der Zeichnung beschrieben. Dabei zeigt:
  • Fig. 1
    eine perspektivische Teil-Ansicht einer erfindungsgemäßen Brennkammerauskleidung,
    Fig. 2
    eine perspektivische Ansicht als Unteransicht der in Fig. 1 dargestellten Anordnung,
    Fig. 3
    eine abgewandelte Ausgestaltungsform, analog der Darstellung der Fig. 1, und
    Fig. 4
    eine perspektivische Unteransicht der Anordnung gemäß Fig. 3.
  • In der folgenden Erfindung werden alle Ausführungsbeispiele in Verbindung mit den Fig. 1-4 beschrieben.
  • Es ist erfindungsgemäß vorgesehen, eine metallische Tragstruktur 6 mit in Umfangs- und Axialrichtung segmentierten keramischen, rohrförmigen Hohlprofilen 2 auszukleiden, die sich aus einem Abschnitt eines geraden Profils herstellen lassen. Im Hohlraum 10 des keramischen Hohlprofils befindet sich eine einseitig perforierte, luftdurchströmte, metallische Hohlbox 1, die mit Hilfe eines oder mehrerer Befestigungselemente 7 zusammen mit dem keramischen Hohlprofil 2 am metallischen Träger 6 befestigt wird.
  • Zur Befestigung wird ein entsprechendes Befestigungselement nach US 4,512,699 (daze fasteners) vorgeschlagen, jedoch eignet sich hierfür jedes sich im Laufe eines Betriebes spannungsfrei verhaltende Befestigungselement.
  • Es wird eine Kühlluftzuleitung 8 in dem metallischen Träger 6, den keramischen Hohlprofilen 2 und der metallischen Hohlbox 1 vorgesehen, die bei einem Befestigungselement möglichst nah an diesem liegt und bei mehreren möglichst mittig zwischen jenen liegt.
  • Die im Anschluss von der Kühlluft durchströmte Hohlbox dient zur Kühlluftkontrolle. Durch die Luftdurchtrittsöffnungen (Perforation) 5, die die strömungsbestimmende Oberfläche angibt, kann eine geeignete Menge an Kühlluft in dem entsprechend dafür vorgesehenen Bereich des keramischen Hohlprofils 2 eingestellt werden. Da die metallische Hohlbox abgeschlossen ist und lediglich über eine Kühlluftzuleitung 8 und die Luftdurchtrittsöffnungen 5 verfügt, treten keine Leckageströme auf.
  • Die Kühlluft, die aus der metallischen Hohlbox austritt, prallt auf der Rückseite der keramischen Auskleidung 3 auf und erhöht damit deutlich den Wärmeübergang. Die Luft entweicht im Anschluss daran an den Enden des keramischen Hohlprofils und kann aufgrund der axialen Segmentierung zur Filmkühlung der zum Heißgas gerichteten keramischen Oberfläche dienen, aber auch zum Schutz der metallischen Struktur vor Heißgaseinbrüch in die Zwischenspalte. Auch eine Perforation der heißgasseitigen keramischen Oberfläche 9 ist vorteilhaft.
  • Die einseitig perforierte, luftdurchströmte, metallische Hohlbox ermöglicht eine kontrollierte Kühlluftaufteilung in der Brennkammerwand. Es treten keine parasitären Leckageströme auf. Durch die Perforation der Hohlbox kann die Rückseite der zum Brennraum gerichteten keramischen Oberfläche prall gekühlt werden. Hierdurch wird der, Wärmestrom aus der Wand deutlich erhöht. Durch eine zusätzliche Perforation der keramischen Oberfläche kann die Kühlwirkung noch mal gesteigert werden. Werden die Bohrungen zur Kühlluftzufuhr möglichst nah an den Befestigungselementen positioniert, können keine Leckageströme entlang der Spalte zwischen den einzelnen Bauteilen auftreten. Der segmentierte Aufbau ermöglicht es, universell einsetzbare keramische Bauteile zu produzieren, die in Brennkammern beliebiger Größe und Form Verwendung finden können.
  • Bezugszeichenliste
  • 1
    Metallische Hohlbox/Hohlkörper
    2
    Keramisches, rohrförmiges Hohlprofil/Segment
    3
    Heißgasseitige keramische Wandung
    4
    Trägerseitige, keramische Wandung
    5
    Perforation/Luftdurchtrittsöffnung
    6
    Metallische Tragstruktur/Träger
    7
    Befestigungselement
    8
    Kühlluftzuleitung
    9
    Keramische Oberfläche/Wandung
    10
    Hohlraum
    11
    Luftdurchtrittsöffnung
    12
    Brennkammerinnenraum
    13
    Zwischenraum

Claims (8)

  1. Brennkammer für eine Gasturbine mit einer metallischen Tragstruktur (6) sowie mit mehreren am Umfang verteilt angeordneten rohrförmigen Hohlprofilen (2), welche an der Tragstruktur (6) befestigt sind, wobei die Hohlprofile (2) jeweils geradlinig ausgebildet und als einzelne Segmente angeordnet sind und wobei in den Hohlprofilen (2) jeweils zumindest ein metallischer Hohlkörper (1) angeordnet ist, welcher an zumindest einer Wandung mit Luftdurchtrittsöffnungen (5) versehen ist, durch welche Kühlluft durchleitbar ist, dadurch gekennzeichnet, dass die rohrförmigen Hohlprofile (2) aus einem keramischen Werkstoff bestehen und dass eine einem Brennkammerinnenraum (12) zugewandte Wandung (9) des keramischen Hohlprofils (2) mit Luftdurchtrittsöffnungen (11) versehen ist.
  2. Brennkammer nach Anspruch 1, dadurch gekennzeichnet, dass der metallische Hohlkörper (1) unter Bildung eines Zwischenraums (13) in dem keramischen Hohlprofil (2) angeordnet ist.
  3. Brennkammer nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass eine einem Brennkammerinnenraum (12) zugewandte Wandung des metallische Hohlkörpers (1) mit Luftdurchtrittsöffnungen (5) versehen ist.
  4. Brennkammer nach einem der Ansprüche 1 bis 3, dadurch gekenntzeichnet, dass die Luftdurchtrittsöffnungen (5) in Form einer Perforation ausgebildet sind.
  5. Brennkammer nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die keramischen, rohrförmigen Hohlprofile (2) und die metallischen Hohlkörper (1) mittels Befestigungselementen (7) an der Tragstruktur (6) gelagert sind.
  6. Brennkammer nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der metallische Hohlkörper (1) mit zumindest einer Kühlluftzuleitung (8) verbunden ist.
  7. Brennkammer nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das keramische, rohrförmige Hohlprofil (2) in Form eines geradlinigen Profils ausgebildet ist.
  8. Brennkammer nach Anspruch 6, dadurch gekennzeichnet, dass der metallische Hohlkörper (1) als geschlossene Konstruktion ausgebildet ist, in welche Kühlluft nur über die Kühlluftzuleitung (8) eingebracht und nur über die Luftdurchtrittsöffnungen (5) ausgeleitet wird.
EP08021918.1A 2007-12-27 2008-12-17 Brennkammerauskleidung Expired - Fee Related EP2075506B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007062699A DE102007062699A1 (de) 2007-12-27 2007-12-27 Brennkammerauskleidung

Publications (3)

Publication Number Publication Date
EP2075506A2 EP2075506A2 (de) 2009-07-01
EP2075506A3 EP2075506A3 (de) 2014-11-12
EP2075506B1 true EP2075506B1 (de) 2016-04-27

Family

ID=40482017

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08021918.1A Expired - Fee Related EP2075506B1 (de) 2007-12-27 2008-12-17 Brennkammerauskleidung

Country Status (3)

Country Link
US (1) US8074453B2 (de)
EP (1) EP2075506B1 (de)
DE (1) DE102007062699A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012213637A1 (de) * 2012-08-02 2014-02-06 Siemens Aktiengesellschaft Brennkammerkühlung
US9423129B2 (en) 2013-03-15 2016-08-23 Rolls-Royce Corporation Shell and tiled liner arrangement for a combustor
WO2015009384A1 (en) 2013-07-16 2015-01-22 United Technologies Corporation Gas turbine engine with ceramic panel
AU2014334599B2 (en) * 2013-10-17 2018-06-21 Joy Global Surface Mining Inc Liner system for a dipper

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3956886A (en) * 1973-12-07 1976-05-18 Joseph Lucas (Industries) Limited Flame tubes for gas turbine engines
US4269032A (en) * 1979-06-13 1981-05-26 General Motors Corporation Waffle pattern porous material
US4512699A (en) 1983-05-17 1985-04-23 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Daze fasteners
US4838031A (en) * 1987-08-06 1989-06-13 Avco Corporation Internally cooled combustion chamber liner
JPH03504999A (ja) * 1988-06-13 1991-10-31 シーメンス、アクチエンゲゼルシヤフト 高温流体を導く構造物のための熱遮蔽装置
DE19502730A1 (de) 1995-01-28 1996-08-01 Abb Management Ag Keramische Auskleidung
DE19730751A1 (de) * 1996-07-24 1998-01-29 Siemens Ag Keramisches Bauteil für eine Wärmeschutzschicht sowie Wärmeschutzschicht
JP2001504565A (ja) * 1996-09-26 2001-04-03 シーメンス アクチエンゲゼルシヤフト 冷却流体の戻り路を備えた熱遮蔽部品及び高温ガス案内部品の熱遮蔽装置
DE19727407A1 (de) * 1997-06-27 1999-01-07 Siemens Ag Hitzeschild
DE29714742U1 (de) * 1997-08-18 1998-12-17 Siemens Ag Hitzeschildkomponente mit Kühlfluidrückführung und Hitzeschildanordnung für eine heißgasführende Komponente
EP0943867B1 (de) 1998-03-17 2002-12-18 ALSTOM (Switzerland) Ltd Keramische Auskleidung einer Brennkammer
FR2777634B1 (fr) * 1998-04-16 2000-05-19 Snecma Separateur pour chambre de combustion a deux tetes
DE10003728A1 (de) * 2000-01-28 2001-08-09 Siemens Ag Hitzeschildanordnung für eine Heißgas führende Komponente, insbesondere für Strukturteile von Gasturbinen
US6514046B1 (en) * 2000-09-29 2003-02-04 Siemens Westinghouse Power Corporation Ceramic composite vane with metallic substructure
EP1271056A1 (de) * 2001-06-20 2003-01-02 Siemens Aktiengesellschaft Gasturbinen-Brennkammer und für diese vorgesehenes Verfahren zur Luftführung
EP1284390A1 (de) * 2001-06-27 2003-02-19 Siemens Aktiengesellschaft Hitzeschildanordnung für eine Heissgas führende Komponente, insbesondere für Strukturteile von Gasturbinen
EP1431661A1 (de) * 2002-12-19 2004-06-23 Siemens Aktiengesellschaft Ströhmungsführungskörper
US7908867B2 (en) * 2007-09-14 2011-03-22 Siemens Energy, Inc. Wavy CMC wall hybrid ceramic apparatus

Also Published As

Publication number Publication date
EP2075506A2 (de) 2009-07-01
EP2075506A3 (de) 2014-11-12
US20090193810A1 (en) 2009-08-06
US8074453B2 (en) 2011-12-13
DE102007062699A1 (de) 2009-07-02

Similar Documents

Publication Publication Date Title
DE102005025823B4 (de) Verfahren und Vorrichtung zum Kühlen einer Brennkammerauskleidung und eines Übergangsteils einer Gasturbine
EP1193451B1 (de) Brennkammerkopf für eine Gasturbine
EP1005620B1 (de) Hitzeschildkomponente mit kühlfluidrückführung
EP2049841B1 (de) Brennkammer einer verbrennungsanlage
EP2423599B1 (de) Verfahren zum Betrieb einer Brenneranordnung sowie Brenneranordnung zur Durchführung des Verfahrens
EP1778953B1 (de) Reinigungsvorrichtung einer abgasturbine
DE874680C (de) Duesenkasten fuer Gasturbinentriebwerke
EP1865259A2 (de) Gasturbinenbrennkammerwand für eine mager-brennende Gasturbinenbrennkammer
EP2011965A2 (de) Vorrichtung und Verfahren zum Einspannen von beschaufelten Rotorscheiben eines Strahltriebwerkes
EP2075506B1 (de) Brennkammerauskleidung
EP2049840A1 (de) Brennkammer einer verbrennungsanlage
WO2006064038A1 (de) Hitzeschildelement
EP1884713B1 (de) Hitzeschildanordnung, insbesondere für eine Gasturbine
DE102004010620B4 (de) Brennkammer zur wirksamen Nutzung von Kühlluft zur akustischen Dämpfung von Brennkammerpulsation
DE1291554B (de) Brennkammer fuer Gasturbinen
EP2883003B1 (de) Hitzeschild mit einer tragstruktur und verfahren zum kühlen der tragstruktur
DE4132235C1 (de)
DE3535442C2 (de)
EP2347100A1 (de) Gasturbine mit kühleinsatz
DE19538364C5 (de) Vorrichtung zur Schnellerwärmung von Metall-Preßbolzen
EP1422479B1 (de) Brennkammer zur Verbrennung eines brennbaren Fluidgemisches
EP1512911A1 (de) Anordnung zur Kühlung hoch wärmebelasteter Bauteile
EP2270397A1 (de) Gasturbinenbrennkammer und Gasturbine
EP3921577A1 (de) Rohrbrennkammersystem und gasturbinenanlage mit einem solchen rohrbrennkammersystem
EP1724443A1 (de) Düsenring

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F23R 3/06 20060101ALI20141007BHEP

Ipc: F23R 3/00 20060101AFI20141007BHEP

17P Request for examination filed

Effective date: 20150129

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AKX Designation fees paid

Designated state(s): DE FR GB

AXX Extension fees paid

Extension state: AL

Extension state: RS

Extension state: BA

Extension state: MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151028

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SADIG, SERMED

Inventor name: GERENDAS, MIKLOS, DR.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008014129

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008014129

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170130

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20191226

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191231

Year of fee payment: 12

Ref country code: GB

Payment date: 20191227

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008014129

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201217