EP2072792A2 - Verfahren zum Betreiben einer Brennkraftmaschine - Google Patents

Verfahren zum Betreiben einer Brennkraftmaschine Download PDF

Info

Publication number
EP2072792A2
EP2072792A2 EP08105824A EP08105824A EP2072792A2 EP 2072792 A2 EP2072792 A2 EP 2072792A2 EP 08105824 A EP08105824 A EP 08105824A EP 08105824 A EP08105824 A EP 08105824A EP 2072792 A2 EP2072792 A2 EP 2072792A2
Authority
EP
European Patent Office
Prior art keywords
combustion engine
fuel
internal combustion
pressure
pressure fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08105824A
Other languages
English (en)
French (fr)
Other versions
EP2072792A3 (de
Inventor
Klaus Joos
Jens Wolber
Timm Hollmann
Joerg Kuempel
Peter Schenk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2072792A2 publication Critical patent/EP2072792A2/de
Publication of EP2072792A3 publication Critical patent/EP2072792A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • F02M63/0265Pumps feeding common rails
    • F02M63/027More than one high pressure pump feeding a single common rail
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • F02M63/0275Arrangement of common rails
    • F02M63/0285Arrangement of common rails having more than one common rail
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/224Diagnosis of the fuel system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D2041/3881Common rail control systems with multiple common rails, e.g. one rail per cylinder bank, or a high pressure rail and a low pressure rail
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure

Definitions

  • the invention relates to a method for operating an internal combustion engine in motor vehicles according to the preamble of claim 1. Furthermore, the subject of the invention is a control and / or regulating device, a computer program and an internal combustion engine with direct injection according to the preambles of the independent claims.
  • a method of operating a direct injection internal combustion engine in which two high pressure fuel pumps are each associated with a fuel rail. Both fuel manifolds are hydraulically connected. A common pressure control circuit controls both high-pressure fuel pumps independently of each other. The high-pressure fuel pumps are in continuous operation of the internal combustion engine in use. During operation, the course of the pressure prevailing in the fuel rail is monitored by a simple diagnostic function.
  • the object of the invention is to provide or develop a method of the type mentioned above, in which the internal combustion engine operates reliably and with low cost, a fuel-efficient and low-emission operation is guaranteed.
  • the internal combustion engine comprises a control and / or regulating device with a computer program that is programmed to use the described method.
  • the proposed method thus makes it possible to reduce the fuel consumption in a partial load range since mechanical and electrical power consumed by the high-pressure fuel pumps and electronic power output stages, but ultimately to be provided by the internal combustion engine, is minimized.
  • two high-pressure fuel pumps can be saved when switching off a pump almost half of the power to be used for the provision of the necessary pressure in the fuel rail.
  • This can be demonstrated, for example, in a NEDC (New European Driving Cycle) test, which stipulates a standardized driving cycle under defined conditions under an EC directive.
  • NEDC New European Driving Cycle
  • the operating variable is a pressure in the fuel rail, an injection mode, an injected fuel mass, an engine speed, a torque request, an engine temperature, a vehicle speed or an elapsed time after an engine start.
  • the delivery of the high-pressure fuel pump is switched on and / or off by corresponding activation of a quantity control valve. That the mechanical drive of the quantity control valve always remains unchanged, only the operation of the quantity control valve is changed by the electronic control. Turning off the high-pressure fuel pump therefore means that the quantity control valve operates in "idle", so no fuel at high pressure promotes in the fuel rail.
  • This idling causes, on the one hand, hardly any electrical power to be demanded from an electronic power stage that electronically controls the quantity control valve, and, on the other hand, a mechanical drive shaft for mechanical actuation of the quantity control valve has little mechanical resistance to overcome. This means that the required electrical and mechanical power is significantly reduced.
  • To switch on the fuel high-pressure pump only the electronic control of the quantity control valve has to be changed.
  • the method according to the invention is particularly advantageous when a plurality of fuel manifolds are hydraulically connected to one another.
  • Each fuel manifold is known to be associated with at least one high-pressure fuel pump. This is done in order to meet the needs of the engine at full load and to achieve a more favorable pulsation pattern of the rail pressure. If a plurality of fuel manifolds are hydraulically connected to each other, however, there is the possibility that even a smaller number of high-pressure fuel pumps will supply the required pressure in the interconnected fuel manifold at least in a partial load range. A temporary shutdown of high-pressure fuel pumps to reduce the power requirement is particularly useful in this embodiment.
  • the control and / or regulating device for example, in turn, by evaluating the operating variables and a fixed period for the last diagnosis, the diagnosis of a faulty behavior of the high-pressure fuel pump start. If a fault is detected, then a defined high-pressure fuel pump can be clearly diagnosed (pinpointing). This advantageously increases the diagnostic accuracy.
  • measures are initiated depending on the diagnostic result. After a diagnosed error, different measures are conceivable. they should be determined by the control and / or regulating device due to the present operating variables of the internal combustion engine and existing empirical values. So it is, for example, possible that the faulty high-pressure fuel pump is turned off, but another high-pressure fuel pump is turned on.
  • the faulty high-pressure fuel pump can be identified as "inoperable" in a storage element of the control and / or regulating device, ie it can no longer be connected until repair by the control and / or regulating device.
  • the diagnostic result can also be stored, for example, in an onboard diagnostic device. If a faulty high-pressure fuel pump has been detected, a warning light can also be activated on a dashboard of the motor vehicle, which points the driver of the motor vehicle on a moderate driving style and to a quickest possible visit a workshop.
  • the delivery be alternately switched off and on at one and another of the high-pressure fuel pumps.
  • all fuel high-pressure pumps can advantageously be activated consecutively and subsequently diagnosed.
  • all available high-pressure fuel pumps can be checked during a diagnostic procedure.
  • Another advantage of the proposed method is that, depending on an operating variable of the internal combustion engine, switching off the delivery of the high-pressure fuel pump is blocked. This prevents, for example, that a fuel high-pressure pump is switched off during critical operating phases of the internal combustion engine, for example the start phase.
  • a blocking in a diagnosed as faulty fuel high-pressure pump u.U. meaningful.
  • FIG. 1 shows an internal combustion engine, which is designated in its entirety by the reference numeral 10.
  • the internal combustion engine 10 is preferably a 4-stroke gasoline engine with gasoline direct injection (BDE), a diesel engine with direct injection is also conceivable.
  • BDE gasoline direct injection
  • the internal combustion engine comprises two high-pressure manifolds 12, also called common rail or short rail, to each of which four fuel injection devices 14 are connected. For reasons of clarity, only one fuel injection device is provided with the reference numeral 14.
  • the fuel injectors 14 inject fuel into a combustion chamber 16 of the internal combustion engine 10. Again, only one of the combustion chambers is provided with the reference numeral 16.
  • the internal combustion engine 10 thus consists of two blocks, each with a rail 12, four fuel injectors 14 and four combustion chambers 16, as they could, for example, be arranged in an 8-cylinder V-engine or boxer engine.
  • the temperatures of the combustion chambers 16 are measured by temperature sensors 18.
  • a crankshaft 20 which is shown here only symbolically, is set in rotation, wherein a crankshaft speed is measured with a sensor 22.
  • Both rails 12 are hydraulically connected to a connecting line 24.
  • a connecting line 24 In the illustrated preferred embodiment, only one connection line 24 between the two rails 12 is executed. However, in order to achieve, for example, an enlargement of the cross section of the connecting line 24, the arrangement of a plurality of such connecting lines, distributed over the entire rail 12, is also possible.
  • a rail pressure is measured via a pressure sensor 26.
  • Each of the two rails 12 is preceded by a high-pressure fuel pump (HDP) 28, which promotes fuel under high pressure (different between gasoline and diesel engine) in the rail 12.
  • the amount of fuel delivered is quantity controlled and is therefore adjusted by a quantity control valve 30 integrated with the HDP 28.
  • This is open in its rest position in such a way that the outlet side is connected to the inlet side and fuel is largely returned to the inlet side largely at atmospheric pressure (at idle or zero delivery).
  • an electromagnetic device 32 Via an electromagnetic device 32, this connection to the inlet side can be closed and fuel then flows under high pressure from the outlet side out into the rail 12.
  • Each of these electromagnetic devices 32 are connected via power output stages 34, which are preferably in a control device 36 for controlling the internal combustion engine 10th integrated, operated.
  • the control device 36 also includes a computer program that controls the processes within the internal combustion engine 10. For this purpose, measured values of the temperature sensor 18, the sensor for determining the crankshaft speed (engine speed) 22, the pressure sensor 26 at the fuel collection line 12, a sensor 38 for determining the vehicle speed and a sensor 40 for determining an accelerator pedal position in the control device 36 evaluated.
  • the control device 36 determines therefrom with the aid of yet further parameters (not shown here), for example the fuel mass 42 to be injected by the fuel injection device 14 and the situation for disconnecting or connecting an HDP 28, or the requirement for a diagnosis of the HDP 28.
  • step 100 the control device 36 determines whether a routine examination should be started on the basis of the evaluated operating variables. If this is the case, it is checked in step 110 whether a faulty HDP 28 which was thus not switchable has been diagnosed from a previous diagnosis ("error flag" set). If this is the case, no new routine scan is started because the HDP 28, which is not diagnosed as faulty, must take over the entire operation until repair alone. If no "Error flag" is set, the actual routine can begin.
  • the current injection quantity 42 for the fuel injection device (s) 14 is determined in step 120.
  • step 130 it is detected whether, taking into account the existing, current operating variables, the current injection mass 42 is below a limit value defined in the control device 36. If so, and both HDPs 28 are running (step 140), an HDP 28 is turned off (step 150).
  • the control device now decides, on the basis of the existing operating variables, whether a diagnosis of the HDP 28 in operation alone (step 160) should be started (the diagnostic procedure - connector B - is described in detail in FIG FIG. 3 described). If no diagnostics is started, the routine procedure jumps to the beginning of the routine to Connector A.
  • Step 180 If it is detected in the query 130 that the current injection mass 42 is above a limit value defined in the control device 36, it is checked whether both HDPs 28 are already in operation (step 170) or if a previously switched-off HDP 28 has to be put back into operation (Step 180).
  • Connector B in FIG. 3 represents the beginning of the diagnostic process. Prerequisite is that only one HDP 28 is in operation, which is ensured in the routine procedure.
  • the pressure in the high-pressure manifold 12 (measured by the pressure sensor 26) is compared with a comparison value determined in the control device. If the measured pressure - taking into account specified tolerances - is below the comparison value, the HDP 28 will operate incorrectly. It is then switched to the second HDP 28 in step 210. This is done on the condition that reliable diagnostic tests of the HDPs 28 have been performed in the past and that therefore the second HDP 28 can be considered to be fully functional. Subsequently, the faulty HDP 28 is reported to an onboard diagnostic facility which stores the fault in a fault memory.
  • a warning light is activated on a dashboard of the motor vehicle, which indicates the driver on a moderate driving style and the fastest possible visit to a car workshop. (Step 220). Other warnings and activities are quite possible. In any case, it should be prevented that the internal combustion engine 10 may be damaged by the low pressure in the high-pressure manifold 12.
  • the "error flag” is set, which indicates to the computer program that an HDP 28 is defective and that only one HDP 28 is ready for operation. Of course, this "error flag” must be reset after repairing the HDP 28.
  • step 200 it is determined whether the undiagnosed HDP 28 has previously been tested (step 240). If the HDP 28 has not been checked, it is switched to this HDP 28 (step 250) and also for this HDP 28 a diagnosis is started (connector B). In the other case, the diagnostic procedure is terminated and the computer program jumps back to connector A. After completion of the diagnostic process, all existing HDPs are checked.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zum Betreiben einer Brennkraftmaschine mit Direkteinspritzung in einem Kraftfahrzeug, bei dem Kraftstoff mindestens zeitweise gleichzeitig von mindestens zwei Kraftstoff-Hochdruckpumpen in mindestens eine Kraftstoffsammelleitung gefördert wird. Im normalen Betrieb der Brennkraftmaschine wird abhängig von mindestens einer Betriebsgröße der Brennkraftmaschine eine Förderung von Kraftstoff mittels einer Kraftstoff-Hochdruckpumpe ein- und/oder ausgeschaltet.

Description

    Stand der Technik
  • Die Erfindung betrifft ein Verfahren zum Betreiben einer Brennkraftmaschine in Kraftfahrzeugen nach dem Oberbegriff des Anspruchs 1. Außerdem ist Gegenstand der Erfindung eine Steuer- und/oder Regeleinrichtung, ein Computerprogramm und eine Brennkraftmaschine mit Direkteinspritzung nach den Oberbegriffen der nebengeordneten Patentansprüche.
  • Aus der EP 1 282 771 B1 ist ein Verfahren zum Betreiben einer Brennkraftmaschine mit Direkteinspritzung bekannt, bei dem zwei Kraftstoff-Hochdruckpumpen jeweils einer Kraftstoffsammelleitung zugeordnet sind. Beide Kraftstoffsammelleitungen sind hydraulisch miteinander verbunden. Über einen gemeinsamen Druckregelkreis werden beide Kraftstoff-Hochdruckpumpen unabhängig voneinander angesteuert. Die Kraftstoff-Hochdruckpumpen sind im laufenden Betrieb der Brennkraftmaschine ununterbrochen im Einsatz. Während des Betriebs wird durch eine einfache Diagnosefunktion der Verlauf des in der Kraftstoffsammeleitung herrschenden Drucks überwacht.
  • Offenbarung der Erfindung
  • Aufgabe der Erfindung ist es, ein Verfahren der eingangsgenannten Art zu schaffen bzw. weiterzuentwickeln, bei dem die Brennkraftmaschine zuverlässig arbeitet und mit geringem Kostenaufwand ein kraftstoffsparender und emissionsarmer Betrieb gewährleistet wird.
  • Zur Lösung der Aufgabe wird ausgehend von dem Verfahren zum Betreiben einer Brennkraftmaschine der eingangs genannten Art vorgeschlagen, dass im normalen Betrieb der Brennkraftmaschine abhängig von mindestens einer Betriebsgröße der Brennkraftmaschine eine Förderung von Kraftstoff mittels einer Kraftstoff-Hochdruckpumpe ein- und/oder ausgeschaltet wird. Weiterhin wird vorgeschlagen, dass die Brennkraftmaschine eine Steuer- und/oder Regeleinrichtung mit einem Computerprogramm umfasst, das zur Anwendung des beschriebenen Verfahrens programmiert ist.
  • Erfindungsgemäß wird also vorgeschlagen, dass Betriebsgrößen der Brennkraftmaschine und des gesamten Kraftfahrzeugs im normalen Betrieb, also im Wesentlichen nicht während einer Startphase der Brennkraftmaschine, ausgewertet werden und dabei die Notwendigkeit eines Betriebs von allen zur Verfügung stehenden Kraftstoff-Hochdruckpumpen überprüft wird. Lässt eine bestimmte Fahrweise des Fahrers des Kraftfahrzeugs bzw. ein bestimmter Straßenverlauf es zu, dass der nötige Druck in der Kraftstoffsammelleitung auch durch weniger Kraftstoff-Hochdruckpumpen gehalten werden kann, so werden nicht benötigte Kraftstoff-Hochdruckpumpen temporär abgeschaltet. Es wird also sichergestellt, dass nur die mindestens notwendige Anzahl von Kraftstoff-Hochdruckpumpen, die einen aktuell benötigten Kraftstoffbedarf decken, wirklich betrieben werden. Eine einwandfreie und zuverlässige Funktion der Brennkraftmaschine muss selbstverständlich immer gewährleistet sein. Durch laufende Überprüfungen der Betriebsgrößen wird erkannt, wann Kraftstoff-Hochdruckpumpen wieder zugeschaltet werden müssen.
  • Durch das vorgeschlagene Verfahren wird somit eine Absenkung des Kraftstoffverbrauchs in einem Teillastbereich möglich, da mechanische und elektrische Leistung, die von den Kraftstoff-Hochdruckpumpen und elektronischen Leistungsendstufen verbraucht wird, aber letztendlich von der Brennkraftmaschine geleistet werden muss, minimiert wird. Bei einer Anordnung mit bspw. zwei Kraftstoff-Hochdruckpumpen kann beim Abschalten von einer Pumpe fast die Hälfte der einzusetzenden Leistung für die Bereitstellung des nötigen Drucks in der Kraftstoffsammelleitung gespart werden. Dies kann bspw. in einem NEFZ- (Neuer Europäischer Fahrzyklus) Test, bei dem nach einer EG-Richtlinie unter festgelegten Bedingungen ein standardisierter Fahrzyklus festlegt ist, nachgewiesen werden. Außerdem werden damit auch die gesetzlichen Forderungen nach Verringerung des Kraftstoffverbrauchs und Verbesserung der Emissionswerte beim Fahren des Kraftfahrzeugs erfüllt.
  • Weiterhin wird vorgeschlagen, dass die Betriebsgröße ein Druck in der Kraftstoffsammelleitung, eine Einspritzart, eine einzuspritzende Kraftstoffmasse, eine Motordrehzahl, eine Drehmomentanforderung, eine Motortemperatur, eine Fahrzeuggeschwindigkeit oder eine verstrichene Zeit nach einem Motorstart ist. Das bedeutet, dass vorteilhafterweise im Wesentlichen alle messbaren betriebsrelevanten Parameter, die einen Einfluss auf die Funktion der Brennkraftmaschine haben können, für die Auswertung herangezogen und in der Steuer- und/oder Regeleinrichtung bewertet werden. Dadurch kann eine exakte Aussage über die Möglichkeit des Abschaltens einer Kraftstoff-Hochdruckpumpe getroffen werden, die die zuverlässige Funktion der Brennkraftmaschine weiterhin gewährleistet. Da keine zusätzlichen Vorrichtungen benötigt werden, sondern lediglich das Computerprogramm in der Steuer- und/oder Regeleinrichtung erweitert wird, stellt die Erfindung eine besonders kostengünstige Ausführungsform dar.
  • Vorteilhaft ist auch, dass die Förderung der Kraftstoff-Hochdruckpumpe durch entsprechendes Ansteuern eines Mengensteuerventils ein- und/oder ausgeschaltet wird. D.h. der mechanische Antrieb des Mengensteuerventils bleibt stets unverändert, lediglich wird durch die elektronische Ansteuerung die Arbeitsweise des Mengensteuerventils verändert. Das Abschalten der Kraftstoff-Hochdruckpumpe bedeutet demnach, dass das Mengensteuerventil im "Leerlauf" arbeitet, also kein Kraftstoff unter Hochdruck in die Kraftstoffsammelleitung fördert. Dieser Leerlauf bewirkt, dass einerseits von einer elektronischen Leistungsstufe, die das Mengensteuerventil elektronisch bedient, kaum elektrische Leistung angefordert wird, andererseits hat eine mechanische Antriebswelle zur mechanischen Betätigung des Mengensteuerventils kaum mechanischen Widerstand zu überwinden. Das bedeutet, dass die benötigte elektrische und mechanische Leistung ganz erheblich reduziert wird. Zum Einschalten der Kraftstoff-Hochdruckpumpe muss lediglich die elektronische Ansteuerung des Mengensteuerventils geändert werden.
  • Besonders vorteilhaft ist das erfindungsgemäße Verfahren, wenn mehrere Kraftstoffsammelleitungen hydraulisch miteinander verbunden werden. Jeder Kraftstoffsammelleitung ist bekanntermaßen mindestens eine Kraftstoff-Hochdruckpumpe zugeordnet. Dies geschieht deswegen, um bei Volllast den Bedarf des Motors zu decken und um ein günstigeres Pulsationsmuster des Raildrucks zu erreichen. Sind mehrere Kraftstoffsammelleitungen hydraulisch miteinander verbunden, bietet sich jedoch die Möglichkeit, dass auch eine geringere Anzahl von Kraftstoff-Hochdruckpumpen den benötigten Druck in der zusammengeschalteten Kraftstoffsammelleitung zumindest in einem Teillastbereich liefert. Ein temporäres Abschalten von Kraftstoff-Hochdruckpumpen zur Reduzierung des Leistungsbedarfs ist in dieser Ausführungsform besonders sinnvoll.
  • Ferner wird vorgeschlagen, dass bei der Förderung durch lediglich eine Kraftstoff-Hochdruckpumpe eine Diagnose dieser Kraftstoff-Hochdruckpumpe durchgeführt wird. In dem Fall, dass durch Auswertung der Betriebsgrößen von der Steuer- und/oder Regeleinrichtung entschieden wurde, dass der Betrieb mit nur einer einzigen Kraftstoff-Hochdruckpumpe ein zuverlässiges Betreiben der Brennkraftmaschine gewährleistet, kann die Steuer- und/oder Regeleinrichtung bspw. wiederum durch Auswerten der Betriebsgrößen und einem festgehaltenen Zeitraum zur letzten Diagnose, die Diagnose auf ein fehlerhaftes Verhalten der Kraftstoff-Hochdruckpumpe starten. Bei erkanntem Fehler kann dann eindeutig eine definierte Kraftstoff-Hochdruckpumpe diagnostiziert werden (Pinpointing). Das erhöht vorteilhafterweise die Diagnoseschärfe.
  • Dazu wird weiter vorgeschlagen, dass abhängig von dem Diagnoseergebnis Maßnahmen eingeleitet werden. Nach einem diagnostizierten Fehler sind unterschiedliche Maßnahmen denkbar. Sie sollten aufgrund der vorliegenden Betriebsgrößen der Brennkraftmaschine und vorliegenden Erfahrungswerten von der Steuer- und/oder Regeleinrichtung festgelegt werden. So ist es bspw. möglich, dass die fehlerhafte Kraftstoff-Hochdruckpumpe abgeschaltet wird, dafür eine andere Kraftstoff-Hochdruckpumpe eingeschaltet wird. Die fehlerhafte Kraftstoff-Hochdruckpumpe kann in einem Speicherelement der Steuer- und/oder Regeleinrichtung als "nicht betreibbar" gekennzeichnet werden, d.h. sie kann bis zu einer Reparatur durch die Steuer- und/oder Regeleinrichtung nicht mehr zugeschaltet werden. Das Diagnoseergebnis kann darüber hinaus bspw. in einer Onboard-Diagnoseeinrichtung abgespeichert werden. Ist eine fehlerhafte Kraftstoff-Hochdruckpumpe erkannt worden, kann weiterhin eine Warnleuchte an einem Armaturenbrett des Kraftfahrzeugs aktiviert werden, die den Fahrer des Kraftfahrzeugs auf eine gemäßigte Fahrweise und zu einem schnellstmöglichen Aufsuchen einer Werkstatt hinweist.
  • Außerdem wird vorgeschlagen, dass die Förderung abwechselnd bei einer und bei einer anderen der Kraftstoff-Hochdruckpumpen aus- und eingeschaltet wird. In Verbindung mit der Diagnosedurchführung können dabei vorteilhafterweise aufeinander folgend alle Kraftstoff-Hochdruckpumpen aktiviert und anschließend diagnostiziert werden. So können bei einem Diagnosevorgang alle zur Verfügung stehenden Kraftstoff-Hochdruckpumpen geprüft werden.
  • Ein weiterer Vorteil des vorgeschlagenen Verfahrens ist der, dass abhängig von einer Betriebsgröße der Brennkraftmaschine ein Ausschalten der Förderung der Kraftstoff-Hochdruckpumpe gesperrt wird. Damit wird bspw. verhindert, dass während kritischer Betriebsphasen der Brennkraftmaschine, bspw. der Startphase eine Kraftstoff-Hochdruckpumpe abgeschaltet wird. Außerdem ist - wie bereits oben erwähnt - eine Sperrung bei einer als fehlerhaft diagnostizierten Kraftstoff-Hochdruckpumpe u.U. sinnvoll.
  • Kurze Beschreibung der Zeichnungen
  • Nachfolgend wird anhand von Figuren ein bevorzugtes Ausführungsbeispiel der Erfindung näher erläutert. Es zeigen:
  • Figur 1
    eine schematische Darstellung der erfindungsgemäßen Brennkraftmaschine;
    Figur 2
    ein Flussdiagramm zum Routineablauf des erfindungsgemäßen Verfahrens; und
    Figur 3
    ein Flussdiagramm zum Diagnoseablauf.
    Ausführungsformen der Erfindung
  • Figur 1 zeigt eine Brennkraftmaschine, die in ihrer Gesamtheit mit dem Bezugszeichen 10 bezeichnet ist. Die Brennkraftmaschine 10 stellt vorzugsweise einen 4-Takt Ottomotor mit Benzindirekteinspritzung (BDE) dar, ein Dieselmotor mit Direkteinspritzung ist jedoch auch denkbar.
  • Die Brennkraftmaschine umfasst zwei Hochdrucksammelleitungen 12, auch Common Rail oder kurz Rail genannt, an denen jeweils vier Kraftstoff-Einspritzeinrichtungen 14 angeschlossen sind. Aus Gründen der Übersichtlichkeit ist jeweils nur eine Kraftstoff-Einspritzeinrichtung mit dem Bezugszeichen 14 versehen. Die Kraftstoff-Einspritzvorrichtungen 14 spritzen Kraftstoff in einen Brennraum 16 der Brennkraftmaschine 10. Auch hier ist nur einer der Brennräume mit dem Bezugszeichen 16 versehen. Die Brennkraftmaschine 10 besteht also aus zwei Blöcken mit jeweils einem Rail 12, vier Kraftstoff-Einspritzvorrichtungen 14 und vier Brennräumen 16, wie sie bspw. in einem 8-Zylinder V-Motor oder Boxermotor angeordnet sein könnten. Die Temperaturen der Brennräume 16 werden durch Temperatursensoren 18 gemessen. Im Betrieb der Brennkraftmaschine wird eine Kurbelwelle 20, die hier lediglich symbolisch dargestellt ist, in Drehung versetzt, wobei eine Kurbelwellendrehzahl mit einem Sensor 22 gemessen wird.
  • Beide Rails 12 sind hydraulisch mit einer Verbindungsleitung 24 verbunden. Im dargestellten bevorzugten Ausführungsbeispiel ist nur eine Verbindungsleitung 24 zwischen den beiden Rails 12 ausgeführt. Um aber bspw. eine Vergrößerung des Querschnittes der Verbindungsleitung 24 zu erreichen, ist auch die Anordnung mehrerer solcher Verbindungsleitungen, über das gesamte Rail 12 verteilt, möglich. Ein Raildruck wird über einen Drucksensor 26 gemessen.
  • Jeder der beiden Rails 12 ist eine Kraftstoff-Hochdruckpumpe (HDP) 28 vorgeschaltet, die Kraftstoff unter hohem Druck (unterschiedlich zwischen Benzin- und Dieselmotor) in das Rail 12 fördert. Die geförderte Kraftstoffmenge ist mengengesteuert und wird deshalb von einem Mengensteuerventil 30, das in der HDP 28 integriert ist, eingestellt. Dieses ist in seiner Ruhestellung in der Weise geöffnet, dass die Auslassseite mit der Einlassseite verbunden ist und Kraftstoff weitgehend drucklos zur Einlassseite zurückgefördert wird (bei Leerlauf bzw. Nullförderung). Über eine elektromagnetische Einrichtung 32 kann diese Verbindung zur Einlassseite geschlossen werden und Kraftstoff strömt dann unter hohem Druck aus der Auslassseite heraus in das Rail 12. Jede dieser elektromagnetischen Einrichtungen 32 werden über zugeordnete Leistungsendstufen 34, die vorzugsweise in einer Steuereinrichtung 36 zur Steuerung der Brennkraftmaschine 10 integriert sind, bedient.
  • Die Steuereinrichtung 36 umfasst darüber hinaus ein Computerprogramm, das die Abläufe innerhalb der Brennkraftmaschine 10 steuert. Dazu werden Messwerte des Temperatursensors 18, des Sensors zur Ermittlung der Kurbelwellendrehzahl (Motordrehzahl) 22, des Drucksensors 26 an der Kraftstoffsammeleitung 12, eines Sensors 38 zur Ermittlung der Fahrzeuggeschwindigkeit und eines Sensors 40 zur Ermittlung einer Gaspedalstellung in der Steuereinrichtung 36 ausgewertet. Die Steuereinrichtung 36 ermittelt daraus unter Zuhilfenahme noch weiterer Parameter (hier nicht aufgeführt) bspw. die einzuspritzende Kraftstoffmasse 42 durch die Kraftstoff-Einspritzvorrichtung 14 und die Gegebenheit zur Ab- oder Zuschaltung einer HDP 28, bzw. die Erfordernis einer Diagnose der HDP 28.
  • Ein möglicher Ablauf des in der Steuereinrichtung 36 ablaufenden Computerprogramms für das bevorzugte Ausführungsbeispiel ist einem Flussdiagramm für den Routineablauf in Figur 2 und für den Diagnoseablauf in Figur 3 dargestellt. Konnektor A in Figur 2 stellt den Startpunkt für die Ermittlung der Möglichkeit des Ab- oder Zuschaltens einer HDP 28 dar, d.h. es sind entweder beide HDPs 28 oder nur eine HDP 28 aktuell in Betrieb (Ausgangsvoraussetzung). In Schritt 100 ermittelt die Steuereinrichtung 36, ob auf Grund der bewerteten Betriebsgrößen eine Routineuntersuchung gestartet werden soll. Ist dies der Fall, wird in Schritt 110 überprüft, ob aus einer vorhergegangenen Diagnose eine fehlerhafte und damit nicht zuschaltbare HDP 28 diagnostiziert wurde ("Error-Flag" gesetzt). Ist dies der Fall, wird keine neue Routineuntersuchung gestartet, da die nicht als fehlerhaft diagnostizierte HDP 28 den gesamten Betrieb bis zu einer Reparatur allein übernehmen muss. Ist kein "Error-Flag" gesetzt kann, der eigentliche Routineablauf beginnen.
  • Dazu wird in Schritt 120 die aktuelle Einspritzmasse 42 für die Kraftstoff-Einspritzvorrichtung(en) 14 ermittelt. In Schritt 130 wird erkannt, ob unter Berücksichtigung der vorhandenen, aktuellen Betriebsgrößen die aktuelle Einspritzmasse 42 unter einem in der Steuereinrichtung 36 festgelegten Grenzwert liegt. Ist dies der Fall und es laufen beide HDPs 28 (Schritt 140) wird eine HDP 28 abgeschaltet (Schritt 150). Die Steuereinrichtung entscheidet nun auf Grund der vorhandenen Betriebsgrößen, ob eine Diagnose der allein in Betrieb befindlichen HDP 28 (Schritt 160) gestartet werden soll (Der Diagnoseablauf - Konnektor B - wird ausführlich in Figur 3 beschrieben). Wird keine Diagnose gestartet, springt die Routineprozedur auf den Beginn des Routineablaufs zu Konnektor A.
  • Wird in der Abfrage 130 erkannt, dass die aktuelle Einspritzmasse 42 über einem in der Steuereinrichtung 36 festgelegten Grenzwert liegt, so wird überprüft, ob beide HDPs 28 bereits in Betrieb sind (Schritt 170) oder eine zuvor abgeschaltete HDP 28 wieder in Betrieb genommen werden muss (Schritt 180).
  • Konnektor B in Figur 3 stellt den Beginn des Diagnoseablaufs dar. Voraussetzung dazu ist, dass nur eine HDP 28 in Betrieb ist, was im Routineablauf sichergestellt wird. Dazu wird zunächst in Schritt 200 der Druck in der Hochdrucksammelleitung 12 (gemessen durch den Drucksensor 26) mit einem in der Steuereinrichtung ermittelten Vergleichswert verglichen. Liegt der gemessene Druck - unter Berücksichtigung von vorgegebenen Toleranzen - unter dem Vergleichswert, so arbeitet die HDP 28 fehlerhaft. Es wird daraufhin in Schritt 210 auf die zweite HDP 28 umgeschaltet. Dies geschieht unter der Voraussetzung, dass in der Vergangenheit zuverlässige Diagnoseprüfungen der HDPs 28 durchgeführt wurden und dass damit mit hoher Sicherheit die zweite HDP 28 als voll funktionsfähig angesehen werden kann. Anschließend wird die fehlerhafte HDP 28 einer Onboard-Diagnose Einrichtung gemeldet, die das Fehlverhalten in einem Fehlerspeicher speichert. Zusätzlich wird eine Warnleuchte an einem Armaturenbrett des Kraftfahrzeugs aktiviert, die den Fahrer auf eine gemäßigte Fahrweise und einen schnellstmöglichen Besuch einer Kfz-Werkstatt hinweist. (Schritt 220). Andere Warnhinweise und Aktivitäten sind durchaus denkbar. Es sollte auf jeden Fall verhindert werden, dass die Brennkraftmaschine 10 durch den geringen Druck in der Hochdrucksammelleitung 12 einen Schaden davontragen kann. Weiterhin wird in Schritt 230 in einem Speicher der Steuereinrichtung 36 das "Error-Flag" gesetzt, das das Computerprogramm darauf hinweist, dass eine HDP 28 defekt ist und damit nur eine HDP 28 betriebsbereit ist. Dieses "Error-Flag" muss selbstverständlich nach der Reparatur der HDP 28 zurückgesetzt werden.
  • Wird in Schritt 200 kein Druckabfall in der Hochdrucksammelleitung 12 erkannt, so wird ermittelt, ob die nicht diagnostizierte HDP 28 zuvor geprüft wurde (Schritt 240). Ist die HDP 28 nicht geprüft worden, so wird auf diese HDP 28 umgeschaltet (Schritt 250) und auch für diese HDP 28 eine Diagnose gestartet (Konnektor B). Im anderen Fall wird der Diagnoseablauf beendet und das Computerprogramm springt wieder zu Konnektor A. Nach Abschluss des Diagnoseablaufs sind somit alle vorhandenen HDPs überprüft.

Claims (11)

  1. Verfahren zum Betreiben einer Brennkraftmaschine mit Direkteinspritzung in einem Kraftfahrzeug, bei dem Kraftstoff mindestens zeitweise gleichzeitig von mindestens zwei Kraftstoff-Hochdruckpumpen in mindestens eine Kraftstoffsammelleitung gefördert wird, dadurch gekennzeichnet, dass im normalen Betrieb der Brennkraftmaschine abhängig von mindestens einer Betriebsgröße der Brennkraftmaschine eine Förderung von Kraftstoff mittels einer Kraftstoff-Hochdruckpumpe ein- und/oder ausgeschaltet wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Betriebsgröße ein Druck in der Kraftstoffsammelleitung, eine Einspritzart, eine einzuspritzende Kraftstoffmasse, eine Motordrehzahl, eine Drehmomentanforderung, eine Motortemperatur, eine Fahrzeuggeschwindigkeit oder eine verstrichene Zeit nach einem Motorstart ist.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Förderung der Kraftstoff Hochdruckpumpe durch entsprechendes Ansteuern eines Mengensteuerventils ein- und/oder ausgeschaltet wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mehrere Kraftstoffsammelleitungen hydraulisch miteinander verbunden werden.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei der Förderung durch lediglich eine Kraftstoff-Hochdruckpumpe eine Diagnose dieser Kraftstoff-Hochdruckpumpe durchgeführt wird.
  6. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass abhängig von dem Diagnoseergebnis Maßnahmen eingeleitet werden.
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Förderung abwechselnd bei einer und bei einer anderen der Kraftstoff-Hochdruckpumpen aus- und eingeschaltet wird.
  8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass abhängig von einer Betriebsgröße der Brennkraftmaschine ein Ausschalten der Förderung der Kraftstoff-Hochdruckpumpe gesperrt wird.
  9. Steuer- und/oder Regeleinrichtung für eine Brennkraftmaschine, dadurch gekennzeichnet, dass sie zur Anwendung des Verfahrens nach einem der Ansprüche 1 bis 8 programmiert ist.
  10. Computerprogramm, dadurch gekennzeichnet, dass es zur Anwendung des Verfahrens nach einem der Ansprüche 1 bis 8 programmiert ist.
  11. Brennkraftmaschine mit Direkteinspritzung in einem Kraftfahrzeug mit mindestens zwei Kraftstoff-Hochdruckpumpen und mindestens einer Kraftstoffsammelleitung, dadurch gekennzeichnet, dass sie eine Steuer- und/oder Regeleinrichtung umfasst, welche zur Anwendung in einem Verfahren nach einem der Ansprüche 1 bis 8 programmiert ist.
EP08105824.0A 2007-12-17 2008-11-19 Verfahren zum Betreiben einer Brennkraftmaschine Withdrawn EP2072792A3 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200710060634 DE102007060634A1 (de) 2007-12-17 2007-12-17 Verfahren zum Betreiben einer Brennkraftmaschine

Publications (2)

Publication Number Publication Date
EP2072792A2 true EP2072792A2 (de) 2009-06-24
EP2072792A3 EP2072792A3 (de) 2013-12-11

Family

ID=40511760

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08105824.0A Withdrawn EP2072792A3 (de) 2007-12-17 2008-11-19 Verfahren zum Betreiben einer Brennkraftmaschine

Country Status (3)

Country Link
EP (1) EP2072792A3 (de)
CN (1) CN101463786A (de)
DE (1) DE102007060634A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2388460A1 (de) 2010-05-17 2011-11-23 Caterpillar Motoren GmbH & Co. KG Common-Rail-System für einen Verbrennungsmotor mit mehreren Zylinderbänken und mit unabhängig gesteuerter Kraftstoffzufuhr zu jeder Bank
EP2999879A4 (de) * 2013-05-23 2017-02-15 Scania CV AB Verfahren und vorrichtung zum betrieb einer hochdruck-kraftstoffpumpe

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009047357A1 (de) * 2009-12-01 2011-06-09 Robert Bosch Gmbh Verfahren zum Betreiben eines Kraftstoffeinspritzsystems einer Brennkraftmaschine mit Fördermengenanpassung, sowie Computerprogramm und Steuer- und/oder Regeleinrichtung
CN103470415A (zh) * 2013-09-15 2013-12-25 中国北方发动机研究所(天津) 一种v型8缸柴油机高压共轨燃油喷射系统布置型式
DE102016216978A1 (de) * 2016-09-07 2018-03-08 Robert Bosch Gmbh Verfahren zur Ansteuerung einer Hochdruckpumpe für die Kraftstoffeinspritzung in einen Verbrennungsmotor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1282771B1 (de) 2000-05-11 2007-04-04 Robert Bosch Gmbh Verfahren zum betreiben eines kraftstoffzumesssystems einer direkteinspritzenden brennkraftmaschine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3033214B2 (ja) * 1991-02-27 2000-04-17 株式会社デンソー 複数の燃料圧送手段による蓄圧式燃料供給方法及び装置と、複数の流体圧送手段を有する機器における異常判断装置
DE10341788B4 (de) * 2003-09-10 2005-08-11 Siemens Ag Verfahren und Vorrichtung zum Überwachen einer Kraftstoffzuführeinrichtung einer Brennkraftmaschine
JP4438553B2 (ja) * 2004-07-30 2010-03-24 トヨタ自動車株式会社 内燃機関の高圧燃料系統の制御装置
US20070283935A1 (en) * 2006-05-16 2007-12-13 Toyota Jidosha Kabushiki Kaisha Fuel pump control apparatus for internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1282771B1 (de) 2000-05-11 2007-04-04 Robert Bosch Gmbh Verfahren zum betreiben eines kraftstoffzumesssystems einer direkteinspritzenden brennkraftmaschine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2388460A1 (de) 2010-05-17 2011-11-23 Caterpillar Motoren GmbH & Co. KG Common-Rail-System für einen Verbrennungsmotor mit mehreren Zylinderbänken und mit unabhängig gesteuerter Kraftstoffzufuhr zu jeder Bank
WO2011144312A1 (en) 2010-05-17 2011-11-24 Caterpillar Motoren Gmbh & Co. Kg Common rail fuel system for a multi-cylinder bank combustion engine with independently controlled fuel supply to each bank
EP2999879A4 (de) * 2013-05-23 2017-02-15 Scania CV AB Verfahren und vorrichtung zum betrieb einer hochdruck-kraftstoffpumpe
US9863386B2 (en) 2013-05-23 2018-01-09 Scania Cv Ab Method and device for operation of a high pressure fuel pump

Also Published As

Publication number Publication date
EP2072792A3 (de) 2013-12-11
DE102007060634A1 (de) 2009-06-18
CN101463786A (zh) 2009-06-24

Similar Documents

Publication Publication Date Title
DE102009050467B4 (de) Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE102010013602B4 (de) Verfahren zur Erkennung eines Fehlverhaltens eines elektronisch geregelten Kraftstoffeinspritzsystems eines Verbrennungsmotors
DE102008024955B3 (de) Verfahren zur Erkennung einer Fehlfunktion eines Raildrucksensors bei einem Common Rail-Einspritzsystem
WO2005121535A1 (de) Verfahren und vorrichtung zum überwachen einer kraftstoffzuführeinrichtung einer brennkraftmaschine
DE102009002064A1 (de) Diagnosevorrichtung für ein Fahrzeug
DE10147189A1 (de) Verfahren zum Betreiben eines Kraftstoffversorgungssystems für einen Verbrennungsmotor eines Kraftfahrzeugs
DE102007053406B3 (de) Verfahren und Vorrichtung zur Durchführung sowohl einer Adaption wie einer Diagnose bei emissionsrelevanten Steuereinrichtungen in einem Fahrzeug
EP1735673B1 (de) Verfahren zum überwachen einer kraftstoffzuführeinrichtung einer brennkraftmaschine
EP2072792A2 (de) Verfahren zum Betreiben einer Brennkraftmaschine
EP1149239A1 (de) Kraftstoffversorgungssystem für eine brennkraftmaschine insbesondere eines kraftfahrzeugs
DE102007000064A1 (de) Vorrichtung und Verfahren zur Brennstoffeinspritzung
DE102013225723A1 (de) Verfahren zum Steuern eines Kraftstoffzufuhrsystems einer Kraftmaschine eines Kraftfahrzeugs
WO2001075300A1 (de) Verfahren zum starten einer brennkraftmaschine und starteinrichtung für eine brennkraftmaschine
EP1278950B1 (de) Verfahren zum betreiben eines kraftstoffversorgungssystems für eine brennkraftmaschine insbesondere eines kraftfahrzeugs
EP1698777B1 (de) Verfahren zum Betreiben eines Injektors für eine Brennkraftmaschine
DE102020214226A1 (de) Verfahren und Vorrichtung zur Diagnose einer Injektorleckage
DE19530261A1 (de) Niederdruck-Kraftstoffördersystem mit Hochdruckspeicherung
DE102008050696B4 (de) Verfahren zum Steuern einer Brennkraftmaschine und Brennkraftmaschine
DE10038560B4 (de) Kraftstoffversorgungssystem für eine Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE102015220098B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine mit einem Hochdruck-Kraftstoffeinspritzsystem
DE102006018736A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine und Brennkraftmaschine
DE102018104861B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine und Kraftstoffeinspritzsystem
DE102010063380A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE102010045684B4 (de) Verfahren zur Lambdaregelung einer Brennkraftmaschine
DE102006010903B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine, Computerprogramm-Produkt, Computerprogramm und Steuer- und/oder Regeleinrichtung für eine Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F02D 41/22 20060101ALI20131104BHEP

Ipc: F02M 59/36 20060101ALI20131104BHEP

Ipc: F02M 63/02 20060101ALI20131104BHEP

Ipc: F02D 41/38 20060101AFI20131104BHEP

17P Request for examination filed

Effective date: 20140611

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AKX Designation fees paid

Designated state(s): DE FR IT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140612