EP2061125B1 - Procédé et appareil pour le mouvement d'auto-étalonnage de compteur pour l'ionisation d'alimentations électriques - Google Patents

Procédé et appareil pour le mouvement d'auto-étalonnage de compteur pour l'ionisation d'alimentations électriques Download PDF

Info

Publication number
EP2061125B1
EP2061125B1 EP08168946.5A EP08168946A EP2061125B1 EP 2061125 B1 EP2061125 B1 EP 2061125B1 EP 08168946 A EP08168946 A EP 08168946A EP 2061125 B1 EP2061125 B1 EP 2061125B1
Authority
EP
European Patent Office
Prior art keywords
ionization system
ionizer
ionization
calibration
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08168946.5A
Other languages
German (de)
English (en)
Other versions
EP2061125A3 (fr
EP2061125A2 (fr
Inventor
John A. Gorczyca
Manuel C. Blanco
Steven J. Mandrachia
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Illinois Tool Works Inc
Original Assignee
Illinois Tool Works Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40340817&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2061125(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Illinois Tool Works Inc filed Critical Illinois Tool Works Inc
Publication of EP2061125A2 publication Critical patent/EP2061125A2/fr
Publication of EP2061125A3 publication Critical patent/EP2061125A3/fr
Application granted granted Critical
Publication of EP2061125B1 publication Critical patent/EP2061125B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T23/00Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere

Definitions

  • Air ionization is an effective method of creating or eliminating static charges on non-conductive materials and isolated conductors. Air ionizers generate large quantities of positive and negative ions in the surrounding atmosphere that serve as mobile carriers of charge in the air. As ions flow through the air, they are attracted to oppositely charged particles and surfaces. Creation or neutralization of electrostatically charged surfaces can be rapidly achieved through this process.
  • Air ionization may be performed using electrical ionizers, which generate ions in a process known as corona discharge. Electrical ionizers generate air ions by intensifying an electric field around a sharp point until the field overcomes the dielectric strength of the surrounding air. Negative corona discharge occurs when electrons are flowing from the electrode into the surrounding air. Positive corona discharge occurs as a result of the flow of electrons from the air molecules into the electrode.
  • Ionizer devices such as an electrostatic charging system, an ionization system, or an alternating current (AC) or direct current (DC) charge neutralizing system, take many forms, such as ionizing bars, air ionization blowers, air ionization nozzles, and the like, and are utilized to create or neutralize static electrical charge by emitting positive and negative ions into the workspace or onto the surface of an area.
  • Ionizing bars are typically used in continuous web operations such as paper printing, polymeric sheet material, or plastic bag fabrication.
  • Air ionization blower and nozzles are typically used in workspaces for assembling electronics equipment such as hard disk drives, integrated circuits, and the like, that are sensitive to electrostatic discharge (ESD).
  • Electrostatic charging systems are typically used for pinning together paper products such as magazines or loose leaf paper.
  • Ionizers typically include at least one ionization emitter that is powered by a high voltage power supply.
  • the charge produced by the ionization emitter is proportional to the current flowing through the high voltage supply into the ionization emitter.
  • an ionizer may accumulate debris.
  • the ionizer's charge will decrease and, therefore, the current flowing from the voltage supply into the ionizer will also decrease.
  • the current flowing through the voltage supply into the ionizer can be measured by using the return leg of the high voltage transformer or supply, which allows the sum current from the supply to be measured.
  • JP-A-2003017293 is known a cleaning time display device of a static eliminator in which the cleaning time, that is the period till cleaning is required or till cleaning alarm is made, can be confirmed by visual observation at the time of power input.
  • a CPU after making initial setting of the positive and negative high voltage generating circuit, controls the positive and negative high voltage generating circuit in accordance with the balance value obtained by processing, and, by comparing the balance value at the power input with the initial setting value, processes the cleaning time, and makes a display on the cleaning timing indicator in accordance with the processed cleaning time.
  • an embodiment of the present invention comprises a method of determining a relative condition of an ionizer in an ionization system.
  • the method includes placing the ionization system in a calibration mode, stepping the ionization system through one or more of a range of adjustments, collecting calibration data at each step and storing the calibration data in a memory, placing the ionization system in an operating mode, collecting real-time data regarding an output of the ionization system, comparing the real-time data to the calibration data and determining difference values therebetween, and using the difference values to determine the relative condition of the ionizer.
  • a further embodiment of the present invention comprises an apparatus for identifying the relative condition of an ionizer in an ionization system.
  • the apparatus includes a calibrating module and a a range module that steps the ionization system through one or more of a range of adjustments.
  • a first collection module collects calibration data at each step and stores the calibration data in a memory.
  • An operating module places the ionization system in an operating mode.
  • a second collection module collects real-time data regarding an output of the ionization system.
  • a comparison module compares the real-time data to the calibration data and determines difference values therebetween based on an operating point of the system, and uses the difference values to determine the relative condition of the ionizer.
  • Fig. 1 is a schematic block diagram of an ionization device 10 according to one embodiment of the present invention.
  • ionization devices include an electrostatic charging system, an ionization system, and an alternating current (AC) or direct current (DC) charge neutralizing system.
  • the ionization device 10 includes an ionizer power supply 12, which includes at least one high voltage (HV) power supply 13.
  • the HV power supply 13 may supply an AC or a DC voltage of about 3 kilo-Volts (kV) to about 60kV.
  • the ionizer power supply 12 further includes a controller or controller module 14 (for simplicity, hereinafter referred to as "controller 14").
  • the controller 14 is a microprocessor.
  • the controller 14 is sensing circuitry.
  • the ionization device 10 further includes at least one ionization emitter 16, illustrated as the ionizer bar in Fig. 1 .
  • the emitter 16 is connected to the ionizer power supply 12 by a connector system 18.
  • the ionizer power supply 12 supplies an input voltage 20 to power the ionization emitter 16.
  • the input voltage 20 may be described by operating parameters such as voltage level, current level, frequency, maximum voltage, minimum voltage, maximum current, minimum current, or pulse time.
  • the connector system 18 may provide one or more properties of the emitter 16 to the controller 14 in the ionizer power supply 12, as described in copending U.S. Application No. 11/763,270 , entitled "High Voltage Power Supply Connector System," .
  • the controller 14 has detection logic 22 that controls one or more operating parameters of the HV power supply 13 to adjust to the correct settings for the connected emitter 16.
  • the detection logic 22 may be included in the connector system 18 so that the connector system 18 directly modifies analog control voltages in the HV power supply 13 based on the properties provided in the connector system 18. If no emitter or ionizer bar 16 is detected, the HV power supply 13 preferably automatically shuts down the output voltage.
  • DC, Pulse, or AC ionization systems having HV power supplies and an ionizer typically have meter movements or bar graph displays to reflect the relative performance of the system. These types of indicators are important because as the ionizer runs, debris and dirt can collect and impair the ionizer's ability to neutralize charge. This debris may be either insulative or conductive, which respectively restricts or increases current flow from the ionizer bar. Systems that are currently available are manually adjusted using potentiometers, which can be confusing and or frustrating to the end user.
  • developing an ionization system 10 with a controller 14 allows meter movement to be calibrated at the touch of a button.
  • the controller 14 is preferably designed with adequate dynamic range for all applications and ranges. Fundamentally, the controller 14 preferably includes enough range to accurately collect data on bars of different lengths, where the current flow will be inherently different.
  • the controller 14 gathers base line information on the output of the ionization system 10.
  • the ionizer power supply 12 is cycled through a range of internally stored operating points or steps. Values are recorded as a data point at each operating point or step, and are stored internally. Based on the values recorded, a scaling equation is developed and applied to the meter movement.
  • the meter movement is controlled by the controller 14 using either wireless, digital ports, or an analog output
  • the range of adjustments may be one or a combination of the following operating modes: speed, hybrid, and distance.
  • baseline currents are measured and stored at multiple operating points.
  • the meter movement is adjusted to read full scale at the baseline level.
  • Relative increase and decrease from the baseline currents are shown on the meter as a decrease in level.
  • Relative increases and decreases from the baseline currents are shown as a decrease regardless of whether there is an actual increase due to conductance or a decrease due to insulative debris on the ionizer. They are shown as such, because both types of debris result in the negative effect of impairing the ionizer's ability to neutralize charge. In a typical application, this assists the user by showing the decrease in the ionizer bar's efficiency due to either conductive or insulative debris or dirt.
  • Other indicating displays are within the scope of the invention, such as a display that shows a relative level of debris or dirt from a baseline level, or other indicators of efficiency.
  • the ionizer power supply 12 receives an input 24 from one or more sources, including user input, sensor data, microprocessor data, or other remote data.
  • the system response to the data from the user, sensor, or microprocessor collects data about the target area of neutralization 26.
  • an enable signal 28 sets the timing of the high voltage pulses.
  • a Vprogram +/- signal 30 sets the output level.
  • a sensor 32 collects data about the target area of neutralization or the moving web.
  • Fig. 2 is a flowchart illustrating the collection of calibration data.
  • An input is received from a user, microprocessor, or other device coupled to or integral with the ionization system 10.
  • a calibration button is pushed 224 to enter a calibration mode.
  • a calibration module or sequence 240 is started.
  • a plurality of baseline output currents of the ionizer are measured at one or more points of the high voltage power supply to the ionizer. These output measurements are compiled as the baseline calibration data at each of the points measured.
  • the points measured are set points which are preprogrammed or can be programmed by a user, microprocessor, or other connector system coupled or integral to the ionization system.
  • the set points in memory cover all setting ranges, preferably by uniformly dividing the range and determining the set points.
  • 250 set points were stored in a memory for compiling the baseline currents data.
  • the baseline currents are measured and stored at each point 248.
  • an input is received that initiates calibration of the baseline data of the ionization bar selected.
  • the calibration sequence is started 240, and the output current of the ionizer at a plurality of points is measured and stored at each point.
  • the points, or set points are retrievable from memory or from an input source 258.
  • the set points cover all setting ranges. To cover all setting ranges, the range is uniformly divided and the set points are determined. In a preferred embodiment, a range of 100-300 set points are measured and stored, as set point array 260. In a more preferred embodiment, 250 set points are measured and stored.
  • the power supply is set to each of the points 262 and data is sampled at each of the points 264.
  • the data is collected to compile baseline values for the ionizer bar selected.
  • the calibration data is stored 248. In other preferred embodiments, the data is stored throughout the collection process. This process calibrates the power supply to the ionizer selected. In a preferred embodiment, during calibration the process of responding to user, sensor, or microprocessor inputs is suspended. In addition, during this calibration the output values of the current are reset to the baseline values for the ionizer bar selected 245. The power supply then returns to its normal operation 249.
  • Fig. 3 is a flowchart associated with a second collection module, which is a collection of real time sampling, and is also associated with a comparison module, or comparison process, with the set point adjustments of an ionization system in accordance with preferred embodiments of the present invention.
  • a set point adjustment in the loop such that stored calibration data is recalled during each loop.
  • the data point that is recalled is the point that is acquired with the power supply closest to the applied set point, or operating point.
  • Fig. 4 is a flowchart associated with the collection of real time sampling and comparison process with fixed set points such that there is only one stored calibration value 448 that is used, i. e., the one closest to the fixed set point, or operating point 366.
  • the power supply constantly samples the analog to digital readings 364.
  • the sampling may be constant or intermittent.
  • the calibration data is retrieved 368 for that set point from the baseline values stored for that set point.
  • An absolute percentage difference is calculated 370 from the stored value and the real time reading at the set point.
  • the retrieved I cal is the base line calibration measurement at that set point.
  • the retrieved I cal is assigned a value of 100%. An error from the 100% is calculated.
  • the meter or display of the ionizer power supply is updated 374.
  • the user interface connected to the ionizer power supply is also updated to display the percentage difference E%.
  • the percentage difference E% is compared against threshold limits for the ionizer bar selected 376.
  • a clean bar indicator is illuminated when the threshold limit is exceeded 378.
  • the threshold for the limit wherein the ionizer bar should be cleaned can be configured by the user, a sensor, a microprocessor, or set by software coupled to or located within the ionizer power supply.
  • the current is monitored on the display and the clean bar indicator is illuminated when the current has deviated by an E% of 60% from the calibration value of I cal .
  • Fig. 5 is an illustration of the meter movement of an ionization system.
  • Fig. 5 illustrates one preferred user interface 500 that displays meter movement detail and the clean bar indicator of the present invention.
  • an internal percentage scale 550 is displayed on the far right and numbers are assigned to the internal percentage scale which indicate on a simple numerical scale 552 the priority from low to high of the deviations from the baseline calibrations of the ionizer to the real time outputs of the ionizer.
  • the series of indicator lights 554 illuminate from lowest to highest.
  • the clean bar light 556 is illuminated.
  • the system is reset. In some preferred embodiments, the system can be reset without cleaning of the ionizer bar.
  • Fig. 6 is a table 600 of the baseline values and adjustment ranges for an ionization system.
  • the power supply configures the ionizer bar type that is attached.
  • the power supply automatically configures the bar type attached using a connector system.
  • the ionizer bar types have different pin spacings optimized for different operating distances.
  • the power supply runs the bars at different frequencies and output voltages as indicated in the table 600 of Fig. 6 .
  • the ionizer bar should be installed in the desired location. During the calibration, the analog to digital readings are gathered. These readings reflect the performance of the bar in the new condition, or base line condition, and account for other factors of the installation.
  • one such factor would be proximity of the bar to grounded metal surfaces.
  • Other factors that are considered and compensated for include the ionizer bar length. Shorter bars have fewer emitter pins and operate at lower currents, while longer bars have more pins and operate at higher currents. During the automatic calibration cycle, this factor is accounted for and, if necessary, corrected in the baseline data. Since the ionizer power supply measures the performance of the ionizer bar when it is installed, the ionizer power supply can use the calibration to scale the meter movement of Fig. 5 , including user interface or user displays, automatically. There is no need to adjust the potentiometers or otherwise "tweak" the power supply.

Landscapes

  • Elimination Of Static Electricity (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Claims (14)

  1. Procédé de détermination d'un état relatif dans un ioniseur (16) dans un système d'ionisation (10), le procédé comprenant :
    a) la mise du système d'ionisation (10) en mode de calibrage ;
    b) le cyclage du système d'ionisation (10) par un ou plusieurs réglages d'une plage de réglages ;
    c) la collecte de données de calibrage à chaque étape et la mémorisation des données de calibrage dans une mémoire ;
    d) la mise du système d'ionisation en mode fonctionnel ;
    e) la collecte de données en temps réel concernant une sortie du système d'ionisation (10) ;
    f) la comparaison des données en temps réel aux données de calibrage et la détermination de valeurs de différence entre elles ; et
    g) l'utilisation des valeurs de différence pour déterminer l'état relatif de l'ioniseur (16).
  2. Procédé selon la revendication 1, dans lequel la sortie est un courant de sortie du système d'ionisation (10).
  3. Procédé selon la revendication 1, dans lequel un réglage de la plage de réglages est une tension de sortie du système d'ionisation (10).
  4. Procédé selon la revendication 1, dans lequel un réglage de la plage de réglages est un facteur de service du système d'ionisation (10).
  5. Procédé selon la revendication 1, dans lequel un réglage de la plage de réglages est une fréquence du système d'ionisation (10).
  6. Procédé selon la revendication 1, dans lequel à l'étape (f) la comparaison des données en temps réel aux données de calibrage se produit en utilisant une valeur de calibrage des données de calibrage collectées qui est la plus proche d'un point fonctionnel du système d'ionisation (10).
  7. Procédé selon la revendication 1, dans lequel à l'étape (f) la comparaison des données en temps réel aux données de calibrage se produit en utilisant une valeur de calibrage mémorisée qui est une consigne fixe.
  8. Appareil d'identification de l'état relatif d'ioniseur (16) dans un système d'ionisation (10), comprenant :
    a) un module de calibrage ;
    b) un module de plage qui cycle le système d'ionisation (10) par un ou plusieurs réglages d'une plage de réglages ;
    c) un premier module de collecte qui collecte des données de calibrage à chaque étape et mémorise les données de calibrage dans une mémoire ;
    d) un module fonctionnel qui met le système d'ionisation (10) en mode fonctionnel ;
    e) un seconde module de collecte qui collecte les données en temps réel concernant une sortie du système d'ionisation (10) ; et
    f) un module de comparaison qui compare les données en temps réel aux données de calibrage et détermine les valeurs de différence entre elles en fonction d'un point fonctionnel du système, et utilise les valeurs de différence pour déterminer l'état relatif de l'ioniseur (16).
  9. Procédé selon la revendication 8, dans lequel la sortie est un courant de sortie du système d'ionisation (10).
  10. Appareil selon la revendication 8, dans lequel un réglage de la plage de réglages est une tension de sortie du système d'ionisation (10).
  11. Appareil selon la revendication 8, dans lequel un réglage de la plage de réglages est un facteur de service du système d'ionisation (10).
  12. Appareil selon la revendication 8, dans lequel un réglage de la plage de réglages est une fréquence du système d'ionisation (10).
  13. Appareil selon la revendication 8, dans lequel les données de calibrage sont reçues depuis une interface utilisateur.
  14. Appareil selon la revendication 8, dans lequel le module de comparaison rappelle en vue de la comparaison une valeur de calibrage mémorisée qui est une consigne fixe.
EP08168946.5A 2007-11-19 2008-11-12 Procédé et appareil pour le mouvement d'auto-étalonnage de compteur pour l'ionisation d'alimentations électriques Active EP2061125B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US379707P 2007-11-19 2007-11-19
US12/266,102 US8039789B2 (en) 2007-11-19 2008-11-06 Method and apparatus for self calibrating meter movement for ionization power supplies

Publications (3)

Publication Number Publication Date
EP2061125A2 EP2061125A2 (fr) 2009-05-20
EP2061125A3 EP2061125A3 (fr) 2012-11-07
EP2061125B1 true EP2061125B1 (fr) 2014-03-05

Family

ID=40340817

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08168946.5A Active EP2061125B1 (fr) 2007-11-19 2008-11-12 Procédé et appareil pour le mouvement d'auto-étalonnage de compteur pour l'ionisation d'alimentations électriques

Country Status (4)

Country Link
US (1) US8039789B2 (fr)
EP (1) EP2061125B1 (fr)
JP (1) JP5301957B2 (fr)
KR (1) KR101511726B1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011007136A1 (de) 2011-04-11 2012-10-11 Hildebrand Technology AG Antistatikvorrichtung und zugehöriges Betriebsverfahren
US8681470B2 (en) 2012-08-22 2014-03-25 Illinois Tool Works Inc. Active ionization control with interleaved sampling and neutralization
JP5956317B2 (ja) * 2012-11-28 2016-07-27 シャープ株式会社 荷電粒子発生装置
US20150258587A1 (en) * 2014-03-15 2015-09-17 Cleveland W. Alleyne System and method for deep cleaning water ionizers
US9356434B2 (en) 2014-08-15 2016-05-31 Illinois Tool Works Inc. Active ionization control with closed loop feedback and interleaved sampling
WO2019148095A1 (fr) * 2018-01-27 2019-08-01 Static Clean International, Inc. Système de neutralisation statique et alimentation électrique haute tension destinée à être utilisée conjointement avec celui-ci

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4809127A (en) 1987-08-11 1989-02-28 Ion Systems, Inc. Self-regulating air ionizing apparatus
JPH03266398A (ja) 1990-03-14 1991-11-27 Kasuga Denki Kk 除電器のイオンバランス制御装置
US5250906A (en) 1991-10-17 1993-10-05 Granville-Phillips Company Ionization gauge and method of using and calibrating same
US5930105A (en) 1997-11-10 1999-07-27 Ion Systems, Inc. Method and apparatus for air ionization
EP0987929A2 (fr) 1998-09-18 2000-03-22 Illinois Tool Works Inc. Système d'ionisation
JP2003017293A (ja) 2001-07-02 2003-01-17 Kasuga Electric Works Ltd 除電器のクリーニング時期表示装置
DE10350858A1 (de) 2002-11-01 2004-05-19 Visteon Global Technologies, Inc., Dearborn Zünddiagnose durch Verwenden eines Ionisierungssignals aus einem Zylinder eines Verbrennungsmotors
US20040145852A1 (en) 2003-01-29 2004-07-29 Credence Technologies Inc. Method and device for controlling ionization
US20050045815A1 (en) 2003-08-26 2005-03-03 Bui Huy A. Methods and apparatus for aligning ion optics in a mass spectrometer
US7180722B2 (en) 2004-06-24 2007-02-20 Illinois Tool Works, Inc. Alternating current monitor for an ionizer power supply

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5703360A (en) * 1996-08-30 1997-12-30 Hewlett-Packard Company Automated calibrant system for use in a liquid separation/mass spectrometry apparatus
US6130815A (en) * 1997-11-10 2000-10-10 Ion Systems, Inc. Apparatus and method for monitoring of air ionization
FR2832546B1 (fr) * 2001-11-20 2008-04-04 Centre Nat Rech Scient Dispositif de reglage d'un appareil de generation d'un faisceau de particules chargees
JP2004127858A (ja) * 2002-07-31 2004-04-22 Sunx Ltd 除電装置
US7828586B2 (en) 2007-06-14 2010-11-09 Illinois Tool Works Inc. High voltage power supply connector system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4809127A (en) 1987-08-11 1989-02-28 Ion Systems, Inc. Self-regulating air ionizing apparatus
JPH03266398A (ja) 1990-03-14 1991-11-27 Kasuga Denki Kk 除電器のイオンバランス制御装置
US5250906A (en) 1991-10-17 1993-10-05 Granville-Phillips Company Ionization gauge and method of using and calibrating same
US5930105A (en) 1997-11-10 1999-07-27 Ion Systems, Inc. Method and apparatus for air ionization
EP0987929A2 (fr) 1998-09-18 2000-03-22 Illinois Tool Works Inc. Système d'ionisation
JP2003017293A (ja) 2001-07-02 2003-01-17 Kasuga Electric Works Ltd 除電器のクリーニング時期表示装置
DE10350858A1 (de) 2002-11-01 2004-05-19 Visteon Global Technologies, Inc., Dearborn Zünddiagnose durch Verwenden eines Ionisierungssignals aus einem Zylinder eines Verbrennungsmotors
US20040145852A1 (en) 2003-01-29 2004-07-29 Credence Technologies Inc. Method and device for controlling ionization
US20060109603A1 (en) 2003-01-29 2006-05-25 Credence Technologies, Inc. Method and device for controlling ionization
US20050045815A1 (en) 2003-08-26 2005-03-03 Bui Huy A. Methods and apparatus for aligning ion optics in a mass spectrometer
US7180722B2 (en) 2004-06-24 2007-02-20 Illinois Tool Works, Inc. Alternating current monitor for an ionizer power supply

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SIMCO: "TrueAC Monitoring Power Supply System", SIMCO PRODUCT SHEET, December 2004 (2004-12-01), pages 1 - 2, XP055278163

Also Published As

Publication number Publication date
JP5301957B2 (ja) 2013-09-25
US20090127452A1 (en) 2009-05-21
EP2061125A3 (fr) 2012-11-07
KR101511726B1 (ko) 2015-04-13
EP2061125A2 (fr) 2009-05-20
KR20090051702A (ko) 2009-05-22
US8039789B2 (en) 2011-10-18
JP2009135102A (ja) 2009-06-18

Similar Documents

Publication Publication Date Title
EP2061125B1 (fr) Procédé et appareil pour le mouvement d'auto-étalonnage de compteur pour l'ionisation d'alimentations électriques
EP1147690B1 (fr) Appareil et procede pour le controle de l'ionisation de l'air
EP2888791B1 (fr) Commande d'ionisation active à échantillonnage et neutralisation imbriqués
JP2008196952A (ja) コロナ放電型イオナイザの検査方法及び検査装置
US7729101B2 (en) Method and apparatus for monitoring and controlling ionizing blowers
US7795885B2 (en) Optically isolated current monitoring for ionization systems
EP1142073B1 (fr) Appareil de controle d'un ioniseur a auto-equilibrage
JP2003178899A (ja) イオン化装置用電源の電流制御回路
JP3747346B2 (ja) 帯電物の表面電位検出装置および該検出装置を用いた 除電装置
US6674630B1 (en) Simultaneous neutralization and monitoring of charge on moving material
EP3180825B1 (fr) Commande d'ionisation active à asservissement en boucle fermée et échantillonnage entrelacé
CN109983642B (zh) 平衡微脉冲电离风机的控制系统
US20030066762A1 (en) Amperometric probe
CN117665421A (zh) 离子平衡传感器和静电消除系统
JP2008157781A (ja) イオナイザの除電性能評価方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081112

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: H01T 23/00 20060101AFI20120928BHEP

17Q First examination report despatched

Effective date: 20121016

AKX Designation fees paid

Designated state(s): DE FR GB IT NL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130926

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ILLINOIS TOOL WORKS INC.

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008030568

Country of ref document: DE

Effective date: 20140417

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602008030568

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: IONTIS ELEKTROSTATIK GMBH

Effective date: 20141205

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602008030568

Country of ref document: DE

Effective date: 20141205

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 602008030568

Country of ref document: DE

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PLAG Information modified related to despatch of communication that opposition is rejected

Free format text: ORIGINAL CODE: EPIDOSCREJ1

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20161125

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230606

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231126

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231127

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231122

Year of fee payment: 16

Ref country code: FR

Payment date: 20231127

Year of fee payment: 16

Ref country code: DE

Payment date: 20231129

Year of fee payment: 16