EP2054345A1 - Zirconium oxide and method for the production thereof - Google Patents

Zirconium oxide and method for the production thereof

Info

Publication number
EP2054345A1
EP2054345A1 EP07787848A EP07787848A EP2054345A1 EP 2054345 A1 EP2054345 A1 EP 2054345A1 EP 07787848 A EP07787848 A EP 07787848A EP 07787848 A EP07787848 A EP 07787848A EP 2054345 A1 EP2054345 A1 EP 2054345A1
Authority
EP
European Patent Office
Prior art keywords
zirconium oxide
suspension
kwh
mol
powdery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07787848A
Other languages
German (de)
French (fr)
Inventor
Jörg LAUBE
Alfred GÜGEL
Ralph Otterstedt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HC Starck GmbH
Original Assignee
HC Starck GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HC Starck GmbH filed Critical HC Starck GmbH
Publication of EP2054345A1 publication Critical patent/EP2054345A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/218Yttrium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/549Particle size related information the particle size being expressed by crystallite size or primary particle size
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • H01M2300/0077Ion conductive at high temperature based on zirconium oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a powdery zirconium oxide containing metal oxides from the group of scandium, yttrium, rare earths and / or mixtures thereof, processes for its preparation, and its use in the fuel cells, in particular for the production of electrolyte substrates for ceramic fuel cells.
  • ZrO 2 Pure zirconia
  • the cubic high-temperature phase changes below 230O 0 C into metastable tetragonal zirconium oxide, and between 1200 0 C and 95O 0 C, the transition from tetragonal to monoclinic ZrO 2 is observed. Transformations between the monoclinic and the high-temperature phases during heating and cooling are associated with abrupt volume changes.
  • the sintering of zirconium dioxide takes place in a temperature range which takes place monoclinically and tetragonally significantly above the temperature of the reversible phase transformation.
  • the stabilized zirconium oxides are then present from room temperature to melting point in the same stabilized modification, ie the Voiumen Surgion on cooling for the production of ceramic components are avoided, Ullmann's Encyclopedia of Industrial Chemistry, VoL A28, 1996, p 556ff, Rompp Lexikon Chemie , 10th Edition 1999, p 3073.
  • stabilized or partially stabilized zirconium oxide powders are used for the production of ceramic components, in which case the stabilizer oxides must be able to form a solid solution with the zirconium oxide.
  • the amount of stabilizer required depends on the desired properties and the nature of the oxide, and inadequate homogeneities of the stabilizer in the ZrO 2 gate lead to the presence of undesirable monoclinic, ie unstabilized, phase-to-phase phosphors.
  • zirconium oxide materials having improved properties can be produced which are used, for example, in construction and structural elements in modern mechanical engineering, in human medicine, in cutting tools and in thermal barrier coatings .
  • the yttria-doped zirconium oxides have been increasingly used in the production of ceramic fuel cells.
  • An important property of the substrates for ceramic fuel cells produced from zirconium oxides is their electrical conductivity, which decisively affects the performance of the fuel cell.
  • stabilized zirconium oxides are usually prepared via two main processes in different variants.
  • solids which contain both metals are separated from aqueous or organic solutions or suspensions of zirconium and stabilizer precursors.
  • the separation of the solids takes place via co-precipitation and filtration of the hydroxides.
  • other separation techniques such as SoI-GeI, evaporation, spray pyrolysis and hydrothermal method are used.
  • US 3957500 describes a co-precipitation process for producing a homogeneous mixture of zirconium and yttrium hydroxide. After calcination at 900 to 1500 ° C within 1 to 10 hours, the stabilized zirconia forms.
  • DE 10138573 discloses a nanoscale pyrogenically produced tetragonal yttrium stabilized zirconia (YSZ) powder and the process for its preparation.
  • aqueous and / or alcoholic solutions of Zr and Y precursors such as nitrates and propionates by means of a nozzle in a reaction tube in which an oxyhydrogen flame of hydrogen and air burns, atomized and then burned at temperatures of 800 to 1000X.
  • No. 5,750,459 describes the generation of gels or spherical or microsphere particles by dropping a Y / Zr nitrate solution into an ammonium hydroxide solution.
  • the other method for producing the stabilized ZrO 2 powder is the mixed-oxide or solid-state process. In this process, mixtures of zirconia and stabilizers are homogenized and then sintered to stabilized ZrO 2 powder.
  • the solid-state process is simple and inexpensive to perform. In contrast to wet-chemical processes, apart from recyclable water or steam, there are no by-products or contaminated wastewater and exhaust gases.
  • the disadvantages of the process are the high sintering temperatures of> 1300 ° C. and the low homogeneity of the powders which, after sintering, contain from 25 to 30% by volume of monoclinic phase. To minimize the monoclinic phase contributions, the products are repeatedly ground and annealed in multiple stages, resulting in a significant increase in product cost. Stabilized ZrO 2 powders are therefore hardly produced by the mixed-oxide process.
  • US 4542110 discloses a process for producing a sintered body by wet grinding a mixture of zirconia and yttria with addition of SiO 2 and Al 2 O 3 as a sintering aid and subsequent drying and sintering of the mixture for 10 to 120 minutes at temperatures> 1300 ° C, preferably of between 1400 and 1500 0 C 0 C. After repeated mixing and subsequent annealing of the cubic phase content increases to at least 95% by volume.
  • US 4360598 describes a process for producing a YSZ ceramic by mixing amorphous zirconia with yttria or a yttrium-containing salt followed by sintering. After sintering at temperatures of 1000 to 1550 0 C ceramic bodies are obtained which contain mainly tetragonal and cubic zirconia.
  • EP 1076036 describes the preparation of zirconium oxides stabilized with yttrium or other metals by melting the precursors in high-frequency or medium-frequency furnaces at temperatures of 2200 to 3000 ° C.
  • DD 96467 discloses a fully stabilized cubic zirconia which is prepared by mixing basic zirconium carbonate and stabilizing additives such as calcium or yttria followed by sintering at 800 ° C / 3h.
  • WO 03/051790 describes a process for producing tetragonal or mixtures of tetragonal and cubic zirconium dioxide. Disadvantage of the zirconia powder produced by the prior art via the mixed oxide process is their insufficient homogeneity of the stabilizers in the crystal lattice. Nevertheless, to ensure adequate stabilization, high - A -
  • the object of this invention is therefore to provide zirconium oxide powders for use in the ceramic fuel cells, which have high electrical conductivities and high mechanical strengths after sintering to gastight bodies.
  • the object is achieved by a powdery zirconium oxide containing up to 10 mol% of at least one of the metal oxides from the group of scandium, yttrium, rare earths and / or mixtures thereof, which has a filling density of at least 1.2 to 2.5 g / cm 3 , measured according to ASTM B 417.
  • the pulverulent zirconium oxides according to the invention preferably have a filling density of at least 1.2 to 2.3 g / cm 3 , more preferably of at least 1.6 to 2.0 g / cm 3 , particularly preferably of at least 1.3 to 1, 9 g / cm 3 and more preferably from 1, 5 to 1, 7 g / cm 3 .
  • the zirconium oxides according to the invention are preferably characterized by a filling density of at least 1.5 to 2.5 g / cm 3 , more preferably of at least 1.6 to 2.3 g / cm 3 .
  • the zirconium oxides according to the invention are particularly suitable as precursors for the production of substrates which are used in the ceramic fuel cells due to their high electrical conductivity.
  • the zirconium oxides according to the invention preferably contain 3 to 6 mol%, particularly preferably 3 to 5 mol% and particularly preferably 3 to 4 mol% of yttrium oxide.
  • the zirconium oxides according to the invention may also contain as stabilizer also preferably 3 to 10 mol%, preferably 3 to 7 mol%, particularly preferably 4 to 6 mol% ytterbium oxide (Yb 2 O 3 ).
  • the zirconium oxides according to the invention preferably have a D90 value of the powder particles of 0.5 to 1.2 ⁇ m, preferably 0.5 to 0.9 ⁇ m, particularly preferably 0.6 to 0.9 ⁇ m, measured according to ASTM C 1070.
  • the powders according to the invention are also distinguished by their specific surface area (BET).
  • BET specific surface area
  • the powders have BET values, measured according to ASTM D 3663, from 5 to 18 m 2 / g, preferably from 5 to 15 m 2 / g, preferably from 10 to 16 m 2 / g, preferably from 7 to 13 m7g, particularly preferably from 9 to 12 m 2 / g.
  • the zirconium dioxides according to the invention have very high monoclinic phase proportions. Surprisingly, and in contrast to the prior art, according to which due to the reversible phase transformation from monoclinic to tetragonal associated volume change fully or partially stabilized powder with only very low monoclinic phase fractions, up to 10 VoI% are suitable for the production of ceramic components.
  • the zirconium oxide powders according to the invention are suitable, despite monoclinic phase fractions, of up to 80% by volume for the production of ceramic substrates and, in particular, for applications in the electrolyte-supported ceramic fuel cells.
  • the zirconium oxide powders according to the invention may have from 5 to 80% by volume of monoclinic phase fractions.
  • the powders preferably have 20 to 80% by volume, preferably 20 to 60% by weight. %, particularly preferably 40 to 75% by volume, particularly preferably 45 to 70% by volume, of monoclinic phase fractions.
  • the particular powders according to the invention have 40 to 55% by volume, preferably 45 to 55% by weight. % monoclinic phase shares.
  • the invention further relates to an efficient and economical process for the preparation of the zirconium oxides according to the invention.
  • the invention therefore also provides a process for the preparation of zirconium oxides doped with metal oxides from the group of scandium, yttrium and rare earths and / or mixtures thereof, comprising the following steps:
  • the inventive method is shown schematically.
  • the process according to the invention produces from an zirconium oxide with a purity of at least 95%, preferably> 99% and at least one of the oxides from the group scandium, yttrium, rare earths and / or mixtures thereof in the desired stoichiometric ratio, an aqueous suspension which is at least 50% Wt% mixed oxide solids content.
  • the zirconium oxides used as raw materials may contain up to 3% by mass of HfO 2 .
  • these dispersants are added on a polyacrylate, polyelectrolyte or polyacryic acid base. Good results were achieved, for example, when using, based on the solids content of the suspensions, 1 to 12 percent by mass, preferably 3 to 8 percent by mass of the dispersants Doiapix CE 64 and / or Doiapix CA Zschimmer & Schwarz achieved.
  • An important role in the process according to the invention is played by the morphological properties of the zirconium oxide precursor.
  • the zirconium oxide precursors have a specific surface area (BET) of 3 to 30 m.sup.2 / g, preferably 6 to 15 m.sup.2 / g, particularly preferably 6 to 11 m.sup.a / g, measured according to ASTM D 3663 lead to the zirconium oxides according to the invention.
  • BET specific surface area
  • Decisive for the preparation of the zirconium oxides according to the invention is an intensive homogenization of the suspension by wet grinding.
  • Various apparatuses can be used to carry out the grinding operations. Suitable for this are different types of ball mills.
  • the comminution is preferably carried out in stirred ball mills.
  • the net grinding energy input (E NE ⁇ o) is determined as the difference between the gross grinding energy input (EBRUTT O ) and the energy input when the mill is idling (E EMPTY ).
  • EBRUTTO we d recorded with a mounted on the mill power / energy meter (D 122 Gönnheimer).
  • E EMPTY is the product of the no-load power (PL EER ) of the mill and the grinding time (t).
  • Idle power is the power that is called the mill is required for operation at a given speed without filling with grinding media and suspension. The power consumption of the mill can be directly measured by
  • ENETTO EBRUTTO - EUEER (in kWh)
  • ELEER P LE ER * t.
  • MEE specific effective grinding energy input
  • the specific effective grinding energy input is preferably 0.2 to 1.5 kWh / kg, preferably 0.1 to 1.0 kW / h, preferably 0.2 to 1.0 kWh / kg, preferably 0.3 to 1.0 kWh / kg, more preferably 0.2 to 0.7 kWh / kg, more preferably 0.6 to 0.8 kW / kg of solid used, and particularly preferably 0.2 to 0.5 kWh / kg of solid used.
  • the oxide mixture is sintered at temperatures of at least 1200 0 C.
  • Sintering at temperatures of 1200-1350 0 C is preferred, most preferably carried out at 1250-1300 0 C.
  • the sintered powders are then subjected to intensive wet grinding in order to obtain good, dispersible to the primary particle range powder for further processing.
  • the solids concentration in the suspension can be up to 80
  • Percent by mass preferably up to 70 percent by mass.
  • Solids concentration in the suspension 40 to 70 mass% preferably 60 to 70, particularly preferably 50 to 60 mass%.
  • the wet grinding at a specific effective grinding energy input from 0.4 to 2.5 kWh / kg, more preferably from 0.7 to 1, 9 kWh / kg, particularly preferably from 0.4 to 1, 0 kWh / kg, in particular preferably from 0.4 to 0.8 kWh / kg and more preferably from 0.4 to 0.6 kWh / kg of solid carried out.
  • the suspension is dried at temperatures of ⁇ 8O 0 C.
  • the drying in a spray dryer at temperatures of ⁇ 80 0 C is preferred, preferably from ⁇ 100 0 C, particularly preferably of> 11O 0 C.
  • novel zirconium oxide powders produced by the process according to the invention are particularly suitable for the production of substrates and in particular for the production of electrolyte substrates for ceramic fuel cells.
  • the zirconium oxide powders according to the invention can be pressed into particularly dense compacts.
  • the invention also relates to compacts consisting of zirconium oxides according to the invention.
  • the compacts according to the invention have a Green density, which is 54 to 65%, preferably 56 to 62%, particularly preferably 56 to 58% of the theoretical density.
  • the green density of the compacts can be determined by the geometric method. In this case, specimens of 1 cm 2 surface and a height of 5-10 mm are pressed uniaxially with a pressure of 100 MPa. Thereafter, the specimens are post-densified isostatically with 2000 MPa and then their volume (V) according to the formula
  • V a x b x c calculated, where a, b, c - mean edge lengths of the specimens.
  • the green density is determined by dividing the mass of the specimens by the volume of the sample.
  • the pul verförmigen zirconium oxides according to the invention are also distinguished by their high sintering activity.
  • the compacts produced from the zirconium oxide powders of the invention are characterized in that they form gas-tight sintered bodies of high strength after sintering.
  • the density of a sintered compact can be determined by the buoyancy method. For this purpose, the mass of the specimen in air and in water at 21 0 C is measured and the density according to the formula
  • Density of the sample mass of the sample in air x density (water at 21 ° C)
  • the invention also sintered substrates for electrolyte-supported ceramic fuel cells consisting of zirconium oxides according to the invention.
  • the sintered substrates according to the invention are distinguished by their high specific electrical conductivity, later also called SEL.
  • the level of specific electrical conductivity depends on the type and concentration of the added metal oxide component and the temperature.
  • substrates of the zirconium oxides according to the invention with 3.5 mol% Y 2 O 3 show a SEL of at least 2.5 S / m, preferably of at least 2.7 S / m, particularly preferably of at least 2.9 S / m, measured at 850 ° C.
  • the substrates of zirconium oxides according to the invention with 4 mol% Yb 2 O 3 have an SEL of at least 3.8 S / m, preferably at least 4.2 S / m.
  • the substrates with 6 mol% Yb 2 O 3 are distinguished by a SEL of at least 6.6 S / m, preferably 6.8 S / m.
  • the specific electrical conductivity can be determined by means of a 4-point direct current measurement.
  • ceramic test pieces of about 50 mm in length, 10 mm in width and a thickness of about 100 ⁇ m are produced by film casting.
  • the film casting slip is prepared by adding 250g of powder to 202g of a commercial target! available binder (eg Ferro, Binder B73208) with the addition of grinding aids 418 g 3YSZ-Mahtzyltndem (12mm diameter) and 418 g 3YSZ grinding cylinder (10mm diameter) from Tosoh be mixed in a 1 liter plastic bottle.
  • the Folieng woolschlicker is homogenized for 48 hours on a roller bench.
  • the grinding cylinders are separated and the slurry degassed for 24 hours by slowly rotating in a 0.5 liter PE bottle.
  • the slurry is poured through a filter on a flat surface and brought by means of a doctor blade to a height of about 250 microns. After 7-24h drying strips are cut from the film, which after 1 hour sintering at 1500 ° C, the above-mentioned test specimens.
  • the polarity and magnitude of the current are varied.
  • the independence of the conductivity of polarization or contact effects on the inner electrodes is ensured by the fact that the change in the polarity and magnitude of the current lead to no change in the conductivity.
  • the specific electrical conductivity (SEL) of the sample is calculated according to the formula
  • the substrates according to the invention are also distinguished by their high mechanical properties
  • the substrates with 8.9 mol% Y 2 O 3 show a strength of 900 to 1000 MPa.
  • the 4 mol% Yb 2 O 3 substrates have a strength of 2000 to 2100 MPa, with 6 mol% Yb 2 O 3 of 1050 to 1150 MPa.
  • the mechanical strength can be determined by the ball-ring method, based on DIN 52292.
  • the zirconium oxides according to the invention are preferably used for the production of electrolyte substrates and / or functional layers in fuel cells.
  • the invention therefore relates to a fuel cell containing a substrate of zirconium oxide according to the invention.
  • the invention also provides a fuel cell which has at least one functional layer which contains at least one of the zirconium oxide powders according to the invention.
  • the fuel cell according to the invention is an anode-supported or an electrolyte-supported cell.
  • the mill space was filled with 10 kg of mahic balls, 0.6 mm diameter yttria-stabilized zirconia (YSZ).
  • the speed of the stirrer shaft was 1950 min '1 .
  • the net grinding energy input (ENETT O ) was determined as the difference between the gross grinding energy input (E BR u ⁇ o) and the energy input at idling of the mill (ELEER).
  • E BR U T ⁇ O is measured using a letst / energy meter mounted on the mill (D. 122 from Gönnheimer).
  • E EMPTY is the product of the no-load power (PLEER) of the mowing and grinding time (t).
  • MEE specific effective grinding energy input
  • the suspension was spray-dried.
  • the inlet temperature of the spray dryer was 300 0 C, the outlet temperature of 105 0 C.
  • spray drying, cyclone discharge and material were combined and protection sieved through a 250 micron sieve.
  • the spray dried product had a specific surface area of 15.9 rrvVg.
  • the homogenized material Vorstoff mixture was sintered in a hood furnace type "NT 440" from Nabertherm with blowing air at 1300 "C with a holding time of 2 hours, the heating and cooling rate was 5 K / min.
  • the sintered product was in turn comminuted in the stirred ball mill with a specific net grinding energy input of 0.75 kWh / kg and then spray-dried.
  • the milling was carried out in two stages with YSZ grinding balls, using milling beads with a diameter of 2 mm in the first stage and grinding beads of 0.6 mm in the second stage.
  • Mahlkugel change took place after a specific net Mahlenergäeeintrag of 0.3 Wh / kg, in contrast to the Vorstoffmahlept proved in the crushing of the sintered products a one-time addition of 1% dispersing aid, based on the solid used, as sufficient.
  • the zirconia powder obtained had a specific surface area of 10.63 m 2 / g, a dgo value of 0.71 ⁇ m and a bulk density of 1.81 g / cm 3 .
  • the Y 2 O 3 content was 3.5% by volume.
  • the monoclinic phase fraction was 41% by volume.
  • the powder was pressed uniaxially with a pressure of 100 MPa into compacts. Thereafter, the specimens were post-densified isostatically with 2000 MPa. The compacts showed a green density of 3.44 g / cm 3 . The density of the compacts after sintering at 1500 ° C / 1 h was 6.01 g / cm 3 (98.2% of the theoretical density).
  • the powder was very easy to process via foil casting, drying and sintering for one hour at 1500 0 C to electrolyte substrates.
  • the sintered at 850 0 C substrates showed a specific electrical conductivity of 2.70 S / m.
  • the mechanical strength of 90 ⁇ m thick substrates, determined by the ball-ring method, was 2413 MPa. The zirconia in the sintered substrates was nearly completely stabilized, the monoclinic phase content was ⁇ 1 Vo! %.
  • the zirconia powder obtained had a specific surface area of 9.43 m 2 / g, a d 90 value of 0.57 ⁇ m and a filling density of 1.84 g / cm 3 .
  • the Y 2 O 3 content was 3.5 mol%.
  • the monoclinic phase fraction of the powder was 39% by volume.
  • the powder was pressed uniaxially with a pressure of 100 MPa into compacts. Thereafter, the specimens were post-densified isostatically with 2000 MPa.
  • the compacts showed a green density of 3.49 g / cm 3 .
  • the density of the compacts after sintering at 1500 ° C / 1h was 6.01 g / cm 3 .
  • the powder can be processed very well by film casting, drying and sintering at 1500 ° C. for one hour to form electrolyte substrates.
  • the sintered substrates showed an electrical conductivity (SEL) of 2.72 S / m at 850 ° C.
  • the mechanical strength of 90 ⁇ m thick substrates was 1954 MPa.
  • the zirconia in the sintered substrates was completely stabilized, ie monoclinic ZrO 2 phase was no longer detectable by X-ray analysis.
  • the precursor grinding was carried out at a specific net Mahienergieeintrag of 0.50 kWh / kg solid.
  • the homogenized precursor mixture showed a specific surface area of 14 m.sup.2 / g after spray-drying.
  • the further implementation of the example was carried out analogously to Example 1.
  • the product obtained had a specific surface area of 10.60 m 2 / g, a d ⁇ 0 value of 0.64 ⁇ m and a filling density of 1.72 g / cm 3 .
  • the Y 2 O 3 content was 3.5 mol%.
  • the monoclinic phase fraction of the powder was 50% by volume. The powder was pressed uniaxially with a pressure of 100 MPa into compacts.
  • the specimens were post-densified isostatically with 2000 MPa.
  • the compacts showed a green density of 3.46 g / cm 3.
  • the density after sintering at 1500 ° C / 1 h was 6.01 g / cm 3 .
  • the powder was very easy to process via Foiieng discernen, drying and sintering for 1 hour at 1500 0 C to electrolyte substrates.
  • the sintered substrates showed a specific electrical conductivity (SEL) of 2.73 S / m at 850 ° C.
  • the mechanical strength of 90 ⁇ m thick substrates was 2390 MPa.
  • the zirconia in the sintered substrates was completely stabilized, ie monoclinic ZrO 2 ⁇ phase was undetectable by X-ray analysis.
  • the compacts showed a green density of 3.35 g / cm 3 .
  • the density after sintering at 1500 ° C / 1h was 6.09 g / cm 3 .
  • the powder was very easy to process via foil casting, drying and sintering for one hour at 1500 0 C to electrolyte substrates.
  • the sintered substrates had a (SEL), measured at 850 ° C., of 2.83 S / m.
  • the mechanical strength of 90 ⁇ m thick substrates was 2191 MPa.
  • the zirconia in the sintered substrates was completely stabilized, ie monocrystalline ZrO 2 phase was undetectable by X-ray analysis.
  • the compacts showed a green density of 3.5 g / cm 3 -
  • the density after sintering at 1500 ° C / 1 h was 6.02 g / cm 3 .
  • the powder was very easy to process via foil casting, drying and sintering for one hour at 1500 0 C to electrolyte substrates.
  • the sintered substrates had a (SEL), measured at 850 ° C., of 2.87 S / m.
  • the mechanical strength of 90 ⁇ m thick substrates was 2285 MPa.
  • the zirconia in the sintered substrates was completely stabilized, ie monoclinic ZrO 2 phase was undetectable by X-ray analysis,
  • Table 1 The properties of the resulting powders, compacts and substrates are shown in Table 1. The table shows that with increasing amounts of yttrium oxide, the specific electrical conductivity increases.
  • FIG. 2 shows the mechanical strength and specific electrical conductivity of substrates produced in Examples 1 to 6 from zirconium oxides according to the invention, as a function of the Y 2 O 3 content. Table 1
  • Example 5 used ZrO 2 and 2.9 kg of Yb 2 O 3 having a specific surface area of
  • the product obtained had a specific surface area of 10.89 m 2 / g, a d go value of 0.79 ⁇ m and a filling density of 1.73 g / cm 3 .
  • Powder was 30% by volume. The powder was added uniaxially with a pressure of 100 MPa
  • the compacts showed a green density of 3.66 g / cm 3
  • the density after sintering at 1500 ° C / 1 h was 6.32 g / cm 3
  • the powder was very good at film casting
  • the sintered substrates of ytterbium oxide doped ZrO 2 (YbSZ) at 850 0 C exhibited a specific electric conductivity of 4.21 S / m, which was thus significantly higher than comparable substrates having 4 mol% Y 2 O 3 doped ZrO 2 (YSZ), example! 6.
  • the mechanical strength of 95 microns thick substrates was 2066 MPa.
  • the zirconia in the sintered substrates was completely stabilized, ie monoclinic ZrO 2 phase was undetectable by X-ray analysis.
  • Example 7 a ZrO 2 powder doped with ⁇ rnol% Yb 2 O 3 was prepared, starting from 20.8 kg ZrO 2 and 4.2 kg Yb 2 O 3.
  • the product obtained had a specific surface area of 9.07 m 2 / g, a d 90 value of 0.77 ⁇ m and a filling density of 1.84 g / cm 3 .
  • the monoclinic phase content of the powders was 13% by volume.
  • the powder was pressed uniaxially with a pressure of 100 MPa into compacts. Thereafter, the specimens were post-densified isostatically with 2000 MPa.
  • the compacts showed a green density of 3.74 g / cm 3 .
  • the density after sintering at 1500 ° C / 1h was 6.49 g / cm 3 .
  • the powder was very easy to process via foil casting, drying and sintering at 1500 0 C for 1 hour to form electrolyte substrates.
  • the sintered substrates (6YbSZ) show at 850 0 C, a conductivity of 6.85 S / m, which is thus significantly higher than comparable substrates containing 6 mol% of Y 2 O 3 doped ZrO 2 from example 6.
  • the mechanical strength of 95 ⁇ m thick substrates was 1108 MPa.
  • the zirconia in the sintered substrates was completely stabilized, ie monoclinic ZrO 2 phase was undetectable by X-ray analysis.

Abstract

The invention relates to a powdery zirconium oxide containing metal oxides from the group of scandium, yttrium, rare earths and/or the mixtures thereof. The invention also relates to a method for their production and to their use in fuel cells, in particular for producing electrolyte substrates for ceramic fuel cells.

Description

Zirkoniumoxid und Verfahren zu dessen Herstellung Zirconium oxide and process for its preparation
Die Erfindung betrifft ein pulverförmiges Zirkoniumoxid enthaltend Metalloxide aus der Gruppe Scandium, Yttrium, Seltenerden und/oder deren Mischungen, Verfahren zu dessen Herstellung, sowie dessen Verwendung in den Brennstoffzellen, insbesondere für die Herstellung von Elektrolyt-Substraten für keramische Brennstoffzellen.The invention relates to a powdery zirconium oxide containing metal oxides from the group of scandium, yttrium, rare earths and / or mixtures thereof, processes for its preparation, and its use in the fuel cells, in particular for the production of electrolyte substrates for ceramic fuel cells.
Reines Zirkoniumoxid (ZrO2) liegt in drei Modifikationen vor. Die kubische Hochtemperatur-Phase wandelt sich unterhalb 230O0C in metastabiles tetragonales Zirkoniumoxid um, und zwischen 12000C und 95O0C wird der Übergang vom tetragonalen in monoklines ZrO2 beobachtet. Transformationen zwischen der monoklinen und den Hochtemperatur-Phasen beim Erwärmen und Abkühlen sind mit sprunghaften Volumenänderungen verbunden.Pure zirconia (ZrO 2 ) is available in three modifications. The cubic high-temperature phase changes below 230O 0 C into metastable tetragonal zirconium oxide, and between 1200 0 C and 95O 0 C, the transition from tetragonal to monoclinic ZrO 2 is observed. Transformations between the monoclinic and the high-temperature phases during heating and cooling are associated with abrupt volume changes.
Das Sintern von Zirkoniumdioxid erfolgt in einem Temperaturbereich, der deutlich über der Temperatur der reversiblen Phaεenumwandlung monoklin-tetragonal stattfindet. Um die Rückumwandlung in die monokline Phase zu vermeiden, bedarf es der Stabilisierung der Hochtemperatur-Modifikationen mit Fremdoxiden. Die stabilisierten Zirkoniumoxide liegen dann von Raum- bis Schmelztemperatur in derselben stabilisierten Modifikation vor, d.h. die für die Fertigung von keramischen Bauteilen starken Voiumenänderungen beim Abkühlen werden vermieden, Ullmann's Encyclopedia of Industrial Chemistry, VoL A28, 1996, S. 556ff,, Römpp Lexikon Chemie, 10. Auflage 1999, S. 3073. Zur Herstellung von keramischen Bauteilen werden deshalb stabilisierte oder tei (stabilisierte Zirkoniumoxid-Pulver eingesetzt. Die Stabilisator-Oxide müssen dabei mit dem Zirkoniumoxid eine feste Lösung ausbilden können. Diese Forderung ist bei Verwendung von Erdalkalioxiden, Scandiumoxid, Yttriumoxid und einigen Oxiden der Lanthanoiden und Actinoiden erfüllt. Die Menge des erforderlichen Stabilisators hängt von den gewünschten Eigenschaften und der Art des Oxids ab. Ungenügende Homogenitäten des Stabilisators im ZrO2-Gϊtter führen zur Präsenz von unerwünschten monoklinen, d.h. nicht stabilisierten Phasen-Anteilen. In Abhängigkeit von der Konzentration, Art und Menge der Stabilisator-Oxide und der angewendeten Sinterbedingungen lassen sich maßgeschneiderte Zirkoniumoxid-Werkstoffe mit verbesserten Eigenschaften herstellen, die z.B. in Konstruktions- und Bauelementen im modernen Maschinenbau, in der Humanmedizin, in Schneidwerkzeugen und in Wärmedämmschichten zum Einsatz kommen. In den letzten Jahren werden die mit Yttriumoxid dotierten Zirkoniumoxide vermehrt bei der Herstellung von keramischen Brennstoffzellen eingesetzt. Eine wichtige Eigenschaft der aus Zirkoniumoxiden hergestellten Substrate für keramische Brennstoffzellen ist deren elektrische Leitfähigkeit, die maßgebend die Leistung der Brennstoffzelle beeinfiusst.The sintering of zirconium dioxide takes place in a temperature range which takes place monoclinically and tetragonally significantly above the temperature of the reversible phase transformation. In order to avoid the re-conversion into the monoclinic phase, it is necessary to stabilize the high-temperature modifications with foreign oxides. The stabilized zirconium oxides are then present from room temperature to melting point in the same stabilized modification, ie the Voiumenänderungen on cooling for the production of ceramic components are avoided, Ullmann's Encyclopedia of Industrial Chemistry, VoL A28, 1996, p 556ff, Rompp Lexikon Chemie , 10th Edition 1999, p 3073. Therefore stabilized or partially stabilized zirconium oxide powders are used for the production of ceramic components, in which case the stabilizer oxides must be able to form a solid solution with the zirconium oxide. The amount of stabilizer required depends on the desired properties and the nature of the oxide, and inadequate homogeneities of the stabilizer in the ZrO 2 gate lead to the presence of undesirable monoclinic, ie unstabilized, phase-to-phase phosphors. Shares In A Depending on the concentration, type and amount of the stabilizer oxides and the sintering conditions used, tailor-made zirconium oxide materials having improved properties can be produced which are used, for example, in construction and structural elements in modern mechanical engineering, in human medicine, in cutting tools and in thermal barrier coatings , In recent years, the yttria-doped zirconium oxides have been increasingly used in the production of ceramic fuel cells. An important property of the substrates for ceramic fuel cells produced from zirconium oxides is their electrical conductivity, which decisively affects the performance of the fuel cell.
Nach WO 03/051790 werden stabilisierte Zirkoniumoxide üblicherweise über zwei Hauptverfahren in verschiedenen Varianten hergestellt.According to WO 03/051790 stabilized zirconium oxides are usually prepared via two main processes in different variants.
Nach den nasschemischen Methoden werden aus wässrigen oder organischen Lösungen bzw. Suspensionen von Zirkonium- und Stabilisator-Vorstoffen Feststoffe, die beide Metalle enthalten, separiert. In der Regel erfolgt die Abtrennung der Feststoffe über Co- Fällung und Filtration der Hydroxide. Es werden aber auch andere Separationstechniken wie z.B. SoI-GeI-, Eindampf-, Sprühpyrolyse- und Hydrothermal-Verfahren angewandt. Nach Separation der gefällten Precursoren werden diese dann bei Temperaturen zwischen 500 und 15000C kalziniert. US 3957500 beschreibt einen Co~Fällungsprozess zur Erzeugung einer homogenen Mischung aus Zirkonium- und Yttriumhydroxid. Nach einer Kalzination bei 900 bis 1500°C innerhalb von 1 bis 10 Stunden bildet sich das stabilisierte Zirkoniumdioxid. Einen ähnlichen typischen kommerziellen Prozess ist in US 4810680 beschrieben, bei dem basisches Zirkoniumcarbonat und Yttriumcarbonat in Chlorwasserstoffsäure gelöst werden. Anschließend werden die Hydroxide durch Zugabe von Ammoniak oder Natriumhydroxid co-gefällt. Die Hydroxid-Mischung wird gewaschen, getrocknet und bei 680 bis 9800C kalziniert.According to the wet-chemical methods, solids which contain both metals are separated from aqueous or organic solutions or suspensions of zirconium and stabilizer precursors. As a rule, the separation of the solids takes place via co-precipitation and filtration of the hydroxides. However, other separation techniques such as SoI-GeI, evaporation, spray pyrolysis and hydrothermal method are used. After separation of the precipitated precursors they are then calcined at temperatures between 500 and 1500 0 C. US 3957500 describes a co-precipitation process for producing a homogeneous mixture of zirconium and yttrium hydroxide. After calcination at 900 to 1500 ° C within 1 to 10 hours, the stabilized zirconia forms. A similar typical commercial process is described in US 4,810,680, in which basic zirconium carbonate and yttrium carbonate are dissolved in hydrochloric acid. Subsequently, the hydroxides are co-precipitated by the addition of ammonia or sodium hydroxide. The hydroxide mixture is washed, dried and calcined at 680 to 980 0 C.
DE 10138573 offenbart ein nanoskaliges pyrogen hergestelltes tetragonales Yttrium stabilisiertes Zirkoniumoxid (YSZ) Pulver und den Prozess zu seiner Herstellung. Dabei werden wässrige und / oder alkoholische Lösungen von Zr- und Y-Precursoren wie z.B. Nitrate und Propionate mittels einer Düse in einem Reaktionsrohr, in dem eine Knallgasflamme aus Wasserstoff und Luft brennt, zerstäubt und anschließend bei Temperaturen von 800 bis 1000X verbrannt. US 5750459 beschreibt die Erzeugung von Gelen oder sphärischen bzw. mskrosph arischen Partikeln durch Tropfen einer Y/Zr-Nitratiösung in eine Ammoniumhydroxid-Lösung. Nach Separation und Spülung der erzeugten Gele bzw. Agglomerate mit Wasser sowie anschließende Kalzination bei Temperaturen über 5500C werden sphärische und mikrosphärische stabilisierte Zirkoniumdäoxid-Pulver erhalten. Die hohe Filtrationsrate von Gel-Precursoren ist ein entscheidender Nachteil im Vergleich zum traditionellen Hydroxid-Fällprozess.DE 10138573 discloses a nanoscale pyrogenically produced tetragonal yttrium stabilized zirconia (YSZ) powder and the process for its preparation. In this case, aqueous and / or alcoholic solutions of Zr and Y precursors such as nitrates and propionates by means of a nozzle in a reaction tube in which an oxyhydrogen flame of hydrogen and air burns, atomized and then burned at temperatures of 800 to 1000X. No. 5,750,459 describes the generation of gels or spherical or microsphere particles by dropping a Y / Zr nitrate solution into an ammonium hydroxide solution. Following separation and rinse the gels produced or agglomerates with water and subsequent calcination at temperatures above 550 0 C and spherical microspherical stabilized Zirkoniumdäoxid powder are obtained. The high filtration rate of gel precursors is a major disadvantage compared to the traditional hydroxide precipitation process.
Nachteil aller beschriebenen nasschemischen Verfahren sind die anfallenden großen Mengen an Abwasser. Zudem sind immer umfangreiche Waschungen erforderlich, um alle Nebenprodukte zu entfernen. Sind die Waschungen aber unvollständig, bilden sich während der Precursor-Kalzinationen Abgase wie HCI/CI2 oder NOx. Das andere Verfahren zur Herstellung der stabilisierten ZrO2-Pulver ist der Mixed-Oxides- bzw. Solid-State-Prozess. In diesem Verfahren werden Mischungen aus Zirkoniumdioxid und Stabilisatoren homogenisiert und anschließend zum stabilisierten ZrO2-Pulver gesintert. Der Solid-State-Prozess ist einfach und kostengünstig durchzuführen. Im Gegensatz zu den nasschemischen Verfahren entstehen hier, abgesehen von recyclebarem Wasser bzw. Wasserdampf, keine Nebenprodukte bzw. belastete Abwässer und Abgase. Als Nachteile des Verfahrens werden die hohen Sintertemperaturen von >1300°C und die niedrige Homogenität der Pulver, die nach dem Sintern 25 bis 30 VoI % monokline Phase enthalten, genannt. Um die monoklinen Phasenanteile zu minimieren, werden die Produkte in mehreren Stufen wiederholt vermählen und getempert, woraus ein signifikanter Anstieg der Produkt-Kosten resultiert. Stabilisierte ZrO2-Pulver werden daher kaum nach dem Mixed-Oxides-Prozess hergestellt.Disadvantage of all described wet chemical processes are the accumulating large amounts of wastewater. In addition, always extensive washes are required to to remove all by-products. However, if the washings are incomplete, exhaust gases such as HCI / CI 2 or NO x form during the precursor calcinations. The other method for producing the stabilized ZrO 2 powder is the mixed-oxide or solid-state process. In this process, mixtures of zirconia and stabilizers are homogenized and then sintered to stabilized ZrO 2 powder. The solid-state process is simple and inexpensive to perform. In contrast to wet-chemical processes, apart from recyclable water or steam, there are no by-products or contaminated wastewater and exhaust gases. The disadvantages of the process are the high sintering temperatures of> 1300 ° C. and the low homogeneity of the powders which, after sintering, contain from 25 to 30% by volume of monoclinic phase. To minimize the monoclinic phase contributions, the products are repeatedly ground and annealed in multiple stages, resulting in a significant increase in product cost. Stabilized ZrO 2 powders are therefore hardly produced by the mixed-oxide process.
US 4542110 offenbart einen Prozess zur Produktion eines Sinter-Körpers über die Nassmahlung einer Mischung von Zirkoniumdioxid und Yttriumoxid unter Zugabe von SiO2 und AI2O3 als Sinterhilfsmittel und anschließende Trocknung und Sinterung der Mischung 10 bis 120 min bei Temperaturen >1300°C, bevorzugt zwischen 14000C und 15000C. Nach anschließenden wiederholten Mischen und Tempern steigt der kubische Phasenanteil auf mindestens 95 VoI %.US 4542110 discloses a process for producing a sintered body by wet grinding a mixture of zirconia and yttria with addition of SiO 2 and Al 2 O 3 as a sintering aid and subsequent drying and sintering of the mixture for 10 to 120 minutes at temperatures> 1300 ° C, preferably of between 1400 and 1500 0 C 0 C. After repeated mixing and subsequent annealing of the cubic phase content increases to at least 95% by volume.
In US 4360598 wird ein Prozess zur Herstellung einer YSZ-Keramik über Mischen von amorphem Zirkoniumdioxid mit Yttriumoxid oder einem Yitrium-haltigen Salz und einer anschließenden Sinterung beschrieben. Nach der Sinterung bei Temperaturen von 1000 bis 15500C werden keramische Körper erhalten, die hauptsächlich tetragonales und kubisches Zirkoniumdioxid enthalten.US 4360598 describes a process for producing a YSZ ceramic by mixing amorphous zirconia with yttria or a yttrium-containing salt followed by sintering. After sintering at temperatures of 1000 to 1550 0 C ceramic bodies are obtained which contain mainly tetragonal and cubic zirconia.
In EP 1076036 wird die Herstellung von mit Yttrium oder anderen Metallen stabilisierten Zirkoniumoxiden über Schmelzen der Vorstoffe in Hochfrequenz- oder Mittelfrequenzöfen bei Temperaturen von 2200 bis 30000C beschrieben. DD 96467 offenbart ein voll stabilisiertes kubisches Zirkoniumdioxid welches über Mischen von basischem Zirkoniumkarbonat und Stabilisierungszusätzen wie Kalziumoder Yttriumoxid und anschließender Sinterung bei 800°C/3h hergestellt wird. In WO 03/051790 wird ein Prozess zur Herstellung von tetragonalem bzw. Mischungen aus tetragonalen und kubischen Zirkoniumdioxid beschrieben. Nachteil der nach dem Stand der Technik über den Mixed-Oxides-Prozess hergestellten Zirkoniumoxid-Pulver ist deren unzureichende Homogenität der Stabilisatoren im Kristallgitter. Um dennoch eine ausreichende Stabilisierung zu gewährleisten, sind hohe - A -EP 1076036 describes the preparation of zirconium oxides stabilized with yttrium or other metals by melting the precursors in high-frequency or medium-frequency furnaces at temperatures of 2200 to 3000 ° C. DD 96467 discloses a fully stabilized cubic zirconia which is prepared by mixing basic zirconium carbonate and stabilizing additives such as calcium or yttria followed by sintering at 800 ° C / 3h. WO 03/051790 describes a process for producing tetragonal or mixtures of tetragonal and cubic zirconium dioxide. Disadvantage of the zirconia powder produced by the prior art via the mixed oxide process is their insufficient homogeneity of the stabilizers in the crystal lattice. Nevertheless, to ensure adequate stabilization, high - A -
Sintertemperaturen erforderlich. Diese führen jedoch zu höheren Herstellungskosten, auch bedingt durch die zusätzlich erforderlichen Prozessschritte (Brechen, Klassieren). Weiterhin führen die hohen Sintertemperaturen zu unerwünscht niedrigeren BET-Werten und zu geringerer Sinteraktivität der Pulver. Diese Pulver eignen sich wegen ihrer niedrigen elektrischen Lettfähigkeit und unzureichender Sinteraktivität nicht für den Einsatz in keramischen Brennstoffzellen.Sintering temperatures required. However, these lead to higher production costs, also due to the additionally required process steps (breaking, classifying). Furthermore, the high sintering temperatures lead to undesirably lower BET values and to lower sintering activity of the powders. These powders are not suitable for use in ceramic fuel cells because of their low electrical balance and insufficient sintering activity.
Die Aufgabe dieser Erfindung ist es daher, Zirkoniumoxid-Pulver für den Einsatz in den keramischen Brennstoffzellen zur Verfügung zu stellen, welche hohe elektrische Leitfähigkeiten und hohe mechanische Festigkeiten nach dem Sintern zu gasdichten Körpern aufweisen.The object of this invention is therefore to provide zirconium oxide powders for use in the ceramic fuel cells, which have high electrical conductivities and high mechanical strengths after sintering to gastight bodies.
Aufgabe der vorliegenden Erfindung ist es weiterhin ein wirtschaftliches Verfahren zur Herstellung der Zirkoniumoxid-Pulver bereitzustellen. Die Aufgabe wird gelöst durch ein pulverförmiges Zirkoniumoxid enthaltend bis zu 10 mol % mindestens eines der Metalioxide aus der Gruppe Scandium, Yttrium, Seltenerden und/oder deren Mischungen, welches eine Fülldichte von mindestens 1,2 bis 2,5 g/cm3, gemessen nach ASTM B 417, aufweist.It is also an object of the present invention to provide an economical process for producing the zirconia powders. The object is achieved by a powdery zirconium oxide containing up to 10 mol% of at least one of the metal oxides from the group of scandium, yttrium, rare earths and / or mixtures thereof, which has a filling density of at least 1.2 to 2.5 g / cm 3 , measured according to ASTM B 417.
Bevorzugt weisen die erfindungsgemäßen pulverförmigen Zirkoniumoxide eine Fülldichte von mindestens 1,2 bis 2,3 g/cm3, besonders bevorzugt von mindestens 1,6 bis 2,0 g/cm3, besonders bevorzugt von mindestens 1,3 bis 1 ,9 g/cm3 und insbesondere bevorzugt von 1 ,5 bis 1 ,7 g/cm3 auf. Die erfindungsgemäßen Zirkoniumoxide zeichnen sich bevorzugt durch eine Fülldichte von mindestens 1 ,5 bis 2,5 g/cm3, besonders bevorzugt von mindestens 1,6 bis 2,3 g/cm3 aus. Die erfindungsgemäßen Zirkoniumoxide eignen sich besonders gut als Vorstoffe für die Herstellung von Substraten, die in den keramischen Brennstoffzellen aufgrund ihrer hohen elektrischen Leitfähigkeit eingesetzt werden. Gute Ergebnisse werden erzielt, wenn die Zirkoniumoxide 3 bis 10 mol % Yttriumoxid als Stabilisator enthalten. Bevorzugt enthalten die erfindungsgemäßen Zirkoniumoxide 3 bis 6 mol %, besonders bevorzugt 3 bis 5 mol % und insbesondere bevorzugt 3 bis 4 mol % Yttriumoxid. Die erfindungsgemäßen Zirkoniumoxide können als Stabilisator auch vorzugsweise 3 bis 10 mol %, bevorzugt 3 bis 7 mol %, besonders bevorzugt 4 bis 6 mol % Ytterbiumoxid (Yb2O3) enthalten.The pulverulent zirconium oxides according to the invention preferably have a filling density of at least 1.2 to 2.3 g / cm 3 , more preferably of at least 1.6 to 2.0 g / cm 3 , particularly preferably of at least 1.3 to 1, 9 g / cm 3 and more preferably from 1, 5 to 1, 7 g / cm 3 . The zirconium oxides according to the invention are preferably characterized by a filling density of at least 1.5 to 2.5 g / cm 3 , more preferably of at least 1.6 to 2.3 g / cm 3 . The zirconium oxides according to the invention are particularly suitable as precursors for the production of substrates which are used in the ceramic fuel cells due to their high electrical conductivity. Good results are achieved when the zirconium oxides contain 3 to 10 mol% of yttrium oxide as a stabilizer. The zirconium oxides according to the invention preferably contain 3 to 6 mol%, particularly preferably 3 to 5 mol% and particularly preferably 3 to 4 mol% of yttrium oxide. The zirconium oxides according to the invention may also contain as stabilizer also preferably 3 to 10 mol%, preferably 3 to 7 mol%, particularly preferably 4 to 6 mol% ytterbium oxide (Yb 2 O 3 ).
Die erfindungsgemäßen Zirkoniumoxide weisen bevorzugt einen D90-Wert der Pulverpartikel von 0,5 bis 1 ,2 μm, bevorzugt 0,5 bis 0,9 μm, besonders bevorzugt 0,6 bis 0,9 μm auf, gemessen nach ASTM C 1070.The zirconium oxides according to the invention preferably have a D90 value of the powder particles of 0.5 to 1.2 μm, preferably 0.5 to 0.9 μm, particularly preferably 0.6 to 0.9 μm, measured according to ASTM C 1070.
Die erfindungsgemäßen Pulver zeichnen sich auch durch ihre spezifische Oberfläche (BET) aus. Vorzugsweise weisen die Pulver BET-Werte, gemessen nach ASTM D 3663, von 5 bis 18 m2/g, bevorzugt von 5 bis 15 m2/g, bevorzugt von 10 bis 16 m2/g, bevorzugt von 7 bis 13 m7g, besonders bevorzugt von 9 bis 12 m2/g auf.The powders according to the invention are also distinguished by their specific surface area (BET). Preferably, the powders have BET values, measured according to ASTM D 3663, from 5 to 18 m 2 / g, preferably from 5 to 15 m 2 / g, preferably from 10 to 16 m 2 / g, preferably from 7 to 13 m7g, particularly preferably from 9 to 12 m 2 / g.
Die erfindungsgemäßen Zirkoniumdioxide weisen sehr hohe monokline Phasenanteüe auf. Überraschenderweise und im Gegensatz zum Stand der Technik, nach dem aufgrund der mit der reversiblen Phasen-Umwandlung von monoklin nach tetragonal einhergehenden Volumenänderung voll- bzw. teilstabilisierte Pulver mit nur sehr geringen monoklinen Phasenanteilen, bis maximal 10 VoI % zur Hersteilung von keramischen Bauteilen geeignet sind, eignen sich die erfindungsgemäßen Zirkoniumoxid-Pulver trotz monokliner Phasen-Anteile, von bis zu 80 VoI % zur Herstellung von keramischen Substraten und insbesondere für Anwendungen in die elektrolytgestützten keramischen Brennstoffzellen. Die erfindungsgemäßen Zirkoniumoxid-Pulver können 5 bis 80 VoI % monokline Phasenanteile aufweisen. Bevorzugt weisen die Pulver 20 bis 80 VoI %, bevorzugt 20 bis 60 VoI. %, besonders bevorzugt 40 bis 75 VoI %, insbesondere bevorzugt 45 bis 70 Voi % monokline Phasenanteile auf. Die besonderen erfindungsgemäßen Pulver weisen 40 bis 55 VoI %, bevorzugt 45 bis 55 Vo! % monokline Phasenanteile auf.The zirconium dioxides according to the invention have very high monoclinic phase proportions. Surprisingly, and in contrast to the prior art, according to which due to the reversible phase transformation from monoclinic to tetragonal associated volume change fully or partially stabilized powder with only very low monoclinic phase fractions, up to 10 VoI% are suitable for the production of ceramic components The zirconium oxide powders according to the invention are suitable, despite monoclinic phase fractions, of up to 80% by volume for the production of ceramic substrates and, in particular, for applications in the electrolyte-supported ceramic fuel cells. The zirconium oxide powders according to the invention may have from 5 to 80% by volume of monoclinic phase fractions. The powders preferably have 20 to 80% by volume, preferably 20 to 60% by weight. %, particularly preferably 40 to 75% by volume, particularly preferably 45 to 70% by volume, of monoclinic phase fractions. The particular powders according to the invention have 40 to 55% by volume, preferably 45 to 55% by weight. % monoclinic phase shares.
Die Erfindung betrifft weiterhin ein effizientes und wirtschaftliches Verfahren zur Herstellung der erfindungsgemäßen Zirkoniumoxide. Gegenstand der Erfindung ist daher auch ein Verfahren zur Herstellung von mit Metalloxiden aus der Gruppe Scandium, Yttrium und Seltenerden und/oder deren Mischungen dotierten Ztrkoniumoxiden, enthaltend folgende Schritte:The invention further relates to an efficient and economical process for the preparation of the zirconium oxides according to the invention. The invention therefore also provides a process for the preparation of zirconium oxides doped with metal oxides from the group of scandium, yttrium and rare earths and / or mixtures thereof, comprising the following steps:
a) Bereitstellen einer wässrigen Suspension aus Zirkoniumoxid und dem jeweiligen Metalloxid im gewünschten stöchiometrischen Verhältnis, einschließlich der Stabilisierung der Suspension durch Dispergiermittel; b) Homogenisieren der Suspension durch Zerkleinerung unter Einsatz von Mahlhiifsmitteln durch Eintrag einer spezifischen Netto-Mahlenergie von > 0,1 kWh pro kg eingesetzten Feststoff, c) Trocknung der Suspension bei einer Temperatur > 800C unter Erhalt einer homogenen Oxidmischung, d) Sinterung der Oxidmischung zur Phasenbildung bei einer Temperatur von mindestens 1200 0C, e) Erzeugung einer Suspension und Zerkleinerung des in Schritt d) gebildeten Sinterproduktes unter Einsatz von Mahlhilfsmitteln durch Eintrag einer spezifischen Energie von > 0,1 kWh pro kg Sinterproduktes, f) Trocknung der Suspension, In Fig. 1 ist das erfindungsgemäße Verfahren schematisch dargestellt. Nach dem erfindungsgemäßen Verfahren wird aus einem Zirkoniumoxid mit einer Reinheit von mindestens 95%, bevorzugt > 99 % und mindestens einem der Oxide aus der Gruppe Scandium, Yttrium, Seltenerden und/oder deren Mischungen im gewünschten stöchiometrischen Verhältnis eine wässrige Suspension erzeugt, die mindestens 50 Gew % Mischoxid-Feststoffanteil enthält. Die als Rohstoff eingesetzten Zirkoniumoxide können naturgemäß bis zu 3 Massenprozent HfO2 enthalten.a) providing an aqueous suspension of zirconium oxide and the respective metal oxide in the desired stoichiometric ratio, including the stabilization of the suspension by dispersants; b) homogenizing the suspension by comminution using Mahlhiifsmitteln by entry of a specific net grinding energy of> 0.1 kWh per kg of solid used, c) drying of the suspension at a temperature> 80 0 C to obtain a homogeneous oxide mixture, d) sintering the oxide mixture for phase formation at a temperature of at least 1200 ° C., e) production of a suspension and comminution of the sintered product formed in step d) using grinding aids by introduction of a specific energy of> 0.1 kWh per kg of sintered product, f) drying of the Suspension, In Fig. 1, the inventive method is shown schematically. The process according to the invention produces from an zirconium oxide with a purity of at least 95%, preferably> 99% and at least one of the oxides from the group scandium, yttrium, rare earths and / or mixtures thereof in the desired stoichiometric ratio, an aqueous suspension which is at least 50% Wt% mixed oxide solids content. Naturally, the zirconium oxides used as raw materials may contain up to 3% by mass of HfO 2 .
Zur Vorbeugung der Agglomeration der Oxidteilchen und Erzeugung einer niedrigviskosen und gut zu fördernden Suspension werden dieser Dispergierhilfsmittel auf Poiyacrylat-, Polyelectrolyt- oder Polyacryisäurebasis zugegeben. Gute Ergebnisse wurden erzielt z.B. beim Einsatz von, bezogen auf den Feststoffanteil der Suspensionen, 1 bis 12 Massenprozent, bevorzugt 3 bis 8 Massenprozent der Dispergiermittel Doiapix CE 64 und/oder Doiapix CA der Firma Zschimmer & Schwarz erzielt. Eine wichtige Rolle bei dem erfindungsgemäßen Verfahren spielen die morphologischen Eigenschaften des Zirkoniumoxid-Vorstoffes. Es wurde gefunden, dass die Zirkoniumoxid-Vorstoffe mit Kantenlängen (a, b, c) der Kristallite von a=20 bis 75 nm, b=20-90 nm und c=20 bis 75 nm, bevorzugt a=30 bis 75 nm, b=30 bis 75 und 0=30 bis 75, besonders bevorzugt von a=35 bis 50 nm, b=45 bis 60 nm und c=35 bis 45 nm zu den erfindungsgemäßen Pulvern führen. Es wurde weiterhin gefunden, daß die Zirkoniumoxid-Vorstoffe mit einer spezifischen Oberfläche (BET) von 3 bis 30 mz/g, bevorzugt mit 6 bis 15 m2/g, besonders bevorzugt mit 6 bis 11 ma/g, gemessen nach ASTM D 3663, zu den erfindungsgemäßen Zirkoniumoxiden führen. Entscheidend für die Herstellung der Zirkoniumoxide gemäß der Erfindung ist eine intensive Homogenisierung der Suspension durch Nassmahlung. Zur Durchführung der Mahlvorgänge können unterschiedliche Apparate verwendet werden. Geignet dafür sind unterschiedliche Typen von Kugelmühlen. Bevorzugt wird die Zerkleinerung in Rührwerkskugelmühlen durchgeführt. Es wurde nun gefunden, dass die Nassmahlung der Oxidmischung in einer Rührwerkskugelmühie durch Eintrag einer spezifischen effektiven Netto-Mahlenergie, später auch Energieeintrag oder Mahlenergieeintrag (MEE) genannt, von 0,1 bis 2,0 kWh pro kg eingesetzten Feststoff zu den erfindungsgemäßen Pulvern mit besonderen Eigenschaften führt.In order to prevent the agglomeration of the oxide particles and to produce a low-viscosity suspension which is easy to transport, these dispersants are added on a polyacrylate, polyelectrolyte or polyacryic acid base. Good results were achieved, for example, when using, based on the solids content of the suspensions, 1 to 12 percent by mass, preferably 3 to 8 percent by mass of the dispersants Doiapix CE 64 and / or Doiapix CA Zschimmer & Schwarz achieved. An important role in the process according to the invention is played by the morphological properties of the zirconium oxide precursor. It has been found that the zirconium oxide precursors with edge lengths (a, b, c) of the crystallites of a = 20 to 75 nm, b = 20-90 nm and c = 20 to 75 nm, preferably a = 30 to 75 nm, b = 30 to 75 and 0 = 30 to 75, particularly preferably from a = 35 to 50 nm, b = 45 to 60 nm and c = 35 to 45 nm lead to the inventive powders. It has furthermore been found that the zirconium oxide precursors have a specific surface area (BET) of 3 to 30 m.sup.2 / g, preferably 6 to 15 m.sup.2 / g, particularly preferably 6 to 11 m.sup.a / g, measured according to ASTM D 3663 lead to the zirconium oxides according to the invention. Decisive for the preparation of the zirconium oxides according to the invention is an intensive homogenization of the suspension by wet grinding. Various apparatuses can be used to carry out the grinding operations. Suitable for this are different types of ball mills. The comminution is preferably carried out in stirred ball mills. It has now been found that the wet grinding of the oxide mixture in a Rührwerkskugelmühie by entry of a specific effective net grinding energy, later also called energy input or Mahleineintrag (MEE), from 0.1 to 2.0 kWh per kg of solids used to the inventive powders with special properties.
Der Netto-Mahlenergieeintrag (ENEττo) wird als Differenz des Brutto-Mahlenergieeintrages (EBRUTTO) und des Energieeintrags bei Leerlauf der Mühle (ELEER) bestimmt. EBRUTTO wird mit einem an der Mühle montierten Leistungs- /Energiezähler (D 122 der Firma Gönnheimer) aufgezeichnet. ELEER ergibt sich als Produkt der Leerlaufleistung (PLEER ) der Mühle und der Mahldauer (t). Als Leerlauf leistung wird die Leistung bezeichnet, die die Mühle bei vorgegebener Drehzahl ohne Befüllung mit Mahlkörpern und Suspension zum Betrieb benötigt. Die Leistungsaufnahme der Mühle kann direkt von Leistungs-The net grinding energy input (E NE ττo) is determined as the difference between the gross grinding energy input (EBRUTT O ) and the energy input when the mill is idling (E EMPTY ). EBRUTTO we d recorded with a mounted on the mill power / energy meter (D 122 Gönnheimer). E EMPTY is the product of the no-load power (PL EER ) of the mill and the grinding time (t). Idle power is the power that is called the mill is required for operation at a given speed without filling with grinding media and suspension. The power consumption of the mill can be directly measured by
/Energiezähler abgelesen werden./ Energy meter are read.
ENETTO = EBRUTTO - EUEER (in kWh), wobei ELEER = P LEER * t ist.ENETTO = EBRUTTO - EUEER (in kWh) where ELEER = P LE ER * t.
Der spezifische effektive Mahlenergieeintrag (MEE) ergibt sich als Quotient aus ENeτo und der eingesetzten Masse der Oxide (M).The specific effective grinding energy input (MEE) results as a quotient of E N eτo and the mass of the oxides (M) used.
MEE = ENEττo /MOXIDE (in kWh/kg)MEE = E NE ττo / MOXIDE (in kWh / kg)
Vorzugsweise beträgt der spezifische effektive Mahlenergieeintrag 0,2 bis 1 ,5 kWh/kg, bevorzugt 0,1 bis 1 ,0 kW/h, bevorzugt 0,2 bis 1 ,0 kWh/kg, bevorzugt 0,3 bis 1 ,0 kWh/kg, besonders bevorzugt 0,2 bis 0,7 kWh/kg, besonders bevorzugt 0,6 bis 0,8 kW/kg eingesetzten Feststoff und insbesondere bevorzugt 0,2 bis 0,5 kWh/kg eingesetztem Feststoff.The specific effective grinding energy input is preferably 0.2 to 1.5 kWh / kg, preferably 0.1 to 1.0 kW / h, preferably 0.2 to 1.0 kWh / kg, preferably 0.3 to 1.0 kWh / kg, more preferably 0.2 to 0.7 kWh / kg, more preferably 0.6 to 0.8 kW / kg of solid used, and particularly preferably 0.2 to 0.5 kWh / kg of solid used.
Nach der Homogenisierung und anschließender Trocknung bei Temperaturen von > 80°C wird die Oxidmischung bei Temperaturen von mindestens 12000C gesintert.After homogenization and subsequent drying at temperatures of> 80 ° C, the oxide mixture is sintered at temperatures of at least 1200 0 C.
Bevorzugt wird die Sinterung bei Temperaturen von 1200-13500C, besonders bevorzugt bei 1250-13000C durchgeführt.Sintering at temperatures of 1200-1350 0 C is preferred, most preferably carried out at 1250-1300 0 C.
Die gesinterten Pulver werden anschließend einer intensiven Nassmahlung unterzogen, um für die weitere Verarbeitung gute, bis in den Primärpartikelbereich dispergierbare Pulver zu erhalten. Die Feststoffkonzentration in der Suspension kann bis zu 80The sintered powders are then subjected to intensive wet grinding in order to obtain good, dispersible to the primary particle range powder for further processing. The solids concentration in the suspension can be up to 80
Massenprozent, bevorzugt bis zu 70 Massenprozent betragen. Vorzugsweise beträgt diePercent by mass, preferably up to 70 percent by mass. Preferably, the
Feststoffkonzentration in der Suspension 40 bis 70 Massen %, bevorzugt 60 bis 70, besonders bevorzugt 50 bis 60 Massen %.Solids concentration in the suspension 40 to 70 mass%, preferably 60 to 70, particularly preferably 50 to 60 mass%.
Bevorzugt wird die Nassmahlung bei einem spezifischen effektiven Mahlenergieeintrag von 0,4 bis 2,5 kWh/kg, besonders bevorzugt von 0,7 bis 1 ,9 kWh/kg, besonders bevorzugt von 0,4 bis 1 ,0 kWh/kg, insbesondere bevorzugt von 0,4 bis 0,8 kWh/kg und insbesondere bevorzugt von 0,4 bis 0,6 kWh/kg Feststoff durchgeführt.Preferably, the wet grinding at a specific effective grinding energy input from 0.4 to 2.5 kWh / kg, more preferably from 0.7 to 1, 9 kWh / kg, particularly preferably from 0.4 to 1, 0 kWh / kg, in particular preferably from 0.4 to 0.8 kWh / kg and more preferably from 0.4 to 0.6 kWh / kg of solid carried out.
Nach der Vermahlung wird die Suspension bei Temperaturen von ≥ 8O0C getrocknet.After grinding, the suspension is dried at temperatures of ≥ 8O 0 C.
Bevorzugt wird die Trocknung in einem Sprühtrockner bei Temperaturen von ≥ 800C, bevorzugt von ≥ 1000C, besonders bevorzugt von > 11O0C durchgeführt.The drying in a spray dryer at temperatures of ≥ 80 0 C is preferred, preferably from ≥ 100 0 C, particularly preferably of> 11O 0 C.
Die nach dem erfindungsgemäßen Verfahren hergestellten neuen Zirkoniumoxid-Pulver eignen sich besonders zur Herstellung von Substraten und insbesondere zur Herstellung von Elektrolyts ubstraten für keramische Brennstoffzellen.The novel zirconium oxide powders produced by the process according to the invention are particularly suitable for the production of substrates and in particular for the production of electrolyte substrates for ceramic fuel cells.
Die erfindungsgemäßen Zirkoniumoxid-Pulver lassen sich zu besonders dichten Presskörpern verpressen.The zirconium oxide powders according to the invention can be pressed into particularly dense compacts.
Gegenstand der Erfindung sind auch Presskörper bestehend aus den erfindungsgemäßen Zirkoniumoxiden. Die erfindungsgemäßen Presskörper weisen eine Gründichte auf, die 54 bis 65%, bevorzugt 56 bis 62%, besonders bevorzugt 56 bis 58% der theoretischen Dichte beträgt.The invention also relates to compacts consisting of zirconium oxides according to the invention. The compacts according to the invention have a Green density, which is 54 to 65%, preferably 56 to 62%, particularly preferably 56 to 58% of the theoretical density.
Die Gründichte der Presskörper kann nach der geometrischen Methode ermittelt werden. Dabei werden Probekörper von 1 cm2 Fläche und einer Höhe von 5-10 mm uniaxial mit einem Druck von 100 MPa gepresst. Danach werden die Probekörper isostatisch mit 2000 MPa nachverdichtet und anschließend deren Volumen (V) gemäß der FormelThe green density of the compacts can be determined by the geometric method. In this case, specimens of 1 cm 2 surface and a height of 5-10 mm are pressed uniaxially with a pressure of 100 MPa. Thereafter, the specimens are post-densified isostatically with 2000 MPa and then their volume (V) according to the formula
V= a x b x c errechnet, wobei a, b, c - Kantenlängen der Probekörper bedeuten. Die Gründichte wird ermittelt indem die Masse der Probekörper durch das Volumen der Probe dividiert wird. Die erfindungsgemäßen pul verförmigen Zirkoniumoxide zeichnen sich auch durch ihre hohe Sinteraktivität aus. Die aus den erfindungsgemäßen Zirkoniumoxid-Pulvern hergestellten Presskörper zeichnen sich dadurch aus, dass diese nach dem Sintern gasdichte Sinterkörper mit hoher Festigkeit bilden.V = a x b x c calculated, where a, b, c - mean edge lengths of the specimens. The green density is determined by dividing the mass of the specimens by the volume of the sample. The pul verförmigen zirconium oxides according to the invention are also distinguished by their high sintering activity. The compacts produced from the zirconium oxide powders of the invention are characterized in that they form gas-tight sintered bodies of high strength after sintering.
Die Dichte eines gesinterten Presskörpers kann nach der Auftriebsmethode bestimmt werden. Dazu wird die Masse des Probekörpers in Luft und in Wasser bei 210C gemessen und die Dichte gemäß der FormelThe density of a sintered compact can be determined by the buoyancy method. For this purpose, the mass of the specimen in air and in water at 21 0 C is measured and the density according to the formula
Dichte der Probe = Masse der Probe in Luft x Dichte (Wasser bei 21 °C)Density of the sample = mass of the sample in air x density (water at 21 ° C)
Masse der Probe in Luft - Masse der Probe in WasserMass of the sample in air - mass of the sample in water
bestimmt.certainly.
Gegenstand der Erfindung sind auch gesinterte Substrate für elektrolytgestützte keramische Brennstoffzellen bestehend aus erfindungsgemäßen Zirkoniumoxiden.The invention also sintered substrates for electrolyte-supported ceramic fuel cells consisting of zirconium oxides according to the invention.
Die erfindungsgemäßen gesinterten Substrate zeichnen sich durch ihre hohe spezifische elektrische Leitfähigkeit, später auch SEL genannt, aus. Die Höhe der spezifischen elektrischen Leitfähigkeit hängt von Art und Konzentration der hinzu dotierten Metalloxϊd- Komponente und der Temperatur ab. So zeigen Substrate aus den erfindungsgemäßen Zirkoniumoxiden mit 3,5 mo!% Y2O3 eine SEL von mindestens 2,5 S/m, bevorzugt von mindestens 2,7 S/m, besonders bevorzugt von mindestens 2,9 S/m, gemessen bei 8500C. Die Substrate aus erfindungsgemäßen Zirkoniumoxiden mit 4 mol% Yb2O3, weisen sie eine SEL von mindestens 3,8 S/m, bevorzugt mindestens 4,2 S/m auf. Die Substrate mit 6 mol% Yb2O3 zeichnen sich durch eine SEL von mindestens 6, 6 S/m, bevorzugt 6,8 S/m aus.The sintered substrates according to the invention are distinguished by their high specific electrical conductivity, later also called SEL. The level of specific electrical conductivity depends on the type and concentration of the added metal oxide component and the temperature. Thus, substrates of the zirconium oxides according to the invention with 3.5 mol% Y 2 O 3 show a SEL of at least 2.5 S / m, preferably of at least 2.7 S / m, particularly preferably of at least 2.9 S / m, measured at 850 ° C. The substrates of zirconium oxides according to the invention with 4 mol% Yb 2 O 3 have an SEL of at least 3.8 S / m, preferably at least 4.2 S / m. The substrates with 6 mol% Yb 2 O 3 are distinguished by a SEL of at least 6.6 S / m, preferably 6.8 S / m.
Die spezifische elektrische Leitfähigkeit kann mittels einer 4-Punkt-Gleichstrommessung bestimmt werden. Aus den Pulvern werden über Foliengießen keramische Prüfkörper von ca. 50 mm Länge, 10 mm Breite und einer Dicke von ca. 100 μm hergestellt. Der Foliengießschlicker wird zubereitet indem 250 g Pulver mit 202 g eines kommerziel! erhältlichen Binders z.B. (Fa. Ferro, Binder B73208) unter Zugabe von Mahlhilfsmitteln 418 g 3YSZ-Mahtzyltndem (12mm Durchmesser) und 418 g 3YSZ-Mahlzylinder (10mm Durchmesser) der Firma Tosoh in einer 1 Liter-Kunststoff-Flasche gemischt werden. Der Foliengießschlicker wird 48 Stunden auf einer Rollenbank homogenisiert. Anschließend werden die Mahlzylinder abgetrennt und der Schlicker 24 Stunden durch langsames Drehen in einer 0,5 Liter PE- Flasche entgast. Der Schlicker wird durch einen Filter auf eine ebene Fläche gegossen und mittels eines Rakels auf eine Höhe von ca. 250 μm gebracht. Nach 7-24h Trocknen werden aus der Folie Streifen geschnitten, die nach 1 -stündiger Sinterung bei 1500°C die vorbenannten Prüfkörper ergeben.The specific electrical conductivity can be determined by means of a 4-point direct current measurement. From the powders, ceramic test pieces of about 50 mm in length, 10 mm in width and a thickness of about 100 μm are produced by film casting. The film casting slip is prepared by adding 250g of powder to 202g of a commercial target! available binder (eg Ferro, Binder B73208) with the addition of grinding aids 418 g 3YSZ-Mahtzyltndem (12mm diameter) and 418 g 3YSZ grinding cylinder (10mm diameter) from Tosoh be mixed in a 1 liter plastic bottle. The Foliengießschlicker is homogenized for 48 hours on a roller bench. Then the grinding cylinders are separated and the slurry degassed for 24 hours by slowly rotating in a 0.5 liter PE bottle. The slurry is poured through a filter on a flat surface and brought by means of a doctor blade to a height of about 250 microns. After 7-24h drying strips are cut from the film, which after 1 hour sintering at 1500 ° C, the above-mentioned test specimens.
Nachdem Höhe (H) und Breite (B) des Prüfkörpers mit einer Bügelmessschraube auf +/- 1 μm genau gemessen wurde, werden vier Kontaktstreifen aus frittefreier Platinpaste (Fa. Matek, Jülich) über die ganze Breite des Prüfkörpers mittels einer Schablone auf den Prüfkörper aufgetragen und bei 12000C 1h eingebrannt. Der Abstand der inneren Kontaktstreifen (L), beträgt 25,5 mm. Die äußeren Kontaktstreifen befinden sich in Abstand von 7 mm zu inneren Kontaktstreifen. Die eingebrannten Platinkontakte der Probe werden mittels eines Körpers aus Aluminiumoxid mit einer Masse von 20 g auf feststehende Platinkontakte des Messhalters gedrückt. An den äußeren Kontakten wird ein Gleichstrom (I) von 150 μA angelegt während die Spannung (U) zwischen den inneren Kontakten mittels eines digitalen Voltmeters gemessen wird. Um den Einfluss von Polarisations- oder Kontakteffekten an den inneren Elektroden auszuschließen, werden Polarität und Höhe des Stroms variiert. Die Unabhängigkeit der Leitfähigkeit von Polarisations- oder Kontakteffekten an den inneren Elektroden wird dadurch gewährleistet, dass die Änderung der Polarität und Höhe des Stroms zu keiner Änderung der Leitfähigkeit führen.After the height (H) and width (B) of the test specimen were measured with a micrometer accurate to +/- 1 micron, four contact strips of fritless platinum paste (Matek, Jülich) over the entire width of the specimen by means of a template on the test specimen applied and baked at 1200 0 C 1h. The distance between the inner contact strips (L) is 25.5 mm. The outer contact strips are located at a distance of 7 mm to inner contact strips. The baked platinum contacts of the sample are pressed onto fixed platinum contacts of the measuring holder by means of a body of aluminum oxide with a mass of 20 g. At the outer contacts a direct current (I) of 150 μA is applied while the voltage (U) between the inner contacts is measured by means of a digital voltmeter. To eliminate the influence of polarization or contact effects on the internal electrodes, the polarity and magnitude of the current are varied. The independence of the conductivity of polarization or contact effects on the inner electrodes is ensured by the fact that the change in the polarity and magnitude of the current lead to no change in the conductivity.
Die spezifische elektrische Leitfähigkeit (SEL) der Probe wird gemäß der FormelThe specific electrical conductivity (SEL) of the sample is calculated according to the formula
SEL,[S/m] = U^V] SEL, [S / m] = U ^ V]
H[m]xB[m]H [m] xB [m]
errechnet.calculated.
Die erfindungsgemäßen Substrate zeichnen sich auch durch ihre hohe mechanischeThe substrates according to the invention are also distinguished by their high mechanical properties
Festigkeit aus. So zeigen die erfindungsgemäßen Substrate mit 3,5 mol% Y2O3 eine Festigkeit von 2000 bis 2500 MPa. Die Substrate mit 8,9 mol% Y2O3 zeigen eine Festigkeit von 900 bis 1000 MPa. Die Substrate mit 4 mol% Yb2O3 weisen eine Festigkeit von 2000 bis 2100 MPa, mit 6 mol% Yb2O3 von 1050 bis 1150 MPa auf. Die mechanische Festigkeit kann nach der Kugel-Ring-Methode, angelehnt an DIN 52292 ermittelt werden.Strength out. Thus, the substrates according to the invention with 3.5 mol% Y 2 O 3 a Strength from 2000 to 2500 MPa. The substrates with 8.9 mol% Y 2 O 3 show a strength of 900 to 1000 MPa. The 4 mol% Yb 2 O 3 substrates have a strength of 2000 to 2100 MPa, with 6 mol% Yb 2 O 3 of 1050 to 1150 MPa. The mechanical strength can be determined by the ball-ring method, based on DIN 52292.
Aus einer getrockneten Grünfolie werden runde Proben von ca. 34 mm Durchmesser gestanzt und anschließend bei 15000C eine Stunde gesintert. Nach dem Sintern weisen die runden Proben einen Radius (r3) von ca. 27 mm und eine Dicke (t) von ca. 100 μm auf. Von 20 Stück der gesinterten Proben wird nacheinander in einer Kugel-Ring- Anordnung mitteis einer Prüfmaschine der Fa. Instron die zum Bruch nötige Kraft F bestimmt. Der Ring hat einen Durchmesser (r2) von 5,6 mm. Die Querkontraktionszahl v wird zu 0,30 angenommen. Die Prüfgeschwindigkeit beträgt 0,5 mm/min. Das Brechen der Probe wird mittels Ultraschallmesskopf detektiert. Der Radius der belasteten Fläche (r-O wird näherungsweise zu t/3 angenommen. Die beim Bruch auftretende radiale Zugspannung wird gemäß nachfolgender Formel berechnet:From a dried green film, round samples of about 34 mm in diameter are punched and then sintered at 1500 0 C for one hour. After sintering, the round samples have a radius (r 3 ) of about 27 mm and a thickness (t) of about 100 μm. From 20 pieces of the sintered samples, the force F necessary for the fracture is successively determined in a ball-and-ring arrangement by means of a testing machine from Instron. The ring has a diameter (r 2 ) of 5.6 mm. The transverse contraction number v is assumed to be 0.30. The test speed is 0.5 mm / min. The breakage of the sample is detected by means of ultrasonic measuring head. The radius of the loaded surface (rO is approximately assumed to be t / 3. The radial tensile stress occurring at fracture is calculated according to the following formula:
Aus den 20 Messwerten wird eine Statistik nach Weibull ersteilt. Die in den Beispielen genannten Festigkeiten gehen aus dieser statistischen Standard-Auswertung hervor. Durch die übliche Näherung des Durchmessers der belasteten Fläche (n) kann eine systematische Überschätzung der errechneten Bruchspannungen auftreten. Deshalb wird die Probendicke in den nachfolgenden Beispielen aufgeführt. Bei gleicher Probendicke wird ein Vergleich unterschiedlicher Probenmateriaiien möglich.From the 20 readings a Weibull statistic is used. The strengths mentioned in the examples emerge from this standard statistical evaluation. Due to the usual approximation of the diameter of the loaded surface (s), a systematic overestimation of the calculated fracture stresses can occur. Therefore, the sample thickness is listed in the following examples. For the same sample thickness, a comparison of different sample materials is possible.
Die erfindungsgemäßen Zirkoniumoxide werden vorzugsweise zur Herstellung von Elektrolytsubstraten und/oder Funktionsschichten in Brennstoffzellen eingesetzt. Gegenstand der Erfindung ist daher eine Brennstoffzelle, enthaltend ein Substrat aus erfindungsgemäßem Zirkoniumoxid. Gegenstand der Erfindung ist auch eine Brennstoffzelle, welche mindestens eine Funktionsschicht aufweist, die mindestens eines der erfindungsgemäßen Zirkoniumoxid-Pulver enthält. In einer bevorzugten Ausfuhrungsform stellt die erfindungsgemäße Brennstoffzelle eine anodengestützte oder eine elektrolytgestützte Zelle dar.The zirconium oxides according to the invention are preferably used for the production of electrolyte substrates and / or functional layers in fuel cells. The invention therefore relates to a fuel cell containing a substrate of zirconium oxide according to the invention. The invention also provides a fuel cell which has at least one functional layer which contains at least one of the zirconium oxide powders according to the invention. In a preferred embodiment, the fuel cell according to the invention is an anode-supported or an electrolyte-supported cell.
Die Erfindung wird nachfolgend anhand von Beispielen näher erläutert. BeispieleThe invention will be explained in more detail by way of examples. Examples
In den folgenden Beispielen wurden für die Analyse folgende Messverfahren angewendet:In the following examples, the following measurement methods were used for the analysis:
- spezifische Oberfläche BET- ASTM D 3663,- specific surface BET-ASTM D 3663,
- Partikelgrößenverteilung - Microtrac X100, ASTM C 1070 mit 10 min Ultraschallvorbehandlung,Particle size distribution - Microtrac X100, ASTM C 1070 with 10 min ultrasonic pretreatment,
- Kristallitgröße - XRD-Linienprofslanalyse- Crystallite size - XRD line profile analysis
- monokliner Phasenanteil - Bestimmung nach Dirats / PWA-N 62 - Fülldichte-ASTM B 417- Monoclinic phase content - Determination according to Dirats / PWA-N 62 - Filling density ASTM B 417
Beispiel 1example 1
In einen mit Wasser gekühlten doppelwandigen Vorlagebehälter wurden 10,74 Liter vollentsalztes Wasser vorgelegt und unter Rühren mit einem schnei! laufenden Rührwerk 23,5 kg ZrO2 mit einer spezifischen Oberfläche von 7,54 m2/g und Kristailit- Kantenlängen von a = 47 nm, b = 58 nm, c = 43 nm sowie 1,56 kg Y2O3 mit einer spezifischen Oberfläche von 5,36 m2/g suspendiert, d.h. der Feststoffgehalt betrug 70 Massenprozent. Zur Stabiiisierung der Suspension wurden vorerst 0,37 kg einer 1:1- Mischung der beiden Dispergierhiifsmittel-Qualitäten Dolapix CE 64 und Dolapix CA der Firma Zschimmer & Schwarz zugegeben, wodurch eine Erhöhung des Zeta- Potentials erreicht wurde. Während der Vermahlung wurden dann kontinuierlich weitere Dispergierhilfsmittelmengen der Mischung Dolapix CA/CE64 zudosiert, um die mit fortschreitender Zerkleinerung neu geschaffenen Oberflächen und Ladungen weiterhin ausreichend zu stabilisieren, so dass die Suspension trotz hoher Feststoffkonzentration während der Zerkleinerung niederviskos blieb und sich gut rühren und fördern ließ. Die Suspension wurde über eine Membranpumpe aus dem Vorlagebehälter durch eine mit Polypropylen ausgekleidete Rührwerkskugelmühle des Typs LMK 4 der Firma Netzsch Feinmahltechnik gepumpt und anschließend in den Vorlagebehälter zurückgeführt, d.h. die Zerkleinerung erfolgte im Kreislaufverfahren. Der MaNraum der Mühle war mit 10 kg Mahikugeln, mit einem Durchmesser vom 0,6 mm aus mit Yttrium stabilisiertem Zirkoniumdioxid (YSZ) gefüllt. Die Drehzahl der Rührwelle betrug 1950 min'1. Der Netto-Mahlenergieeintrag (ENETTO) wurde als Differenz des Brutto- Mahlenergieeintrages (EBRuττo) und des Energieeintrags bei Leerlauf der Mühle (ELEER) bestimmt. EBRUTΓO wird mit einem an der Mühle montierten Letstungs- /Energiezähler (D 122 der Firma Gönnheimer) aufgezeichnet. ELEER ergibt sich als Produkt der Leerlaufleistung (PLEER ) der Mühie und der Mahldauer(t).In a cooled with water double-walled storage tank 10.74 liters of demineralized water were submitted and with stirring with a schnei! running agitator 23.5 kg ZrO2 with a specific surface area of 7.54 m 2 / g and Kristailit edge lengths of a = 47 nm, b = 58 nm, c = 43 nm and 1.56 kg Y 2 O 3 with a specific Surface suspended 5.36 m 2 / g, ie, the solids content was 70 percent by mass. To stabilize the suspension, initially 0.37 kg of a 1: 1 mixture of the two dispersing agent qualities Dolapix CE 64 and Dolapix CA from Zschimmer & Schwarz were added, whereby an increase in the zeta potential was achieved. During milling, further dispersing aid quantities of the Dolapix CA / CE64 mixture were continuously metered in to further stabilize the surfaces and charges newly created with progressive comminution, so that the suspension remained low-viscosity despite the high solids concentration during the comminution and could be stirred and conveyed well , The suspension was pumped via a membrane pump from the feed tank through a polypropylene-lined ball mill LMK 4 of Netzsch Feinmahltechnik and then returned to the feed tank, ie the crushing was carried out in the circulation process. The mill space was filled with 10 kg of mahic balls, 0.6 mm diameter yttria-stabilized zirconia (YSZ). The speed of the stirrer shaft was 1950 min '1 . The net grinding energy input (ENETT O ) was determined as the difference between the gross grinding energy input (E BR uττo) and the energy input at idling of the mill (ELEER). E BR U TΓO is measured using a letst / energy meter mounted on the mill (D. 122 from Gönnheimer). E EMPTY is the product of the no-load power (PLEER) of the mowing and grinding time (t).
ENETTO = EBRUTTO - ELEER (in kWh), wobei EtEER = P LEER t ist.ENETTO = EBRUTTO - E EMPTY (in kWh), where EtEER = P EMPTY t.
Der spezifische effektive Mahlenergieeintrag (MEE) ergibt sich als Quotient aus ENETTO und der eingesetzten Masse der Oxide (M).The specific effective grinding energy input (MEE) results as a quotient of ENETTO and the mass of the oxides (M) used.
MEE = ENETTO /MOXIDE (in kWh/kg)MEE = EN E TTO / MOXIDE (in kWh / kg)
Im Beispiel wurde bis zu einem Brutto-Mahlenergieeintrag von 30,6 kWh vermählen. Die aufgenommene Lehrlauf leistung bei der vorgegebenen Drehzahl der Rührwelle von 1950 min"1 betrug 1,30 kW und die Mahldauer 9 Stunden. Es resultierte also ein Netto- Mahlenergieeintrag von 0,754 kWh/kg.In the example, up to a gross grinding energy input of 30.6 kWh was milled. The recorded idle power at the predetermined rotational speed of the agitator shaft 1950 min "1 was 1.30 kW, and the grinding time 9 hours. It resulted in a net milling energy 0.754 kWh / kg.
Nach Abschluss der Vermahlung wurde die Suspension sprühgetrocknet. Die Eintrittstemperatur des Sprühtrockners betrug 3000C, die Austrittstemperatur 1050C. Sprühtrocknungs-, Austrags- und Zyklonmaterial wurden vereinigt und über ein 250 μm- Sieb schutzgesiebt. Das sprühgetrocknete Produkt hatte eine spezifische Oberfläche von 15,9 rrvVg.After completion of the milling, the suspension was spray-dried. The inlet temperature of the spray dryer was 300 0 C, the outlet temperature of 105 0 C. spray drying, cyclone discharge and material were combined and protection sieved through a 250 micron sieve. The spray dried product had a specific surface area of 15.9 rrvVg.
Anschließend wurde die homogenisierte Vorstoff misch ung in einem Haubenofen vom Typ „NT 440" der Firma Nabertherm unter Einblasen von Luft bei 1300"C mit einer Haltezeit von 2 Stunden gesintert, die Heiz- und Kühlrate betrug jeweils 5 K/min. Das Sinterprodukt wurde wiederum in der Rührwerkskugelmühle mit einem spezifischen Netto- Mahlenergieeintrag von 0,75 kWh/kg zerkleinert und anschließend sprühgetrocknet. Um grobe versinterte Agglomerate zu zerstören, wurde die Vermahlung diesmal zweistufig mit YSZ-Mahlkugeln durchgeführt, wobei in der ersten Stufe Mahlperlen mit Durchmesser von 2 mm und in der zweiten Stufe Mahlperlen von 0,6 mm eingesetzt wurden. Der Mahlkugel-Wechsel erfolgte nach einem spezifischen Netto- Mahlenergäeeintrag von 0,3 Wh/kg, im Gegensatz zu den Vorstoffmahlungen erwies sich bei den Zerkleinerungen der Sinterprodukte eine einmalige Zugabe von 1% Dispergierhilfsmittel, bezogen auf den eingesetzten Feststoff, als ausreichend.Subsequently, the homogenized material Vorstoff mixture was sintered in a hood furnace type "NT 440" from Nabertherm with blowing air at 1300 "C with a holding time of 2 hours, the heating and cooling rate was 5 K / min. The sintered product was in turn comminuted in the stirred ball mill with a specific net grinding energy input of 0.75 kWh / kg and then spray-dried. In order to destroy coarse sintered agglomerates, this time the milling was carried out in two stages with YSZ grinding balls, using milling beads with a diameter of 2 mm in the first stage and grinding beads of 0.6 mm in the second stage. The Mahlkugel change took place after a specific net Mahlenergäeeintrag of 0.3 Wh / kg, in contrast to the Vorstoffmahlungen proved in the crushing of the sintered products a one-time addition of 1% dispersing aid, based on the solid used, as sufficient.
Das erhaltene Zirkoniumoxid-Puϊver wies eine spezifische Oberfläche von 10,63 m2/g, einen dgo-Wert von 0,71 μm und eine Fülldichte von 1 ,81 g/cm3 auf. Der Y2O3-Gehalt betrug 3,5 VoI %. Der monokline Phasenanteii betrug 41 VoI %.The zirconia powder obtained had a specific surface area of 10.63 m 2 / g, a dgo value of 0.71 μm and a bulk density of 1.81 g / cm 3 . The Y 2 O 3 content was 3.5% by volume. The monoclinic phase fraction was 41% by volume.
Das Pulver wurde uniaxial mit einem Druck von 100 MPa zu Presskörpern gepresst. Danach wurden die Probekörper isostatisch mit 2000 MPa nachverdichtet. Die Presskörper zeigten eine Gründichte von 3,44 g/cm3. Die Dichte der Presskörper nach dem Sintern bei 1500°C/1 h betrug 6,01 g/cm3 (98,2 % der theoretischen Dichte). Das Pulver ließ sich sehr gut über Foliengießen, Trocknen und einstündiges Sintern bei 15000C zu Elektrolytsubstraten verarbeiten. Die bei 8500C gesinterten Substrate zeigten eine spezifische elektrische Leitfähigkeit von 2,70 S/m. Die mechanische Festigkeit von 90 μm dicken Substraten, ermittelt nach Kugel-Ring-Methode, betrug 2413 MPa. Das Zirkoniumoxid in den gesinterten Substraten war nahe zu vollständig stabilisiert, der monokline Phasengehalt betrug < 1 Vo! %.The powder was pressed uniaxially with a pressure of 100 MPa into compacts. Thereafter, the specimens were post-densified isostatically with 2000 MPa. The compacts showed a green density of 3.44 g / cm 3 . The density of the compacts after sintering at 1500 ° C / 1 h was 6.01 g / cm 3 (98.2% of the theoretical density). The powder was very easy to process via foil casting, drying and sintering for one hour at 1500 0 C to electrolyte substrates. The sintered at 850 0 C substrates showed a specific electrical conductivity of 2.70 S / m. The mechanical strength of 90 μm thick substrates, determined by the ball-ring method, was 2413 MPa. The zirconia in the sintered substrates was nearly completely stabilized, the monoclinic phase content was <1 Vo! %.
Beispiel 2Example 2
23,5 kg ZrO2 mit einer spezifischen Oberfläche von 9,71 m2/g und Kristaliit- Kantenlängen von a = 36 nm, b = 46 nm, c = 36 nm und 1,56 kg Y2O3 mit einer spezifischen Oberfläche von 5,36 m2/g wurden in 10,7 Litern Wasser suspendiert. Der Feststoffgehalt der Suspension betrug dabei 70 Massenprozent. Die homogenisierte Vorstoff-Mischung zeigte nach der Sprühtrocknung eine spezifische Oberfläche von 19,28 m2/g. Die Durchführung des Beispiels erfolgte analog Beispiel 1.23.5 kg ZrO 2 with a specific surface area of 9.71 m 2 / g and crystallite edge lengths of a = 36 nm, b = 46 nm, c = 36 nm and 1.56 kg Y 2 O 3 with a specific surface area of 5.36 m 2 / g were suspended in 10.7 liters of water. The solids content of the suspension was 70 percent by mass. The homogenized precursor mixture showed a specific surface area of 19.28 m 2 / g after spray-drying. The implementation of the example was carried out analogously to Example 1.
Das erhaltene Zirkoniumoxid-Pulver wies eine spezifische Oberfläche von 9,43 m2/g, einen d90-Wert von 0,57 μm sowie eine Fülldichte von 1 ,84 g/cm3 auf. Der Y2O3-Gehalt lag bei 3,5 mol%. Der monokline Phasenanteil des Pulvers betrug 39 Vol%. Das Pulver wurde uniaxial mit einem Druck von von 100 MPa zu Presskörpern gepresst. Danach wurden die Probekörper isostatisch mit 2000 MPa nachverdichtet. Die Presskörper zeigten eine Gründichte von 3,49 g/cm3. Die Dichte der Presskörper nach dem Sintern bei 1500°C/1h betrug 6,01 g/cm3. Das Pulver Heß sich sehr gut über Foliengießen, Trocknen und einstündiges Sintern bei 15000C zu Elektrolytsubstraten verarbeiten. Die gesinterten Substrate zeigten bei 8500C eine elektrische Leitfähigkeit (SEL) von 2,72 S/m. Die mechanische Festigkeit von 90 μm dicken Substraten betrug 1954 MPa. Das Zirkoniumoxid in den gesinterten Substraten war vollständig stabilisiert, d.h. monokline ZrO2-Phase war über eine Röntgenstrukturanalyse nicht mehr nachweisbar.The zirconia powder obtained had a specific surface area of 9.43 m 2 / g, a d 90 value of 0.57 μm and a filling density of 1.84 g / cm 3 . The Y 2 O 3 content was 3.5 mol%. The monoclinic phase fraction of the powder was 39% by volume. The powder was pressed uniaxially with a pressure of 100 MPa into compacts. Thereafter, the specimens were post-densified isostatically with 2000 MPa. The compacts showed a green density of 3.49 g / cm 3 . The density of the compacts after sintering at 1500 ° C / 1h was 6.01 g / cm 3 . The powder can be processed very well by film casting, drying and sintering at 1500 ° C. for one hour to form electrolyte substrates. The sintered substrates showed an electrical conductivity (SEL) of 2.72 S / m at 850 ° C. The mechanical strength of 90 μm thick substrates was 1954 MPa. The zirconia in the sintered substrates was completely stabilized, ie monoclinic ZrO 2 phase was no longer detectable by X-ray analysis.
Beispiel 3Example 3
66 kg ZrO2 mit einer spezifischen Oberfläche von 6,63 rrrVg und Kristallit-Kantenlängen von a = 50 nm, b = 59 nm, c = 44 nm und 4,4 kg Y2O3 mit einer spezifischen Oberfläche von 3,74 m2/g wurden in 47 Litern Wasser suspendiert. Der Feststoffgehalt betrug dabei66 kg ZrO 2 with a specific surface area of 6.63 rrrVg and crystallite edge lengths of a = 50 nm, b = 59 nm, c = 44 nm and 4.4 kg of Y 2 O 3 with a specific surface area of 3.74 m 2 / g were suspended in 47 liters of water. The solids content was thereby
60 Massenprozent. Die Vorstoff-Mahlung erfolgte bei einem spezifischen Nettto- Mahienergieeintrag von 0,50 kWh/kg Feststoff. Die homogenisierte Vorstoff-Mischung zeigte nach der Sprühtrocknung eine spezifische Oberfläche von 14 mz/g. Die weitere Durchführung des Beispiels erfolgte analog Beispiel 1. Das erhaltene Produkt wies eine spezifische Oberfläche von 10,60 m2/g, einen dΘ0-Wert von 0,64 μm sowie eine Fülldichte von 1 ,72 g/cm3 auf. Der Y2O3-Gehalt betrug 3,5 mol %. Der monokline Phasenanteil des Pulvers betrug 50 VoI %. Das Pulver wurde uniaxial mit einem Druck von 100 MPa zu Presskörpern gepresst. Danach wurden die Probekörper isostatisch mit 2000 MPa nachverdichtet. Die Presskörper zeigten eine Gründichte von 3,46 g/cm3 Die Dichte nach dem Sintern bei 1500°C/1h betrug 6,01 g/cm3. Das Pulver ließ sich sehr gut über Foiiengießen, Trocknen und einstündiges Sintern bei 15000C zu Elektrolytsubstraten verarbeiten. Die gesinterten Substrate zeigten bei 850°C eine spezifische elektrische Leitfähigkeit (SEL) von 2,73 S/m. Die mechanische Festigkeit von 90 μm dicken Substraten betrug 2390 MPa. Das Zirkoniumoxid in den gesinterten Substraten war vollständig stabilisiert, d.h. monokline ZrO2~Phase war über eine Röntgenstrukturanalyse nicht nachweisbar.60 percent by mass. The precursor grinding was carried out at a specific net Mahienergieeintrag of 0.50 kWh / kg solid. The homogenized precursor mixture showed a specific surface area of 14 m.sup.2 / g after spray-drying. The further implementation of the example was carried out analogously to Example 1. The product obtained had a specific surface area of 10.60 m 2 / g, a d Θ0 value of 0.64 μm and a filling density of 1.72 g / cm 3 . The Y 2 O 3 content was 3.5 mol%. The monoclinic phase fraction of the powder was 50% by volume. The powder was pressed uniaxially with a pressure of 100 MPa into compacts. Thereafter, the specimens were post-densified isostatically with 2000 MPa. The compacts showed a green density of 3.46 g / cm 3. The density after sintering at 1500 ° C / 1 h was 6.01 g / cm 3 . The powder was very easy to process via Foiiengießen, drying and sintering for 1 hour at 1500 0 C to electrolyte substrates. The sintered substrates showed a specific electrical conductivity (SEL) of 2.73 S / m at 850 ° C. The mechanical strength of 90 μm thick substrates was 2390 MPa. The zirconia in the sintered substrates was completely stabilized, ie monoclinic ZrO 2 ~ phase was undetectable by X-ray analysis.
Beispiel 4Example 4
93,7 kg ZrO2 mit einer spezifischen Oberfläche von 6,63 m2/g und Kristallit-Kantenlängen von a = 50 nm, b = 59 nm, c = 44 nm und 6,2 kg Y2O3 mit einer spezifischen Oberfläche von 3,74 m2/g wurden in 66,6 Litern Wasser suspendiert. Der Feststoffgehalt der Suspension betrug dabei 60 Massenprozent. Die Durchführung erfolgte analog Beispiel 1. Das resultierende Pulver wies eine spezifische Oberfläche von 11 m2/g, einen d^-Wert von 1 ,16 μm sowie eine Fülldichte von 1,67 g/cm3 auf. Der Y2O3-Gehalt betrug 3,5 mol%. Der monokline Phasenanteil der Pulver betrug 60 VoI %. Das Pulver wurde uniaxial mit einem Druck von 100 MPa zu Presskörpern gepresst. Danach wurden die Probekörper isostatisch mit 2000 MPa nachverdichtet.93.7 kg ZrO 2 with a specific surface area of 6.63 m 2 / g and crystallite edge lengths of a = 50 nm, b = 59 nm, c = 44 nm and 6.2 kg Y 2 O 3 with a specific surface area of 3.74 m 2 / g were suspended in 66.6 liters of water. The solids content of the suspension was 60 percent by mass. The procedure was analogous to Example 1. The resulting powder had a specific surface area of 11 m 2 / g, a d ^ value of 1, 16 microns and a filling density of 1.67 g / cm 3 . The Y 2 O 3 content was 3.5 mol%. The monoclinic phase content of the powders was 60% by volume. The powder was pressed uniaxially with a pressure of 100 MPa into compacts. Thereafter, the specimens were post-densified isostatically with 2000 MPa.
Die Presskörper zeigten eine Gründichte von 3,35 g/cm3. Die Dichte nach dem Sintern bei 1500°C/1h betrug 6,09 g/cm3. Das Pulver ließ sich sehr gut über Foliengießen, Trocknen und einstündiges Sintern bei 15000C zu Elektrolytsubstraten verarbeiten. Die gesinterten Substrate wiesen eine (SEL), gemessen bei 8500C, von 2,83 S/m. Die mechanische Festigkeit von 90 μm dicken Substraten betrug 2191 MPa. Das Zirkoniumoxid in den gesinterten Substraten war vollständig stabilisiert, d.h. monoküne ZrO2-Phase war über eine Röntgenstrukturanalyse nicht nachweisbar. Beispiel 5The compacts showed a green density of 3.35 g / cm 3 . The density after sintering at 1500 ° C / 1h was 6.09 g / cm 3 . The powder was very easy to process via foil casting, drying and sintering for one hour at 1500 0 C to electrolyte substrates. The sintered substrates had a (SEL), measured at 850 ° C., of 2.83 S / m. The mechanical strength of 90 μm thick substrates was 2191 MPa. The zirconia in the sintered substrates was completely stabilized, ie monocrystalline ZrO 2 phase was undetectable by X-ray analysis. Example 5
46,5 kg ZrO2 mit einer spezifischen Oberfläche von 7,67 m2/g und Kristallit-Kantenlängen von a - 47 nm, b = 56 nm, c = 43 nm und 3,2 kg Y2O3 mit einer spezifischen Oberfläche von 7 m2/g wurden in 33,2 Litern Wasser suspendiert. Der Feststoffgehalt der Suspension betrug dabei 60 Massenprozent. Die Durchführung erfolgte analog Beispie! 1. Das resultierende Pulver wies eine spezifische Oberfläche von 11,48 m2/g, einen d90-Wert von 0,7 μm sowie eine Fülldϊchte von 1,71 g/cm3 auf. Der Y2O3-Gehalt betrug 3,5 mol%. Der monokline Phasenantei! des Pulvers betrug 45 Vo! %. Das Pulver wurde uniaxial mit einem Druck von von 100 MPa zu Presskörpern gepresst. Danach wurden die Probekörper isostatisch mit 2000 MPa nachverdichtet.46.5 kg ZrO 2 with a specific surface area of 7.67 m 2 / g and crystallite edge lengths of a - 47 nm, b = 56 nm, c = 43 nm and 3.2 kg of Y 2 O 3 with a specific surface area of 7 m 2 / g were suspended in 33.2 liters of water. The solids content of the suspension was 60 percent by mass. The procedure was carried out analogously Beispie! 1. The resulting powder had a specific surface area of 11.48 m 2 / g, a d 90 value of 0.7 μm and a filling density of 1.71 g / cm 3 . The Y 2 O 3 content was 3.5 mol%. The monoclinic phase aspect! the powder was 45 Vo! %. The powder was pressed uniaxially with a pressure of 100 MPa into compacts. Thereafter, the specimens were post-densified isostatically with 2000 MPa.
Die Presskörper zeigten eine Gründichte von 3,5 g/cm3- Die Dichte nach dem Sintern bei 1500°C/1h betrug 6,02 g/cm3. Das Pulver ließ sich sehr gut über Foliengießen, Trocknen und einstündiges Sintern bei 15000C zu Elektrolytsubstraten verarbeiten. Die gesinterten Substrate wiesen eine (SEL), gemessen bei 8500C, von 2,87 S/m. Die mechanische Festigkeit von 90 μm dicken Substraten betrug 2285 MPa. Das Zirkoniumoxid in den gesinterten Substraten war vollständig stabilisiert, d.h. monokline ZrO2-Phase war über eine Röntgenstrukturanalyse nicht nachweisbar,The compacts showed a green density of 3.5 g / cm 3 - The density after sintering at 1500 ° C / 1 h was 6.02 g / cm 3 . The powder was very easy to process via foil casting, drying and sintering for one hour at 1500 0 C to electrolyte substrates. The sintered substrates had a (SEL), measured at 850 ° C., of 2.87 S / m. The mechanical strength of 90 μm thick substrates was 2285 MPa. The zirconia in the sintered substrates was completely stabilized, ie monoclinic ZrO 2 phase was undetectable by X-ray analysis,
Beispiel 6Example 6
Nach dem in Beispiel 1 beschriebenen Prozess wurden dotierte ZrO2-Pulver mit unterschiedlichen Y2O3 Gehalten hergestellt Eingesetzt wurde Zirkoniumoxid mit einer spezifischen Oberfläche von 7,67 m2/g und Kristallit-Kantenlängen von a - 47 nm, b = 56 und c = 43 nm sowie das auch in Beispiel 5 verwendete Y2O3 mit einer spezifischen Oberfläche von 7 m2/g. Die Eigenschaften der resultierenden Pulver, Presskörper und Substrate sind Tabelle 1 zu entnehmen. In der Tabelle ist zu sehen, dass mit steigenden Yttriumoxid-Gehalten die spezifische elektrische Leitfähigkeit zunimmt. In Fig. 2 ist die mechanische Festigkeit und spezifische elektrische Leitfähigkeit von in Beispielen 1 bis 6, aus erfindungsgemäßen Zirkoniumoxiden hergestellten Substraten, in Abhängigkeit vom Y2O3-Geha!t dargestellt. Tabelle 1Using the process described in Example 1, doped ZrO 2 powders having different Y 2 O 3 contents were prepared. Zirconia was used with a specific surface area of 7.67 m 2 / g and crystallite edge lengths of a - 47 nm, b = 56 and c = 43 nm and also used in Example 5 Y 2 O 3 with a specific surface area of 7 m 2 / g. The properties of the resulting powders, compacts and substrates are shown in Table 1. The table shows that with increasing amounts of yttrium oxide, the specific electrical conductivity increases. FIG. 2 shows the mechanical strength and specific electrical conductivity of substrates produced in Examples 1 to 6 from zirconium oxides according to the invention, as a function of the Y 2 O 3 content. Table 1
Beispiel 7Example 7
Entsprechend dem in Beispiel 1 beschriebenen Verfahren, wurde ein mit 4 mol%According to the procedure described in Example 1, a with 4 mol%
Yb2O3 dotiertes ZrO2 Pulver hergestellt. Eingesetzt wurden dabei 22,1 kg des auch inYb 2 O 3 doped ZrO 2 powder produced. It was used 22.1 kg of the also in
Beispiel 5 verwendeten Zrθ2 und 2,9 kg Yb2O3 mit einer spezifischen Oberfläche vonExample 5 used ZrO 2 and 2.9 kg of Yb 2 O 3 having a specific surface area of
3,77 m2/g in 10,7 Litern Wasser. Der Feststoffgehalt der Suspension betrug dabei 703.77 m 2 / g in 10.7 liters of water. The solids content of the suspension was 70
Massenprozent.Mass percent.
Das erhaltene Produkt wies eine spezifische Oberfläche von 10,89 m2/g, einen dgo-Wert von 0,79 μm sowie eine Fülldichte von 1 ,73 g/cm3 auf. Der monokiine Phasenanteil desThe product obtained had a specific surface area of 10.89 m 2 / g, a d go value of 0.79 μm and a filling density of 1.73 g / cm 3 . The monokinine phase fraction of the
Pulvers betrug 30 VoI % Das Pulver wurde uniaxial mit einem Druck von von 100 MPa zuPowder was 30% by volume. The powder was added uniaxially with a pressure of 100 MPa
Presskörpern gepresst. Danach wurden die Probekörper isostatisch mit 2000 MPa nachverdichtet.Pressed pressed bodies. Thereafter, the specimens were post-densified isostatically with 2000 MPa.
Die Presskörper zeigten eine Gründichte von 3,66 g/cm3 Die Dichte nach dem Sintern bei 1500°C/1 h betrug 6,32 g/cm3 Das Pulver ließ sich sehr gut über Foliengießen,The compacts showed a green density of 3.66 g / cm 3 The density after sintering at 1500 ° C / 1 h was 6.32 g / cm 3 The powder was very good at film casting,
Trocknen und einstundiges Sintern bei 15000C zu Elektrolytsubstraten verarbeiten. Wie in Fig. 3 dargestellt, zeigten die gesinterten Substrate aus Ytterbiumoxid dotierten ZrO2 (YbSZ) bei 8500C eine spezifische elektrische Leitfähigkeit von 4,21 S/m, die somit deutlich höher war als bei vergleichbaren Substraten aus mit 4 mol% Y2O3 dotiertem ZrO2 (YSZ), Beispie! 6. Die mechanische Festigkeit von 95 μm dicken Substraten betrug 2066 MPa. Das Zirkoniumoxid in den gesinterten Substraten war vollständig stabilisiert, d.h. monokline ZrO2-Phase war über eine Röntgenstrukturanaiyse nicht nachweisbar.Dry and one-hour sintering at 1500 0 C to process electrolyte substrates. As shown in Fig. 3, the sintered substrates of ytterbium oxide doped ZrO 2 (YbSZ) at 850 0 C exhibited a specific electric conductivity of 4.21 S / m, which was thus significantly higher than comparable substrates having 4 mol% Y 2 O 3 doped ZrO 2 (YSZ), example! 6. The mechanical strength of 95 microns thick substrates was 2066 MPa. The zirconia in the sintered substrates was completely stabilized, ie monoclinic ZrO 2 phase was undetectable by X-ray analysis.
Beispiel 8Example 8
Entsprechend dem Beispiel 7 wurde ein mit δ rnol% Yb2O3 dotiertes ZrO2-PuIver hergestellt, ausgehend von 20,8 kg ZrO2 und 4,2 kg Yb2O3. According to Example 7, a ZrO 2 powder doped with δ rnol% Yb 2 O 3 was prepared, starting from 20.8 kg ZrO 2 and 4.2 kg Yb 2 O 3.
Das erhaltene Produkt wies eine spezifische Oberfläche von 9,07 m2/g, einen d90-Wert von 0,77 μm sowie eine Fülldichte von 1,84 g/cm3 auf. Der monokline Phasenanteil der Pulver betrug 13 VoI %. Das Pulver wurde uniaxiai mit einem Druck von von 100 MPa zu Presskörpern gepresst. Danach wurden die Probekörper isostatisch mit 2000 MPa nachverdichtet.The product obtained had a specific surface area of 9.07 m 2 / g, a d 90 value of 0.77 μm and a filling density of 1.84 g / cm 3 . The monoclinic phase content of the powders was 13% by volume. The powder was pressed uniaxially with a pressure of 100 MPa into compacts. Thereafter, the specimens were post-densified isostatically with 2000 MPa.
Die Presskörper zeigten eine Gründichte von 3,74 g/cm3. Die Dichte nach dem Sintern bei 1500°C/1h betrug 6,49 g/cm3. Das Pulver ließ sich sehr gut über Foliengießen, Trocknen und einstündtges Sintern bei 15000C zu Elektrolytsubstraten verarbeiten. Wie in der Fig. 3 dargestellt, zeigen die gesinterten Substrate (6YbSZ) bei 8500C eine spezifische elektrische Leitfähigkeit von 6,85 S/m, die somit deutlich höher ist als bei vergleichbaren Substraten aus mit 6 mol% Y2O3 dotiertem ZrO2 aus Beispiel 6. Die mechanische Festigkeit von 95 μm dicken Substraten betrug 1108 MPa. Das Zirkoniumoxid in den gesinterten Substraten war vollständig stabilisiert, d.h. monokline ZrO2-Phase war über die Röntgenstrukturanaiyse nicht nachweisbar. The compacts showed a green density of 3.74 g / cm 3 . The density after sintering at 1500 ° C / 1h was 6.49 g / cm 3 . The powder was very easy to process via foil casting, drying and sintering at 1500 0 C for 1 hour to form electrolyte substrates. As shown in Fig. 3, the sintered substrates (6YbSZ) show at 850 0 C, a conductivity of 6.85 S / m, which is thus significantly higher than comparable substrates containing 6 mol% of Y 2 O 3 doped ZrO 2 from example 6. The mechanical strength of 95 μm thick substrates was 1108 MPa. The zirconia in the sintered substrates was completely stabilized, ie monoclinic ZrO 2 phase was undetectable by X-ray analysis.

Claims

Patentansprüche claims
1. Puiverförmiges Zirkoniumoxid enthaltend bis zu 10 mol % mindestens eines der Metalloxide aus der Gruppe Scandium, Yttrium, Seltenerden und/oder deren Mischungen, welches eine Fülldichte von 1 ,2 bis 2,5 g/cm3, gemessen nach ASTM1. A powdery zirconium oxide containing up to 10 mol% of at least one of the metal oxides from the group consisting of scandium, yttrium, rare earths and / or mixtures thereof, which has a bulk density of 1.2 to 2.5 g / cm 3 , measured according to ASTM
B 417, aufweist.B 417, has.
2. Puiverförmiges Zirkoniumoxid gemäß Anspruch 1, dadurch gekennzeichnet, dass es eine Fülidichte von 1 ,3 bis 1,9 g/cm3 aufweist.2. A powdery zirconium oxide according to claim 1, characterized in that it has a filling density of 1.3 to 1.9 g / cm 3 .
3. Puiverförmiges Zirkoniumoxid gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass es 3 bis 10 mol% Y2O3 enthält.3. A powdery zirconium oxide according to claim 1 or 2, characterized in that it contains 3 to 10 mol% of Y 2 O 3 .
4. Puiverförmiges Zirkoniumoxid gemäß wenigstens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass es 3 bis 6 mol% Y2O3 enthält.4. A powdery zirconium oxide according to at least one of claims 1 to 3, characterized in that it contains 3 to 6 mol% of Y 2 O 3 .
5. Puiverförmiges Zirkoniumoxid gemäß wenigstens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass es 3 bis 4 mol% Y2O3 enthält.5. A powdery zirconium oxide according to at least one of claims 1 to 4, characterized in that it contains 3 to 4 mol% of Y 2 O 3 .
6. Puiverförmiges Zirkoniumoxid gemäß wenigstens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass es 3 bis 10 mol% Yb2O3 enthält.6. A powdery zirconium oxide according to at least one of claims 1 to 5, characterized in that it contains 3 to 10 mol% of Yb 2 O 3 .
7. Puiverförmiges Zirkoniumoxid gemäß wenigstens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass es 3 bis 7 mol% Yb2O3 enthält.7. A powdery zirconium oxide according to at least one of claims 1 to 5, characterized in that it contains 3 to 7 mol% of Yb 2 O 3 .
8. Puiverförmiges Zirkoniumoxid gemäß wenigstens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass es eine spezifische Oberfläche BET von 5 bis 18 m2/g, gemessen nach ASTM D 3663 aufweist.8. The powdery zirconium oxide according to at least one of claims 1 to 7, characterized in that it has a BET specific surface area of from 5 to 18 m 2 / g, measured according to ASTM D 3663.
9. Puiverförmiges Zirkoniumoxid gemäß wenigstens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass es eine spezifische Oberfläche BET von 10 bis 16 m2/g, gemessen nach ASTM D 3663, aufweist.9. The powdery zirconium oxide according to at least one of claims 1 to 7, characterized in that it has a BET specific surface area of 10 to 16 m 2 / g, measured according to ASTM D 3663.
10. Puiverförmiges Zirkoniumoxid gemäß wenigstens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass es 5 bis 80 VoI % monokline Phasenanteile aufweist. 10. A powdery zirconium oxide according to at least one of claims 1 to 9, characterized in that it comprises 5 to 80% by volume of monoclinic phase fractions.
11. Pulverförmiges Zirkoniumoxid gemäß wenigstens einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass es 20 bis 80 VoS % monokline Phasenanteile aufweist.Powdered zirconium oxide according to at least one of claims 1 to 10, characterized in that it has 20 to 80% by mass of monoclinic phases.
12. Pulverförmiges Zirkoniumoxid gemäß wenigstens der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass es 45 bis 70 VoI % monokline Phasenanteile aufweist.Powdered zirconium oxide according to at least one of Claims 1 to 11, characterized in that it has 45 to 70% by volume of monoclinic phase fractions.
13. Verfahren zur Herstellung von mit Metalloxiden aus der Gruppe Scandium, Yttrium und Seltenerden und/oder deren Mischungen dotierten Zirkoniumoxiden enthaltend folgende Schritte: a) Bereitstellen einer wässrigen Suspension aus Zirkonäumoxid und dem jeweiligen Metalloxid im stöchiometrischen Verhältnis, einschließlich der Stabilisierung der Suspension durch Dispergiermittel, b) Homogenisieren der Suspension durch Zerkleinerung unter Einsatz von Mahlhilfsmitteln durch Eintrag einer spezifischen Netto-Mahlenergie von >0,1 kWh pro kg eingesetzten Feststoff, c) Trocknung der Suspension bei Temperaturen ≥ 8O0C unter Erhalt einer homogenen Oxidmischung, d) Sinterung der Oxidmischung bei Temperaturen von mindestens 1200 0C, e) Erzeugung einer Suspension und Zerkleinerung des in Schritt d) gebildeten13. A process for producing zirconium oxides doped with metal oxides from the group consisting of scandium, yttrium and rare earths and / or mixtures thereof comprising the following steps: a) providing an aqueous suspension of zirconium oxide and the respective metal oxide in the stoichiometric ratio, including the stabilization of the suspension by dispersants , b) homogenizing the suspension by comminution using grinding aids by introducing a specific net grinding energy of> 0.1 kWh per kg of solid used, c) drying the suspension at temperatures ≥ 8O 0 C to obtain a homogeneous oxide mixture, d) sintering the oxide mixture at temperatures of at least 1200 0 C, e) generating a suspension and comminution of the formed in step d)
Sinterproduktes durch Eintrag einer spezifischen Energie von >0,1 kWh pro kg Sinterproduktes, g) Trocknung der Suspension.Sinterproduktes by entry of a specific energy of> 0.1 kWh per kg of sintered product, g) drying of the suspension.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass die Kantenlängen (a, b, c) der Kristallite des eingesetzten Zirkoniumoxid-Rohstoffes Werte von a = 20 bis 75 nm, b = 20 bis 90 nm und c = 20 bis 75 nm aufweisen.14. The method according to claim 13, characterized in that the edge lengths (a, b, c) of the crystallites of the zirconium oxide raw material used have values of a = 20 to 75 nm, b = 20 to 90 nm and c = 20 to 75 nm ,
15. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass die Kantenlängen (a, b, c) der Kristallite des eingesetzten Zirkoniumoxid-Rohstoffes Werte von a = 30 bis 50 nm, b = 45 bis 60 nm und c = 35 bis 45 nm aufweisen.15. The method according to claim 13, characterized in that the edge lengths (a, b, c) of the crystallites of the zirconium oxide raw material used have values of a = 30 to 50 nm, b = 45 to 60 nm and c = 35 to 45 nm ,
16. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass die eingesetzten Zirkoniumoxid-Rohstoffe eine spezifische Oberfläche BET von 3 bis 30 m2/g, gemessen nach ASTW! D 3663, aufweisen. 16. The method according to claim 13, characterized in that the zirconium oxide raw materials used have a BET specific surface BET of 3 to 30 m 2 / g, measured according to ASTW! D 3663.
17. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass die eingesetzten Zirkoniumoxid-Rohstoffe eine spezifische Oberfläche BET von 6 bis 11 mz/g , gemessen nach ASTM D 3663, aufweisen.17. The method according to claim 13, characterized in that the zirconium oxide raw materials used have a BET specific surface BET of 6 to 11 m z / g, measured according to ASTM D 3663.
18. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass das Homogenisieren der Rohstoffe durch Nassmahlung bei einem spezifischen Netto- Mahlenergieeintrag von 0,2 bis 1 ,5 kWh/kg Feststoff durchgeführt wird.18. The method according to claim 13, characterized in that the homogenization of the raw materials by wet grinding at a specific net Mahlenergieeintrag of 0.2 to 1, 5 kWh / kg solids is performed.
19. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass das Homogenisieren der Rohstoffe durch NassmahJung bei einem spezifischen Netto-19. The method according to claim 13, characterized in that the homogenization of the raw materials by NassmahJung at a specific net
Mahienergieeintrag von 0,3 bis 1 ,0 kWh/kg Feststoff durchgeführt wird.Mahienergieeintrag of 0.3 to 1, 0 kWh / kg solids is performed.
20. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass das Homogenisieren der Rohstoffe durch Nassmahlung bei einem spezifischen Netto- Mahlenergieeintrag von 0,6 bis 0,8 kWh/kg Feststoff durchgeführt wird.20. The method according to claim 13, characterized in that the homogenization of the raw materials by wet grinding at a specific net grinding energy input of 0.6 to 0.8 kWh / kg solids is performed.
21. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass die Suspension sprühgetrocknet wird.21. The method according to claim 13, characterized in that the suspension is spray-dried.
22. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass die Sinterung bei Temperaturen von 1200 bis 135O0C durchgeführt wird.22. The method according to claim 13, characterized in that the sintering is carried out at temperatures of 1200 to 135O 0 C.
23. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass die Sinterung bei Temperaturen von 1250 bis 13000C durchgeführt wird.23. The method according to claim 13, characterized in that the sintering is carried out at temperatures of 1250 to 1300 0 C.
24. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass die Nassmahlung der gesinterten Oxidmischung bei einem spezifischen Netto-Mahlenergieeintrag von 0,5-2,5 kWh/kg Oxidmischung durchgeführt wird.24. The method according to claim 13, characterized in that the wet grinding of the sintered oxide mixture is carried out at a specific net grinding energy input of 0.5-2.5 kWh / kg of oxide mixture.
25. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass die Nassmahlung der gesinterten Oxidmischung bei einem spezifischen Netto-Mahlenergieeintrag von 0,7-1 ,9 kWh/kg Oxidmischung durchgeführt wird.25. The method according to claim 13, characterized in that the wet grinding of the sintered oxide mixture at a specific net grinding energy input of 0.7-1, 9 kWh / kg oxide mixture is performed.
26. Presskörper, bestehend aus pulverförmigen Zirkoniumoxid nach einem oder mehreren der Ansprüche 1 bis 12. 26. compact consisting of pulverulent zirconium oxide according to one or more of claims 1 to 12.
27. Presskörper nach Anspruch 26, weicher eine Gründichte von 54 bis 65 % der theoretischen Sinterdichte aufweist.27. A compact according to claim 26, which has a green density of 54 to 65% of the theoretical sintered density.
28. Presskörper nach Anspruch 26, welcher eine Gründichte von 56 bis 62 % der theoretischen Sinterdichte aufweist.28. A compact according to claim 26, which has a green density of 56 to 62% of the theoretical sintered density.
29. Presskörper nach Anspruch 26, welcher eine Gründichte von 56 bis 58 % der theoretischen Sinterdichte aufweist.29. A compact according to claim 26, which has a green density of 56 to 58% of the theoretical sintered density.
30. Substrat für elektrolytgestützte keramische Brennstoffzellen, bestehend aus puiverförmigen Zirkoniumoxid nach einem oder mehreren der Ansprüche 1 bis 12.30. A substrate for electrolyte-supported ceramic fuel cells, consisting of powdery zirconium oxide according to one or more of claims 1 to 12.
31. Substrat nach Anspruch 30, welches eine spezifische elektrische Leitfähigkeit (SEL) von mindestens 2,5 S/m, gemessen bei 8500C, aufweist.31. A substrate according to claim 30, which has a specific electrical conductivity (SEL) of at least 2.5 S / m, measured at 850 0 C.
32. Substrat nach Anspruch 30, weiches eine spezifische elektrische Leitfähigkeit (SEL) von mindestens 3,8 S/m, gemessen bei 8500C, aufweist.32. A substrate according to claim 30, which has a specific electrical conductivity (SEL) of at least 3.8 S / m, measured at 850 ° C.
33. Substrat nach Anspruch 30, welches eine spezifische elektrische Leitfähigkeit (SEL) von mindestens 6,6 S/m, gemessen bei 8500C, aufweist.33. A substrate according to claim 30, which has a specific electrical conductivity (SEL) of at least 6.6 S / m, measured at 850 0 C.
34. Verwendung des Zirkoniumoxides nach einem oder mehreren der Ansprüche 1 bis 12 zur Herstellung von Elektrolytsubstraten und/oder Funktionsschichten in Brennstoffzellen.34. Use of the zirconium oxide according to one or more of claims 1 to 12 for the production of electrolyte substrates and / or functional layers in fuel cells.
35. Brennstoffzelle enthaltend ein Substrat nach Anspruch 30.35. A fuel cell containing a substrate according to claim 30.
36. Brennstoffzelle, welche mindestens eine Funktionsschicht aufweist, die ein Zirkoniumoxid nach einem oder mehreren der vorstehenden Ansprüche enthält.36. Fuel cell, which has at least one functional layer containing a zirconium oxide according to one or more of the preceding claims.
37. Brennstoffzellen nach Anspruch 40 oder 41, welche eine anodengestützte oder eine elektrolytgestützte Zelle ist. 37. A fuel cell according to claim 40 or 41, which is an anode-supported or an electrolyte-supported cell.
EP07787848A 2006-08-17 2007-07-24 Zirconium oxide and method for the production thereof Withdrawn EP2054345A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102006038602 2006-08-17
DE102006044824 2006-09-20
PCT/EP2007/057607 WO2008019926A1 (en) 2006-08-17 2007-07-24 Zirconium oxide and method for the production thereof

Publications (1)

Publication Number Publication Date
EP2054345A1 true EP2054345A1 (en) 2009-05-06

Family

ID=38720894

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07787848A Withdrawn EP2054345A1 (en) 2006-08-17 2007-07-24 Zirconium oxide and method for the production thereof

Country Status (8)

Country Link
US (1) US8383266B2 (en)
EP (1) EP2054345A1 (en)
JP (1) JP5745765B2 (en)
KR (1) KR101323697B1 (en)
CN (2) CN101500943B (en)
RU (1) RU2442752C2 (en)
UA (1) UA98118C2 (en)
WO (1) WO2008019926A1 (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101323697B1 (en) * 2006-08-17 2013-11-08 하.체. 스타르크 게엠베하 Zirconium oxide and method for the production thereof
WO2008048445A2 (en) 2006-10-18 2008-04-24 Bloom Energy Corporation Anode with remarkable stability under conditions of extreme fuel starvation
US10615444B2 (en) 2006-10-18 2020-04-07 Bloom Energy Corporation Anode with high redox stability
WO2008127601A1 (en) 2007-04-13 2008-10-23 Bloom Energy Corporation Heterogeneous ceramic composite sofc electrolyte
DE102008009985B4 (en) * 2008-02-19 2015-04-09 Sunfire Gmbh An electrolyte for an electrolyte-supported high-temperature fuel cell, method for its production, its use for an electrolyte-supported fuel cell and use of the fuel cell for a fuel cell stack
JP5236998B2 (en) * 2008-05-29 2013-07-17 株式会社日本触媒 Method for producing recycled zirconia powder and method for producing sintered zirconia
DE102008039668B4 (en) * 2008-08-26 2013-03-28 H.C. Starck Gmbh Valve metal oxide formulation and process for its preparation
US8617763B2 (en) 2009-08-12 2013-12-31 Bloom Energy Corporation Internal reforming anode for solid oxide fuel cells
CN102686517B (en) * 2009-12-29 2015-01-07 3M创新有限公司 Zirconia-based particles doped with a lanthanide element
CN102725902B (en) 2010-01-26 2016-01-20 博隆能源股份有限公司 The phase stability of low degradation is through doped zirconia electrolyte composition
JP5194051B2 (en) * 2010-05-14 2013-05-08 日本特殊陶業株式会社 Gas sensor element and gas sensor
US8440362B2 (en) 2010-09-24 2013-05-14 Bloom Energy Corporation Fuel cell mechanical components
CN102173452B (en) * 2011-03-04 2012-12-26 北京工业大学 ZrO2 nanometer points of single material, and preparation method and application thereof
FR2984879B1 (en) * 2011-12-27 2015-08-21 Areva PROCESS FOR THE FORMULATION OF A CERAMIC POWDER FOR THE PRODUCTION OF AN ELECTROLYTIC MEMBRANE OF AN ELECTROCHEMICAL CELL
RU2618988C2 (en) * 2012-10-05 2017-05-11 Сименс Акциенгезелльшафт Way of optimizing gas turbine in field of its application
JP5689100B2 (en) * 2012-10-15 2015-03-25 株式会社日本触媒 Raw material zirconia powder for solid oxide fuel cell, zirconia sintered body, electrolyte for solid oxide fuel cell, and solid oxide fuel cell
JP6339582B2 (en) 2012-11-20 2018-06-06 ブルーム エナジー コーポレーション Doped scandia stabilized zirconia electrolyte composition
US9755263B2 (en) 2013-03-15 2017-09-05 Bloom Energy Corporation Fuel cell mechanical components
US9780373B2 (en) 2013-06-04 2017-10-03 Siemens Aktiengesellschaft Storage structure for a solid electrolyte battery
CN103641166B (en) * 2013-11-14 2015-06-17 厦门惠方生物科技有限公司 Method for preparing dental colored zirconia powder
CN103647097B (en) * 2013-12-20 2016-08-17 湖南稀土金属材料研究院 Sc2o3stablize ZrO2base electrolyte powder body, its preparation method and Sc2o3stablize ZrO2electrolyte ceramics sheet
KR102210786B1 (en) 2014-01-08 2021-02-02 대우조선해양 주식회사 Monitoring system of work environment using sound quality camera and position information system of crew and method thereof
ES2773436T3 (en) * 2014-02-21 2020-07-13 Torino Politecnico Process for the production of zirconia-based multiphase ceramic compounds
US10651496B2 (en) 2015-03-06 2020-05-12 Bloom Energy Corporation Modular pad for a fuel cell system
DE102015122857A1 (en) * 2015-12-28 2017-06-29 Degudent Gmbh Process for the preparation of a shaped article and shaped article
RU2614322C1 (en) * 2015-12-29 2017-03-24 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт химии силикатов им. И.В. Гребенщикова Российской академии наук (ИХС РАН) METHOD FOR LIQUID-PHASE SYNTHESIS OF MULTI-COMPONENT CERAMIC MATERIAL IN ZrO2-Y2O3-Gd2O3-MgO SYSTEM FOR PRODUCTION OF ELECTROLYTE FOR SOLID OXIDE FUEL CELL
US10196313B2 (en) * 2016-03-30 2019-02-05 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Zirconia fine powder and production method therefor
CN107399969A (en) * 2016-05-19 2017-11-28 张尚权 A kind of method that curtain coating in situ prepares zirconia ceramics piece
CN106278255A (en) * 2016-08-13 2017-01-04 内蒙古科技大学 A kind of 3YSZ nano-powder and preparation method thereof and purposes
KR20220150438A (en) * 2016-09-20 2022-11-10 쿠라레 노리타케 덴탈 가부시키가이샤 Zirconia composition, calcined object and sintered compact, and method for producing same
CN106430278B (en) * 2016-09-28 2017-08-25 益阳鸿源稀土有限责任公司 A kind of preparation method of high-pure anhydrous acetic acid scandium and High-purity Sc Oxide
US10680251B2 (en) 2017-08-28 2020-06-09 Bloom Energy Corporation SOFC including redox-tolerant anode electrode and system including the same
CN108409337A (en) * 2018-02-02 2018-08-17 昆明理工大学 A method of doped metallic oxide YSZ electrolyte ceramics are prepared based on coprecipitation
KR102200841B1 (en) 2018-12-19 2021-01-08 한국세라믹기술원 Manufacturing method of lanthanum zirconate powder for thermal barrier coatings

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US760837A (en) * 1904-02-25 1904-05-24 Albert Alber Hat-fastener.
US3525597A (en) * 1968-11-13 1970-08-25 Us Air Force Transparent zirconia and process for making same
US3957500A (en) * 1971-06-29 1976-05-18 Magnesium Elektron Limited Stabilised zirconia and a process for the preparation thereof
DD96467A1 (en) 1972-04-14 1973-03-20
US4360598A (en) * 1980-03-26 1982-11-23 Ngk Insulators, Ltd. Zirconia ceramics and a method of producing the same
JPS58217464A (en) * 1982-06-08 1983-12-17 日立化成工業株式会社 Zirconium oxide ceramic
CA1262813A (en) * 1986-06-26 1989-11-14 Corning Glass Works Preparation of high purity, homogeneous zirconia mixtures
US5023071A (en) * 1988-10-05 1991-06-11 Akzo America Inc. Process for forming metal oxide powders from the metal alkoxide
CA1326122C (en) * 1988-10-05 1994-01-18 Fawzy Gamaleldin Sherif Process for forming metal oxide powders from the metal alkoxide
JP2766029B2 (en) * 1990-03-12 1998-06-18 日本碍子株式会社 Ceramic green sheet material, electrochemical device, and method of manufacturing the same
JP3008517B2 (en) * 1991-02-15 2000-02-14 東ソー株式会社 Hydrated zirconia dry powder
US5312613A (en) * 1991-07-09 1994-05-17 Akzo N.V. Process for producing ceramic precursor powders without gel formation
JP3254730B2 (en) * 1992-05-11 2002-02-12 東ソー株式会社 Zirconia powder for thermal spraying
JP3733599B2 (en) * 1993-08-11 2006-01-11 住友化学株式会社 Metal oxide powder and method for producing the same
JPH07118016A (en) * 1993-10-22 1995-05-09 Etsuro Kato Uniform-composition zirconia solid solution monodisperse fine globular powder and its production
RU2104985C1 (en) * 1994-11-04 1998-02-20 Российский материаловедческий центр Method for production of zirconium ceramics
IT1271312B (en) * 1994-12-21 1997-05-27 Enirisorse Spa SOL-GEL PROCESS FOR OBTAINING SPHERES, MICROSPHERES OR COATINGS OF CELL-SHAPED MONOLITES, CONSTITUTED FROM PURE OR ZIRCONIUM OXIDE WITH OTHER OXIDES, USEFUL AS CATALYSTS OR SUPPORTS FOR CATALYSTS
JP3799485B2 (en) * 1997-07-14 2006-07-19 同和鉱業株式会社 Zirconia powder and method for producing the same
JP2000340240A (en) * 1999-05-31 2000-12-08 Toho Gas Co Ltd High ionic conductive solid electrolyte material and solid electrolyte fuel cell using the same
JP4320852B2 (en) * 1999-07-16 2009-08-26 東ソー株式会社 Hydrated zirconia dry powder, production method thereof and use thereof
FR2797440B1 (en) 1999-08-13 2003-08-29 Cerdec Ag PROCESS FOR PRODUCING STABILIZED CUBIC ZIRCONIUM OXIDE PRODUCTS, PRODUCTS OBTAINED BY THIS PROCESS AND THEIR USE
JP2002255556A (en) * 2001-02-28 2002-09-11 Toray Ind Inc Zirconium oxide powder and grain comprising the same
CN1188545C (en) * 2001-03-20 2005-02-09 北京方正稀土科技研究所有限公司 Prepn. of nanometer crystal film of rare earth doped ZrO2 solid electrolyte
JP2003020272A (en) * 2001-07-09 2003-01-24 Nippon Shokubai Co Ltd Method for producing dense scandia stabilized zirconia sheet
DE10138573A1 (en) 2001-08-06 2003-03-06 Degussa Nanoscale pyrogenic yttrium-zirconium mixed oxide
US7465431B2 (en) * 2001-08-06 2008-12-16 Degussa Ag Nanoscalar pyrogenically produced yttrium-zirconium mixed oxide
US6703334B2 (en) 2001-12-17 2004-03-09 Praxair S.T. Technology, Inc. Method for manufacturing stabilized zirconia
JP2003206137A (en) * 2002-01-11 2003-07-22 Dowa Mining Co Ltd Partially stabilized or stabilized zirconia fine powder, precursor thereof and production method therefor
CN100334037C (en) * 2004-09-03 2007-08-29 湖北葛店开发区地大纳米材料制造有限公司 Nanostructured yttrium stable zirconium oxide agglomerate type powder and its production method
JP5031187B2 (en) * 2004-11-19 2012-09-19 東邦瓦斯株式会社 SOLAR ELECTRODE FOR SOLID OXIDE FUEL CELL AND SOLID OXIDE FUEL CELL
JP2006143551A (en) * 2004-11-24 2006-06-08 Toray Ind Inc Zirconia powder
US7799716B2 (en) 2006-03-03 2010-09-21 Sulzer Metco (Us), Inc. Partially-alloyed zirconia powder
KR101323697B1 (en) * 2006-08-17 2013-11-08 하.체. 스타르크 게엠베하 Zirconium oxide and method for the production thereof

Also Published As

Publication number Publication date
CN101500943B (en) 2012-07-18
RU2009109346A (en) 2010-09-27
US8383266B2 (en) 2013-02-26
KR20090053780A (en) 2009-05-27
US20100233579A1 (en) 2010-09-16
CN101500943A (en) 2009-08-05
RU2442752C2 (en) 2012-02-20
KR101323697B1 (en) 2013-11-08
CN102745989A (en) 2012-10-24
JP2010500957A (en) 2010-01-14
UA98118C2 (en) 2012-04-25
JP5745765B2 (en) 2015-07-08
CN102745989B (en) 2015-07-15
WO2008019926A1 (en) 2008-02-21

Similar Documents

Publication Publication Date Title
EP2054345A1 (en) Zirconium oxide and method for the production thereof
EP2303780B1 (en) Process for producing lithium titanium spinel
DE102008050692B4 (en) Carbon-coated lithium titanium spinel
DE3813731C2 (en) Composition with zirconia and process for its manufacture
DE102015013155A1 (en) Electrolytic material with NASICON structure for solid sodium ion batteries and process for their preparation
DE60119000T2 (en) ion conductor
EP2819973B1 (en) Process for producing a shaped sintered ceramic body composed of y2o3-stabilized zirconium oxide
DE3436597A1 (en) OXIDIC BODY WITH IONIC AND ELECTRONIC CONDUCTIVITY
EP2488451A1 (en) Phase-shift-free lithium aluminum titanium phosphate, and method for the production thereof and use thereof
DE3714911A1 (en) Process for preparing a slurry of an ultra-fine powder based on zirconium oxide/aluminium oxide
EP3778488A1 (en) Ceramic powder, sintered body and battery
DE60208464T2 (en) Cerium oxide-containing solid electrolytes
EP4006000B1 (en) Ceramic powder material, sintered body, and battery
Hwan Jo et al. Low-temperature sintering of dense lanthanum silicate electrolytes with apatite-type structure using an organic precipitant synthesized nanopowder
DE112022002714T5 (en) METHOD FOR SURFACE MODIFICATION OF LITHIUM TRANSITION METAL OXIDE MATERIAL FOR THE POSITIVE ELECTRODE
DE102018205398A1 (en) Process for the preparation of mixed oxide powders and a mixed oxide powder
DE102012200654B4 (en) Slips, granules and ceramics, process for their preparation and use
DE102011083609B4 (en) Hexagonal barium titanate powder, production method therefor, dielectric ceramic composition, electronic component and electronic component production method
WO2004077598A1 (en) Electrolyte for a high-temperature fuel cell, the production thereof, and its use
De Macedo et al. Synthesis, processing and characterization of ZrO2-8Y2O3, ZrO2-8CeO2 and La0. 78Sr0. 22MnO3 powders
DE112022002378T5 (en) Oxide ion-conducting solid electrolyte
DE102022210150A1 (en) Method for producing a material or component for a solid-state battery
DE102020209708A1 (en) Mixture of sintering aids, solid-state ion conductors and method for producing solid-state ion conductors
DE202008006244U1 (en) Low-temperature proton conduction for hydrogen-related energy applications using nanostructured functional oxides
WO2012140035A1 (en) Process for preparing lithium titanium spinel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090317

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17Q First examination report despatched

Effective date: 20090703

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160913