EP2049712A1 - Process and apparatus for plating articles - Google Patents

Process and apparatus for plating articles

Info

Publication number
EP2049712A1
EP2049712A1 EP06788588A EP06788588A EP2049712A1 EP 2049712 A1 EP2049712 A1 EP 2049712A1 EP 06788588 A EP06788588 A EP 06788588A EP 06788588 A EP06788588 A EP 06788588A EP 2049712 A1 EP2049712 A1 EP 2049712A1
Authority
EP
European Patent Office
Prior art keywords
anode
article
plating
piston
another
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06788588A
Other languages
German (de)
French (fr)
Inventor
James R. Toth
Miguel Azevedo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Federal Mogul LLC
Original Assignee
Federal Mogul LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Federal Mogul LLC filed Critical Federal Mogul LLC
Publication of EP2049712A1 publication Critical patent/EP2049712A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • C25D17/12Shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/04Tubes; Rings; Hollow bodies
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/10Agitating of electrolytes; Moving of racks
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/04Electroplating with moving electrodes

Definitions

  • This invention relates generally to processes and apparatus for plating articles, such as, but not limited to, pistons for combustion engines.
  • the present invention provides an apparatus and process for plating articles with a coating from a plating bath, such as, for example, application of a chrome- based coating to surfaces of a piston.
  • the apparatus includes a shaped anode which is contoured to at least some of the outer contoured features of the article.
  • the article itself is made the cathode, and the cathode and anode are moved relative to one another during plating to control application of the plating to the article.
  • the shaped anode is held stationary and the piston is rotated in the plating bath relative to the shaped anode.
  • the invention is particularly well suited to articles having rotational symmetry such that the shape of the anode can be fixed and the article rotated relative to the anode to maintain a constant spacing between the article and contours of the anode during plating.
  • pistons are particularly well suited in that many of the features, including the outer surface of the piston, the ring grooves, the top surface, and often the combustion bowl, have symmetry relative to a central longitudinal axis of the piston body, or at least approximate symmetry.
  • the combustion bowl has a reentrant bowl configuration such that the combustion bowl undercuts a circumferential upper lip of the bowl, thus, making it particularly difficult to plate these areas using a conventional plating bath arrangement.
  • the present invention can accommodate such difficult contours, by extending, in the case of the upper ring groove, a portion of the anode into the ring groove and shaping the anode across the top surface and into the combustion bowl and to include, if necessary, the reentrant feature of the combustion bowl.
  • the apparatus and process may optionally include at least a second anode that is stationary relative to the article being plated and moveable relative to the first anode.
  • this second anode is designed to rotate with the article relative to the first anode for simultaneously plating other areas of the article which may not be accessible or convenient for access by the first fixed anode.
  • the article may have internal features or passages that are not accessible from outside the article (for example, passages or bores or non-circular features), hi the case of a piston, it may, for example, be desirable to plate the pin bores from the plating bath.
  • a pin- shaped anode may be positioned in the pin bores and supported for rotation with the piston about the longitudinal axis of the piston and coupled to an associated rectifier to impart controlled plating to the surfaces of the pin bores. This may be done at the same time that the outer surface of the piston is being plated as it rotates relative to the rotationally fixed first anode.
  • Figure 1 is a perspective view of an article plated by the process
  • Figure 2 is a schematic cross-sectional view of the article shown in association with the plating apparatus.
  • Figure 3 is a view similar to Figure 2 rotated 90 degrees about a central axis of the article.
  • the invention provides a process and apparatus that utilizes conformable anodes in a plating process to apply a plating material to an article.
  • a wire or other material suitable for an anode is shaped to conform to the approximate shape of a region of the article to be coated.
  • the anode is powered by an electrical power source, such as a rectifier, and the article serves as the cathode, wherein the anode and article are both immersed in a plating bath. While immersed, there is relative movement imparted between the anode and the article.
  • the article is rotated relative to the anode about a central axis of the article, wherein the anode can be fixed so as to not rotate about the central axis.
  • the method and apparatus may also include one or more additional anodes that may be positionally fixed relative to the article (and thus relatively moveable relative to the other shaped anode to plate other areas of the article that are inaccessible or less conventionally coated by the other shaped anode).
  • the apparatus and method contemplates inserting a correspondingly shaped anode into the bore that can rotate with the article such that the surfaces of the bore can be plated in the same bath and at the same time as the other surfaces being plated in connection with the shaped anode.
  • FIGS 1-3 show a piston article 10, referred to hereafter as piston, as the article to be plated.
  • the piston 10 includes a piston head 12 having an upper surface 14 extending substantially perpendicular to the central axis 22 in which a combustion bowl 16 is formed.
  • the combustion bowl 16 may have an edge or lip 18 and an undercut region 20 extending radially outwardly from the lip 18.
  • the piston 10 has a central longitudinal axis 22 which various outer surfaces of the piston extend at least partially symmetrically about, and also includes a pair of laterally spaced pin bosses 24 in which aligned pin bores 26 are formed having a common pin bore axis 28.
  • the pin bore axis 28 extends transversely to the central axis 22, and may be perpendicular to the central axis 22.
  • the piston 10 may further include a pair of opposed piston skirt portions 30 that are formed as one piece with the pin bosses 24 having an outer surface 32.
  • the piston head 12 is formed with a plurality of ring grooves, including an upper ring groove 34 that is closest to the upper surface 14 of the piston article 10.
  • Figures 2 and 3 illustrate the piston 10 in conjunction with a plating apparatus 36.
  • the apparatus 36 preferably includes a plating bath 38 of a selective plating solution (such as, for example, one which will produce a chromium-based coating) in which the piston 10 may be immersed.
  • the apparatus 36 includes a first shaped anode 40 that may be in the form of a wire or other suitable material that can serve as an anode.
  • the anode 40 is arranged along the outside of the piston 10 and has an area less than the total area of the outer surface of the piston 10.
  • the anode 40 is formed to have a shape corresponding to the general shape of the outer surface of the piston in relation to the longitudinal cross section of the piston presented to the anode 40 for the surfaces that are to be plated.
  • the anode 40 is able to be conformed to follow the contour of the surface. This is particularly important in being able to apply a uniform coating across the various ring grooves, as well as the undercut region 20.
  • the shaped anode 40 is configured relative to the shape of the piston 10 in order to develop a plating on the outer surface 32 of the skirt portions 30, the upper ring groove 34 and preferably the entire surface of the combustion bowl 16.
  • the shaped anode 40 extends at least partially in the longitudinal direction generally parallel to the central axis 22 and along the outer surface of the piston 10 adjacent the outer surface 32 of the skirt portions 30, along the head of the piston 12.
  • the anode 40 is represented as having a portion 42 extending into the upper ring groove 34 generally perpendicular to the central axis 22, and also has a portion that wraps around the upper surface 14 of the piston 10 and then down into the combustion bowl 16.
  • the portion of the anode 40 in the combustion bowl follows the contour of the undercut region 20 where it may terminate at the central longitudinal axis 22.
  • the undercut region 20 is able to be plated with a uniform thickness of coating material, as desired.
  • the distance in which the anode 40 is spaced from the adjacent surfaces can be controlled with a high degree of precision. As such, it will be appreciated that if the piston article 10 were rotated relative to the anode 40 (or vice versa) that the relative movement would cause the entire outer surface of the regions of the piston 10 that are desired to be coated to be exposed to the shaped anode. In other words, with each revolution, the outer surfaces would pass by the fixed shaped anode 40.
  • the shaped anode 40 is coupled to a corresponding electrical power source, such as rectifier 44 and the piston 10 is electrically coupled to make it a cathode in relation to the anode 40.
  • the piston 10 immersed in the plating bath 38 along with the shaped anode 40, is rotated relative to the shaped anode 40 to develop a controlled thickness of plating 46 on the targeted areas of the piston 10 as mentioned.
  • the shaped anode makes certain that these targeted areas are carefully controlled.
  • an inner diameter surface 48 of the pin bores 26 may be further desirable to coat an inner diameter surface 48 of the pin bores 26 with the plating material from the bath 38.
  • This can be achieved at the same time that the outer surface is coated by positioning another anode, referred to hereafter as a pin bore anode 50, within the pin bore 26 and supporting the pin bore anode 50 in relative fixed relation to the piston 10, while enabling the pin bore anode 50 to rotate concurrently with the piston 10 about the longitudinal central axis 22, and thus, relative to the shaped anode 40 during the plating process.
  • the pin bore anode 50 is coupled to an associated rectifier 52 which results in deposition of the plating material to the pin bore surface 48.
  • Coupling the pin bore anode 50 to its own rectifier 52 separate from the other rectifier 44 enables independent control of the pin bore anode 50 and the corresponding plating of the pin bore surface 48 from that of the shaped anode 40 and the corresponding plating of the other surfaces, including the upper surface 14, the combustion bowl 16, the skirt portions 30, one or more of the ring grooves, if desired.
  • one aspect of this invention provides the use of anodes which are conformable to varying geometric shapes of surfaces being plated in a plating process, such as a plating process used to coat a heavy duty (HD) steel piston.
  • a wire such as shown at 40, or other preformed anode member conforming to the approximate shape of surfaces being plated on the piston (skirt area 30 to ring area above the skirt area to top bowl area 14) is utilized to allow deposition of the coating to the areas of interest.
  • This is powered by the plating electrical power source, such as the rectifier 44.
  • the entire piston assembly is rotated within the plating bath 38 such that it revolves past the conformable anode 40 resulting in deposition of the coating over the intended areas.
  • the second anode 50 is utilized, with the common cathode connection being the same steel piston 10, whereby this second conformable anode 50 is placed within the pin bores 26 resulting in deposition of the coating on the ID surface 48 of the pin bores 26. This is powered by the rectifier 52 which, as mentioned, is separate from the rectifier 44.
  • the use of conformable anodes 40, 50 for plating surfaces of the piston 10 allows the deposition of the coating in those areas where the coating is desired at the desired thicknesses. Spinning the piston 10 allows for uniform deposition around the entire circumference of the piston 10.
  • the piston 10 will be fitted into a holder or otherwise supported by a member that makes the common cathode connection to the piston 10 as well as to serve as the mechanism for rotating the piston 10 about its central axis 22 so that it can be rotated past the conformable anode 40 that results in deposition of the coating on the piston skirt 30, ring groove area and the upper surface 14, including the combustion bowl 16.
  • the pin bores 26 are plated by means of the cylindrical anode 50 placed within the pin bore area, which as described, is powered by the second rectifier 52. This allows for application of the appropriate plating density and thickness for each of the two separate regions being plated. As such, in a single plating process, the piston areas plated by the separate anodes 40, 50 can have differing plating densities and thicknesses.

Abstract

A process and apparatus utilizing at least one conformable anode (40) in a plating process to apply a plating to an article (10). A wire or other material suitable for an anode is shaped to conform to the approximate shape of a region of the article to be coated. The anode is powered by an electrical power source (44), and the article serves as the cathode. The anode and article are both immersed in a plating bath (38). The article and anode are rotated relative to one another about a central axis (22) of the article. The relative movement between the anode and the article causes a uniform plating (46) to be applied to selected regions of the article that pass the anode. Another anode (50) can be arranged in fixed relation with the article to cause plating to a separate selected region of the article concurrently with the other anode.

Description

PROCESS AND APPARATUS FOR PLATING ARTICLES
[0001] This application claims the benefit of U.S. Provisional Application Serial No. 60/702,483, filed July 26, 2005, which is incorporated herein in its entirety.
BACKGROUND OF THE INVENTION
1. Technical F^eId
[0002] This invention relates generally to processes and apparatus for plating articles, such as, but not limited to, pistons for combustion engines.
2. Related Art
[0003] It is known to plate articles by immersing an article in a plating bath and establishing an anode/cathode arrangement whereby one or more surfaces of the article are plated with material from the bath solution. For example, some articles are plated with chrome using this general technique.
[0004] One of the challenges presented in plating articles having contoured surfaces and/or sharp corners is that the shape of the article can interfere with the uniform development of the coating, with some areas getting more coating than is otherwise desired and others getting less than what is otherwise desired.
SUMMARY OF THE INVENTION
[0005] The present invention provides an apparatus and process for plating articles with a coating from a plating bath, such as, for example, application of a chrome- based coating to surfaces of a piston. The apparatus includes a shaped anode which is contoured to at least some of the outer contoured features of the article. The article itself is made the cathode, and the cathode and anode are moved relative to one another during plating to control application of the plating to the article. [0006] According to a particular embodiment, the shaped anode is held stationary and the piston is rotated in the plating bath relative to the shaped anode. This relative movement, and particularly the relative rotational movement enables better control of the application of the coating to desired areas of the piston in need of the coating. In this regard, the invention is particularly well suited to articles having rotational symmetry such that the shape of the anode can be fixed and the article rotated relative to the anode to maintain a constant spacing between the article and contours of the anode during plating. In this regard, pistons are particularly well suited in that many of the features, including the outer surface of the piston, the ring grooves, the top surface, and often the combustion bowl, have symmetry relative to a central longitudinal axis of the piston body, or at least approximate symmetry. [0007] In regard to coating a piston, not only is there is an advantage to coating the outer surface, but also coating the surface of the upper ring groove, the top face, as well as the combustion bowl, hi some piston configurations, the combustion bowl has a reentrant bowl configuration such that the combustion bowl undercuts a circumferential upper lip of the bowl, thus, making it particularly difficult to plate these areas using a conventional plating bath arrangement. The present invention can accommodate such difficult contours, by extending, in the case of the upper ring groove, a portion of the anode into the ring groove and shaping the anode across the top surface and into the combustion bowl and to include, if necessary, the reentrant feature of the combustion bowl. As such, the desired amount of coating is applied, as desired, to the surfaces during the plating process as the piston rotates relative to the anode about the longitudinal axis of the piston in order to enable a uniform deposition of the plating material in the desired areas associated with the shaped anode. [0008] According to a further particular feature of the invention, the apparatus and process may optionally include at least a second anode that is stationary relative to the article being plated and moveable relative to the first anode. In one preferred arrangement, this second anode is designed to rotate with the article relative to the first anode for simultaneously plating other areas of the article which may not be accessible or convenient for access by the first fixed anode. For example, the article may have internal features or passages that are not accessible from outside the article (for example, passages or bores or non-circular features), hi the case of a piston, it may, for example, be desirable to plate the pin bores from the plating bath. A pin- shaped anode may be positioned in the pin bores and supported for rotation with the piston about the longitudinal axis of the piston and coupled to an associated rectifier to impart controlled plating to the surfaces of the pin bores. This may be done at the same time that the outer surface of the piston is being plated as it rotates relative to the rotationally fixed first anode. With this apparatus and method, it makes it possible to coat the piston skirt, top ring groove and combustion bowl of the piston via the first anode while also plating the pin bores via the second anode in the same plating bath and at the same time so as to achieve the desired consistency and uniformity of plating on all the desired surfaces in a single step process.
BRIEF DESCRIPTION OF THE DRAWINGS
[0009] These and other features and advantages of the present invention will become more readily appreciated when considered in connection with the following detailed description of presently preferred embodiments and best mode, appended claims and accompanying drawings, wherein:
[0010] Figure 1 is a perspective view of an article plated by the process;
[0011] Figure 2 is a schematic cross-sectional view of the article shown in association with the plating apparatus; and
[0012] Figure 3 is a view similar to Figure 2 rotated 90 degrees about a central axis of the article.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
[0013] The invention provides a process and apparatus that utilizes conformable anodes in a plating process to apply a plating material to an article. A wire or other material suitable for an anode is shaped to conform to the approximate shape of a region of the article to be coated. The anode is powered by an electrical power source, such as a rectifier, and the article serves as the cathode, wherein the anode and article are both immersed in a plating bath. While immersed, there is relative movement imparted between the anode and the article. In one presently preferred embodiment, the article is rotated relative to the anode about a central axis of the article, wherein the anode can be fixed so as to not rotate about the central axis. As a result of the relative movement between the anode and the article, a uniform plating is applied to the regions of the article that pass by the anode, thereby achieving, if desired, a 360 degree plating of the article. [0014] The method and apparatus may also include one or more additional anodes that may be positionally fixed relative to the article (and thus relatively moveable relative to the other shaped anode to plate other areas of the article that are inaccessible or less conventionally coated by the other shaped anode). For example, if the article has a bore that is arranged transverse to the rotation axis of the article, the apparatus and method contemplates inserting a correspondingly shaped anode into the bore that can rotate with the article such that the surfaces of the bore can be plated in the same bath and at the same time as the other surfaces being plated in connection with the shaped anode.
[0015] Turning now to the drawings, in which, by way of example and without limitation, Figures 1-3 show a piston article 10, referred to hereafter as piston, as the article to be plated. The piston 10 includes a piston head 12 having an upper surface 14 extending substantially perpendicular to the central axis 22 in which a combustion bowl 16 is formed. The combustion bowl 16 may have an edge or lip 18 and an undercut region 20 extending radially outwardly from the lip 18. The piston 10 has a central longitudinal axis 22 which various outer surfaces of the piston extend at least partially symmetrically about, and also includes a pair of laterally spaced pin bosses 24 in which aligned pin bores 26 are formed having a common pin bore axis 28. The pin bore axis 28 extends transversely to the central axis 22, and may be perpendicular to the central axis 22. The piston 10 may further include a pair of opposed piston skirt portions 30 that are formed as one piece with the pin bosses 24 having an outer surface 32. The piston head 12 is formed with a plurality of ring grooves, including an upper ring groove 34 that is closest to the upper surface 14 of the piston article 10. [0016] Figures 2 and 3 illustrate the piston 10 in conjunction with a plating apparatus 36. The apparatus 36 preferably includes a plating bath 38 of a selective plating solution (such as, for example, one which will produce a chromium-based coating) in which the piston 10 may be immersed. The apparatus 36 includes a first shaped anode 40 that may be in the form of a wire or other suitable material that can serve as an anode. The anode 40 is arranged along the outside of the piston 10 and has an area less than the total area of the outer surface of the piston 10. The anode 40 is formed to have a shape corresponding to the general shape of the outer surface of the piston in relation to the longitudinal cross section of the piston presented to the anode 40 for the surfaces that are to be plated. As such, even over areas having a geometrically discontinuous shape in axial cross section, such as a surface transforming from a linear surface to a nonlinear and/or curvilinear surface, the anode 40 is able to be conformed to follow the contour of the surface. This is particularly important in being able to apply a uniform coating across the various ring grooves, as well as the undercut region 20.
[0017] For example, in connection with the example of the piston 10 shown in Figures 1-3, the shaped anode 40 is configured relative to the shape of the piston 10 in order to develop a plating on the outer surface 32 of the skirt portions 30, the upper ring groove 34 and preferably the entire surface of the combustion bowl 16. For this purpose, the shaped anode 40 extends at least partially in the longitudinal direction generally parallel to the central axis 22 and along the outer surface of the piston 10 adjacent the outer surface 32 of the skirt portions 30, along the head of the piston 12. The anode 40 is represented as having a portion 42 extending into the upper ring groove 34 generally perpendicular to the central axis 22, and also has a portion that wraps around the upper surface 14 of the piston 10 and then down into the combustion bowl 16. The portion of the anode 40 in the combustion bowl follows the contour of the undercut region 20 where it may terminate at the central longitudinal axis 22. As such, the undercut region 20 is able to be plated with a uniform thickness of coating material, as desired. Desirably, the distance in which the anode 40 is spaced from the adjacent surfaces can be controlled with a high degree of precision. As such, it will be appreciated that if the piston article 10 were rotated relative to the anode 40 (or vice versa) that the relative movement would cause the entire outer surface of the regions of the piston 10 that are desired to be coated to be exposed to the shaped anode. In other words, with each revolution, the outer surfaces would pass by the fixed shaped anode 40.
[0018] In the plating process, the shaped anode 40 is coupled to a corresponding electrical power source, such as rectifier 44 and the piston 10 is electrically coupled to make it a cathode in relation to the anode 40. The piston 10, immersed in the plating bath 38 along with the shaped anode 40, is rotated relative to the shaped anode 40 to develop a controlled thickness of plating 46 on the targeted areas of the piston 10 as mentioned. Of course, other areas may be coated as well, but the shaped anode makes certain that these targeted areas are carefully controlled.
[0019] It may be further desirable to coat an inner diameter surface 48 of the pin bores 26 with the plating material from the bath 38. This can be achieved at the same time that the outer surface is coated by positioning another anode, referred to hereafter as a pin bore anode 50, within the pin bore 26 and supporting the pin bore anode 50 in relative fixed relation to the piston 10, while enabling the pin bore anode 50 to rotate concurrently with the piston 10 about the longitudinal central axis 22, and thus, relative to the shaped anode 40 during the plating process. The pin bore anode 50 is coupled to an associated rectifier 52 which results in deposition of the plating material to the pin bore surface 48. Coupling the pin bore anode 50 to its own rectifier 52 separate from the other rectifier 44 enables independent control of the pin bore anode 50 and the corresponding plating of the pin bore surface 48 from that of the shaped anode 40 and the corresponding plating of the other surfaces, including the upper surface 14, the combustion bowl 16, the skirt portions 30, one or more of the ring grooves, if desired.
[0020] Accordingly, one aspect of this invention provides the use of anodes which are conformable to varying geometric shapes of surfaces being plated in a plating process, such as a plating process used to coat a heavy duty (HD) steel piston. A wire, such as shown at 40, or other preformed anode member conforming to the approximate shape of surfaces being plated on the piston (skirt area 30 to ring area above the skirt area to top bowl area 14) is utilized to allow deposition of the coating to the areas of interest. This is powered by the plating electrical power source, such as the rectifier 44. The entire piston assembly is rotated within the plating bath 38 such that it revolves past the conformable anode 40 resulting in deposition of the coating over the intended areas. Additionally, the second anode 50 is utilized, with the common cathode connection being the same steel piston 10, whereby this second conformable anode 50 is placed within the pin bores 26 resulting in deposition of the coating on the ID surface 48 of the pin bores 26. This is powered by the rectifier 52 which, as mentioned, is separate from the rectifier 44. [0021] The use of conformable anodes 40, 50 for plating surfaces of the piston 10 allows the deposition of the coating in those areas where the coating is desired at the desired thicknesses. Spinning the piston 10 allows for uniform deposition around the entire circumference of the piston 10. The use of two separate rectifiers 44, 52 and anodes 40, 50 (with a common cathode designated here as the piston 10) allows for deposition of the coating into areas separate from one another that could not be coated in a single rectifier/anode configuration and allows the desired thicknesses of the plating material to be applied where needed.
[0022] The piston 10 will be fitted into a holder or otherwise supported by a member that makes the common cathode connection to the piston 10 as well as to serve as the mechanism for rotating the piston 10 about its central axis 22 so that it can be rotated past the conformable anode 40 that results in deposition of the coating on the piston skirt 30, ring groove area and the upper surface 14, including the combustion bowl 16. The pin bores 26 are plated by means of the cylindrical anode 50 placed within the pin bore area, which as described, is powered by the second rectifier 52. This allows for application of the appropriate plating density and thickness for each of the two separate regions being plated. As such, in a single plating process, the piston areas plated by the separate anodes 40, 50 can have differing plating densities and thicknesses.
[0023] Obviously, in light of the above teachings, many modifications and variations of the present invention are possible. It is, therefore, to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.

Claims

What is claimed is:
1. A process for plating a surface of an article acting as a cathode in a plating bath, the surface extending at least in part symmetrically about a central axis of the article, the surface including a portion having a geometrically discontinuous shape in axial cross section, comprising: providing at least one anode having a shape substantially conforming to said geometrically discontinuous shape of said portion; placing said anode at a predetermined distance from said article such that said anode substantially follows said portion of said surface; disposing the article and said anode in said plating bath; and rotating said article and said anode relative to one another and energizing said anode in said plating bath to apply a predetermined thickness of the plating to said portion.
2. The process of claim 1 further including forming said anode so that one portion of said anode extends substantially perpendicular to said axis and another portion of said anode extends substantially perpendicular to said axis.
3. The process of claim 1 including providing the article as a piston having an annular ring groove extending circumferentially about the axis, and further including forming a portion of said anode so that it extends into said ring groove so that the ring groove is plated during the rotating step.
4. The process of claim 3 wherein the piston has a combustion bowl extending generally perpendicular to the axis, and further including forming a portion of said anode so that it follows the contour of the combustion bowl so that the combustion bowl is plated during the rotating step.
5. The process of claim 3 further including providing the piston as a steel piston.
6. The process of claim 1 including providing the article as a piston having a combustion bowl extending generally perpendicular to the axis, the combustion bowl having an annular undercut region extending circumferentially about the axis, and further including forming a portion of said anode so that it follows the contour of the undercut region so that the undercut region is plated during the rotating step.
7. The process of claim 1 further including providing another anode and plating a portion of the article separate from said one anode during said rotating step.
8. The process of claim 7 further including providing the article as a piston having a combustion bowl and a pair of pin bosses defining pin bores and plating the combustion bowl with said one anode and plating the pin bores with said another anode during the rotating step.
9. The process of claim 8 further including moving said one anode relative to said another anode during the rotating step.
10. The process of claim 8 further including providing the piston with an annular ring groove extending circumferentially about the axis and plating the ring groove with said one anode during the rotating step.
11. The process of claim 10 further including extending at least a portion of said one anode into said ring groove to facilitate applying a uniform plating to the ring groove.
12. An apparatus for plating a surface of an article acting as a cathode, the surface extending at least in part symmetrically about a central axis of the article and including a portion having a geometrically discontinuous shape in axial cross section, comprising: a plating bath having a plating material therein; an electrical power source; and at least one anode in electrical communication with said power source, said anode having a shape substantially conforming to the geometrically discontinuous shape of the portion of the article.
13. The apparatus of claim 12 further comprising another anode for plating a portion of the article separate from the portion being plated by said one anode.
14. The apparatus of claim 13 wherein said one anode and said another anode move simultaneously relative to one another.
15. The apparatus of claim 13 wherein said one anode remains stationary relative to said plating bath while plating one of the portions and said another anode rotates relative to the plating bath about the central axis of the article while plating the other portion of the article.
16. The apparatus of claim 13 wherein said at least one anode is arranged to plate a combustion bowl of a piston and said another anode is arranged to plate a pair of pin bores of the piston simultaneously.
17. The apparatus of claim 13 wherein said at least one anode extends in part generally parallel to the central axis and said another anode extends generally perpendicular to the central axis.
18. The apparatus of claim 17 wherein at least a portion of said one anode extends generally perpendicular to said axis.
19. The apparatus of claim 12 wherein said at least one anode is a wire.
20. The apparatus of claim 13 further comprising another power source in electrical communication with said another anode separate from said at least one anode.
EP06788588A 2006-07-25 2006-07-26 Process and apparatus for plating articles Withdrawn EP2049712A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US45978306A 2006-07-25 2006-07-25
PCT/US2006/029072 WO2008013535A1 (en) 2006-07-25 2006-07-26 Process and apparatus for plating articles

Publications (1)

Publication Number Publication Date
EP2049712A1 true EP2049712A1 (en) 2009-04-22

Family

ID=38981755

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06788588A Withdrawn EP2049712A1 (en) 2006-07-25 2006-07-26 Process and apparatus for plating articles

Country Status (6)

Country Link
EP (1) EP2049712A1 (en)
JP (1) JP5129815B2 (en)
KR (1) KR101277115B1 (en)
CN (1) CN101506409B (en)
BR (1) BRPI0621923A2 (en)
WO (1) WO2008013535A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3262209B1 (en) * 2015-02-24 2022-01-26 Oerlikon Surface Solutions AG, Pfäffikon Method for coating a piston
CN104630858B (en) * 2015-03-11 2017-07-14 南京运诚制版有限公司 A kind of uniform chromium plating electroplanting device of rotation type axial and circumferential
JP6485952B2 (en) * 2015-03-23 2019-03-20 日立オートモティブシステムズ株式会社 Piston for internal combustion engine or surface treatment method for piston of internal combustion engine
KR101968902B1 (en) * 2018-08-06 2019-04-15 비씨씨(주) Coating Apparatus for Object with Hole
CN113445100B (en) * 2021-06-29 2022-07-15 潍柴动力股份有限公司 Preparation method of piston, piston and cathode tool
CN115058758A (en) * 2022-07-12 2022-09-16 大连迪施船机有限公司 Hard chromium electroplating device for marine main engine piston ring groove, working method and process

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS539236A (en) * 1976-07-13 1978-01-27 Nippon Piston Ring Co Ltd High speed chromium plating method
JPS5326740A (en) * 1976-08-26 1978-03-13 Inoue Japax Res Electrolytic method
DD257175A3 (en) * 1985-11-06 1988-06-08 Galvano Wernigerode Veb DEVICE FOR MASS-CHROMEING PISTON HEADS
US4661213A (en) * 1986-02-13 1987-04-28 Dorsett Terry E Electroplate to moving metal
JPH03285097A (en) * 1990-03-30 1991-12-16 Mitsubishi Materials Corp Anode for electroplating and electroplating method
JPH0718038B2 (en) * 1990-08-10 1995-03-01 ポールスター工業株式会社 Piston plating method and apparatus
CN1069530A (en) * 1991-08-10 1993-03-03 湘潭表面技术研究所 Large-area once operation precise brushing plating technology
JP2000045093A (en) * 1998-07-27 2000-02-15 Mitsubishi Heavy Ind Ltd Electrode die of rotor for rubber kneading machine and plating method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008013535A1 *

Also Published As

Publication number Publication date
CN101506409A (en) 2009-08-12
KR101277115B1 (en) 2013-06-20
BRPI0621923A2 (en) 2011-12-20
JP5129815B2 (en) 2013-01-30
KR20090031947A (en) 2009-03-30
CN101506409B (en) 2010-12-08
JP2010511780A (en) 2010-04-15
WO2008013535A1 (en) 2008-01-31

Similar Documents

Publication Publication Date Title
EP2049712A1 (en) Process and apparatus for plating articles
US8859041B2 (en) Thermal spraying preprocessing method and a cylinder block of an engine so preprocessed
US9079213B2 (en) Method of determining coating uniformity of a coated surface
CN107142505B (en) A kind of inner bore of part reparation electric brushing coating installation
US20100038259A1 (en) Method for machining a coated frictional contact surface made of electrically conductive material, and electrode for electrochemical machining
WO1990005039A1 (en) Method of processing orifices
US5566450A (en) Flexibly making engine block assemblies
CN107178430B (en) Cylinder bore with variable coating
US20090165743A1 (en) Piston for an Internal Combustion Engine and Method for Its Production
JPS6230279B2 (en)
EP1520915A2 (en) Method and apparatus for partially plating work surfaces
US8057644B2 (en) Process and apparatus for plating articles
KR20160085261A (en) Method for producing a coated surface of a tribological system
JP3856256B2 (en) Masking jig and cylinder spraying method
US9079276B2 (en) Method for producing piston rings
RU2674362C2 (en) Method for processing cylinder bore of internal combustion engine
JP5695618B2 (en) Equipment for plating articles
GB2051681A (en) Printing rolls
KR102012546B1 (en) Fuel-injection metering device, fuel-injection nozzle, mould for producing a fuel-injection metering device and method for producing a fuel-injection metering device
JP2000045093A (en) Electrode die of rotor for rubber kneading machine and plating method
CN217569320U (en) High-precision coating equipment for drill bit
RU2117566C1 (en) Tool for combined working
JPH03217603A (en) Wear resistance treatment method for direct striking type valve lifter
JP2673376B2 (en) Chrome plating equipment for metallic cylinders
SU949023A1 (en) Apparatus for applying electrodeposited coatings

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090204

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20090721