EP2047117B1 - Method for fault localization and diagnosis in a fluidic installation - Google Patents

Method for fault localization and diagnosis in a fluidic installation Download PDF

Info

Publication number
EP2047117B1
EP2047117B1 EP07703455A EP07703455A EP2047117B1 EP 2047117 B1 EP2047117 B1 EP 2047117B1 EP 07703455 A EP07703455 A EP 07703455A EP 07703455 A EP07703455 A EP 07703455A EP 2047117 B1 EP2047117 B1 EP 2047117B1
Authority
EP
European Patent Office
Prior art keywords
master value
deviation
dref
fluid
master
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07703455A
Other languages
German (de)
French (fr)
Other versions
EP2047117A1 (en
Inventor
Jan Bredau
Reinhard Keller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Festo SE and Co KG
Original Assignee
Festo SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Festo SE and Co KG filed Critical Festo SE and Co KG
Publication of EP2047117A1 publication Critical patent/EP2047117A1/en
Application granted granted Critical
Publication of EP2047117B1 publication Critical patent/EP2047117B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • F15B19/005Fault detection or monitoring

Definitions

  • the invention relates to a method for fault isolation and diagnosis at a fluidic system, wherein the fluidic volume flow of the entire system or at least a portion thereof and the fluid pressure during each operating cycle is detected and compared with stored references, and wherein at the time of a deviation or a change the deviation from the reference is determined in which component or components of the system, the fluid consumption influencing process has taken place to then recognize them as faulty.
  • the air consumption curve is evaluated for error localization.
  • the time of the deviation on the faulty subsystem for example, valve actuator unit.
  • Such errors which can occur in fluidic systems, have their causes, for example, in the wear of the components, improper mounting, loose fittings, porous hoses, process disturbances and the like., Which manifest themselves in the movements of the fluidic drives, and other leaks of various kinds Diagnostic errors due to changes in certain boundary conditions, such as pressure and temperature, to avoid, this document mentions the possible correction of air consumption with pressure and temperature.
  • the method for this is not described, and temporal or batch-dependent fluctuations can not be considered.
  • An object of the present invention is to improve the method of the aforementioned type so that changes in the boundary conditions and in particular different operating conditions are taken into account so that they do not lead to misdiagnosis.
  • the advantage of the method according to the invention is, in particular, that the diagnosis by means of the conductivity value easily compensates for natural fluctuations in a fluidic system, caused by unavoidable pressure and / or temperature fluctuations.
  • different operating states can also be taken into account by selecting corresponding stored reference value reference curves.
  • the comparison of the conductance with a reference and possible deviations in terms of time as well as amount allow very exact statements on the nature of the fault and the location of the fault.
  • the different operating states for which master value reference curves are stored for selection preferably relate to the warm-up, the operation after a longer standstill, the restart during retrofitting and the operation after predefinable time intervals.
  • the Leitwertieren be compensated for even better adaptation to the behavior of the overall system temperature dependent, in particular by the factor 1 / T .
  • T is the operating temperature.
  • the Leitwertieren can also be adapted fluid dependent, in particular by the factor K F .
  • K F is a fluid-dependent characteristic value.
  • Even more accurate diagnostic data and diagnostic statements are obtained by adapting the Leitwertyn by the moisture content and / or the particle content of the respective fluid, in particular by the factor 1 / K H . where K H is a dependent moisture and / or particle content characteristic value.
  • the selected reference In order to be able to take account of different operating states, that is to say to ensure that the comparison between the reference value and the current master value yields a correct statement, the selected reference must correspond to the corresponding operating state. This means that from the stored selection matrix the reference value curve corresponding to the respective operating state has to be selected.
  • this is before the diagnosis of leakage, the duration of an operating cycle by comparing the current Leitwertmesskurve with this operating cycle assigned Leitwertreferenzkurve checked, with only a predetermined deviation, the switchover to at least one more Leitwertreferenzkurve.
  • a runtime deviation is detected, the presence of a proportional time shift between the actual master value curve and the master value reference curve is additionally checked, and only in the case of a determined proportional time shift does the switch to at least one further reference value reference curve take place. If, after checking all master value reference curves, it is determined that all of them exceed the specified deviation, the entire system is far outside the operating point and a corresponding message is generated. The diagnosis of leakage is then not carried out because it makes no sense.
  • FIG. 1 a pneumatic system is shown schematically, which could in principle also be another fluidic system, such as a hydraulic system, act.
  • the pneumatic system consists of five subsystems 10 to 14, which may each be actuators, such as valves, cylinders, linear drives and the like, act, as well as Combinations thereof. These subsystems 10 to 14 are fed by a pressure source 15, wherein in a common supply line 16, a flow meter 17 for measuring the flow or the volume flow is arranged.
  • An electronic control device 18 is used to specify the process flow of the system and is electrically connected to the subsystems 10 to 14 via corresponding control lines.
  • the subsystems 10 to 14 receive control signals from the electronic control device 18 and send sensor signals back to them.
  • sensor signals are, for example, position signals, limit switch signals, pressure signals, temperature signals and the like.
  • the flow meter 17 is connected to an electronic diagnostic device 19, which in addition to the signals of a temperature sensor 20 and a pressure sensor 21 for measuring the temperature (T) and the pressure (P) in the supply line 16, ie the temperature and the pressure of the fluid supplied are. Furthermore, a fluid sensor 23 for detecting the type of fluid used and a moisture and / or particle sensor 24 for detecting the moisture content and the particle content of the fluid are connected to the diagnostic device 19. This has additional access to the sequence program of the electronic control device 18. The diagnostic results are supplied to a display 22, these diagnostic results of course also stored, printed, visually and / or acoustically displayed or a central office via lines or wirelessly can be transmitted.
  • the diagnostic device 19 can also be integrated in the electronic control device 18, which may contain, for example, a microcontroller for carrying out the sequence program and optionally for diagnosis.
  • each group has its own flow meter 17 to independently diagnose the subregions of the system associated with the groups, as described in the above-mentioned prior art.
  • the procedure for fault isolation and diagnosis will now be described below with reference to the described pneumatic system and in the FIGS. 2 to 4 illustrated Leitwertdiagramme explained.
  • the influences of the temperature T and / or the characteristic values K F or K H can also not be taken into account, so that in the simplest case the conductance depends only on the volume flow and the admission pressure.
  • the conductivity is additionally dependent on time and / or batch, that is, depending on the operating condition, other conductance curves arise.
  • Such operating states are, for example, the warm-up, the operation after a long standstill, the reclosure when retrofitting or the operation after predetermined time intervals, so for example after a one-hour or ten-hour or several hours of operation.
  • the diagnostic control value or the diagnostic control values are characteristic variables of a fluidic system or a fluidic system that consists of a variety of subsystems.
  • the conductance characterizes the behavior of the entire system or a subsystem over a defined repeating cycle. It compensates for normal fluctuations and fluctuations in the operating variables pressure, temperature, humidity, particle content, depending on how complex it is formed.
  • the evaluation of this conductance by reference comparison, ie comparison with stored master value reference curves, thus showing the errors and the causes of errors in fluidic systems.
  • a parameter-dependent master value reference curve adapted to the respective operating state must be selected. This takes place initially as a function of the applied sensor signals. Then, the runtime of the system is first checked as a function of the respective operating state and checked for correlation with the initially selected master reference curve. If the selected master value reference curve correlates with the current measured curve, the diagnosis is released. Deviations then actually indicate a leak in the detected period and can be assigned to these error-causing actuators in accordance with the sequence program.
  • the diagnosis is released, that is, the Deviation does not stem from a time shift, but from a malfunction of the plant ago, in particular from a leak.
  • the measured conductance curve K Da deviates continuously more and more from the conductance reference curve K Dref .
  • the difference ⁇ K D increases more and more with time t and is a function of time.
  • a deviation ⁇ K D occurs, which remains constant from this point in time until the end t e of the cycle.
  • a subsystem for example a valve actuator unit that was active at time t1
  • the timing of the deviation may be compared with the process image or control program in the controller 18 to locate the error-causing subsystem. If several subsystems were active at time t1, which could be the case for larger systems, the error must be limited during the following activities of these subsystems in which they are no longer active together.
  • the cycle duration has changed by the value .DELTA.t, the change having occurred at the time t2.
  • the value of the conductance remains constant from this time t2, there is only a time shift. This allows the conclusion that the travel time of the active at this time t2 actuator has changed, for example, by clamping, increased wear, switching errors on the valve or the like. It is thus also possible to detect time errors in the pneumatic system based on the conductance.
  • FIGS. 2 to 4 reported occurrences during a cycle cumulative and / or occur multiple times. By corresponding curve, several different errors occurring during a cycle can then be detected. For safety, of course, the diagnostic cycles will be repeated upon the occurrence of a fault to determine if it is a one-time fault or a faulty measurement or fault.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Measuring Volume Flow (AREA)

Abstract

In a method for error containment and diagnosis in a fluid power system the fluid volumetric flow in the overall system or at least a part thereof and the fluid pressure (P) is detected as a measurement quantity in each case during a duty cycle and is compared with stored references. In each case at the point in time of a deviation or a change in the deviation from the reference it is determined at which component or at which components (10 through 14) of the system an event has occurred influencing fluid consumption in order to recognize same as subject to error. Guide value quantities (Q/P) are derived from the respective volumetric flow values (Q) and the measured pressure (P) and are integrated or summated over the duty cycle to form guide values (KD), a corresponding guide value reference curve (KDref) as a reference being chosen from a stored selection matrix, which has the guide value reference curves (KDref) or time dependent guide values for different operating conditions.

Description

Die Erfindung betrifft ein Verfahren zur Fehlereingrenzung und Diagnose an einer fluidischen Anlage, wobei der fluidische Volumenstrom der Gesamtanlage oder wenigstens eines Teilbereichs derselben sowie der Fluiddruck jeweils während eines Betriebszyklus erfasst und mit gespeicherten Referenzen verglichen wird, und wobei jeweils zum Zeitpunkt einer Abweichung oder einer Veränderung der Abweichung von der Referenz festgestellt wird, bei welcher Komponente oder bei welchen Komponenten der Anlage ein den Fluidverbrauch beeinflussender Vorgang stattgefunden hat, um diese dann als fehlerbehaftet zu erkennen.The invention relates to a method for fault isolation and diagnosis at a fluidic system, wherein the fluidic volume flow of the entire system or at least a portion thereof and the fluid pressure during each operating cycle is detected and compared with stored references, and wherein at the time of a deviation or a change the deviation from the reference is determined in which component or components of the system, the fluid consumption influencing process has taken place to then recognize them as faulty.

Bei einem derartigen, aus der WO 2005/111433 A1 bekannten Verfahren wird die Luftverbrauchskurve zur Fehlerlokalisierung ausgewertet. Bei Abweichungen von einer Referenz wird aus dem Zeitpunkt der Abweichung auf das fehlerhafte Subsystem (zum Beispiel Ventil-Aktuatoreinheit) geschlossen. Solche Fehler, die in fluidischen Anlagen auftreten können, haben ihre Ursachen zum Beispiel im Verschleiß der Komponenten, in unsachgemäßer Montage, lockeren Verschraubungen, porösen Schläuchen, Prozessstörungen und dgl., die sich in den Bewegungen der fluidischen Antriebe äußern, und anderen Undichtigkeiten verschiedenster Art. Um Diagnosefehler infolge der Veränderung gewisser Randbedingungen, wie Druck und Temperatur, zu vermeiden, wird in dieser Druckschrift die mögliche Korrektur des Luftverbrauchs mit dem Druck und der Temperatur erwähnt. Die Methode hierzu ist jedoch nicht beschrieben, und zeitliche beziehungsweise chargenabhängige Schwankungen können nicht berücksichtigt werden.In such, from the WO 2005/111433 A1 known methods, the air consumption curve is evaluated for error localization. In case of deviations from a reference, it is concluded from the time of the deviation on the faulty subsystem (for example, valve actuator unit). Such errors, which can occur in fluidic systems, have their causes, for example, in the wear of the components, improper mounting, loose fittings, porous hoses, process disturbances and the like., Which manifest themselves in the movements of the fluidic drives, and other leaks of various kinds Diagnostic errors due to changes in certain boundary conditions, such as pressure and temperature, to avoid, this document mentions the possible correction of air consumption with pressure and temperature. However, the method for this is not described, and temporal or batch-dependent fluctuations can not be considered.

Eine Aufgabe der vorliegenden Erfindung besteht darin, das Verfahren der eingangs genannten Gattung so zu verbessern, dass Veränderungen in den Randbedingungen und insbesondere unterschiedliche Betriebszustände so berücksichtigt werden, dass sie nicht zur Fehldiagnose führen.An object of the present invention is to improve the method of the aforementioned type so that changes in the boundary conditions and in particular different operating conditions are taken into account so that they do not lead to misdiagnosis.

Diese Aufgabe wird erfindungsgemäß durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst.This object is achieved by a method having the features of claim 1.

Der Vorteil des erfindungsgemäßen Verfahrens besteht insbesondere darin, dass die Diagnose mittels des Leitwerts natürliche Schwankungen in einem fluidischen System, hervorgerufen durch nicht vermeidbare Druck- und/oder Temperaturschwankungen, in einfacher Weise kompensiert. Darüber hinaus können auch unterschiedliche Betriebszustände durch Auswahl entsprechender gespeicherter Leitwertreferenzkurven berücksichtigt werden. Der Vergleich des Leitwerts mit einer Referenz und eventueller zeitlicher wie auch betragsmäßiger Abweichungen ermöglichen sehr exakte Aussagen zur Art des Fehlers und zum Fehlerort. So ist es in vorteilhafter Weise auch möglich, Aussagen zu treffen, ob Leckagen die Fehlerursache sind (veränderter Luftverbrauch) oder ob die Fehlerursache in einer veränderten Aktuatorbewegung begründet ist, zum Beispiel langsamere Zykluszeiten durch Reibung, Verschleiß, langsamer schaltende Ansteuerventile und dergleichen.The advantage of the method according to the invention is, in particular, that the diagnosis by means of the conductivity value easily compensates for natural fluctuations in a fluidic system, caused by unavoidable pressure and / or temperature fluctuations. In addition, different operating states can also be taken into account by selecting corresponding stored reference value reference curves. The comparison of the conductance with a reference and possible deviations in terms of time as well as amount allow very exact statements on the nature of the fault and the location of the fault. Thus, it is advantageously also possible to make statements as to whether leaks are the cause of the fault (changed air consumption) or whether the cause of the fault is due to a changed actuator movement, for example slower cycle times due to friction, wear, slower switching control valves and the like.

Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Anspruch 1 angegebenen Verfahrens möglich.The measures listed in the dependent claims advantageous refinements and improvements of claim 1 method are possible.

Die unterschiedlichen Betriebszustände, für die Leitwertreferenzkurven zur Auswahl gespeichert sind, betreffen vorzugsweise den Warmlauf, den Betrieb nach längerem Stillstand, den Wiederanlauf bei Umrüstung und den Betrieb nach vorgebbaren Zeitintervallen.The different operating states for which master value reference curves are stored for selection preferably relate to the warm-up, the operation after a longer standstill, the restart during retrofitting and the operation after predefinable time intervals.

Die Leitwertgrößen werden zur noch besseren Adaption an das Verhalten der Gesamtanlage temperaturabhängig kompensiert, insbesondere durch den Faktor 1 / T ,

Figure imgb0001
wobei T die Betriebstemperatur ist. Um auch eine Anpassung an unterschiedliche verwendete Fluide zu erreichen, können die Leitwertgrößen auch fluidabhängig adaptiert werden, insbesondere durch den Faktor K F ,
Figure imgb0002
wobei KF ein fluidabhängiger Kennwert ist. Noch exaktere Diagnosedaten und Diagnoseaussagen erhält man durch Adaption der Leitwertgrößen durch den Feuchtegehalt und/oder den Partikelgehalt des jeweiligen Fluids, insbesondere durch den Faktor 1 / K H ,
Figure imgb0003
wobei KH ein vom Feuchte- und/oder Partikelgehalt abhängiger Kennwert ist.The Leitwertgrößen be compensated for even better adaptation to the behavior of the overall system temperature dependent, in particular by the factor 1 / T .
Figure imgb0001
where T is the operating temperature. In order to achieve an adaptation to different fluids used, the Leitwertgrößen can also be adapted fluid dependent, in particular by the factor K F .
Figure imgb0002
where K F is a fluid-dependent characteristic value. Even more accurate diagnostic data and diagnostic statements are obtained by adapting the Leitwertgrößen by the moisture content and / or the particle content of the respective fluid, in particular by the factor 1 / K H .
Figure imgb0003
where K H is a dependent moisture and / or particle content characteristic value.

Um unterschiedliche Betriebszustände berücksichtigen zu können, das heißt um sicherzustellen, dass der Vergleich zwischen Referenzwert und aktuellem Leitwert eine korrekte Aussage ergibt, muss die gewählte Referenz dem entsprechenden Betriebszustand entsprechen. Dies bedeutet, dass aus der gespeicherten Auswahlmatrix die dem jeweiligen Betriebszustand entsprechende Leitwertreferenzkurve ausgewählt werden muss. In vorteilhafter Weise wird hierzu vor der Diagnose auf Leckage die Laufzeit eines Betriebszyklus durch Vergleich der aktuellen Leitwertmesskurve mit einer diesem Betriebszyklus zugeordneten Leitwertreferenzkurve überprüft, wobei nur ab einer vorgebbaren Abweichung die Umschaltung auf wenigstens eine weitere Leitwertreferenzkurve erfolgt. Wird eine Laufzeitabweichung festgestellt, so wird zusätlich noch das Vorliegen einer proportionalen zeitlichen Verschiebung zwischen aktueller Leitwertmesskurve und Leitwertreferenzkurve überprüft, und nur im Falle einer festgestellten proportionalen zeitlichen Verschiebung erfolgt die Umschaltung auf wenigstens eine weitere Leitwertreferenzkurve. Wird nach Überprüfung aller Leitwertreferenzkurven festgestellt, dass bei allen die vorgegebene Abweichung überschritten wird, so befindet sich die gesamte Anlage weit außerhalb des Betriebspunktes, und eine entsprechende Meldung wird erzeugt. Die Diagnose auf Leckage wird dann nicht durchgeführt, da sie keinen Sinn macht.In order to be able to take account of different operating states, that is to say to ensure that the comparison between the reference value and the current master value yields a correct statement, the selected reference must correspond to the corresponding operating state. This means that from the stored selection matrix the reference value curve corresponding to the respective operating state has to be selected. Advantageously, this is before the diagnosis of leakage, the duration of an operating cycle by comparing the current Leitwertmesskurve with this operating cycle assigned Leitwertreferenzkurve checked, with only a predetermined deviation, the switchover to at least one more Leitwertreferenzkurve. If a runtime deviation is detected, the presence of a proportional time shift between the actual master value curve and the master value reference curve is additionally checked, and only in the case of a determined proportional time shift does the switch to at least one further reference value reference curve take place. If, after checking all master value reference curves, it is determined that all of them exceed the specified deviation, the entire system is far outside the operating point and a corresponding message is generated. The diagnosis of leakage is then not carried out because it makes no sense.

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen:

Figur 1
eine pneumatische Anlage, in deren Zuführung ein Durchflussmesser geschaltet ist, und
Figuren 2 bis 4
Leitwertdiagramme zur Erläuterung verschiedener Diagnoseergebnisse.
An embodiment of the invention is illustrated in the drawing and explained in more detail in the following description. Show it:
FIG. 1
a pneumatic system, in whose supply a flow meter is connected, and
FIGS. 2 to 4
Conductance diagrams for explaining various diagnostic results.

In Figur 1 ist eine pneumatische Anlage schematisch dargestellt, wobei es sich prinzipiell auch um eine andere fluidische Anlage, wie eine hydraulische Anlage, handeln könnte.In FIG. 1 a pneumatic system is shown schematically, which could in principle also be another fluidic system, such as a hydraulic system, act.

Die pneumatische Anlage besteht aus fünf Subsystemen 10 bis 14, bei denen es sich jeweils um Aktoren, wie Ventile, Zylinder, Linearantriebe und dergleichen, handeln kann, sowie um Kombinationen derselben. Diese Subsysteme 10 bis 14 werden von einer Druckquelle 15 gespeist, wobei in einer gemeinsamen Zuführleitung 16 ein Durchflussmesser 17 zur Messung des Durchflusses beziehungsweise des Volumenstromes angeordnet ist. Die Subsysteme 11, 12 einerseits und die Subsysteme 13, 14 andererseits bilden wiederum jeweils ein System mit einer gemeinsamen Zuleitung.The pneumatic system consists of five subsystems 10 to 14, which may each be actuators, such as valves, cylinders, linear drives and the like, act, as well as Combinations thereof. These subsystems 10 to 14 are fed by a pressure source 15, wherein in a common supply line 16, a flow meter 17 for measuring the flow or the volume flow is arranged. The subsystems 11, 12, on the one hand, and the subsystems 13, 14, on the other hand, in turn each form a system with a common supply line.

Eine elektronische Steuervorrichtung 18 dient zur Vorgabe des Ablaufprozesses der Anlage und ist elektrisch mit den Subsystemen 10 bis 14 über entsprechende Steuerleitungen verbunden. Die Subsysteme 10 bis 14 erhalten Steuersignale von der elektronischen Steuervorrichtung 18 und senden Sensorsignale wieder an diese zurück. Solche Sensorsignale sind beispielsweise Positionssignale, Endschaltersignale, Drucksignale, Temperatursignale und dergleichen.An electronic control device 18 is used to specify the process flow of the system and is electrically connected to the subsystems 10 to 14 via corresponding control lines. The subsystems 10 to 14 receive control signals from the electronic control device 18 and send sensor signals back to them. Such sensor signals are, for example, position signals, limit switch signals, pressure signals, temperature signals and the like.

Der Durchflussmesser 17 ist mit einer elektronischen Diagnoseeinrichtung 19 verbunden, der zusätzlich die Signale eines Temperatursensors 20 und eines Drucksensors 21 zur Messung der Temperatur (T) und des Drucks (P) in der Zuführleitung 16, also der Temperatur und des Drucks des Fluids, zugeführt sind. Weiterhin sind ein Fluidsensor 23 zur Erfassung der Art des verwendeten Fluids und ein Feuchtigkeits- und/oder Partikelsensor 24 zur Erfassung des Feuchtegehalts und des Partikelgehalts des Fluids mit der Diagnoseeinrichtung 19 verbunden. Diese hat zusätzlich einen Zugriff auf das Ablaufprogramm der elektronischen Steuervorrichtung 18. Die Diagnoseergebnisse werden einem Display 22 zugeführt, wobei diese Diagnoseergebnisse selbstverständlich auch gespeichert, ausgedruckt, optisch und/oder akustisch angezeigt oder einer Zentrale über Leitungen oder drahtlos übermittelt werden können.The flow meter 17 is connected to an electronic diagnostic device 19, which in addition to the signals of a temperature sensor 20 and a pressure sensor 21 for measuring the temperature (T) and the pressure (P) in the supply line 16, ie the temperature and the pressure of the fluid supplied are. Furthermore, a fluid sensor 23 for detecting the type of fluid used and a moisture and / or particle sensor 24 for detecting the moisture content and the particle content of the fluid are connected to the diagnostic device 19. This has additional access to the sequence program of the electronic control device 18. The diagnostic results are supplied to a display 22, these diagnostic results of course also stored, printed, visually and / or acoustically displayed or a central office via lines or wirelessly can be transmitted.

Die Diagnoseeinrichtung 19 kann selbstverständlich auch in der elektronischen Steuervorrichtung 18 integriert sein, die beispielsweise einen Mikrocontroller zur Durchführung des Ablaufprogramms und gegebenenfalls zur Diagnose enthalten kann.Of course, the diagnostic device 19 can also be integrated in the electronic control device 18, which may contain, for example, a microcontroller for carrying out the sequence program and optionally for diagnosis.

Bei einer sehr großen Zahl von Subsystemen können diese in mehrere Gruppen aufgeteilt werden, wobei jede Gruppe einen eigenen Durchflussmesser 17 besitzt, um die den Gruppen zugeordneten Teilbereiche der Anlage unabhängig voneinander zu diagnostizieren, wie dies im eingangs angegebenen Stand der Technik beschrieben ist. Das Verfahren zur Fehlereingrenzung und Diagnose wird nun im Folgenden anhand der beschriebenen pneumatischen Anlage und der in den Figuren 2 bis 4 dargestellten Leitwertdiagramme erläutert.In a very large number of subsystems, these can be divided into several groups, each group has its own flow meter 17 to independently diagnose the subregions of the system associated with the groups, as described in the above-mentioned prior art. The procedure for fault isolation and diagnosis will now be described below with reference to the described pneumatic system and in the FIGS. 2 to 4 illustrated Leitwertdiagramme explained.

Zunächst sollen der Leitwert und die Ermittlung des Leitwerts erläutert werden. Der Volumenstrom in die fluidische Anlage wird mittels des Durchflussmessers 17 gemessen und durch den gemessenen Vordruck P, gemessen mit dem Drucksensor 21, dividiert. Dieser Quotient bildet die Leitwertgröße, die jeweils über einen Betriebszyklus aufsummiert beziehungsweise aufintegriert den Leitwert KD ergibt: K D = t 0 t e Q P dt

Figure imgb0004
First, the conductance and the determination of the conductance will be explained. The volume flow into the fluidic system is measured by means of the flow meter 17 and divided by the measured form P, measured with the pressure sensor 21. This quotient forms the conductance value, which in each case summed over an operating cycle or, when integrated, gives the conductance K D : K D = t 0 t e Q P dt
Figure imgb0004

Dieser Leitwert kann noch durch die gemessene Betriebstemperatur T, gemessen mit dem Temperatursensor 20, kompensiert werden. Weiterhin kann dieser Leitwert auch noch in Abhängigkeit des jeweils verwendeten Fluids, gemessen mit dem Fluidsensor 23, mit dem Kennwert KF und optional noch mit dem Kennwert KH in Abhängigkeit vom Feuchtegehalt und/oder dem Partikelgehalt der Luft, gemessen mit dem Feuchtigkeits- und/oder Partikelsensor 24, adaptiert werden. Dies ergibt dann den folgenden Leitwert: K D = t 0 t e Q P 1 T K F K H dt

Figure imgb0005
This conductance can still be compensated by the measured operating temperature T, measured with the temperature sensor 20. Furthermore, this conductance value can also be determined as a function of the particular fluid used, measured with the fluid sensor 23, with the characteristic value K F and optionally also with the characteristic value K H as a function of the moisture content and / or the particle content of the air, measured with the moisture content. and / or particle sensor 24, are adapted. This then gives the following conductivity: K D = t 0 t e Q P 1 T K F K H dt
Figure imgb0005

Je nach Aufwand und gewünschter Genauigkeit können die Einflüsse der Temperatur T und/oder die Kennwerte KF beziehungsweise KH auch nicht berücksichtigt werden, sodass im einfachsten Fall der Leitwert nur vom Volumenstrom und dem Vordruck abhängt.Depending on the complexity and desired accuracy, the influences of the temperature T and / or the characteristic values K F or K H can also not be taken into account, so that in the simplest case the conductance depends only on the volume flow and the admission pressure.

Der Leitwert ist zusätzlich noch zeit- und/oder chargenabhängig, das heißt, je nach Betriebszustand ergeben sich andere Leitwertkurven. Solche Betriebszustände sind beispielsweise der Warmlauf, der Betrieb nach längerem Stillstand, die Wiedereinschaltung bei Umrüstung oder der Betrieb nach vorgebbaren Zeitintervallen, also beispielsweise nach einem einstündigen oder zehnstündigen oder mehrstündigen Betrieb.The conductivity is additionally dependent on time and / or batch, that is, depending on the operating condition, other conductance curves arise. Such operating states are, for example, the warm-up, the operation after a long standstill, the reclosure when retrofitting or the operation after predetermined time intervals, so for example after a one-hour or ten-hour or several hours of operation.

Für diese unterschiedlichen Betriebszustände und unterschiedlichen Parameter werden nun Leitwertreferenzkurven erfasst, beispielsweise in einem Lernprozess, und in der Diagnoseeinrichtung 19 in einer Auswahlmatrix gespeichert. Der Diagnoseleitwert beziehungsweise die Diagnoseleitwerte sind charakteristische Größen einer fluidischen Anlage beziehungsweise eines fluidischen Systems, das aus vielfältigen Subsystemen besteht. Der Leitwert charakterisiert das Verhalten der Gesamtanlage oder einer Teilanlage über einen definierten sich wiederholenden Zyklus. Er kompensiert normale Schwankungen und Fluktuationen der Betriebsgrößen Druck, Temperatur, Feuchtigkeit, Partikelgehalt, je nachdem, wie aufwendig er gebildet wird. Die Auswertung dieses Leitwerts mittels Referenzvergleich, also Vergleich mit gespeicherten Leitwertreferenzkurven, zeigt somit gesichert die Fehler und die Fehlerursachen in fluidischen Anlagen.For these different operating states and different parameters, conductance reference curves are now detected, for example in a learning process, and stored in the diagnosis device 19 in a selection matrix. The diagnostic control value or the diagnostic control values are characteristic variables of a fluidic system or a fluidic system that consists of a variety of subsystems. The conductance characterizes the behavior of the entire system or a subsystem over a defined repeating cycle. It compensates for normal fluctuations and fluctuations in the operating variables pressure, temperature, humidity, particle content, depending on how complex it is formed. The evaluation of this conductance by reference comparison, ie comparison with stored master value reference curves, thus showing the errors and the causes of errors in fluidic systems.

Zunächst muss eine dem jeweiligen Betriebszustand angepasste, parameterabhängige Leitwertreferenzkurve ausgewählt werden. Dies erfolgt zunächst in Abhängigkeit der anliegenden Sensorsignale. Dann wird zunächst die Laufzeit der Anlage in Abhängigkeit des jeweiligen Betriebszustands überprüft und mit der zunächst ausgewählten Leitwertreferenzkurve auf Korrelation überprüft. Korreliert die ausgewählte Leitwertreferenzkurve mit der aktuellen Messkurve, so wird die Diagnose freigegeben. Abweichungen zeigen dann tatsächlich eine Leckage im detektierten Zeitraum an und können entsprechend dem Ablaufprogramm diesen fehlerverursachenden Aktuatoren zugeordnet werden.First, a parameter-dependent master value reference curve adapted to the respective operating state must be selected. This takes place initially as a function of the applied sensor signals. Then, the runtime of the system is first checked as a function of the respective operating state and checked for correlation with the initially selected master reference curve. If the selected master value reference curve correlates with the current measured curve, the diagnosis is released. Deviations then actually indicate a leak in the detected period and can be assigned to these error-causing actuators in accordance with the sequence program.

Zunächst wird jedoch bei einer festgestellten Laufzeitabweichung der Leitwertkurve noch eine weitere Überprüfung dahingehend durchgeführt, ob konstante Zeitanschnitte zwischen charakteristischen Kurvenpunkten vorliegen. So lässt sich z.B. der gesamte Kurvenverlauf in eine charakteristische Anzahl von Kurvenpunkten unterteilen, wobei sich bei einer Laufzeitabweichung die Zeitdifferenz zwischen den Kurvenpunkten verändern wird. Für den gesamten Kurvenverlauf muss ein linearer Zusammenhang der einzelnen Zeitdifferenzen zwischen den Kurvenpunkten innerhalb definierter Grenzen bestehen, damit angenommen werden kann, dass kein Fehler vorliegt, z.B. durch die insgesamt schneller fahrenden Achsen nach der Startphase. Dies bedeutet, dass sich alle Zeitdifferenzen der Kurve insgesamt proportional verändern müssen.First, however, a further check is made in the event of a determined runtime deviation of the conductance curve as to whether there are constant time cuts between characteristic curve points. Thus, for example, divide the entire curve in a characteristic number of curve points, with a time deviation will change the time difference between the curve points. For the entire curve, there must be a linear relationship of the individual time differences between the curve points within defined limits, so that it can be assumed that there is no error, e.g. by the faster moving axles after the start phase. This means that all time differences of the curve must change proportionally.

Erfüllt die gewählte Referenz nicht die geforderte Übereinstimmung, so wird die Diagnose freigegeben, das heißt, die Abweichung rührt nicht von einer zeitlichen Verschiebung, sondern von einer Störung der Anlage her, insbesondere von einer Leckage.If the selected reference does not satisfy the required agreement, then the diagnosis is released, that is, the Deviation does not stem from a time shift, but from a malfunction of the plant ago, in particular from a leak.

Wird dagegen bei zunächst festgestellter Laufzeitabweichung auch ein linearer Zusammenhang der Steigungen innerhalb definierter Grenzen festgestellt, so erfolgt eine Umschaltung auf eine andere Leitwertreferenzkurve. Dies wird so lange wiederholt, bis eine passende Leitwertreferenzkurve gefunden wird. Kann keine solche gefunden werden, befindet sich die gesamte Anlage außerhalb des Betriebspunktes, und es wird eine entsprechende Meldung erzeugt, also angezeigt, gemeldet, gespeichert und dergleichen.If, on the other hand, a linear relationship of the gradients within defined limits is determined when the runtime deviation is first determined, a changeover to another master value reference curve takes place. This is repeated until a suitable master value reference curve is found. If no such can be found, the entire system is outside the operating point, and it is generated a corresponding message, that is displayed, reported, stored and the like.

Ist eine passende Leitwertreferenzkurve KDref gefunden, so wird diese mit der aktuell gemessenen Leitwertkurve KDa verglichen. In den Figuren 2 bis 4 sind drei mögliche Fälle dargestellt.If a suitable conductance reference curve K Dref is found, then this is compared with the currently measured conductance curve K Da . In the FIGS. 2 to 4 Three possible cases are shown.

Gemäß Figur 2 weicht die gemessene Leitwertkurve KDa kontinuierlich immer mehr von der Leitwertreferenzkurve KDref ab. Damit liegt als Fehlerursache eindeutig eine Leckage vor, und zwar eine Systemleckage, das heißt eine Leckage in der Zuführleitung 16 oder in damit verbundenen Leitungen. Die Differenz ΔKD vergrößert sich immer mehr mit der Zeit t und ist eine Funktion der Zeit.According to FIG. 2 the measured conductance curve K Da deviates continuously more and more from the conductance reference curve K Dref . This is clearly a cause of the fault leakage, namely a system leak, that is, a leak in the supply line 16 or in associated lines. The difference ΔK D increases more and more with time t and is a function of time.

Gemäß Figur 3 tritt zum Zeitpunkt t1 eine Abweichung ΔKD auf, die ab diesem Zeitpunkt bis zum Ende te des Zyklus konstant bleibt. Dies bedeutet, dass ein Subsystem, zum Beispiel eine Ventil-Aktuatoreinheit, die zum Zeitpunkt t1 aktiv war, eine Leckage aufweist. Der Zeitpunkt der Abweichung kann mit dem Prozessabbild oder Steuerprogramm in der Steuervorrichtung 18 verglichen werden, um das fehlerverursachende Subsystem aufzufinden. Falls zum Zeitpunkt t1 mehrere Subsysteme aktiv waren, was bei größeren Anlagen der Fall sein könnte, so muss der Fehler während folgender Aktivitäten dieser Subsysteme, bei denen sie nicht mehr gemeinsam aktiv sind, eingegrenzt werden.According to FIG. 3 At time t1, a deviation ΔK D occurs, which remains constant from this point in time until the end t e of the cycle. This means that a subsystem, for example a valve actuator unit that was active at time t1, has a leak. The timing of the deviation may be compared with the process image or control program in the controller 18 to locate the error-causing subsystem. If several subsystems were active at time t1, which could be the case for larger systems, the error must be limited during the following activities of these subsystems in which they are no longer active together.

Gemäß Figur 4 hat sich die Zyklusdauer um den Wert Δt verändert, wobei die Veränderung zum Zeitpunkt t2 aufgetreten ist. Der Wert des Leitwerts bleibt ab diesem Zeitpunkt t2 konstant, es erfolgt lediglich eine zeitliche Verschiebung. Dies lässt den Schluss zu, dass sich die Verfahrzeit des zu diesem Zeitpunkt t2 aktiven Aktuators verändert hat, zum Beispiel durch Klemmen, erhöhten Verschleiß, Schaltfehler am Ventil oder dergleichen. Es ist somit auch möglich, Zeitfehler im pneumatischen System anhand des Leitwerts zu detektieren.According to FIG. 4 the cycle duration has changed by the value .DELTA.t, the change having occurred at the time t2. The value of the conductance remains constant from this time t2, there is only a time shift. This allows the conclusion that the travel time of the active at this time t2 actuator has changed, for example, by clamping, increased wear, switching errors on the valve or the like. It is thus also possible to detect time errors in the pneumatic system based on the conductance.

Es können selbstverständlich auch die in den Figuren 2 bis 4 erläuterten Vorkommnisse während eines Zyklus kumuliert und/oder mehrfach auftreten. Durch entsprechenden Kurvenverlauf können dann auch mehrere verschiedene, während eines Zyklus auftretende Fehler detektiert werden. Zur Sicherheit werden selbstverständlich die Diagnosezyklen bei Auftreten eines Fehlers wiederholt, um festzustellen, ob es ein einmaliger Fehler oder eine Fehlmessung oder ein ständig vorliegender Fehler ist.It can of course also in the FIGS. 2 to 4 reported occurrences during a cycle cumulative and / or occur multiple times. By corresponding curve, several different errors occurring during a cycle can then be detected. For safety, of course, the diagnostic cycles will be repeated upon the occurrence of a fault to determine if it is a one-time fault or a faulty measurement or fault.

Claims (9)

  1. Method for fault isolation and diagnosis for a fluidic system, wherein the fluidic volumetric flow rate of the overall system or at least a part thereof, together with the fluidic pressure, are each determined during an operating cycle and compared with stored reference values, and wherein in each case at the time of a deviation or a change in the deviation from the reference it is established for which component or components of the system an event affecting fluid consumption has taken place, so that this or these may be identified as defective, characterised in that from the respective volumetric flow values (Q) and the recorded pressure (P), master value figures (Q/P) are formed and over the operating cycle are integrated or totalled to give master values (KD), wherein as reference a suitable master value reference curve (KDref) is selected from a selection matrix which contains the master value reference curves (KDref) or time-dependent master values for different operating states.
  2. Method according to claim 1, characterised in that the different operating states are at least two of the following different operating states: warm-up, operation after lengthy shutdown, restart after modification, operation after presettable time intervals.
  3. Method according to claim 1 or 2, characterised in that the master value figures are subject to temperature-dependent compensation, in particular through the factor 1 / T ,
    Figure imgb0009
    wherein T is the operating temperature.
  4. Method according to any of the preceding claims, characterised in that the master value figures are adapted depending on fluid, in particular by the factor K F ,
    Figure imgb0010
    wherein KF is a fluid-dependent parameter.
  5. Method according to any of the preceding claims, characterised in that the master value figures are adapted for the moisture content and/or the particle content of the fluid, in particular by the factor 1 / K H ,
    Figure imgb0011
    wherein KH is a parameter dependent on the moisture and/or particle content.
  6. Method according to any of the preceding claims, characterised in that before diagnosis for leakage, the duration of an operating cycle is checked by comparing the latest master value measured curve (KDa) with a master value reference curve (KDref) assigned to this operating cycle, wherein only after a presettable deviation is the switch made to at least one further master value reference curve (KDref).
  7. Method according to claim 6, characterised in that in the event of a determined operating time deviation, the existence of a proportional time shift between current master value measured curves (KDa) and master value reference curves (KDref) is checked, and the switch to at least one further master value reference curve (KDref) is made only in the case of an established proportional time shift.
  8. Method according to claim 6 or 7 characterised in that, if the presettable deviation is exceeded in all master value reference curves (KDref) checked, a suitable message is generated and no diagnosis for leakage is made.
  9. Method according to any of the preceding claims, characterised in that, if there is a large number of components (10-14), a split is made into several groups, which are diagnosed independently of one another.
EP07703455A 2007-02-14 2007-02-14 Method for fault localization and diagnosis in a fluidic installation Active EP2047117B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2007/001268 WO2008098588A1 (en) 2007-02-14 2007-02-14 Method for fault localization and diagnosis in a fluidic installation

Publications (2)

Publication Number Publication Date
EP2047117A1 EP2047117A1 (en) 2009-04-15
EP2047117B1 true EP2047117B1 (en) 2010-06-16

Family

ID=38523366

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07703455A Active EP2047117B1 (en) 2007-02-14 2007-02-14 Method for fault localization and diagnosis in a fluidic installation

Country Status (8)

Country Link
US (1) US7941290B2 (en)
EP (1) EP2047117B1 (en)
KR (1) KR20100014066A (en)
CN (1) CN101454580B (en)
AT (1) ATE471461T1 (en)
DE (1) DE502007004150D1 (en)
TW (1) TWI424953B (en)
WO (1) WO2008098588A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10338580B2 (en) 2014-10-22 2019-07-02 Ge Global Sourcing Llc System and method for determining vehicle orientation in a vehicle consist
US10464579B2 (en) 2006-04-17 2019-11-05 Ge Global Sourcing Llc System and method for automated establishment of a vehicle consist
NO326874B1 (en) * 2006-10-20 2009-03-09 Aker Subsea As System and method for monitoring subsea accumulator banks
US10031042B2 (en) * 2009-08-18 2018-07-24 Innovative Pressure Testing, Llc System and method for detecting leaks
WO2013026209A1 (en) * 2011-08-25 2013-02-28 长沙中联重工科技发展股份有限公司 Method, controller and device for detecting hydraulic valve in hydraulic circuit, method and device for detecting hydraulic circuit fault, and fault processing system for hydraulic circuit
CN102338137A (en) * 2011-08-25 2012-02-01 中联重科股份有限公司 Method for detecting hydraulic valve, controller and device, method and device for detecting fault of hydraulic circuit and fault processing system
US9897082B2 (en) 2011-09-15 2018-02-20 General Electric Company Air compressor prognostic system
US20130280095A1 (en) * 2012-04-20 2013-10-24 General Electric Company Method and system for reciprocating compressor starting
AU2013403285A1 (en) 2013-10-17 2016-04-28 Innovative Pressure Testing, Llc System and method for a benchmark pressure test
EP3058328B1 (en) 2013-10-17 2020-04-29 Innovative Pressure Testing LLC System and method for a benchmark pressure test
CN105371925A (en) * 2014-08-08 2016-03-02 北京谊安医疗系统股份有限公司 An anaesthesia machine flow sensor calibration method
KR102243826B1 (en) 2014-10-01 2021-04-23 삼성전자주식회사 Refrigerating apparatus and control method thereof
KR101909113B1 (en) * 2016-11-30 2018-10-18 (주)티에프에스글로발 Portable EH Converter and Servomotor Auto Tuning and status confirmation Apparatus
CN107764483B (en) * 2017-10-09 2019-05-21 中国水利水电科学研究院 Leakage monitoring method and device based on temperature spatial and temporal distributions matrix
DE102018203036A1 (en) * 2018-03-01 2019-09-19 Volkswagen Aktiengesellschaft "Diagnostic method for jump detection of a continuous measured variable, control for carrying out the method"
CN108563919B (en) * 2018-03-19 2022-04-19 中国石油化工股份有限公司 Direct tracking method for polymer gel particle pore size migration
DE102019214882A1 (en) * 2019-09-27 2021-04-01 Zf Friedrichshafen Ag Method and control device for operating a pneumatic pressure actuator system of a transmission
CN111947832A (en) * 2020-08-11 2020-11-17 董伟 Internet-based pressure gauge detection system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1095075C (en) * 1998-11-30 2002-11-27 浙江大学 Leakage fault diagnosing method for hydraulic system
CN1138085C (en) * 1999-05-10 2004-02-11 北京昊科航科技有限责任公司 Method and device for monitoring and locating leakage of fluid delivering pipeline
DE10052664B4 (en) 2000-10-24 2004-10-28 Festo Ag & Co. Process monitoring device
TW515878B (en) * 2000-12-29 2003-01-01 Inst Of Occupational Safty And Hydraulic machine on-line monitoring and diagnosis device
JP3870814B2 (en) 2002-03-29 2007-01-24 株式会社デンソー Compressed air monitoring system
CN1246672C (en) * 2002-07-04 2006-03-22 东北大学 Method and device for intelligent diagnosis and location of leakage fault of fluid delivery pipeline
ATE515638T1 (en) 2004-04-16 2011-07-15 Festo Ag & Co Kg METHOD FOR TROUBLESHOOTING AND DIAGNOSIS IN A FLUIDIC SYSTEM
US7031850B2 (en) * 2004-04-16 2006-04-18 Festo Ag & Co. Kg Method and apparatus for diagnosing leakage in a fluid power system

Also Published As

Publication number Publication date
WO2008098588A1 (en) 2008-08-21
CN101454580A (en) 2009-06-10
CN101454580B (en) 2012-08-01
TW200848355A (en) 2008-12-16
US7941290B2 (en) 2011-05-10
TWI424953B (en) 2014-02-01
DE502007004150D1 (en) 2010-07-29
US20100153027A1 (en) 2010-06-17
KR20100014066A (en) 2010-02-10
EP2047117A1 (en) 2009-04-15
ATE471461T1 (en) 2010-07-15

Similar Documents

Publication Publication Date Title
EP2047117B1 (en) Method for fault localization and diagnosis in a fluidic installation
DE4106717C1 (en)
EP1928675B1 (en) Method and device for detecting leaks in an air spring arrangement in a motor vehicle
DE102017211737B4 (en) Monitoring device and method for monitoring a system
DE102013216255B3 (en) Method for injector-specific diagnosis of a fuel injection device and internal combustion engine with a fuel injection device
DE102012207655B4 (en) Method for diagnosing a valve in a fluid supply line
DE102013102071B4 (en) Method for checking a function of an exhaust valve
DE102005034270A1 (en) Method for diagnosing a differential pressure sensor arranged in an exhaust gas region of a combustion engine comprises evaluating the dynamic behavior of a differential pressure signal as a result of a change in exhaust gas pressure
DE102008001143A1 (en) Method for generating substitute values for measured values in a controller
DE102011100029B4 (en) Device for measuring a fuel flow and calibration device therefor
EP2184473A2 (en) Method and device for testing a pressure sensor of a fuel injection device
EP1747380B1 (en) Method for fault localisation and diagnosis in a fluidic installation
DE102007018174A1 (en) Method for the diagnosis of technical systems, in particular in the motor vehicle sector
DE102014211880A1 (en) A fuel delivery system and method for locating a leak in a fuel delivery system
DE102013006220B4 (en) Pneumatic actuator and method of measuring the performance of a pneumatic actuator
DE10355022A1 (en) Method for monitoring a technical system
DE102004005446A1 (en) Fuel-operated device for converting energy, in particular a fuel cell device
DE102005052260A1 (en) Method for monitoring several sensors for controlling a vehicle engine comprises determining a time point with compared state to which the parameters have the same value plus a tolerance region and comparing
DE102007014325B4 (en) Method and device for monitoring a pressure signal, in particular a rail pressure signal of a common rail system
DE102016206609A1 (en) Method for checking a nitrogen oxide sensor of an internal combustion engine
DE102017125832B3 (en) Method for detecting a fault in a system for the pneumatic adjustment of an actuating element and computer-readable storage medium
DE102020104216A1 (en) Diagnostic device for a sand dispenser for a sand system for a rail vehicle and a method for carrying out a diagnosis for a sand dispenser for a sand system for a rail vehicle
EP2926014A2 (en) Method and device for position display of hydraulically actuated fittings
DE102018222218B4 (en) Procedure for testing a hydraulic system
DE10308396B4 (en) Method for plausibility checking of a sensor signal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080129

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BREDAU, JAN

Inventor name: KELLER, REINHARD

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502007004150

Country of ref document: DE

Date of ref document: 20100729

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100616

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100616

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100616

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100616

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100616

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100616

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100616

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100616

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100616

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101018

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101016

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100616

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100616

26N No opposition filed

Effective date: 20110317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100917

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007004150

Country of ref document: DE

Effective date: 20110316

BERE Be: lapsed

Owner name: FESTO A.G. & CO. KG

Effective date: 20110228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20120227

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120221

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110214

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20130901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100616

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100916

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 471461

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100927

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130901

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100616

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150127

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160222

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170217

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180214

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007004150

Country of ref document: DE

Representative=s name: PATENTANWAELTE MAGENBAUER & KOLLEGEN PARTNERSC, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007004150

Country of ref document: DE

Owner name: FESTO SE & CO. KG, DE

Free format text: FORMER OWNER: FESTO AG & CO. KG, 73734 ESSLINGEN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007004150

Country of ref document: DE

Owner name: FESTO AG & CO. KG, DE

Free format text: FORMER OWNER: FESTO AG & CO. KG, 73734 ESSLINGEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220609

Year of fee payment: 17

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230623