EP2047117B1 - Method for fault localization and diagnosis in a fluidic installation - Google Patents
Method for fault localization and diagnosis in a fluidic installation Download PDFInfo
- Publication number
- EP2047117B1 EP2047117B1 EP07703455A EP07703455A EP2047117B1 EP 2047117 B1 EP2047117 B1 EP 2047117B1 EP 07703455 A EP07703455 A EP 07703455A EP 07703455 A EP07703455 A EP 07703455A EP 2047117 B1 EP2047117 B1 EP 2047117B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- master value
- deviation
- dref
- fluid
- master
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B19/00—Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B19/00—Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
- F15B19/005—Fault detection or monitoring
Definitions
- the invention relates to a method for fault isolation and diagnosis at a fluidic system, wherein the fluidic volume flow of the entire system or at least a portion thereof and the fluid pressure during each operating cycle is detected and compared with stored references, and wherein at the time of a deviation or a change the deviation from the reference is determined in which component or components of the system, the fluid consumption influencing process has taken place to then recognize them as faulty.
- the air consumption curve is evaluated for error localization.
- the time of the deviation on the faulty subsystem for example, valve actuator unit.
- Such errors which can occur in fluidic systems, have their causes, for example, in the wear of the components, improper mounting, loose fittings, porous hoses, process disturbances and the like., Which manifest themselves in the movements of the fluidic drives, and other leaks of various kinds Diagnostic errors due to changes in certain boundary conditions, such as pressure and temperature, to avoid, this document mentions the possible correction of air consumption with pressure and temperature.
- the method for this is not described, and temporal or batch-dependent fluctuations can not be considered.
- An object of the present invention is to improve the method of the aforementioned type so that changes in the boundary conditions and in particular different operating conditions are taken into account so that they do not lead to misdiagnosis.
- the advantage of the method according to the invention is, in particular, that the diagnosis by means of the conductivity value easily compensates for natural fluctuations in a fluidic system, caused by unavoidable pressure and / or temperature fluctuations.
- different operating states can also be taken into account by selecting corresponding stored reference value reference curves.
- the comparison of the conductance with a reference and possible deviations in terms of time as well as amount allow very exact statements on the nature of the fault and the location of the fault.
- the different operating states for which master value reference curves are stored for selection preferably relate to the warm-up, the operation after a longer standstill, the restart during retrofitting and the operation after predefinable time intervals.
- the Leitwertieren be compensated for even better adaptation to the behavior of the overall system temperature dependent, in particular by the factor 1 / T .
- T is the operating temperature.
- the Leitwertieren can also be adapted fluid dependent, in particular by the factor K F .
- K F is a fluid-dependent characteristic value.
- Even more accurate diagnostic data and diagnostic statements are obtained by adapting the Leitwertyn by the moisture content and / or the particle content of the respective fluid, in particular by the factor 1 / K H . where K H is a dependent moisture and / or particle content characteristic value.
- the selected reference In order to be able to take account of different operating states, that is to say to ensure that the comparison between the reference value and the current master value yields a correct statement, the selected reference must correspond to the corresponding operating state. This means that from the stored selection matrix the reference value curve corresponding to the respective operating state has to be selected.
- this is before the diagnosis of leakage, the duration of an operating cycle by comparing the current Leitwertmesskurve with this operating cycle assigned Leitwertreferenzkurve checked, with only a predetermined deviation, the switchover to at least one more Leitwertreferenzkurve.
- a runtime deviation is detected, the presence of a proportional time shift between the actual master value curve and the master value reference curve is additionally checked, and only in the case of a determined proportional time shift does the switch to at least one further reference value reference curve take place. If, after checking all master value reference curves, it is determined that all of them exceed the specified deviation, the entire system is far outside the operating point and a corresponding message is generated. The diagnosis of leakage is then not carried out because it makes no sense.
- FIG. 1 a pneumatic system is shown schematically, which could in principle also be another fluidic system, such as a hydraulic system, act.
- the pneumatic system consists of five subsystems 10 to 14, which may each be actuators, such as valves, cylinders, linear drives and the like, act, as well as Combinations thereof. These subsystems 10 to 14 are fed by a pressure source 15, wherein in a common supply line 16, a flow meter 17 for measuring the flow or the volume flow is arranged.
- An electronic control device 18 is used to specify the process flow of the system and is electrically connected to the subsystems 10 to 14 via corresponding control lines.
- the subsystems 10 to 14 receive control signals from the electronic control device 18 and send sensor signals back to them.
- sensor signals are, for example, position signals, limit switch signals, pressure signals, temperature signals and the like.
- the flow meter 17 is connected to an electronic diagnostic device 19, which in addition to the signals of a temperature sensor 20 and a pressure sensor 21 for measuring the temperature (T) and the pressure (P) in the supply line 16, ie the temperature and the pressure of the fluid supplied are. Furthermore, a fluid sensor 23 for detecting the type of fluid used and a moisture and / or particle sensor 24 for detecting the moisture content and the particle content of the fluid are connected to the diagnostic device 19. This has additional access to the sequence program of the electronic control device 18. The diagnostic results are supplied to a display 22, these diagnostic results of course also stored, printed, visually and / or acoustically displayed or a central office via lines or wirelessly can be transmitted.
- the diagnostic device 19 can also be integrated in the electronic control device 18, which may contain, for example, a microcontroller for carrying out the sequence program and optionally for diagnosis.
- each group has its own flow meter 17 to independently diagnose the subregions of the system associated with the groups, as described in the above-mentioned prior art.
- the procedure for fault isolation and diagnosis will now be described below with reference to the described pneumatic system and in the FIGS. 2 to 4 illustrated Leitwertdiagramme explained.
- the influences of the temperature T and / or the characteristic values K F or K H can also not be taken into account, so that in the simplest case the conductance depends only on the volume flow and the admission pressure.
- the conductivity is additionally dependent on time and / or batch, that is, depending on the operating condition, other conductance curves arise.
- Such operating states are, for example, the warm-up, the operation after a long standstill, the reclosure when retrofitting or the operation after predetermined time intervals, so for example after a one-hour or ten-hour or several hours of operation.
- the diagnostic control value or the diagnostic control values are characteristic variables of a fluidic system or a fluidic system that consists of a variety of subsystems.
- the conductance characterizes the behavior of the entire system or a subsystem over a defined repeating cycle. It compensates for normal fluctuations and fluctuations in the operating variables pressure, temperature, humidity, particle content, depending on how complex it is formed.
- the evaluation of this conductance by reference comparison, ie comparison with stored master value reference curves, thus showing the errors and the causes of errors in fluidic systems.
- a parameter-dependent master value reference curve adapted to the respective operating state must be selected. This takes place initially as a function of the applied sensor signals. Then, the runtime of the system is first checked as a function of the respective operating state and checked for correlation with the initially selected master reference curve. If the selected master value reference curve correlates with the current measured curve, the diagnosis is released. Deviations then actually indicate a leak in the detected period and can be assigned to these error-causing actuators in accordance with the sequence program.
- the diagnosis is released, that is, the Deviation does not stem from a time shift, but from a malfunction of the plant ago, in particular from a leak.
- the measured conductance curve K Da deviates continuously more and more from the conductance reference curve K Dref .
- the difference ⁇ K D increases more and more with time t and is a function of time.
- a deviation ⁇ K D occurs, which remains constant from this point in time until the end t e of the cycle.
- a subsystem for example a valve actuator unit that was active at time t1
- the timing of the deviation may be compared with the process image or control program in the controller 18 to locate the error-causing subsystem. If several subsystems were active at time t1, which could be the case for larger systems, the error must be limited during the following activities of these subsystems in which they are no longer active together.
- the cycle duration has changed by the value .DELTA.t, the change having occurred at the time t2.
- the value of the conductance remains constant from this time t2, there is only a time shift. This allows the conclusion that the travel time of the active at this time t2 actuator has changed, for example, by clamping, increased wear, switching errors on the valve or the like. It is thus also possible to detect time errors in the pneumatic system based on the conductance.
- FIGS. 2 to 4 reported occurrences during a cycle cumulative and / or occur multiple times. By corresponding curve, several different errors occurring during a cycle can then be detected. For safety, of course, the diagnostic cycles will be repeated upon the occurrence of a fault to determine if it is a one-time fault or a faulty measurement or fault.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Testing And Monitoring For Control Systems (AREA)
- Fluid-Pressure Circuits (AREA)
- Measuring Volume Flow (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zur Fehlereingrenzung und Diagnose an einer fluidischen Anlage, wobei der fluidische Volumenstrom der Gesamtanlage oder wenigstens eines Teilbereichs derselben sowie der Fluiddruck jeweils während eines Betriebszyklus erfasst und mit gespeicherten Referenzen verglichen wird, und wobei jeweils zum Zeitpunkt einer Abweichung oder einer Veränderung der Abweichung von der Referenz festgestellt wird, bei welcher Komponente oder bei welchen Komponenten der Anlage ein den Fluidverbrauch beeinflussender Vorgang stattgefunden hat, um diese dann als fehlerbehaftet zu erkennen.The invention relates to a method for fault isolation and diagnosis at a fluidic system, wherein the fluidic volume flow of the entire system or at least a portion thereof and the fluid pressure during each operating cycle is detected and compared with stored references, and wherein at the time of a deviation or a change the deviation from the reference is determined in which component or components of the system, the fluid consumption influencing process has taken place to then recognize them as faulty.
Bei einem derartigen, aus der
Eine Aufgabe der vorliegenden Erfindung besteht darin, das Verfahren der eingangs genannten Gattung so zu verbessern, dass Veränderungen in den Randbedingungen und insbesondere unterschiedliche Betriebszustände so berücksichtigt werden, dass sie nicht zur Fehldiagnose führen.An object of the present invention is to improve the method of the aforementioned type so that changes in the boundary conditions and in particular different operating conditions are taken into account so that they do not lead to misdiagnosis.
Diese Aufgabe wird erfindungsgemäß durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst.This object is achieved by a method having the features of claim 1.
Der Vorteil des erfindungsgemäßen Verfahrens besteht insbesondere darin, dass die Diagnose mittels des Leitwerts natürliche Schwankungen in einem fluidischen System, hervorgerufen durch nicht vermeidbare Druck- und/oder Temperaturschwankungen, in einfacher Weise kompensiert. Darüber hinaus können auch unterschiedliche Betriebszustände durch Auswahl entsprechender gespeicherter Leitwertreferenzkurven berücksichtigt werden. Der Vergleich des Leitwerts mit einer Referenz und eventueller zeitlicher wie auch betragsmäßiger Abweichungen ermöglichen sehr exakte Aussagen zur Art des Fehlers und zum Fehlerort. So ist es in vorteilhafter Weise auch möglich, Aussagen zu treffen, ob Leckagen die Fehlerursache sind (veränderter Luftverbrauch) oder ob die Fehlerursache in einer veränderten Aktuatorbewegung begründet ist, zum Beispiel langsamere Zykluszeiten durch Reibung, Verschleiß, langsamer schaltende Ansteuerventile und dergleichen.The advantage of the method according to the invention is, in particular, that the diagnosis by means of the conductivity value easily compensates for natural fluctuations in a fluidic system, caused by unavoidable pressure and / or temperature fluctuations. In addition, different operating states can also be taken into account by selecting corresponding stored reference value reference curves. The comparison of the conductance with a reference and possible deviations in terms of time as well as amount allow very exact statements on the nature of the fault and the location of the fault. Thus, it is advantageously also possible to make statements as to whether leaks are the cause of the fault (changed air consumption) or whether the cause of the fault is due to a changed actuator movement, for example slower cycle times due to friction, wear, slower switching control valves and the like.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Anspruch 1 angegebenen Verfahrens möglich.The measures listed in the dependent claims advantageous refinements and improvements of claim 1 method are possible.
Die unterschiedlichen Betriebszustände, für die Leitwertreferenzkurven zur Auswahl gespeichert sind, betreffen vorzugsweise den Warmlauf, den Betrieb nach längerem Stillstand, den Wiederanlauf bei Umrüstung und den Betrieb nach vorgebbaren Zeitintervallen.The different operating states for which master value reference curves are stored for selection preferably relate to the warm-up, the operation after a longer standstill, the restart during retrofitting and the operation after predefinable time intervals.
Die Leitwertgrößen werden zur noch besseren Adaption an das Verhalten der Gesamtanlage temperaturabhängig kompensiert, insbesondere durch den Faktor
Um unterschiedliche Betriebszustände berücksichtigen zu können, das heißt um sicherzustellen, dass der Vergleich zwischen Referenzwert und aktuellem Leitwert eine korrekte Aussage ergibt, muss die gewählte Referenz dem entsprechenden Betriebszustand entsprechen. Dies bedeutet, dass aus der gespeicherten Auswahlmatrix die dem jeweiligen Betriebszustand entsprechende Leitwertreferenzkurve ausgewählt werden muss. In vorteilhafter Weise wird hierzu vor der Diagnose auf Leckage die Laufzeit eines Betriebszyklus durch Vergleich der aktuellen Leitwertmesskurve mit einer diesem Betriebszyklus zugeordneten Leitwertreferenzkurve überprüft, wobei nur ab einer vorgebbaren Abweichung die Umschaltung auf wenigstens eine weitere Leitwertreferenzkurve erfolgt. Wird eine Laufzeitabweichung festgestellt, so wird zusätlich noch das Vorliegen einer proportionalen zeitlichen Verschiebung zwischen aktueller Leitwertmesskurve und Leitwertreferenzkurve überprüft, und nur im Falle einer festgestellten proportionalen zeitlichen Verschiebung erfolgt die Umschaltung auf wenigstens eine weitere Leitwertreferenzkurve. Wird nach Überprüfung aller Leitwertreferenzkurven festgestellt, dass bei allen die vorgegebene Abweichung überschritten wird, so befindet sich die gesamte Anlage weit außerhalb des Betriebspunktes, und eine entsprechende Meldung wird erzeugt. Die Diagnose auf Leckage wird dann nicht durchgeführt, da sie keinen Sinn macht.In order to be able to take account of different operating states, that is to say to ensure that the comparison between the reference value and the current master value yields a correct statement, the selected reference must correspond to the corresponding operating state. This means that from the stored selection matrix the reference value curve corresponding to the respective operating state has to be selected. Advantageously, this is before the diagnosis of leakage, the duration of an operating cycle by comparing the current Leitwertmesskurve with this operating cycle assigned Leitwertreferenzkurve checked, with only a predetermined deviation, the switchover to at least one more Leitwertreferenzkurve. If a runtime deviation is detected, the presence of a proportional time shift between the actual master value curve and the master value reference curve is additionally checked, and only in the case of a determined proportional time shift does the switch to at least one further reference value reference curve take place. If, after checking all master value reference curves, it is determined that all of them exceed the specified deviation, the entire system is far outside the operating point and a corresponding message is generated. The diagnosis of leakage is then not carried out because it makes no sense.
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen:
- Figur 1
- eine pneumatische Anlage, in deren Zuführung ein Durchflussmesser geschaltet ist, und
- Figuren 2 bis 4
- Leitwertdiagramme zur Erläuterung verschiedener Diagnoseergebnisse.
- FIG. 1
- a pneumatic system, in whose supply a flow meter is connected, and
- FIGS. 2 to 4
- Conductance diagrams for explaining various diagnostic results.
In
Die pneumatische Anlage besteht aus fünf Subsystemen 10 bis 14, bei denen es sich jeweils um Aktoren, wie Ventile, Zylinder, Linearantriebe und dergleichen, handeln kann, sowie um Kombinationen derselben. Diese Subsysteme 10 bis 14 werden von einer Druckquelle 15 gespeist, wobei in einer gemeinsamen Zuführleitung 16 ein Durchflussmesser 17 zur Messung des Durchflusses beziehungsweise des Volumenstromes angeordnet ist. Die Subsysteme 11, 12 einerseits und die Subsysteme 13, 14 andererseits bilden wiederum jeweils ein System mit einer gemeinsamen Zuleitung.The pneumatic system consists of five
Eine elektronische Steuervorrichtung 18 dient zur Vorgabe des Ablaufprozesses der Anlage und ist elektrisch mit den Subsystemen 10 bis 14 über entsprechende Steuerleitungen verbunden. Die Subsysteme 10 bis 14 erhalten Steuersignale von der elektronischen Steuervorrichtung 18 und senden Sensorsignale wieder an diese zurück. Solche Sensorsignale sind beispielsweise Positionssignale, Endschaltersignale, Drucksignale, Temperatursignale und dergleichen.An
Der Durchflussmesser 17 ist mit einer elektronischen Diagnoseeinrichtung 19 verbunden, der zusätzlich die Signale eines Temperatursensors 20 und eines Drucksensors 21 zur Messung der Temperatur (T) und des Drucks (P) in der Zuführleitung 16, also der Temperatur und des Drucks des Fluids, zugeführt sind. Weiterhin sind ein Fluidsensor 23 zur Erfassung der Art des verwendeten Fluids und ein Feuchtigkeits- und/oder Partikelsensor 24 zur Erfassung des Feuchtegehalts und des Partikelgehalts des Fluids mit der Diagnoseeinrichtung 19 verbunden. Diese hat zusätzlich einen Zugriff auf das Ablaufprogramm der elektronischen Steuervorrichtung 18. Die Diagnoseergebnisse werden einem Display 22 zugeführt, wobei diese Diagnoseergebnisse selbstverständlich auch gespeichert, ausgedruckt, optisch und/oder akustisch angezeigt oder einer Zentrale über Leitungen oder drahtlos übermittelt werden können.The
Die Diagnoseeinrichtung 19 kann selbstverständlich auch in der elektronischen Steuervorrichtung 18 integriert sein, die beispielsweise einen Mikrocontroller zur Durchführung des Ablaufprogramms und gegebenenfalls zur Diagnose enthalten kann.Of course, the
Bei einer sehr großen Zahl von Subsystemen können diese in mehrere Gruppen aufgeteilt werden, wobei jede Gruppe einen eigenen Durchflussmesser 17 besitzt, um die den Gruppen zugeordneten Teilbereiche der Anlage unabhängig voneinander zu diagnostizieren, wie dies im eingangs angegebenen Stand der Technik beschrieben ist. Das Verfahren zur Fehlereingrenzung und Diagnose wird nun im Folgenden anhand der beschriebenen pneumatischen Anlage und der in den
Zunächst sollen der Leitwert und die Ermittlung des Leitwerts erläutert werden. Der Volumenstrom in die fluidische Anlage wird mittels des Durchflussmessers 17 gemessen und durch den gemessenen Vordruck P, gemessen mit dem Drucksensor 21, dividiert. Dieser Quotient bildet die Leitwertgröße, die jeweils über einen Betriebszyklus aufsummiert beziehungsweise aufintegriert den Leitwert KD ergibt:
Dieser Leitwert kann noch durch die gemessene Betriebstemperatur T, gemessen mit dem Temperatursensor 20, kompensiert werden. Weiterhin kann dieser Leitwert auch noch in Abhängigkeit des jeweils verwendeten Fluids, gemessen mit dem Fluidsensor 23, mit dem Kennwert KF und optional noch mit dem Kennwert KH in Abhängigkeit vom Feuchtegehalt und/oder dem Partikelgehalt der Luft, gemessen mit dem Feuchtigkeits- und/oder Partikelsensor 24, adaptiert werden. Dies ergibt dann den folgenden Leitwert:
Je nach Aufwand und gewünschter Genauigkeit können die Einflüsse der Temperatur T und/oder die Kennwerte KF beziehungsweise KH auch nicht berücksichtigt werden, sodass im einfachsten Fall der Leitwert nur vom Volumenstrom und dem Vordruck abhängt.Depending on the complexity and desired accuracy, the influences of the temperature T and / or the characteristic values K F or K H can also not be taken into account, so that in the simplest case the conductance depends only on the volume flow and the admission pressure.
Der Leitwert ist zusätzlich noch zeit- und/oder chargenabhängig, das heißt, je nach Betriebszustand ergeben sich andere Leitwertkurven. Solche Betriebszustände sind beispielsweise der Warmlauf, der Betrieb nach längerem Stillstand, die Wiedereinschaltung bei Umrüstung oder der Betrieb nach vorgebbaren Zeitintervallen, also beispielsweise nach einem einstündigen oder zehnstündigen oder mehrstündigen Betrieb.The conductivity is additionally dependent on time and / or batch, that is, depending on the operating condition, other conductance curves arise. Such operating states are, for example, the warm-up, the operation after a long standstill, the reclosure when retrofitting or the operation after predetermined time intervals, so for example after a one-hour or ten-hour or several hours of operation.
Für diese unterschiedlichen Betriebszustände und unterschiedlichen Parameter werden nun Leitwertreferenzkurven erfasst, beispielsweise in einem Lernprozess, und in der Diagnoseeinrichtung 19 in einer Auswahlmatrix gespeichert. Der Diagnoseleitwert beziehungsweise die Diagnoseleitwerte sind charakteristische Größen einer fluidischen Anlage beziehungsweise eines fluidischen Systems, das aus vielfältigen Subsystemen besteht. Der Leitwert charakterisiert das Verhalten der Gesamtanlage oder einer Teilanlage über einen definierten sich wiederholenden Zyklus. Er kompensiert normale Schwankungen und Fluktuationen der Betriebsgrößen Druck, Temperatur, Feuchtigkeit, Partikelgehalt, je nachdem, wie aufwendig er gebildet wird. Die Auswertung dieses Leitwerts mittels Referenzvergleich, also Vergleich mit gespeicherten Leitwertreferenzkurven, zeigt somit gesichert die Fehler und die Fehlerursachen in fluidischen Anlagen.For these different operating states and different parameters, conductance reference curves are now detected, for example in a learning process, and stored in the
Zunächst muss eine dem jeweiligen Betriebszustand angepasste, parameterabhängige Leitwertreferenzkurve ausgewählt werden. Dies erfolgt zunächst in Abhängigkeit der anliegenden Sensorsignale. Dann wird zunächst die Laufzeit der Anlage in Abhängigkeit des jeweiligen Betriebszustands überprüft und mit der zunächst ausgewählten Leitwertreferenzkurve auf Korrelation überprüft. Korreliert die ausgewählte Leitwertreferenzkurve mit der aktuellen Messkurve, so wird die Diagnose freigegeben. Abweichungen zeigen dann tatsächlich eine Leckage im detektierten Zeitraum an und können entsprechend dem Ablaufprogramm diesen fehlerverursachenden Aktuatoren zugeordnet werden.First, a parameter-dependent master value reference curve adapted to the respective operating state must be selected. This takes place initially as a function of the applied sensor signals. Then, the runtime of the system is first checked as a function of the respective operating state and checked for correlation with the initially selected master reference curve. If the selected master value reference curve correlates with the current measured curve, the diagnosis is released. Deviations then actually indicate a leak in the detected period and can be assigned to these error-causing actuators in accordance with the sequence program.
Zunächst wird jedoch bei einer festgestellten Laufzeitabweichung der Leitwertkurve noch eine weitere Überprüfung dahingehend durchgeführt, ob konstante Zeitanschnitte zwischen charakteristischen Kurvenpunkten vorliegen. So lässt sich z.B. der gesamte Kurvenverlauf in eine charakteristische Anzahl von Kurvenpunkten unterteilen, wobei sich bei einer Laufzeitabweichung die Zeitdifferenz zwischen den Kurvenpunkten verändern wird. Für den gesamten Kurvenverlauf muss ein linearer Zusammenhang der einzelnen Zeitdifferenzen zwischen den Kurvenpunkten innerhalb definierter Grenzen bestehen, damit angenommen werden kann, dass kein Fehler vorliegt, z.B. durch die insgesamt schneller fahrenden Achsen nach der Startphase. Dies bedeutet, dass sich alle Zeitdifferenzen der Kurve insgesamt proportional verändern müssen.First, however, a further check is made in the event of a determined runtime deviation of the conductance curve as to whether there are constant time cuts between characteristic curve points. Thus, for example, divide the entire curve in a characteristic number of curve points, with a time deviation will change the time difference between the curve points. For the entire curve, there must be a linear relationship of the individual time differences between the curve points within defined limits, so that it can be assumed that there is no error, e.g. by the faster moving axles after the start phase. This means that all time differences of the curve must change proportionally.
Erfüllt die gewählte Referenz nicht die geforderte Übereinstimmung, so wird die Diagnose freigegeben, das heißt, die Abweichung rührt nicht von einer zeitlichen Verschiebung, sondern von einer Störung der Anlage her, insbesondere von einer Leckage.If the selected reference does not satisfy the required agreement, then the diagnosis is released, that is, the Deviation does not stem from a time shift, but from a malfunction of the plant ago, in particular from a leak.
Wird dagegen bei zunächst festgestellter Laufzeitabweichung auch ein linearer Zusammenhang der Steigungen innerhalb definierter Grenzen festgestellt, so erfolgt eine Umschaltung auf eine andere Leitwertreferenzkurve. Dies wird so lange wiederholt, bis eine passende Leitwertreferenzkurve gefunden wird. Kann keine solche gefunden werden, befindet sich die gesamte Anlage außerhalb des Betriebspunktes, und es wird eine entsprechende Meldung erzeugt, also angezeigt, gemeldet, gespeichert und dergleichen.If, on the other hand, a linear relationship of the gradients within defined limits is determined when the runtime deviation is first determined, a changeover to another master value reference curve takes place. This is repeated until a suitable master value reference curve is found. If no such can be found, the entire system is outside the operating point, and it is generated a corresponding message, that is displayed, reported, stored and the like.
Ist eine passende Leitwertreferenzkurve KDref gefunden, so wird diese mit der aktuell gemessenen Leitwertkurve KDa verglichen. In den
Gemäß
Gemäß
Gemäß
Es können selbstverständlich auch die in den
Claims (9)
- Method for fault isolation and diagnosis for a fluidic system, wherein the fluidic volumetric flow rate of the overall system or at least a part thereof, together with the fluidic pressure, are each determined during an operating cycle and compared with stored reference values, and wherein in each case at the time of a deviation or a change in the deviation from the reference it is established for which component or components of the system an event affecting fluid consumption has taken place, so that this or these may be identified as defective, characterised in that from the respective volumetric flow values (Q) and the recorded pressure (P), master value figures (Q/P) are formed and over the operating cycle are integrated or totalled to give master values (KD), wherein as reference a suitable master value reference curve (KDref) is selected from a selection matrix which contains the master value reference curves (KDref) or time-dependent master values for different operating states.
- Method according to claim 1, characterised in that the different operating states are at least two of the following different operating states: warm-up, operation after lengthy shutdown, restart after modification, operation after presettable time intervals.
- Method according to any of the preceding claims, characterised in that before diagnosis for leakage, the duration of an operating cycle is checked by comparing the latest master value measured curve (KDa) with a master value reference curve (KDref) assigned to this operating cycle, wherein only after a presettable deviation is the switch made to at least one further master value reference curve (KDref).
- Method according to claim 6, characterised in that in the event of a determined operating time deviation, the existence of a proportional time shift between current master value measured curves (KDa) and master value reference curves (KDref) is checked, and the switch to at least one further master value reference curve (KDref) is made only in the case of an established proportional time shift.
- Method according to claim 6 or 7 characterised in that, if the presettable deviation is exceeded in all master value reference curves (KDref) checked, a suitable message is generated and no diagnosis for leakage is made.
- Method according to any of the preceding claims, characterised in that, if there is a large number of components (10-14), a split is made into several groups, which are diagnosed independently of one another.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2007/001268 WO2008098588A1 (en) | 2007-02-14 | 2007-02-14 | Method for fault localization and diagnosis in a fluidic installation |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2047117A1 EP2047117A1 (en) | 2009-04-15 |
EP2047117B1 true EP2047117B1 (en) | 2010-06-16 |
Family
ID=38523366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07703455A Active EP2047117B1 (en) | 2007-02-14 | 2007-02-14 | Method for fault localization and diagnosis in a fluidic installation |
Country Status (8)
Country | Link |
---|---|
US (1) | US7941290B2 (en) |
EP (1) | EP2047117B1 (en) |
KR (1) | KR20100014066A (en) |
CN (1) | CN101454580B (en) |
AT (1) | ATE471461T1 (en) |
DE (1) | DE502007004150D1 (en) |
TW (1) | TWI424953B (en) |
WO (1) | WO2008098588A1 (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10338580B2 (en) | 2014-10-22 | 2019-07-02 | Ge Global Sourcing Llc | System and method for determining vehicle orientation in a vehicle consist |
US10464579B2 (en) | 2006-04-17 | 2019-11-05 | Ge Global Sourcing Llc | System and method for automated establishment of a vehicle consist |
NO326874B1 (en) * | 2006-10-20 | 2009-03-09 | Aker Subsea As | System and method for monitoring subsea accumulator banks |
US10031042B2 (en) * | 2009-08-18 | 2018-07-24 | Innovative Pressure Testing, Llc | System and method for detecting leaks |
WO2013026209A1 (en) * | 2011-08-25 | 2013-02-28 | 长沙中联重工科技发展股份有限公司 | Method, controller and device for detecting hydraulic valve in hydraulic circuit, method and device for detecting hydraulic circuit fault, and fault processing system for hydraulic circuit |
CN102338137A (en) * | 2011-08-25 | 2012-02-01 | 中联重科股份有限公司 | Method for detecting hydraulic valve, controller and device, method and device for detecting fault of hydraulic circuit and fault processing system |
US9897082B2 (en) | 2011-09-15 | 2018-02-20 | General Electric Company | Air compressor prognostic system |
US20130280095A1 (en) * | 2012-04-20 | 2013-10-24 | General Electric Company | Method and system for reciprocating compressor starting |
AU2013403285A1 (en) | 2013-10-17 | 2016-04-28 | Innovative Pressure Testing, Llc | System and method for a benchmark pressure test |
EP3058328B1 (en) | 2013-10-17 | 2020-04-29 | Innovative Pressure Testing LLC | System and method for a benchmark pressure test |
CN105371925A (en) * | 2014-08-08 | 2016-03-02 | 北京谊安医疗系统股份有限公司 | An anaesthesia machine flow sensor calibration method |
KR102243826B1 (en) | 2014-10-01 | 2021-04-23 | 삼성전자주식회사 | Refrigerating apparatus and control method thereof |
KR101909113B1 (en) * | 2016-11-30 | 2018-10-18 | (주)티에프에스글로발 | Portable EH Converter and Servomotor Auto Tuning and status confirmation Apparatus |
CN107764483B (en) * | 2017-10-09 | 2019-05-21 | 中国水利水电科学研究院 | Leakage monitoring method and device based on temperature spatial and temporal distributions matrix |
DE102018203036A1 (en) * | 2018-03-01 | 2019-09-19 | Volkswagen Aktiengesellschaft | "Diagnostic method for jump detection of a continuous measured variable, control for carrying out the method" |
CN108563919B (en) * | 2018-03-19 | 2022-04-19 | 中国石油化工股份有限公司 | Direct tracking method for polymer gel particle pore size migration |
DE102019214882A1 (en) * | 2019-09-27 | 2021-04-01 | Zf Friedrichshafen Ag | Method and control device for operating a pneumatic pressure actuator system of a transmission |
CN111947832A (en) * | 2020-08-11 | 2020-11-17 | 董伟 | Internet-based pressure gauge detection system |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1095075C (en) * | 1998-11-30 | 2002-11-27 | 浙江大学 | Leakage fault diagnosing method for hydraulic system |
CN1138085C (en) * | 1999-05-10 | 2004-02-11 | 北京昊科航科技有限责任公司 | Method and device for monitoring and locating leakage of fluid delivering pipeline |
DE10052664B4 (en) | 2000-10-24 | 2004-10-28 | Festo Ag & Co. | Process monitoring device |
TW515878B (en) * | 2000-12-29 | 2003-01-01 | Inst Of Occupational Safty And | Hydraulic machine on-line monitoring and diagnosis device |
JP3870814B2 (en) | 2002-03-29 | 2007-01-24 | 株式会社デンソー | Compressed air monitoring system |
CN1246672C (en) * | 2002-07-04 | 2006-03-22 | 东北大学 | Method and device for intelligent diagnosis and location of leakage fault of fluid delivery pipeline |
ATE515638T1 (en) | 2004-04-16 | 2011-07-15 | Festo Ag & Co Kg | METHOD FOR TROUBLESHOOTING AND DIAGNOSIS IN A FLUIDIC SYSTEM |
US7031850B2 (en) * | 2004-04-16 | 2006-04-18 | Festo Ag & Co. Kg | Method and apparatus for diagnosing leakage in a fluid power system |
-
2007
- 2007-02-14 EP EP07703455A patent/EP2047117B1/en active Active
- 2007-02-14 CN CN2007800134292A patent/CN101454580B/en not_active Expired - Fee Related
- 2007-02-14 US US12/085,338 patent/US7941290B2/en not_active Expired - Fee Related
- 2007-02-14 AT AT07703455T patent/ATE471461T1/en active
- 2007-02-14 DE DE502007004150T patent/DE502007004150D1/en active Active
- 2007-02-14 KR KR1020087022799A patent/KR20100014066A/en not_active Application Discontinuation
- 2007-02-14 WO PCT/EP2007/001268 patent/WO2008098588A1/en active Application Filing
-
2008
- 2008-02-12 TW TW097104869A patent/TWI424953B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
WO2008098588A1 (en) | 2008-08-21 |
CN101454580A (en) | 2009-06-10 |
CN101454580B (en) | 2012-08-01 |
TW200848355A (en) | 2008-12-16 |
US7941290B2 (en) | 2011-05-10 |
TWI424953B (en) | 2014-02-01 |
DE502007004150D1 (en) | 2010-07-29 |
US20100153027A1 (en) | 2010-06-17 |
KR20100014066A (en) | 2010-02-10 |
EP2047117A1 (en) | 2009-04-15 |
ATE471461T1 (en) | 2010-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2047117B1 (en) | Method for fault localization and diagnosis in a fluidic installation | |
DE4106717C1 (en) | ||
EP1928675B1 (en) | Method and device for detecting leaks in an air spring arrangement in a motor vehicle | |
DE102017211737B4 (en) | Monitoring device and method for monitoring a system | |
DE102013216255B3 (en) | Method for injector-specific diagnosis of a fuel injection device and internal combustion engine with a fuel injection device | |
DE102012207655B4 (en) | Method for diagnosing a valve in a fluid supply line | |
DE102013102071B4 (en) | Method for checking a function of an exhaust valve | |
DE102005034270A1 (en) | Method for diagnosing a differential pressure sensor arranged in an exhaust gas region of a combustion engine comprises evaluating the dynamic behavior of a differential pressure signal as a result of a change in exhaust gas pressure | |
DE102008001143A1 (en) | Method for generating substitute values for measured values in a controller | |
DE102011100029B4 (en) | Device for measuring a fuel flow and calibration device therefor | |
EP2184473A2 (en) | Method and device for testing a pressure sensor of a fuel injection device | |
EP1747380B1 (en) | Method for fault localisation and diagnosis in a fluidic installation | |
DE102007018174A1 (en) | Method for the diagnosis of technical systems, in particular in the motor vehicle sector | |
DE102014211880A1 (en) | A fuel delivery system and method for locating a leak in a fuel delivery system | |
DE102013006220B4 (en) | Pneumatic actuator and method of measuring the performance of a pneumatic actuator | |
DE10355022A1 (en) | Method for monitoring a technical system | |
DE102004005446A1 (en) | Fuel-operated device for converting energy, in particular a fuel cell device | |
DE102005052260A1 (en) | Method for monitoring several sensors for controlling a vehicle engine comprises determining a time point with compared state to which the parameters have the same value plus a tolerance region and comparing | |
DE102007014325B4 (en) | Method and device for monitoring a pressure signal, in particular a rail pressure signal of a common rail system | |
DE102016206609A1 (en) | Method for checking a nitrogen oxide sensor of an internal combustion engine | |
DE102017125832B3 (en) | Method for detecting a fault in a system for the pneumatic adjustment of an actuating element and computer-readable storage medium | |
DE102020104216A1 (en) | Diagnostic device for a sand dispenser for a sand system for a rail vehicle and a method for carrying out a diagnosis for a sand dispenser for a sand system for a rail vehicle | |
EP2926014A2 (en) | Method and device for position display of hydraulically actuated fittings | |
DE102018222218B4 (en) | Procedure for testing a hydraulic system | |
DE10308396B4 (en) | Method for plausibility checking of a sensor signal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080129 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: BREDAU, JAN Inventor name: KELLER, REINHARD |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAC | Information related to communication of intention to grant a patent modified |
Free format text: ORIGINAL CODE: EPIDOSCIGR1 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 502007004150 Country of ref document: DE Date of ref document: 20100729 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100616 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100616 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20100616 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100616 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100616 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100616 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100616 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100616 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100616 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100616 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100616 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100616 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101018 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101016 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100616 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100616 |
|
26N | No opposition filed |
Effective date: 20110317 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100917 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502007004150 Country of ref document: DE Effective date: 20110316 |
|
BERE | Be: lapsed |
Owner name: FESTO A.G. & CO. KG Effective date: 20110228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110228 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110228 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110228 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20120227 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20120221 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110214 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20130901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100616 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100916 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 471461 Country of ref document: AT Kind code of ref document: T Effective date: 20130228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100927 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130228 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130901 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100616 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20150127 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20160222 Year of fee payment: 10 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20160214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160214 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20170217 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20171031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180214 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502007004150 Country of ref document: DE Representative=s name: PATENTANWAELTE MAGENBAUER & KOLLEGEN PARTNERSC, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502007004150 Country of ref document: DE Owner name: FESTO SE & CO. KG, DE Free format text: FORMER OWNER: FESTO AG & CO. KG, 73734 ESSLINGEN, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502007004150 Country of ref document: DE Owner name: FESTO AG & CO. KG, DE Free format text: FORMER OWNER: FESTO AG & CO. KG, 73734 ESSLINGEN, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20220609 Year of fee payment: 17 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230623 |