EP1747380B1 - Method for fault localisation and diagnosis in a fluidic installation - Google Patents

Method for fault localisation and diagnosis in a fluidic installation Download PDF

Info

Publication number
EP1747380B1
EP1747380B1 EP04727868A EP04727868A EP1747380B1 EP 1747380 B1 EP1747380 B1 EP 1747380B1 EP 04727868 A EP04727868 A EP 04727868A EP 04727868 A EP04727868 A EP 04727868A EP 1747380 B1 EP1747380 B1 EP 1747380B1
Authority
EP
European Patent Office
Prior art keywords
consumption
diagnosis
subsystems
detected
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04727868A
Other languages
German (de)
French (fr)
Other versions
EP1747380A1 (en
Inventor
Jan Bredau
Jens Engelhardt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Festo SE and Co KG
Original Assignee
Festo SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Festo SE and Co KG filed Critical Festo SE and Co KG
Publication of EP1747380A1 publication Critical patent/EP1747380A1/en
Application granted granted Critical
Publication of EP1747380B1 publication Critical patent/EP1747380B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/02Servomotor systems with programme control derived from a store or timing device; Control devices therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • F15B19/005Fault detection or monitoring

Definitions

  • the invention relates to a method for limiting errors and diagnosis on a fluidic system, in particular on a pneumatic system, having the features of the preamble of claim 1.
  • the object of the present invention is to provide a method of the type mentioned above for fault isolation and diagnosis, through which the system and / or subsystem of the system can be easily detected by simple means in which an error occurs, so for example a malfunction or a leak.
  • the advantages of the method according to the invention for fault isolation and diagnosis are, in particular, that in terms of hardware, only an additional volume flow sensor system in the supply line of the system is required in order to measure the fluid consumption.
  • the already existing position, limit switch and Aktor horrsignale be used to allocate events detected in the fluid consumption measurement certain systems or subsystems and thereby detect a fault.
  • Both malfunctions in the respective system and / or subsystem as well as leaks can be detected and assigned to the respective system or subsystem.
  • An error can be limited to a specific system within the plant or even to a specific subsystem. This is done very quickly during the sequence program of the system control.
  • a temporal comparison is advantageously carried out with the sequence program of the system control. This can easily be determined by the sequence program, which system or subsystem was or is active at the specified time. In addition, it checks which control signals for systems or subsystems and / or sensor feedback occurred immediately before this time and to which systems or subsystems they were assigned. As a result, the faulty system or subsystem can be determined more accurately.
  • the travel and / or positioning times of the systems and / or subsystems are additionally checked based on stored reference values before or during the fluid consumption diagnosis. If deviations from the stored traversing and / or positioning times are detected, then it can be concluded that the faulty system and - if this is done before the consumption diagnosis - the fluid consumption diagnosis itself can also be omitted if the faulty system or subsystem already could be determined by the preliminary proceedings.
  • the detected fluid consumption and the stored reference consumption are expediently present as curves, which are generated in particular by summation or integration of flow values.
  • a particularly good error detection is achieved in that difference values or difference curves between fluid consumption and reference consumption are formed, since these deviations can be detected particularly easily.
  • the fluid consumption is detected and diagnosed in several areas of the fluidic system by means of a plurality of flowmeter devices.
  • This increases the diagnostic reliability and also the uniqueness of the error detection, in particular if several systems are moving at the same time. For example, more security-relevant Areas of the system can be monitored in this way additionally or separately.
  • these parameters or at least one of these parameters are expediently detected and can be used for parameter-dependent correction of the fluid consumption.
  • a pneumatic system is shown schematically, which could in principle also be another fluidic system, such as a hydraulic system, act.
  • the pneumatic system consists of five subsystems 10-14, which may each be actuators, such as valves, cylinders, linear actuators, and the like, as well as combinations thereof. These subsystems 10-14 are fed by a pressure source 15, wherein in a common supply line 16, a flow meter 17 for measuring the flow or the volume flow is arranged. By summing or integrating the measured values for the flow or volume flow or mass flow, the air consumption is obtained.
  • An electronic control device 18 is used to specify the process flow of the system and is electrically connected to the subsystems 10-14.
  • the subsystems 10-14 receive control signals from the electronic control device 18 and send sensor signals back to them.
  • sensor signals are, for example, position signals, limit switch signals, pressure signals and the like.
  • the flowmeter 17 is connected to an electronic diagnostic device 19, which in addition the signals of a temperature sensor 20 and a pressure sensor 21 for measuring the temperature and the pressure in the supply line 16 are supplied. Furthermore, the diagnostic device 19 has access to the sequence program of the electronic control device 18. The diagnostic results are supplied to a display 22, these diagnostic results can of course also be stored, printed or transmitted to a control center via lines or wirelessly.
  • the diagnostic device 19 can also be integrated in the electronic control device 18, which may contain, for example, a microcontroller for carrying out the sequence program and optionally for diagnosis.
  • Fig. 2 includes there only partially shown diagnostic device 19 a drain memory 23, in which the pneumatic Air consumption during execution of the sequence program of the pneumatic system is stored in the form of a reference air consumption curve.
  • this reference curve can be formed, for example, by addition or integration of reference flow values during the sequence program. It can be stored, for example, in a learning mode.
  • a difference curve ⁇ L is formed as the difference between the air consumption curve L formed from the measured values and the reference curve L ref .
  • the difference curve .DELTA.L and the air consumption curve L and the reference air consumption curve L ref can be reproduced, as in connection with the 4 to 6 will be explained in more detail.
  • Fig. 3 represents an expanded version of the embodiment according to Fig. 1
  • the pressure source 15 supplies additional subsystems 25-32 here.
  • the additional subsystems 25-32 are divided into two groups, each of which is supplied with compressed air via its own flow meter 33, 34.
  • the electronic control device 18, the diagnostic device 19 and corresponding temperature sensors and pressure sensors are not shown for the sake of simplicity, but are of course also corresponding Fig. 1 intended.
  • a common control device and a common diagnostic device 19 may be provided as two separate units or as a single integrated unit.
  • the reference air consumption curve L ref agrees with the measured air consumption curve L until the time t1, that is, the difference or the difference curve remains at the zero value.
  • an error occurs, for example, due to the delayed movement of the actuator in one of the subsystems 10-14, which could be caused, for example, by a momentary jamming of an axle.
  • the entire cycle shifts and extends by the time? T of the delayed movement, the air consumption at the end of the cycle coinciding with that of the reference air consumption curve L ref . This indicates that, incidentally, no leakage has occurred. From the difference curve, exactly the time t1 can be detected, from which the deviation has occurred.
  • the diagnostic device 19 is according to Fig.
  • Fig. 5 the case is shown that during the entire sequence program, ie during the entire cycle of the system, the difference .DELTA.L to a small range between t2 and t3 is constantly increasing, so that at the end of the cycle the total air consumption L is significantly greater than the reference air consumption L ref .
  • the curve represents the case of a leak at an actuator of a subsystem. This is partly pressurized during the cycle and partly depressurized. In the depressurized state, consequently, there is an air consumption difference of 0 or an air consumption difference no longer increasing during this time interval.
  • the sequence program is now determined which actuator was pressureless during this time interval and during the remaining time pressurized. The leakage can thus be limited to this actuator.
  • FIG. 6 shown diagram occurs in a time interval from the time t4 on an air consumption difference to the reference air consumption curve L ref on and again in a time interval from the time t5. Again, it must be determined by comparison with the sequence program, which actuator or which subsystem were active in these two time intervals from the time t4 and t5. These are thereby identified as being defective, which may also be the same actor or subsystem that occurs twice during the sequence program.
  • a new reference value for the air consumption is calculated, which results from the old reference value (0) and the new offset in the air consumption. In the following cycle, the measured air consumption is checked for deviations with the new reference value.
  • the error can be determined again.
  • the limits for a permissible air consumption change can be fixed or kept variable according to the current air consumption values. So it is possible on the one hand, in the range of a small air consumption at the beginning of the cycle To choose very narrow barriers to get a very high sensitivity, and on the other hand in the area of high air consumption at the end of the cycle to set rough barriers to be robust against fluctuation and measurement errors.
  • the flow measured values or air consumption values are subjected to a temperature correction and a pressure correction, wherein the corresponding measured variables are made available by the temperature sensor 20 and the pressure sensor 21.
  • a temperature correction or only a pressure compensation can be provided, or it is dispensed with any compensation, especially if the expected pressure and temperature influences are not very large.
  • the diagnostic method according to the invention can then be realized by software supplementation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

The invention relates to a method for fault localisation and diagnosis in a fluidic installation. According to said method, the fluid consumption in at least one region of the installation is recorded, and compared with a corresponding stored reference consumption according to the operating cycle. Respectively at the time of a variation in consumption or at the end of a continuous variation in consumption, the system and/or subsystem (10-14) of the installation, in which a process influencing the fluid consumption has taken place at this point, is determined, and said system and/or subsystem (10-14) can thus be identified as faulty.

Description

Die Erfindung betrifft ein Verfahren zur Fehlereingrenzung und Diagnose an einer fluidischen Anlage, insbesondere an einer pneumatischen Anlage, mit den Merkmalen des Oberbegriffs des Anspruchs 1.The invention relates to a method for limiting errors and diagnosis on a fluidic system, in particular on a pneumatic system, having the features of the preamble of claim 1.

Aus der DE 100 52 664 A ist ein derartiges Verfahren zur Fehlereingrenzung und Diagnose an einer fluidischen Anlage bekannt, bei dem der Fluidverbrauch mit einer Referenzluftverbrauchskurve verglichen wird. Insbesondere bei komplexen Systemen, die aus einer Vielzahl von Einzelkomponenten bestehen, besteht die Gefahr, dass fehlerhafte Komponenten nicht sicher erkannt werden.From the DE 100 52 664 A For example, such a method for fault isolation and diagnosis at a fluidic system is known in which the fluid consumption is compared with a reference air consumption curve. Especially with complex systems, which consist of a large number of individual components, there is a risk that faulty components are not reliably detected.

Aus der US-A-5 893 047 ist ein ähnliches Verfahren bekannt, bei dem überprüft wird, welche Steuersignale für Systeme oder Subsysteme und/oder Sensorikmeldungen unmittelbar vor dem Zeitpunkt einer Fehlermeldung aufgetreten sind und welchen Systemen und/oder Subsystemen sie zugeordnet waren. Hierdurch verbessert sich zwar die Erkennung von fehlerhaften Komponenten, jedoch ist es schwierig, zwischen Leckagefehlern und anderen Fehlerquellen zu unterscheiden.From the US-A-5,893,047 A similar method is known in which it is checked which control signals for systems or subsystems and / or sensor messages occurred immediately before the time of an error message and which systems and / or subsystems they were assigned. Although this improves the detection of defective components, it is difficult to distinguish between leakage errors and other sources of error.

Aus der DE 19628221 C2 ist ein Verfahren bekannt, das allerdings zur Bestimmung von Betriebspositionen von Arbeitseinrichtungen einer pneumatischen Anlage dient, wobei auf Sensoren, insbesondere Positionssensoren, verzichtet wird. Vor allem bei größeren Anlagen, bei denen sich Vorgänge überschneiden, kann nicht mit Sicherheit auf die Position einer oder in einer bestimmten Arbeitseinrichtung geschlossen werden. Tritt bei einer der Arbeitseinrichtungen eine Fehlfunktion oder ein Leck auf, so sind keinerlei eindeutige Aussagen und Feststellungen mehr möglich, und schon gar nicht kann eine bestimmte Arbeitseinrichtung oder Komponente der Anlage ermittelt werden, die nicht mehr ordnungsgemäß arbeitet.From the DE 19628221 C2 a method is known, however, which serves for the determination of operating positions of working facilities of a pneumatic system, wherein sensors, in particular position sensors, is dispensed with. Especially with larger plants, where operations overlap, can not be sure of the position of one or in closed to a specific work organization. If a malfunction or a leak occurs at one of the working facilities, then no clear statements and findings are possible any more, and certainly not a particular work equipment or component of the system can be determined, which no longer works properly.

Die Aufgabe der vorliegenden Erfindung besteht darin, ein Verfahren der eingangs genannten Gattung zur Fehlereingrenzung und Diagnose zu schaffen, durch das mit einfachen Mitteln besser dasjenige System und/oder Subsystem der Anlage erkannt werden kann, bei dem ein Fehler auftritt, also beispielsweise eine Fehlfunktion oder ein Leck.The object of the present invention is to provide a method of the type mentioned above for fault isolation and diagnosis, through which the system and / or subsystem of the system can be easily detected by simple means in which an error occurs, so for example a malfunction or a leak.

Diese Aufgabe wird erfindungsgemäß durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst.This object is achieved by a method having the features of claim 1.

Die Vorteile des erfindungsgemäßen Verfahrens zur Fehlereingrenzung und Diagnose bestehen insbesondere darin, dass hardwaremäßig lediglich eine zusätzliche Volumenstromsensorik in der Versorgungsleitung der Anlage erforderlich ist, um den Fluidverbrauch zu messen. Im Übrigen werden die ohnehin vorhandenen Positions-, Endschalter- und Aktorsteuersignale verwendet, um bei der Fluidverbrauchsmessung festgestellte Ereignisse bestimmten Systemen bzw. Subsystemen zuordnen und dadurch einen Fehler erkennen zu können. Dabei können sowohl Fehlfunktionen im jeweiligen System und/oder Subsystem als auch Lecks erkannt und dem jeweiligen System bzw. Subsystem zugeordnet werden. Ein Fehler kann dadurch auf ein bestimmtes System innerhalb der Anlage oder sogar auf ein bestimmtes Subsystem eingegrenzt werden. Dies erfolgt sehr schnell noch während des Ablaufprogramms der Anlagensteuerung.The advantages of the method according to the invention for fault isolation and diagnosis are, in particular, that in terms of hardware, only an additional volume flow sensor system in the supply line of the system is required in order to measure the fluid consumption. Incidentally, the already existing position, limit switch and Aktorsteuersignale be used to allocate events detected in the fluid consumption measurement certain systems or subsystems and thereby detect a fault. Both malfunctions in the respective system and / or subsystem as well as leaks can be detected and assigned to the respective system or subsystem. An error can be limited to a specific system within the plant or even to a specific subsystem. This is done very quickly during the sequence program of the system control.

Zur Feststellung des oder der fehlerbehafteten Systeme und/oder Subsysteme zum Zeitpunkt der Verbrauchs-Abweichung oder Beendigung einer ständigen Verbrauchs-Abweichung wird in vorteilhafter Weise ein zeitlicher Vergleich mit dem Ablaufprogramm der Anlagensteuerung durchgeführt. Dadurch kann über das Ablaufprogramm leicht festgestellt werden, welches System oder Subsystem zum festgestellten Zeitpunkt aktiv war oder ist. Zusätzlich wird überprüft, welche Steuersignale für Systeme oder Subsysteme und/oder Sensorrückmeldungen unmittelbar vor diesem Zeitpunkt aufgetreten sind und welchen Systemen bzw. Subsystemen sie zugeordnet waren. Hierdurch kann das fehlerhafte System bzw. Subsystem exakter bestimmt werden.To determine the error-prone systems and / or subsystems at the time of consumption deviation or termination of a constant consumption deviation, a temporal comparison is advantageously carried out with the sequence program of the system control. This can easily be determined by the sequence program, which system or subsystem was or is active at the specified time. In addition, it checks which control signals for systems or subsystems and / or sensor feedback occurred immediately before this time and to which systems or subsystems they were assigned. As a result, the faulty system or subsystem can be determined more accurately.

In vorteilhafter Weise werden auch zusätzlich vor oder während der Fluidverbrauchs-Diagnose die Verfahr- und/oder Positionierzeiten der Systeme und/oder Subsysteme anhand von gespeicherten Referenzwerten überprüft werden. Werden Abweichungen von den gespeicherten Verfahr- und/oder Positionierzeiten festgestellt, so kann dadurch auf das fehlerhafte System geschlossen werden und - falls dies vor der Verbrauchs-Diagnose erfolgt - kann die Fluidverbrauchs-Diagnose selbst auch entfallen, wenn das fehlerhafte System oder Subsystem bereits schon durch das Vorverfahren ermittelt werden konnte.In an advantageous manner, the travel and / or positioning times of the systems and / or subsystems are additionally checked based on stored reference values before or during the fluid consumption diagnosis. If deviations from the stored traversing and / or positioning times are detected, then it can be concluded that the faulty system and - if this is done before the consumption diagnosis - the fluid consumption diagnosis itself can also be omitted if the faulty system or subsystem already could be determined by the preliminary proceedings.

Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Anspruch 1 angegebenen Verfahrens möglich.The measures listed in the dependent claims advantageous refinements and improvements of claim 1 method are possible.

Der erfasste Fluidverbrauch und der gespeicherte Referenzverbrauch liegen zweckmäßigerweise als Kurvenverläufe vor, die insbesondere durch Summierung oder Integration von Durchflusswerten erzeugt werden. Eine besonders gute Fehlererkennung wird dadurch erreicht, dass Differenzwerte oder Differenz-Kurvenverläufe zwischen Fluidverbrauch und Referenzverbrauch gebildet werden, da aus diesen Abweichungen besonders leicht erkannt werden können.The detected fluid consumption and the stored reference consumption are expediently present as curves, which are generated in particular by summation or integration of flow values. A particularly good error detection is achieved in that difference values or difference curves between fluid consumption and reference consumption are formed, since these deviations can be detected particularly easily.

Insbesondere bei großen fluidischen Anlagen kann es sich auch als vorteilhaft erweisen, wenn der Fluidverbrauch zu mehreren Bereichen der fluidischen Anlage mittels mehrerer Durchfluss-Messeinrichtungen erfasst und diagnostiziert wird. Dies erhöht die Diagnosesicherheit und auch die Eindeutigkeit der Fehlererkennung, insbesondere wenn sich mehrere Systeme zu gleicher Zeit bewegen. Beispielsweise können auch sicherheitsrelevantere Bereiche der Anlage auf diese Weise zusätzlich bzw. gesondert überwacht werden.Particularly in the case of large fluidic systems, it can also prove advantageous if the fluid consumption is detected and diagnosed in several areas of the fluidic system by means of a plurality of flowmeter devices. This increases the diagnostic reliability and also the uniqueness of the error detection, in particular if several systems are moving at the same time. For example, more security-relevant Areas of the system can be monitored in this way additionally or separately.

Da der Duchfluss bzw. Volumenstrom und damit auch der Fluidverbrauch nicht zuletzt vom Druck und der Temperatur abhängt, werden diese Parameter oder wenigstens einer dieser Parameter zweckmäßigerweise erfasst und können zur parameterabhängigen Korrektur des Fluidverbrauchs dienen.Since the flow or volume flow and thus also the fluid consumption depends not least on the pressure and the temperature, these parameters or at least one of these parameters are expediently detected and can be used for parameter-dependent correction of the fluid consumption.

Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen:

Fig. 1
eine pneumatische Anlage, in deren Zuführung ein Durchflussmesser geschaltet ist,
Fig. 2
einen Teilbereich der Diagnosestufe zur Differenz- bildung,
Fig. 3
eine umfangreichere pneumatische Anlage, die in drei Teilbereiche aufgeteilt ist und wobei jedem Teilbereich ein Durchflussmesser zugeordnet ist,
Fig. 4 bis 6
Luftverbrauchsdiagramme zur Erläuterung verschiede- ner Diagnoseergebnisse.
Embodiments of the invention are illustrated in the drawings and explained in more detail in the following description. Show it:
Fig. 1
a pneumatic system, in the supply of which a flow meter is connected,
Fig. 2
a subsection of the diagnostic step for difference formation,
Fig. 3
a more extensive pneumatic system, which is divided into three sections and wherein each section is assigned a flow meter,
4 to 6
Air consumption diagrams to explain different diagnostic results.

In Fig. 1 ist eine pneumatische Anlage schematisch dargestellt, wobei es sich prinzipiell auch um eine andere fluidische Anlage, wie eine hydraulische Anlage, handeln könnte.In Fig. 1 a pneumatic system is shown schematically, which could in principle also be another fluidic system, such as a hydraulic system, act.

Die pneumatische Anlage besteht aus fünf Subsystemen 10-14, bei denen es sich jeweils um Aktoren, wie Ventile, Zylinder, Linearantriebe und dergleichen, handeln kann sowie um Kombinationen derselben. Diese Subsysteme 10-14 werden von einer Druckquelle 15 gespeist, wobei in einer gemeinsamen Zuführleitung 16 ein Durchflussmesser 17 zur Messung des Durchflusses bzw. des Volumenstromes angeordnet ist. Durch Summierung bzw. Integration der Messwerte für den Durchfluss bzw. Volumenstrom oder Massenstrom erhält man den Luftverbrauch. Die Subsysteme 11, 12 einerseits und die Subsysteme 13, 14 andererseits bilden wiederum jeweils ein System mit einer gemeinsamen Zuleitung.The pneumatic system consists of five subsystems 10-14, which may each be actuators, such as valves, cylinders, linear actuators, and the like, as well as combinations thereof. These subsystems 10-14 are fed by a pressure source 15, wherein in a common supply line 16, a flow meter 17 for measuring the flow or the volume flow is arranged. By summing or integrating the measured values for the flow or volume flow or mass flow, the air consumption is obtained. The subsystems 11, 12, on the one hand, and the subsystems 13, 14, on the other hand, in turn each form a system with a common supply line.

Eine elektronische Steuerungsvorrichtung 18 dient zur Vorgabe des Ablaufprozesses der Anlage und ist elektrisch mit den Subsystemen 10-14 verbunden. Die Subsysteme 10-14 erhalten Steuersignale von der elektronischen Steuervorrichtung 18 und senden Sensorsignale wieder an diese zurück. Solche Sensorsignale sind beispielsweise Positionssignale, Endschaltersignale, Drucksignale und dergleichen.An electronic control device 18 is used to specify the process flow of the system and is electrically connected to the subsystems 10-14. The subsystems 10-14 receive control signals from the electronic control device 18 and send sensor signals back to them. Such sensor signals are, for example, position signals, limit switch signals, pressure signals and the like.

Der Durchflussmesser 17 ist mit einer elektronischen Diagnoseeinrichtung 19 verbunden, der zusätzlich die Signale eines Temperatursensors 20 und eines Drucksensors 21 zur Messung der Temperatur und des Drucks in der Zuführleitung 16 zugeführt sind. Weiterhin hat die Diagnoseeinrichtung 19 Zugriff auf das Ablaufprogramm der elektronischen Steuervorrichtung 18. Die Diagnoseergebnisse werden einem Display 22 zugeführt, wobei diese Diagnoseergebnisse selbstverständlich auch gespeichert, ausgedruckt oder einer Zentrale über Leitungen oder drahtlos übermittelt werden können.The flowmeter 17 is connected to an electronic diagnostic device 19, which in addition the signals of a temperature sensor 20 and a pressure sensor 21 for measuring the temperature and the pressure in the supply line 16 are supplied. Furthermore, the diagnostic device 19 has access to the sequence program of the electronic control device 18. The diagnostic results are supplied to a display 22, these diagnostic results can of course also be stored, printed or transmitted to a control center via lines or wirelessly.

Die Diagnoseeinrichtung 19 kann selbstverständlich auch in der elektronischen Steuerungsvorrichtung 18 integriert sein, die beispielsweise einen Mikrocontroller zur Durchführung des Ablaufprogramms und gegebenenfalls zur Diagnose enthalten kann.Of course, the diagnostic device 19 can also be integrated in the electronic control device 18, which may contain, for example, a microcontroller for carrying out the sequence program and optionally for diagnosis.

Gemäß Fig. 2 enthält die dort nur teilweise dargestellte Diagnoseeinrichtung 19 einen Ablaufspeicher 23, in dem der pneumatische Luftverbrauch während der Durchführung des Ablaufprogramms der pneumatischen Anlage in Form einer Referenzluftverbrauchskurve gespeichert ist. Diese Referenzkurve kann, wie bereits dargelgt, beispielsweise durch Addition oder Integration von Referenzdurchflusswerten während des Ablaufprogramms gebildet sein. Sie kann beispielsweise in einem Lernmodus gespeichert werden. In einer nachgeschalteten Subtrahierstufe 24, der auch die Sensorsignale des Durchflussmessers 17 zugeführt werden, wird ein Differenz-Kurvenverlauf ΔL als Differenz der aus den Messwerten gebildeten Luftverbrauchskurve L und der Referenzskurve Lref gebildet. Auf dem Display 22 kann dann der Differenz-Kurvenverlauf ΔL sowie die Luftverbrauchskurve L und die Referenzluftverbrauchskurve Lref wiedergegeben werden, wie dies in Verbindung mit den Fig. 4 bis 6 noch näher erläutert wird.According to Fig. 2 includes there only partially shown diagnostic device 19 a drain memory 23, in which the pneumatic Air consumption during execution of the sequence program of the pneumatic system is stored in the form of a reference air consumption curve. As already stated, this reference curve can be formed, for example, by addition or integration of reference flow values during the sequence program. It can be stored, for example, in a learning mode. In a downstream subtraction stage 24, to which the sensor signals of the flow meter 17 are also supplied, a difference curve ΔL is formed as the difference between the air consumption curve L formed from the measured values and the reference curve L ref . On the display 22 then the difference curve .DELTA.L and the air consumption curve L and the reference air consumption curve L ref can be reproduced, as in connection with the 4 to 6 will be explained in more detail.

Fig. 3 stellt eine erweiterte Version des Ausführungsbeispiels gemäß Fig. 1 dar. Neben den Subsystemen 10-14 versorgt die Druckquelle 15 hier weitere Subsysteme 25-32. Die zusätzlichen Subsysteme 25-32 sind in zwei Gruppen eingeteilt, die jeweils über einen eigenen Durchflussmesser 33, 34 mit Druckluft versorgt werden. Mittels der drei Durchflussmesser 17, 33, 34 können somit die drei Teilbereiche der Anlage unabhängig voneinander diagnostiziert werden. Die elektronische Steuerungsvorrichtung 18, die Diagnoseeinrichtung 19 und entsprechende Temperatursensoren und Drucksensoren sind zur Vereinfachung nicht dargestellt, sind jedoch selbstverständlich ebenfalls entsprechend Fig. 1 vorgesehen. Dabei kann eine gemeinsame Steuerungsvorrichtung und eine gemeinsame Diagnoseeinrichtung 19 als zwei separate Einheiten oder als einzige integrierte Einheit vorgesehen sein. Fig. 3 represents an expanded version of the embodiment according to Fig. 1 In addition to the subsystems 10-14, the pressure source 15 supplies additional subsystems 25-32 here. The additional subsystems 25-32 are divided into two groups, each of which is supplied with compressed air via its own flow meter 33, 34. By means of the three flow meters 17, 33, 34 can thus be diagnosed independently of each other, the three sections of the system. The electronic control device 18, the diagnostic device 19 and corresponding temperature sensors and pressure sensors are not shown for the sake of simplicity, but are of course also corresponding Fig. 1 intended. In this case, a common control device and a common diagnostic device 19 may be provided as two separate units or as a single integrated unit.

Das Verfahren zur Fehlereingrenzung und Diagnose wird nun im Folgenden anhand der beschriebenen pneumatischen Anlage erläutert.The procedure for fault isolation and diagnosis will now be explained below with reference to the described pneumatic system.

In Fig. 4 ist der Fall dargestellt, dass bis zum Zeitpunkt t1 die Referenzluftverbrauchskurve Lref mit der gemessenen Luftverbrauchskurve L übereinstimmt, das heißt, die Differenz bzw. der Differenz-Kurvenverlauf bleibt auf dem Nullwert. Zum Zeitpunkt t1 tritt ein Fehler auf, zum Beispiel durch die verzögerte Bewegung des Aktuators in einem der Subsysteme 10-14, was beispielsweise durch ein kurzzeitiges Klemmen einer Achse hervorgerufen sein könnte. Hierdurch verschiebt und verlängert sich der gesamte Zyklus um die Zeit ?t der verzögerten Bewegung, wobei der Luftverbrauch am Ende des Zyklus mit dem der Referenzluftverbrauchskurve Lref übereinstimmt. Dies deutet darauf hin, dass im Übrigen keine Leckage aufgetreten ist. Aus dem Differenz-Kurvenverlauf kann exakt der Zeitpunkt t1 detektiert werden, ab dem die Abweichung aufgetreten ist. Der Diagnoseeinrichtung 19 ist gemäß Fig. 1 seitens der elektronischen Steuerungsvorrichtung 18 das Ablaufprogramm zugeführt. Aus diesem kann entnommen werden, welcher Aktor oder welches Subsystem zum Zeitpunkt t1 aktiv war. Der Fehler kann somit auf diesen Aktor bzw. dieses Subsysteme eingegrenzt werden. Die Zuordnung der jeweils aktiven Subsysteme gemäß dem Ablaufprogramm zur Luftverbrauchskurve bzw. zur Referenzluftverbrauchskurve kann grafisch auf dem Display 22 erfolgen oder durch ein Vergleichsprogramm in der Diagnoseeinrichtung 19 ermittelt werden. Das zum Zeitpunkt der Abweichung aktive Subsystem kann dann ebenfalls grafisch angezeigt werden.In Fig. 4 In the case illustrated, the reference air consumption curve L ref agrees with the measured air consumption curve L until the time t1, that is, the difference or the difference curve remains at the zero value. At time t1, an error occurs, for example, due to the delayed movement of the actuator in one of the subsystems 10-14, which could be caused, for example, by a momentary jamming of an axle. As a result, the entire cycle shifts and extends by the time? T of the delayed movement, the air consumption at the end of the cycle coinciding with that of the reference air consumption curve L ref . This indicates that, incidentally, no leakage has occurred. From the difference curve, exactly the time t1 can be detected, from which the deviation has occurred. The diagnostic device 19 is according to Fig. 1 supplied by the electronic control device 18, the sequence program. From this it can be seen which actuator or which subsystem was active at time t1. The error can thus be limited to this actuator or these subsystems. The allocation of the respective active subsystems according to the sequence of operation for the air consumption curve or the reference air consumption curve can be graphically on the display 22 or determined by a comparison program in the diagnostic device 19. The subsystem active at the time of the deviation can then also be displayed graphically.

In Fig. 5 ist der Fall dargestellt, dass während des gesamten Ablaufprogramms, also während des gesamten Zyklus der Anlage, die Differenz ΔL bis auf einen kleinen Bereich zwischen t2 und t3 ständig zunimmt, sodass am Ende des Zyklus der Gesamtluftverbrauch L deutlich größer als der Referenzluftverbrauch Lref ist. Der Kurvenverlauf stellt den Fall einer Leckage an einem Aktuator eines Subsystems dar. Dieser ist während des Zyklus teils mit Druck beaufschlagt und teils drucklos. Im drucklosen Zustand ergibt sich konsequenterweise eine Luftverbrauchsdifferenz von 0 bzw. eine während dieses Zeitintervalls nicht mehr ansteigende Luftverbrauchsdifferenz. Durch Vergleich mit dem Ablaufprogramm wird nun festgestellt, welcher Aktuator während dieses Zeitintervalls drucklos und während der übrigen Zeit druckbeaufschlagt war. Die Leckage kann somit auf diesen Aktuator eingegrenzt werden.In Fig. 5 the case is shown that during the entire sequence program, ie during the entire cycle of the system, the difference .DELTA.L to a small range between t2 and t3 is constantly increasing, so that at the end of the cycle the total air consumption L is significantly greater than the reference air consumption L ref . The curve represents the case of a leak at an actuator of a subsystem. This is partly pressurized during the cycle and partly depressurized. In the depressurized state, consequently, there is an air consumption difference of 0 or an air consumption difference no longer increasing during this time interval. By comparison with the sequence program is now determined which actuator was pressureless during this time interval and during the remaining time pressurized. The leakage can thus be limited to this actuator.

Bei dem in Fig. 6 dargestellten Diagramm tritt in einem Zeitintervall ab dem Zeitpunkt t4 eine Luftverbrauchsdifferenz zur Referenzluftverbrauchskurve Lref auf und nochmals in einem Zeitintervall ab dem Zeitpunkt t5. Auch hier muss wiederum durch Vergleich mit dem Ablaufprogramm festgestellt werden, welcher Aktor oder welches Subsystem in diesen beiden zeitintervallen ab dem Zeitpunkt t4 und t5 aktiv waren. Diese werden dadurch als fehlerhaft erkannt, wobei es sich auch um denselben Aktor bzw. dasselbe Subsystem handeln kann, die während des Ablaufprogramms zweimal in Aktion treten. Nach der ersten Abweichung ab dem Zeitpunkt t4 wird ein neuer Referenzwert für den Luftverbrauch gebildet, der sich aus dem alten Referenzwert (0) und dem neuen Offset im Luftverbrauch ergibt. Im folgenden Zyklus wird der gemessene Luftverbrauch mit dem neuen Referenzwert auf Abweichungen geprüft. Somit ist bei einem erneuten Fehler des gleichen Subsystems oder eines anderen Subsystems der Fehler wieder bestimmbar. Die Schranken für eine zulässige Luftverbrauchsänderung können fest gewählt oder entsprechend den aktuellen Werten des Luftverbrauchs variabel gehalten werden. So ist es einerseits möglich, im Bereich eines kleinen Luftverbrauchs zum Zyklusbeginn sehr enge Schranken zu wählen, um eine sehr hohe Empfindlichkeit zu bekommen, und andererseits im Bereich eines hohen Luftverbrauchs am Ende des Zyklus grobe Schranken zu wählen, um robust gegen Fluktuation und Messfehler zu sein.At the in Fig. 6 shown diagram occurs in a time interval from the time t4 on an air consumption difference to the reference air consumption curve L ref on and again in a time interval from the time t5. Again, it must be determined by comparison with the sequence program, which actuator or which subsystem were active in these two time intervals from the time t4 and t5. These are thereby identified as being defective, which may also be the same actor or subsystem that occurs twice during the sequence program. After the first deviation from time t4, a new reference value for the air consumption is calculated, which results from the old reference value (0) and the new offset in the air consumption. In the following cycle, the measured air consumption is checked for deviations with the new reference value. Thus, in the event of a renewed error of the same subsystem or of another subsystem, the error can be determined again. The limits for a permissible air consumption change can be fixed or kept variable according to the current air consumption values. So it is possible on the one hand, in the range of a small air consumption at the beginning of the cycle To choose very narrow barriers to get a very high sensitivity, and on the other hand in the area of high air consumption at the end of the cycle to set rough barriers to be robust against fluctuation and measurement errors.

Um Abweichungen von der Referenzluftverbrauchskurve Lref aufgrund von Temperatureinflüssen und Druckeinflüssen zu vermeiden, werden die Durchflussmesswerte bzw. Luftverbrauchswerte einer Temperaturkorrektur und einer Druckkorrektur unterworfen, wobei die entsprechenden Messgrößen vom Temperatursensor 20 und dem Drucksensor 21 zur Verfügung gestellt werden. In einer einfacheren Ausführung kann auch nur eine Temperaturkompensation oder nur eine Druckkompensation vorgesehen sein, oder es wird auf jegliche Kompensation verzichtet, insbesondere auch dann, wenn die zu erwartenden Druck- und Temperatureinflüsse nicht sehr groß sind.In order to avoid deviations from the reference air consumption curve L ref due to temperature influences and pressure influences, the flow measured values or air consumption values are subjected to a temperature correction and a pressure correction, wherein the corresponding measured variables are made available by the temperature sensor 20 and the pressure sensor 21. In a simpler embodiment, only a temperature compensation or only a pressure compensation can be provided, or it is dispensed with any compensation, especially if the expected pressure and temperature influences are not very large.

Da zum erfindungsgemäßen Verfahren in Bezug auf die Hardware lediglich ein zusätzlicher Durchflussmesser erforderlich ist, können auch bereits installierte Anlagen in einfacher Weise nachgerüstet werden. Das erfindungsgemäße Diagnoseverfahren kann dann durch eine Software-Ergänzung realisiert werden.Since the method according to the invention requires only an additional flow meter with respect to the hardware, already installed systems can be easily retrofitted. The diagnostic method according to the invention can then be realized by software supplementation.

Claims (7)

  1. Method for fault localisation and diagnosis on a fluidic system, wherein the fluid consumption (L) of at least one region of the system is detected and compared in an operating cycle-dependent manner to a corresponding stored reference consumption (Lref), wherein, in order to detect the faulty system(s) and/or subsystem(s) (10-14, 25-32), a time comparison is carried out at the time of a consumption deviation (ΔL) or at the end of a continuous consumption deviation with a reference air consumption curve which is stored in a sequence memory (23) and which includes the pneumatic air consumption during the execution of the sequence programme of the system control (18) of the pneumatic system, characterised in that a check is performed to determine which control signals for systems or subsystems and/or which feedbacks have occurred immediately before this point in time and to which systems and/or subsystems they were assigned, in order to recognise this or these as faulty, and in that, in addition, before or during the consumption diagnosis the traversing and/or positioning times of the systems and/or subsystems are checked against stored reference values.
  2. Method according to claim 1, characterised in that the consumption diagnosis is omitted if there are any faults in the traversing and/or positioning times.
  3. Method according to claim 2, characterised in that the temperature and/or the pressure of the fluid is/are detected in addition.
  4. Method according to claim 3, characterised in that the measured air consumption (L) is corrected in dependence on temperature and/or pressure.
  5. Method according to any of the preceding claims, characterised in that the detected air consumption (L) and the stored reference consumption (Lref) are present as curve traces which are in particular generated by the summation or integration of flow values.
  6. Method according to any of the preceding claims, characterised in that the differential values (ΔL) or differential curve traces are formed between fluid consumption (L) and reference consumption (Lref).
  7. Method according to any of the preceding claims, characterised in that the fluid consumption of several regions of the fluidic system is detected and diagnosed by means of several flow measurement devices (17, 33, 34).
EP04727868A 2004-04-16 2004-04-16 Method for fault localisation and diagnosis in a fluidic installation Expired - Lifetime EP1747380B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2004/004050 WO2005111433A1 (en) 2004-04-16 2004-04-16 Method for fault localisation and diagnosis in a fluidic installation

Publications (2)

Publication Number Publication Date
EP1747380A1 EP1747380A1 (en) 2007-01-31
EP1747380B1 true EP1747380B1 (en) 2011-07-06

Family

ID=34957275

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04727868A Expired - Lifetime EP1747380B1 (en) 2004-04-16 2004-04-16 Method for fault localisation and diagnosis in a fluidic installation

Country Status (5)

Country Link
EP (1) EP1747380B1 (en)
CN (1) CN1973136B (en)
AT (1) ATE515638T1 (en)
DK (1) DK1747380T3 (en)
WO (1) WO2005111433A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2047117B1 (en) * 2007-02-14 2010-06-16 Festo AG & Co. KG Method for fault localization and diagnosis in a fluidic installation
CN101427033A (en) * 2007-02-14 2009-05-06 费斯托股份有限两合公司 Method for fault localization and diagnosis in a fluidic installation
DE102012005224A1 (en) * 2012-03-15 2013-09-19 Festo Ag & Co. Kg Fluid system and method of operating a fluid system
CN104533881B (en) * 2014-12-04 2016-09-21 上海中联重科桩工机械有限公司 System and method for judging walking deviation reason of engineering machinery
EP3243608B1 (en) 2016-05-09 2022-04-06 J. Schmalz GmbH Method for monitoring the functioning states of a pressure driven actuator and pressure driven actuator
CN107420381B (en) * 2017-03-17 2018-11-23 北京交通大学 A kind of caliberating device of servo valve temperature screen system
IT201800007875A1 (en) * 2018-08-06 2020-02-06 Gd Spa A diagnostic method and an operating unit of a production line for smoking articles
CN109325692B (en) * 2018-09-27 2021-01-22 清华大学合肥公共安全研究院 Real-time data analysis method and device for water pipe network
FR3107955A1 (en) * 2020-03-05 2021-09-10 Sagemcom Energy & Telecom Sas Detection of an abnormal metrological drift of a fluid meter

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5136499A (en) * 1986-07-07 1992-08-04 Rydborn S A O Monitoring for distinguishing normal from abnormal deviations in a knitting machine
US5067099A (en) * 1988-11-03 1991-11-19 Allied-Signal Inc. Methods and apparatus for monitoring system performance
GB2285700B (en) * 1994-01-12 1998-06-24 Drallim Ind Monitoring apparatus and method
DE19628221C2 (en) * 1996-07-15 2000-05-31 Festo Ag & Co Method and device for determining operating positions of a work device
DE10052664B4 (en) * 2000-10-24 2004-10-28 Festo Ag & Co. Process monitoring device
DE20120609U1 (en) * 2001-12-20 2002-03-21 Beck IPC GmbH, 35578 Wetzlar Diagnostic device for a fluid technology device and fluid technology device equipped therewith

Also Published As

Publication number Publication date
CN1973136B (en) 2014-09-24
ATE515638T1 (en) 2011-07-15
EP1747380A1 (en) 2007-01-31
WO2005111433A1 (en) 2005-11-24
CN1973136A (en) 2007-05-30
DK1747380T3 (en) 2011-09-26

Similar Documents

Publication Publication Date Title
EP2047117B1 (en) Method for fault localization and diagnosis in a fluidic installation
EP2047118B1 (en) Method for fault localization and diagnosis in a fluidic installation
EP2604478B2 (en) Method for recognising function errors of a multi-sensor assembly
EP1552128B1 (en) Method, control appliance and computer program for detecting defective pressure sensors in an internal combustion engine
EP3631593B1 (en) Monitoring device and method for monitoring a system
DE19723650B9 (en) Method and device for monitoring an actuator
EP3546763B1 (en) Detection of maintenance conditions of valves
EP1747380B1 (en) Method for fault localisation and diagnosis in a fluidic installation
DE102006011807A1 (en) Method for fault detection on an actuator
EP3282399A1 (en) Method for the improved detection of process anomalies of a technical installation and corresponding diagnostic system
EP4058769A1 (en) Device and method for detecting leakage of a hydraulic cylinder
WO2017103093A1 (en) Method for monitoring at least two redundant sensors
DE102005025520A1 (en) Method for the model-based diagnosis of a mechatronic system
DE102014214452B3 (en) Method and device for detecting a faulty rail pressure sensor
EP1313936B1 (en) Method and device for controlling an internal combustion engine
DE102012014493A1 (en) Method and device for redundantly detecting a direction of rotation
DE4108417C2 (en) Method and device for monitoring sensors
DE10355022A1 (en) Method for monitoring a technical system
EP2203649B1 (en) Method and device for indicating the position of hydraulically activated armatures
DE102017111455A1 (en) Method of testing a machine controlled by a controller
EP2926014B1 (en) Method and device for position display of hydraulically actuated fittings
DE102017204400A1 (en) A method of operating a sensor and method and apparatus for analyzing data of a sensor
EP0815459A1 (en) Circuitry and process for testing non-intermittent signal generators
DE19930311C1 (en) Determining operation break down in fuel injection system
DE102011004007A1 (en) Input device for field device for process instrumentation with button, is assigned with magnetic field sensors for generation of measurement signals

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061010

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BREDAU, JAN

Inventor name: ENGELHARDT, JENS

17Q First examination report despatched

Effective date: 20070424

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FESTO AG & CO. KG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004012668

Country of ref document: DE

Effective date: 20110901

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111107

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110706

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110706

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110706

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110706

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110706

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110706

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110706

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110706

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110706

26N No opposition filed

Effective date: 20120411

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20120424

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004012668

Country of ref document: DE

Effective date: 20120411

BERE Be: lapsed

Owner name: FESTO A.G. & CO. KG

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120411

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111006

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20130429

Year of fee payment: 10

Ref country code: GB

Payment date: 20130402

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20130415

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111017

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20130430

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 515638

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110706

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040416

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20141101

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141101

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170424

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170420

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180416

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004012668

Country of ref document: DE

Representative=s name: PATENTANWAELTE MAGENBAUER & KOLLEGEN PARTNERSC, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004012668

Country of ref document: DE

Owner name: FESTO SE & CO. KG, DE

Free format text: FORMER OWNER: FESTO AG & CO. KG, 73734 ESSLINGEN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004012668

Country of ref document: DE

Owner name: FESTO AG & CO. KG, DE

Free format text: FORMER OWNER: FESTO AG & CO. KG, 73734 ESSLINGEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200226

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004012668

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211103