EP2043597A2 - Coloration capillaire contenant du beurre de karite - Google Patents

Coloration capillaire contenant du beurre de karite

Info

Publication number
EP2043597A2
EP2043597A2 EP07765794A EP07765794A EP2043597A2 EP 2043597 A2 EP2043597 A2 EP 2043597A2 EP 07765794 A EP07765794 A EP 07765794A EP 07765794 A EP07765794 A EP 07765794A EP 2043597 A2 EP2043597 A2 EP 2043597A2
Authority
EP
European Patent Office
Prior art keywords
acid
amino
composition according
alkyl
hair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07765794A
Other languages
German (de)
English (en)
Inventor
Wolfgang Wolff
Mustafa Akram
Kawai Masaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP2043597A2 publication Critical patent/EP2043597A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/10Preparations for permanently dyeing the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/37Esters of carboxylic acids
    • A61K8/375Esters of carboxylic acids the alcohol moiety containing more than one hydroxy group
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/92Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof
    • A61K8/922Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof of vegetable origin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9783Angiosperms [Magnoliophyta]
    • A61K8/9789Magnoliopsida [dicotyledons]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/004Preparations used to protect coloured hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/42Colour properties
    • A61K2800/43Pigments; Dyes

Definitions

  • the present application relates to agents for coloring keratinic fibers based on at least one dye precursor, which further contain at least one component which can be obtained from plants of the type Butyrospermum, and a corresponding dyeing method.
  • Human hair is treated today in many ways with hair cosmetic preparations. These include, for example, the cleansing of hair with shampoos, the care and regeneration with rinses and cures and the bleaching, dyeing and shaping of the hair with dyes, tinting agents, waving agents and styling preparations. In this case, means for changing or nuancing the color of the head hair play a prominent role.
  • dyeing or tinting agents which contain as coloring component so-called substantive dyes. These are dye molecules that attach directly to the hair and do not require an oxidative process to form the paint. These dyes include, for example, the henna already known from antiquity for coloring body and hair. These dyes are usually sensitive to shampooing, so that sometimes an undesirable shift in shade or even a visible “discoloration" occurs.
  • oxidation colorants For permanent, intensive dyeings with corresponding fastness properties, so-called oxidation colorants are used. Such colorants usually contain oxidation dye precursors, so-called developer components and coupler components. The developer components form under the influence of oxidizing agents or of atmospheric oxygen with one another or with coupling with one or more coupler components, the actual dyes.
  • the oxidation stains are characterized by excellent, long lasting staining results.
  • a mixture of a larger number of oxidation dye precursors must usually be used; In many cases, direct dyes are still used for shading.
  • the hair is treated with special active ingredients, for example quaternary ammonium salts or special polymers, usually in the form of a rinse.
  • special active ingredients for example quaternary ammonium salts or special polymers, usually in the form of a rinse.
  • this treatment improves combability, hold and fullness of the hair and reduces the split rate.
  • hair dyes which contain at least one constituent which can be obtained from plants of the Butyrospermum type significantly improve the care condition of the fibers already during the actual dyeing; In particular, a significant improvement in the "grip" of wet and dry hair is noted.
  • a first subject of the present invention are therefore agents for coloring keratinic fibers, containing at least one dye precursor and at least one component which can be obtained from plants of the type Butyrospermum.
  • keratinic fibers are understood to mean furs, wool, feathers and, in particular, human hair.
  • the agents contain at least one constituent of a plant of the type Butyrospermum. Components of plants of the type Butyrospermum Parkii are particularly preferred according to the invention.
  • the term "constituent of a plant of the type Butyrospermum” refers to raw materials which are obtained directly from a plant of the type Butyrospermum.Furthermore, according to the invention, synthetic raw material mixtures should also be included which have been deliberately combined to form the natural raw material mixtures resulting from plants obtained from the type Butyrospermum, nachstellen.
  • An inventively preferred plant of the type Butyrospermum Parkii bears the scientific name Vitellaria paradoxa and is colloquially also called sheathing or shea tree. This plant comes from the sapote family (Sapotaceae) and occurs in the southern Sudan savannas in tropical Africa between Senegal and Kenya in two subspecies.
  • the fruits of these up to 20m tall trees are botanically seen berries and contain about 4cm large seeds, which are called Sheanuss and have a fat content of about 50%.
  • the berry meat can be eaten by humans and animals as fruit.
  • the fat fraction is usually recovered from the seeds by mechanical or chemical means.
  • the seeds are thoroughly mechanically crushed (preferably mashed), the resulting mass boiled in water, and then the top floating fat is skimmed off.
  • the crude fat thus obtained is grayish yellow and has a peculiar smell.
  • the crude fat thus obtained is often refined, so that a butter-like, tough and odorless fat is obtained.
  • a common chemical process is the extraction of minced seeds with hexane. With the aid of this process, higher yields of the fat fraction can be obtained. However, the unsaponifiable ingredients are significantly poorer in extraction and the resulting fat has a low level of unsaponifiable ingredients.
  • the agents contain at least one triglyceride fraction derived from a plant of the Butyrospermum Parkii type.
  • the triglyceride fraction of this plant is characterized by its high oleic acid and stearic acid content.
  • Preferred according to the invention are triglyceride fractions containing 45-55% by weight of oleic acid, 30-45% by weight of stearic acid, 2-8% by weight of palmitic acid and 2-8% by weight of linoleic acid; triglyceride fractions containing 49-50% by weight are particularly preferred.
  • % Oleic acid 36-42% by weight of stearic acid, 5-6% by weight of palmitic acid and 4-5% by weight of linoleic acid.
  • compositions comprise at least one unsaponifiable fraction derived from Butyrospermum Parkii.
  • the sheanuts contain in particular triterpene alcohols, phytosterols, latex, vitamins (vitamin E, provitamin A) and allantoin.
  • vitamins vitamin E, provitamin A
  • allantoin in contrast to many other fat-containing plants, such as sesame or olives, the plants of the type Butyrospermum Parkii have a relatively high proportion of unsaponifiable Bestan turnover that significantly characterize the properties of the fat fraction obtained.
  • compositions according to the invention contain both a triglyceride fraction and a unsaponifiable fraction, both of which are obtained from a plant of the Butyrospermum Parkii type.
  • the fraction of the unsaponifiable fraction based on the total constituent which is obtained from the plant of the butyrospermum type is at least 5% by weight, preferably at least 9% by weight.
  • the fraction (s) obtained from plants of the Butyrospermum type are preferably present in the colorants in amounts of from 0.01 to 10% by weight, in particular from 0.1 to 3% by weight, in the colorants.
  • the present invention is not subject to any restrictions.
  • the colorants according to the invention can be used as dye precursors
  • the agents according to the invention contain at least one dye precursor of the developer and / or coupler type. It may be preferred according to the invention to use as the developer component a p-phenylenediamine derivative or one of its physiologically acceptable salts. Particular preference is given to p-phenylenediamine derivatives of the formula (E1)
  • G 1 represents a hydrogen atom, a C 1 - to C 4 alkyl, C 1 - to C 4 - monohydroxyalkyl radical, a C 2 - to C 4 polyhydroxyalkyl radical, a (C 1 - to C 4) alkoxy ( C 1 -C 4 ) -alkyl radical, a 4'-aminophenyl radical or a C 1 -C 4 -alkyl radical which is substituted by a nitrogen-containing group, a phenyl or a 4'-aminophenyl radical;
  • G 2 represents a hydrogen atom, a C 1 - to C 4 alkyl, C 1 - to C 4 - monohydroxyalkyl radical, a C 2 - to C 4 polyhydroxyalkyl radical, a (C 1 - to C 4) alkoxy ( C 1 -C 4 ) -alkyl radical or a C 1 -C 4 -alkyl radical which is substituted by a nitrogen-containing group;
  • G 3 represents a hydrogen atom, a halogen atom such as a chlorine, bromine, iodine or fluorine atom, a C 1 - to C 4 -alkyl radical, a C 1 - to C 4 -monohydroxyalkyl radical, a C 2 - to C 4 - Polyhydroxyalkylrest, a C 1 - to C 4 -hydroxyalkoxy, a C 1 - to C 4 -Acetylaminoalkoxyrest, a C 1 - to C 4 - Mesylaminoalkoxyrest or a C 1 - to C 4 -Carbamoylaminoalkoxyrest;
  • a halogen atom such as a chlorine, bromine, iodine or fluorine atom
  • a C 1 - to C 4 -alkyl radical such as a chlorine, bromine, iodine or fluorine atom
  • G 4 represents a hydrogen atom, a halogen atom or a C 1 - to C 4 -alkyl radical or when G 3 and G 4 are ortho to each other, they may together form a bridging ⁇ , ⁇ -alkylenedioxy group, such as, for example, an ethylenedioxy group.
  • C 1 - to C 4 -alkyl radicals mentioned as substituents in the compounds according to the invention are the groups methyl, ethyl, propyl, isopropyl and butyl. Ethyl and methyl are preferred alkyl radicals.
  • C 1 -C 4 -alkoxy radicals which are preferred according to the invention are, for example, a methoxy or an ethoxy group.
  • a C 1 - to C 4 -hydroxyalkyl group a hydroxymethyl, a 2-hydroxyethyl, a 3-hydroxypropyl or a 4-hydroxybutyl group may be mentioned.
  • a 2-hydroxyethyl group is particularly preferred.
  • a particularly preferred C 2 to C 4 polyhydroxyalkyl group is the 1, 2-dihydroxyethyl group.
  • halogen atoms are according to the invention F, Cl or Br atoms, Cl atoms are very particularly preferred.
  • the other terms used are derived according to the invention from the definitions given here.
  • nitrogen-containing groups of the formula (E1) are in particular the amino groups, C 1 to C 4 monoalkylamino groups, C 1 to C 4 dialkylamino groups, C 1 to C 4 trialkylammonium groups, C 1 to C 4 monohydroxyalkylamino groups, Imidazolinium and ammonium.
  • Particularly preferred p-phenylenediamines of the formula (E1) are selected from p-phenylenediamine, p-toluenediamine, 2-chloro-p-phenylenediamine, 2,3-dimethyl-p-phenylenediamine, 2,6-dimethyl-p-phenylenediamine, 2 , 6-diethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, N, N-dimethyl-p-phenylenediamine, N, N-diethyl-p-phenylenediamine, N, N-dipropyl-p-phenylenediamine, 4 -Amino-3-methyl- (N, N-diethyl) -aniline, N, N-bis- ( ⁇ -hydroxyethyl) -p-phenylenediamine, 4-N, N-bis- ( ⁇ -hydroxyethyl) -amino-2 -methylaniline
  • Very particular preferred p-phenylenediamine derivatives of the formula (E1) according to the invention are p-phenylenediamine, p-toluenediamine, 2- ( ⁇ -hydroxyethyl) -p-phenylenediamine, 2- ( ⁇ , ⁇ -dihydroxyethyl) -p-phenylenediamine and N, N bis (.beta.-hydroxyethyl) -p-phenylenediamine.
  • developer component compounds which contain at least two aromatic nuclei which are substituted by amino and / or hydroxyl groups.
  • binuclear developer components which can be used in the dyeing compositions according to the invention, mention may be made in particular of the compounds corresponding to the following formula (E2) and their physiologically tolerated salts:
  • Z 1 and Z 2 independently of one another represent a hydroxyl or NH 2 radical which is optionally substituted by a C 1 - to C 4 -alkyl radical, by a C 1 - to C 4 -hydroxyalkyl radical and / or by a bridge Y.
  • the bridge Y is an alkylene group having 1 to 14 carbon atoms, such as a linear or branched alkylene chain or an alkylene ring, which is one or more nitrogen-containing groups and / or one or more heteroatoms such as oxygen , Sulfur or nitrogen atoms may be interrupted or terminated and may optionally be substituted by one or more hydroxyl or C 1 - to C 8 -alkoxy radicals, or a direct bond,
  • G 5 and G 6 independently of one another represent a hydrogen or halogen atom, a C 1 - to C 4 -alkyl radical, a C 1 - to C 4 -monohydroxyalkyl radical, a C 2 - to C 4 -hydroxyalkyl radical, a C 1 - to C 4 -aminoalkyl radical or a direct compound for bridging Y,
  • G 7 , G 8 , G 9 , G 10 , G 11 and G 12 independently of one another represent a hydrogen atom, a direct bond to the bridge Y or a C 1 - to C 4 -alkyl radical, with the proviso that the compounds of the formula (E2) contain only one bridging Y per molecule.
  • Preferred binuclear developer components of the formula (E2) are in particular: N, N'-bis ( ⁇ -hydroxyethyl) -N, N'-bis (4'-aminophenyl) -1,3-diamino-propan-2-ol, N, N'-bis ( ⁇ -hydroxyethyl) -N, N'-bis (4'-aminophenyl) ethylenediamine, N, N'-bis (4-aminophenyl) tetramethylenediamine, N, N'-bis N, N'-bis (4-aminophenyl) tetramethylenediamine, N, N'-bis (4-methylaminophenyl) tetramethylenediamine, N, N'-diethyl-N, N ' bis (4'-amino-3'-methylphenyl) ethylenediamine, bis (2-hydroxy-5-aminophenyl) methane, N, N'-bis (4'-aminopheny
  • Very particularly preferred binuclear developer components of the formula (E2) are N, N'-bis ( ⁇ -hydroxyethyl) -N, N'-bis (4-aminophenyl) -1,3-diamino-propan-2-ol, bis - (2-hydroxy-5-aminophenyl) methane, 1, 3-bis- (2,5-diaminophenoxy) -propan-2-ol, N, N'-bis (4-aminophenyl) -1, 4- diazacycloheptane and 1, 10-bis (2,5-diaminophenyl) -1, 4,7,10-tetraoxadecane or one of its physiologically acceptable salts.
  • G 13 represents a hydrogen atom, a halogen atom, a C 1 - to C 4 -alkyl radical, a C 1 - to C 4 -monohydroxyalkyl radical, a C 2 - to C 4 -polyhydroxyalkyl radical, a (C 1 - to C 4 ) - Alkoxy (C 1 to C 4 ) alkyl, C 1 to C 4 aminoalkyl, hydroxy (C 1 to C 4 ) alkylamino, C 1 to C 4 hydroxyalkoxy, C 1 - to C 4 -hydroxyalkyl- (C 1 to C 4 ) -aminoalkyl or a (di-C 1 to C 4 -alkylamino) - (C 1 to C 4 ) -alkyl, and
  • G 14 is a hydrogen or halogen atom, a C 1 - to C 4 -alkyl radical, a C 1 - to C 4 -monohydroxyalkyl radical, a C 2 - to C 4 -polyhydroxyalkyl radical, a (C 1 - to C 4 ) - Alkoxy (C 1 -C 4 ) -alkyl radical, a C 1 -C 4 -aminoalkyl radical or a C 1 -C 4 -cyanoalkyl radical,
  • G 15 is hydrogen, C 1 - to C 4 alkyl, C 1 - to C 4 - monohydroxyalkyl radical, a C 2 - to C 4 polyhydroxyalkyl radical, a phenyl radical or a benzyl radical, and
  • G 16 is hydrogen or a halogen atom.
  • Preferred p-aminophenols of the formula (E3) are, in particular, p-aminophenol, N-methyl-p-aminophenol, 4-amino-3-methylphenol, 4-amino-3-fluorophenol, 2-hydroxymethylamino-4-aminophenol, 4 -Amino-3-hydroxymethylphenol, 4-amino-2- ( ⁇ -hydroxyethoxy) -phenol, 4-amino-2-methylphenol, 4-amino-2-hydroxymethylphenol, 4-amino-2-methoxymethyl-phenol, 4-amino -2-aminomethylphenol, 4-amino-2- ( ⁇ -hydroxyethyl-aminomethyl) phenol, 4-amino-2- ( ⁇ , ⁇ -dihydroxyethyl) phenol, 4-amino-2-fluorophenol, 4-amino-2 -chlorophenol, 4-amino-2,6-dichlorophenol, 4-amino-2- (diethyl-aminomethyl) -phenol and their physiological
  • Very particularly preferred compounds of the formula (E3) are p-aminophenol, 4-amino-3-methylphenol, 4-amino-2-aminomethylphenol, 4-amino-2- ( ⁇ , ⁇ -dihydroxyethyl) -phenol and 4-amino 2- (diethylaminomethyl) -phenol.
  • the developer component may be selected from o-aminophenol and its derivatives such as 2-amino-4-methylphenol, 2-amino-5-methylphenol or 2-amino-4-chlorophenol.
  • the developer component may be selected from heterocyclic developer components such as the pyridine, pyrimidine, pyrazole, pyrazole pyrimidine derivatives and their physiologically acceptable salts.
  • Preferred pyridine derivatives are, in particular, the compounds described in the patents GB 1 026 978 and GB 1 153 196, such as 2,5-diamino-pyridine, 2- (4-methoxyphenyl) -amino-3-amino-pyridine, 2,3-diamino-6-methoxy-pyridine, 2- ( ⁇ -methoxyethyl) -amino-3-amino-6-methoxy-pyridine and 3,4-diamino-pyridine.
  • Preferred pyrimidine derivatives are, in particular, the compounds described in German Patent DE 2 359 399, Japanese Laid-Open Patent Publication JP 02019576 A2 or in the published patent application WO 96/15765, such as 2,4,5,6-tetraaminopyrimidine, 4-hydroxy- 2,5,6-triaminopyrimidine, 2-hydroxy-4,5,6-triaminopyrimidine, 2-dimethylamino-4,5,6-triaminopyrimidine, 2,4-dihydroxy-5,6-diaminopyrimidine and 2,5,6- triaminopyrimidine.
  • Preferred pyrazole derivatives are, in particular, the compounds described in patents DE 3 843 892, DE 4 133 957 and patent applications WO 94/08969, WO 94/08970, EP-740 931 and DE 195 43 988, such as 4,5 Diamino-1-methylpyrazole, 4,5-diamino-1- ( ⁇ -hydroxyethyl) pyrazole, 3,4-diaminopyrazole, 4,5-diamino-1- (4'-chlorobenzyl) pyrazole, 4.5- Diamino-1, 3-dimethylpyrazole, 4,5-diamino-3-methyl-1-phenylpyrazole, 4,5-diamino-1-methyl-3-phenylpyrazole, 4-amino-1,3-dimethyl-5-hydrazinopyrazole, 1-Benzyl-4,5-diamino-3-methylpyrazole, 4,5-diamino-3-tert-butyl-1
  • G 17 , G 18 , G 19 and G 20 independently of one another represent a hydrogen atom, a C 1 - to C 4 -alkyl radical, an aryl radical, a C 1 - to C 4 -hydroxyalkyl radical, a C 2 - to C 4 - Polyhydroxyalkylrest a (C 1 - to C 4 ) -alkoxy- (C-
  • - to C 4 ) -alkyl radical, a C 1 - to C 4 - aminoalkyl radical, optionally protected by an acetyl-ureide or a sulfonyl radical may be a (C 1 - to C 4 ) -alkylamino- (C- ⁇ - to C 4 ) -alkyl radical, a di - [(C- ⁇ - to C 4 ) alkyl] - (C- ⁇ - bis C 4 ) -aminoalkyl radical, where the dialkyl radicals optionally form a carbon cycle or
  • pyrazolo [1, 5-a] pyrimidines of the above formula (E4) can be prepared as described in the literature by cyclization starting from an aminopyrazole or from hydrazine.
  • the colorants according to the invention contain at least one coupler component.
  • coupler components m-phenylenediamine derivatives, naphthols, resorcinol and resorcinol derivatives, pyrazolones and m-aminophenol derivatives are generally used.
  • Suitable coupler substances are in particular 1-naphthol, 1, 5, 2,7- and 1, 7-dihydroxynaphthalene, 5-amino-2-methylphenol, m-aminophenol, resorcinol, resorcinol monomethyl ether, m-phenylenediamine, 1-phenyl-3 methyl pyrazolone-5, 2,4-dichloro-3-aminophenol, 1,3-bis- (2 ', 4'-diaminophenoxy) -propane, 2-chlororesorcinol, 4-chloro-resorcinol, 2-chloro 6-methyl-3-aminophenol, 2-amino-3-hydroxypyridine, 2-methyl resorcinol, 5-methylresorcinol and 2-methyl-4-chloro-5-aminophenol.
  • Preferred coupler components according to the invention are m-aminophenol and its derivatives, such as, for example, 5-amino-2-methylphenol, N-cyclopentyl-3-aminophenol, 3-amino-2-chloro-6-methylphenol, 2-hydroxy-4-aminophenoxyethanol, 2 6-Dimethyl-3-aminophenol, 3-trifluoroacetylamino-2-chloro-6-methylphenol, 5-amino-4-chloro-2-methylphenol, 5-amino-4-methoxy-2-methylphenol, 5- (2'- Hydroxyethyl) -amino-2-methylphenol, 3- (diethylamino) -phenol, N-cyclopentyl-3-aminophenol, 1,3-dihydroxy-5- (methylamino) -benzene, 3-ethylamino-4-methylphenol and 2,4 Dichloro-3-aminophenol, o-aminophenol and its derivatives, m-diaminobenzene and its
  • Di- or trihydroxybenzene derivatives such as resorcinol, resorcinol monomethyl ether, 2-methylresorcinol, 5-methylresorcinol, 2,5-dimethylresorcinol, 2-chlororesorcinol, 4-chlororesorcinol, pyrogallol and 1,2,4-trihydroxybenzene,
  • Pyridine derivatives such as 2,6-dihydroxypyridine, 2-amino-3-hydroxypyridine, 2-amino-5-chloro-3-hydroxypyridine, 3-amino-2-methylamino-6-methoxypyridine, 2,6-dihydroxy-3,4 dimethylpyridine, 2,6-dihydroxy-4-methylpyridine, 2,6-diaminopyridine, 2,3-diamino-6-methoxypyridine and 3,5-diamino-2,6-dimethoxypyridine,
  • Naphthalene derivatives such as 1-naphthol, 2-methyl-1-naphthol, 2-hydroxymethyl-1-naphthol, 2-hydroxyethyl-1-naphthol, 1, 5-dihydroxynaphthalene, 1, 6-dihydroxynaphthalene, 1, 7-dihydroxynaphthalene, 1 , 8-dihydroxynaphthalene, 2,7-dihydroxynaphthalene and 2,3-dihydroxynaphthalene, morpholine derivatives such as 6-hydroxybenzomorpholine and 6-aminobenzomorpholine, Quinoxaline derivatives such as 6-methyl-1,2,3,4-tetrahydroquinoxaline, pyrazole derivatives such as 1-phenyl-3-methylpyrazol-5-one, indole derivatives such as 4-hydroxyindole, 6-hydroxyindole and 7-hydroxyindole, pyrimidine derivatives such as For example, 4,6-diaminopyrimidine, 4-
  • coupler components according to the invention are 1-naphthol, 1, 5, 2,7- and 1, 7-dihydroxynaphthalene, 3-aminophenol, 5-amino-2-methylphenol, 2-amino-3-hydroxypyridine, resorcinol, 4-chlororesorcinol , 2-chloro-6-methyl-3-aminophenol, 2-methylresorcinol, 5-methylresorcinol, 2,5-dimethylresorcinol and 2,6-dihydroxy-3,4-dimethylpyridine.
  • the colorants of the invention contain both the developer components and the coupler components preferably in an amount of 0.005 to 20 wt .-%, preferably 0.1 to 5 wt .-%, each based on the total oxidation colorant.
  • developer components and coupler components are generally used in approximately molar amounts to each other.
  • a certain excess of individual oxidation dye precursors is not disadvantageous, so that developer components and coupler components in a molar ratio of 1: 0.5 to 1: 3, in particular 1: 1 to 1: 2 , may be included.
  • the colorants contain as dye precursor at least one precursor of a natural analog dye.
  • precursors of naturally-analogous dyes such indoles and indolines are preferably used which have at least one hydroxy or amino group, preferably as a substituent on the six-membered ring. These groups may carry further substituents, e.g. Example in the form of etherification or esterification of the hydroxy group or alkylation of the amino group.
  • the colorants contain at least one indole and / or indoline derivative.
  • Particularly suitable precursors of natural-analogous hair dyes are derivatives of 5,6-dihydroxyindoline of the formula (NAV I), in the independently of each other
  • G 19 is hydrogen, a C 1 -C 4 -alkyl group or a C 1 -C 4 -hydroxy-alkyl group,
  • G 2O is hydrogen or a -COOH group, where the -COOH group may also be in the form of a salt with a physiologically compatible cation,
  • G 21 is hydrogen or a C 1 -C 4 -alkyl group
  • G 22 is hydrogen, a C 1 -C 4 -alkyl group or a group -CO-G 24 , in which G 24 is a C 1 -C 4 -alkyl group, and
  • G 23 is one of the groups mentioned under G 22 , and physiologically acceptable salts of these compounds with an organic or inorganic acid.
  • Particularly preferred derivatives of indoline are 5,6-dihydroxyindoline, N-methyl-5,6-dihydroxyindoline, N-ethyl-5,6-dihydroxyindoline, N-propyl-5,6-dihydroxyindoline, N-butyl-5,6 dihydroxyindoline, 5,6-dihydroxyindoline-2-carboxylic acid and 6-hydroxyindoline, 6-aminoindoline and 4-aminoindoline.
  • N-methyl-5,6-dihydroxyindoline N-ethyl-5,6-dihydroxyindoline, N-propyl-5,6-dihydroxyindoline, N-butyl-5,6-dihydroxyindoline and especially 5, 6-Dihydroxyindolin.
  • G 25 is hydrogen, a C 1 -C 4 -alkyl group or a C 1 -C 4 -hydroxyalkyl group,
  • G 26 is hydrogen or a -COOH group, where the -COOH group may also be present as a salt with a physiologically compatible cation,
  • G 27 is hydrogen or a C 1 -C 4 -alkyl group
  • G 2S represents hydrogen, a -C 4 alkyl group or a group -CO-G 30 wherein G 30 represents a C-
  • G 29 represents one of the groups mentioned under G 2 s, as well as physiologically acceptable salts of these compounds with an organic or inorganic acid.
  • Particularly preferred derivatives of indole are 5,6-dihydroxyindole, N-methyl-5,6-dihydroxyindole, N-ethyl-5,6-dihydroxyindole, N-propyl-5,6-dihydroxyindole, N-butyl-5,6- dihydroxyindole, 5,6-dihydroxyindole-2-carboxylic acid, 6-hydroxyindole, 6-aminoindole and 4-aminoindole.
  • N-methyl-5,6-dihydroxyindole N-ethyl-5,6-dihydroxyindole, N-propyl-5,6-dihydroxyindole, N-butyl-5,6-dihydroxyindole, and especially the 5,6 -Dihydroxyindol.
  • the indoline and indole derivatives can be used in the colorants of the invention both as free bases and in the form of their physiologically acceptable salts with inorganic or organic acids, for.
  • hydrochlorides sulfates and hydrobromides are used.
  • the indole or indoline derivatives are contained therein usually in amounts of 0.05-10 wt .-%, preferably 0.2-5 wt .-%.
  • the indoline or indole derivative in colorants in combination with at least one amino acid or an oligopeptide.
  • the amino acid is advantageously an ⁇ -amino acid;
  • Very particularly preferred ⁇ -amino acids are arginine, ornithine, lysine, serine and histidine, in particular arginine.
  • the temporary colorants may contain substantive dyes for further shade.
  • the substantive dyes are preferably selected from the nitrophenylenediamines, the nitroaminophenols, the azo dyes, the anthraquinones or the indophenols.
  • Particularly preferred substantive dyes are those under the international designations or trade names HC Yellow 2, HC Yellow 4, HC Yellow 5, HC Yellow 6, HC Yellow 12, Acid Yellow 1, Acid Yellow 10, Acid Yellow 23, Acid Yellow 36, HC Orange 1, Disperse Orange 3, Acid Orange 7, HC Red 1, HC Red 3, HC Red 10, HC Red 11, HC Red 13, Acid Red 33, Acid Red 52, HC Red BN, Pigment Red 57: 1, HC Blue 2, HC Blue 12, Disperse Blue 3, Acid Blue 7, Acid Green 50, HC Violet 1, Disperse Violet 1, Disperse Violet 4, Acid Violet 43, Disperse Black 9, Acid Black 1, and Acid Black 52 known compounds as well as 1 , 4-diamino-2-nitrobenzene, 2-amino-4-nitrophenol, 1,4-bis- ( ⁇ -hydroxyethyl) -amino-2-nitrobenzene, 3-nitro-4- ( ⁇ -hydroxyethyl) -aminophenol, 2 - (2'-hydroxyethyl) amino-4,6-dinitrophenol, 1- (2'-
  • the agents may contain at least one cationic substantive dye. Particularly preferred are
  • aromatic systems substituted with a quaternary nitrogen group such as Basic Yellow 57, Basic Red 76, Basic Blue 99, Basic Brown 16 and Basic Brown 17, as well as
  • Preferred cationic substantive dyes of group (c) are in particular the following compounds:
  • the compounds of the formulas (DZ1), (DZ3) and (DZ5) which are also known by the names Basic Yellow 87, Basic Orange 31 and Basic Red 51, are very particularly preferred cationic substantive dyes of group (c).
  • the cationic direct dyes which are sold under the trademark Arianor ®, according to the invention are also very particularly preferred cationic direct dyes.
  • preparations according to the invention may also contain naturally occurring substantive dyes such as those found in henna red, henna neutral, henna black, chamomile flower, sandalwood, black tea, buckthorn bark, sage, sawnwood, madder root, catechu, sedre and alkano root.
  • naturally occurring substantive dyes such as those found in henna red, henna neutral, henna black, chamomile flower, sandalwood, black tea, buckthorn bark, sage, sawnwood, madder root, catechu, sedre and alkano root.
  • the agents according to the invention preferably contain the substantive dyes in an amount of from 0.01 to 20% by weight, based on the total application preparation.
  • oxidation dye precursors or the direct dyes it is not necessary for the oxidation dye precursors or the direct dyes to be in each case homogeneous compounds. Rather, in the hair colorants according to the invention, due to the production process for the individual dyes, in minor amounts, further components may be included, as far as they do not adversely affect the dyeing result or for other reasons, e.g. toxicological, must be excluded.
  • the colorant according to the invention contains at least one cationic surfactant in addition to the dye precursor.
  • Cationic surfactants of the quaternary ammonium compound type, the esterquats and the amidoamines are preferred according to the invention.
  • Preferred quaternary ammonium compounds are ammonium halides, in particular chlorides and bromides, such as alkyltrimethylammonium chlorides, dialkyldimethylammonium chlorides and trialkylmethylammonium chlorides, eg.
  • the long alkyl chains of the above-mentioned surfactants preferably have 10 to 18 carbon atoms.
  • Esterquats are known substances which contain both at least one ester function and at least one quaternary ammonium group as a structural element.
  • Preferred esterquats are quaternized ester salts of fatty acids with triethanolamine, quaternized ester salts of fatty acids with diethanolalkylamines and quaternized ester salts of fatty acids with 1,2-dihydroxypropyldialkylamines.
  • Such products are marketed under the trade names Stepantex® ®, ® and Dehyquart® Armocare® ®.
  • the alkylamidoamines are usually prepared by amidation of natural or synthetic fatty acids and fatty acid cuts with dialkylaminoamines.
  • An inventively particularly suitable compound from this group of substances under the name Tegoamid ® S 18 commercial stearamidopropyl dimethylamine is.
  • cationic surfactants which are suitable according to the invention are the substances known under the INCI names Linoleamidopropyl PG-Dimonium Chloride Phosphate, Cocamidopropyl PG-Dimonium Chloride Phosphate and Stearamidopropyl PG-Dimonium Chloride Phosphate. These are sold, for example, by the company Mona under the trade names Phospholipid EFA® , Phospholipid PTC® and Phospholipid SV® .
  • the cationic surfactants are contained in the compositions according to the invention preferably in amounts of from 0.05 to 10% by weight, based on the total application preparation. Amounts of 0.1 to 5 wt .-% are particularly preferred.
  • agents have proved to be preferred which additionally contain glycyrrhizin in addition to the constituent of a plant of the butyrospermum type essential to the invention.
  • Glycyrrhizin is a substance with 50 times the sweetening power of sucrose and a pronounced licorice taste and is found as a potassium and calcium salt in the root of the European and Middle Eastern licorice plants Glycyrrhizia glabra, Glycyrrhizia glandulifera and Glycyrrhizia typica.
  • Particularly preferred according to the invention are agents which contain the glycyrrhizin-containing liquorice juice obtained from these plants.
  • the agents according to the invention preferably contain glycyrrhizin in amounts of 0.01-10% by weight, in particular from 0.2 to 3% by weight.
  • the color-modifying agents according to the invention contain at least one further oil body.
  • the natural and synthetic cosmetic oil bodies include, for example: vegetable oils.
  • vegetable oils examples include sunflower oil, olive oil, soybean oil, rapeseed oil, almond oil, jojoba oil, orange oil, wheat germ oil, peach kernel oil and the liquid portions of coconut oil.
  • triglyceride oils such as the liquid portions of beef tallow as well as synthetic triglyceride oils.
  • Ester oils are to be understood as meaning the esters of C 6 - C 30 fatty acids with C 2 - C 30 fatty alcohols. The monoesters of the fatty acids with alcohols having 2 to 24 carbon atoms are preferred.
  • fatty acid components used in the esters are caproic acid, caprylic acid, 2-ethylhexanoic acid, capric acid, lauric acid, isotridecanoic acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, Petroselinic acid, linoleic acid, linolenic acid, elaeostearic acid, arachidic acid, gadoleic acid, behenic acid and erucic acid and their technical mixtures, for example, in the pressure splitting of natural fats and oils, in the oxidation of aldehydes from the Roelen oxo synthesis or the dimerization of unsaturated fatty acids.
  • fatty alcohol components in the ester oils are isopropyl alcohol, caproic alcohol, capryl alcohol, 2-ethylhexyl alcohol, capric alcohol, lauryl alcohol, isotridecyl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, linolyl alcohol, linolenyl alcohol, elaeostearyl alcohol, arachyl alcohol, Gadoleyl alcohol, behenyl alcohol, erucyl alcohol and brassidyl alcohol and their technical mixtures, for example, in the high-pressure hydrogenation of technical methyl esters based on fats and oils or aldehydes from the Roelen oxo synthesis and as a monomer fraction in the dimerization of unsaturated fatty alcohols incurred.
  • isopropyl myristate IPM Rilanit ®
  • isononanoic acid C16-18 alkyl ester Cetiol ® SN
  • 2-ethylhexyl palmitate Cegesoft ® 24
  • stearic acid-2-ethylhexyl ester Cetiol ® 868
  • cetyl oleate glycerol tricaprylate, Kokosfettalkohol- caprate / caprylate (Cetiol ® LC)
  • n-butyl stearate oleyl erucate
  • isopropyl palmitate IPP Rilanit ®
  • oleyl Oleate Cetiol ®
  • hexyl laurate Cetiol ® A
  • di-n-butyl adipate Cetiol ® B
  • myrist IPM Rilanit ®
  • Dicarboxylic acid esters such as di-n-butyl adipate, di- (2-ethylhexyl) adipate, di- (2-ethylhexyl) succinate and di-isotridecyl acelate
  • diol esters such as ethylene glycol dioleate, ethylene glycol diisotridecanoate, propylene glycol di (2- ethylhexanoate), propylene glycol diisostearate,
  • Fatty acid partial glycerides ie monoglycerides, diglycerides and their technical mixtures. With the use of technical products production reasons may still contain small amounts of triglycerides.
  • the partial glycerides preferably follow the formula (D4-I),
  • R 3 in the R 1 , R 2 and R 3 is independently of one another hydrogen or a linear or branched, saturated and / or unsaturated acyl radical having 6 to 22, preferably 12 to 18, Carbon atoms are provided with the proviso that at least one of these groups is an acyl radical and at least one of these groups is hydrogen.
  • the sum (m + n + q) is 0 or numbers from 1 to 100, preferably 0 or 5 to 25.
  • R 1 is an acyl radical and R 2 and R 3 are hydrogen and the sum (m + n + q) is 0.
  • Typical examples are mono- and / or diglycerides based on caproic, caprylic, 2-ethylhexanoic, capric, lauric, isotridecanoic, myristic, palmitic, palmitic, stearic, isostearic, oleic, elaidic, petroselic, linoleic, linolenic , Elaeostearic acid, arachidic acid, gadoleic acid, behenic acid and erucic acid and their technical mixtures.
  • oleic acid monoglycerides are used.
  • the amount used of the natural and synthetic cosmetic oil bodies in the colorants according to the invention is usually 0.1-30% by weight, based on the total application preparation, preferably 0.1-20% by weight, and in particular 0.1-15% by weight. %.
  • compositions further preferably contain at least one alkalizing agent.
  • alkalizing agents known to the person skilled in the art, such as ammonium, alkali metal and alkaline earth metal hydroxides, carbonates, bicarbonates, hydroxycarbonates and carbamides, as well as alkali metal phosphates and alkali metal silicates and also ammonia and alkali metal hydroxides can be used according to the invention.
  • organic amines such as, for example, monoethanolamine, arginine, lysine, monoethanolamine, monoisopropanolamine, 2-amino-2-methylpropanol, 2-amino-2-methyl-1,3-propanediol, 2-amino-2-ethyl -1, 3-propanediol and 2-amino-2-methylbutanol.
  • compositions according to the invention preferably contain the alkalizing agents in amounts of from 0.2 to 25% by weight, in particular from 0.5 to 15% by weight.
  • the colorants of the invention may further contain all known for such preparations active ingredients, additives and excipients.
  • the colorants contain at least one surfactant, wherein in principle both anionic and zwitterionic, ampholytic and nonionic are suitable. In many cases, however, it has proved to be advantageous to select the surfactants from anionic, zwitterionic or nonionic surfactants.
  • Suitable anionic surfactants in preparations according to the invention are all anionic surfactants suitable for use on the human body. These are characterized by a water-solubilizing, anionic group such. Example, a carboxylate, sulfate, sulfonate or phosphate group and a lipophilic alkyl group with about 10 to 22 C-men men. In addition, glycol or polyglycol ether groups, ester, ether and amide groups and hydroxyl groups may be present in the molecule.
  • anionic surfactants are in the form of sodium, potassium and ammonium as well as mono-, di- and trialkanol- ammonium salts with 2 or 3 C atoms in the alkanol group, linear fatty acids having 10 to 22 C atoms (soaps),
  • Esters of tartaric acid and citric acid with alcohols which are adducts of about 2-15 molecules of ethylene oxide and / or propylene oxide with fatty alcohols having 8 to 22 carbon atoms.
  • Preferred anionic surfactants are alkyl sulfates, alkyl polyglycol ether sulfates and ether carboxylic acids having 10 to 18 carbon atoms in the alkyl group and up to 12 glycol ether groups in the molecule and in particular salts of saturated and in particular unsaturated C 8 -C 22 carboxylic acids, such as oleic acid, stearic acid, isostearic acid and palmitic acid ,
  • Nonionic surfactants contain as hydrophilic group z.
  • Such compounds are, for example
  • Preferred nonionic surfactants are alkyl polyglycosides of the general formula R 1 O- (Z) X. These connections are identified by the following parameters.
  • the alkyl radical R 1 contains 6 to 22 carbon atoms and may be both linear and branched. Preference is given to primary linear and methyl-branched in the 2-position aliphatic radicals.
  • Such alkyl radicals are, for example, 1-octyl, 1-decyl, 1-lauryl, 1-myristyl, 1-cetyl and 1-stearyl. Particularly preferred are 1-octyl, 1-decyl, 1-lauryl, 1-myristyl.
  • oxo-alcohols compounds with an odd number of carbon atoms in the alkyl chain predominate.
  • the alkyl polyglycosides which can be used according to the invention can contain, for example, only one particular alkyl radical R 1 .
  • these compounds are prepared starting from natural fats and oils or mineral oils.
  • the alkyl radicals R are mixtures corresponding to the starting compounds or corresponding to the particular work-up of these compounds.
  • R 1 consists essentially of C 8 and C 10 -alkyl groups, essentially of C 12 and C 14 -alkyl groups, essentially of C 8 to C 16 -alkyl groups or essentially of C 1 2 - to C
  • sugar building block Z it is possible to use any desired mono- or oligosaccharides.
  • sugars with 5 or 6 carbon atoms and the corresponding oligosaccharides are used.
  • Such sugars are, for example, glucose, fructose, galactose, arabinose, ribose, xylose, lyxose, allose, altrose, mannose, gulose, idose, talose and sucrose.
  • Preferred sugar building blocks are glucose, fructose, galactose, arabinose and sucrose; Glucose is particularly preferred.
  • alkyl polyglycosides which can be used according to the invention contain on average from 1.1 to 5 sugar units. Alkyl polyglycosides having x values of 1.1 to 1.6 are preferred. Very particular preference is given to alkyl glycosides in which x is 1: 1 to 1, 4.
  • the alkyl glycosides can also serve to improve the fixation of fragrance components on the hair.
  • the expert will be so in the event that one desired effect of the perfume oil on the hair over the duration of the hair treatment is desired, preferably to use this substance class as a further ingredient of the preparations according to the invention.
  • alkoxylated homologs of said alkyl polyglycosides can also be used according to the invention. These homologs may contain on average up to 10 ethylene oxide and / or propylene oxide units per alkyl glycoside unit.
  • zwitterionic surfactants can be used, in particular as cosurfactants.
  • Zwitterionic surfactants are surface-active compounds which carry at least one quaternary ammonium group and at least one -COO * " '- or -SO 3 () group in the molecule
  • Particularly suitable zwitterionic surfactants are the so-called betaines such as N-alkyl-N , N-dimethylammonium glycinates, for example, the cocoalkyl dimethylammonium glycinate, N-acyl-aminopropyl-N, N-dimethylammoniumglycinate, for example Kokosacylaminopropyl- dimethylammoniumglycinat, and 2-alkyl-3-carboxylmethyl-3-hydroxyethyl-imidazoline with 8 each
  • a preferred zwitterionic surfactant is the fatty acid amide derivative known under the INCI name Cocamidopropyl Betaine.
  • ampholytic surfactants are to be understood as meaning those surface-active compounds which, apart from a C 8 -C 18 -alkyl or acyl group in the molecule, contain at least one free amino group and at least one -COOH or -SO 3 H group and which are capable of forming internal salts are.
  • ampholytic surfactants are N-alkylglycines, N-alkylpropionic acids, N-alkylaminobutyric acids, N-alkyliminodipropionic acids, N-hydroxyethyl-N-alkylamidopropylglycines, N-alkyltaurines, N-alkylsarcosines, 2-alkylaminopropionic acids and alkylaminoacetic acids each having about 8 to 18 C atoms in the alkyl group.
  • Particularly preferred ampholytic surfactants are N-cocoalkylaminopropionate, cocoacylaminoethylaminopropionate and C-1 2 - 18 acylsarcosine.
  • the compounds used as surfactant with alkyl groups may each be uniform substances. However, it is generally preferred to use native vegetable or animal raw materials in the production of these substances, so that substance mixtures having different alkyl chain lengths depending on the respective raw material are obtained.
  • the surfactants which are addition products of ethylene and / or propylene oxide to fatty alcohols or derivatives of these addition products, both products with a "normal” homolog distribution and those with a narrow homolog distribution be used.
  • "normal” homolog distribution are meant mixtures of homologs obtained in the reaction of fatty alcohol and alkylene oxide using alkali metals, alkali metal hydroxides or alkali metal alcoholates as catalysts. Narrowed homolog distributions are obtained when, for example, hydrotalcites, alkaline earth metal salts of ether carboxylic acids, alkaline earth metal oxides, hydroxides or alkoxides are used as catalysts.
  • the use of products with narrow homolog distribution may be preferred.
  • colorants according to the invention may contain further active ingredients, auxiliaries and additives, for example nonionic polymers, for example vinylpyrrolidone / vinyl acrylate copolymers,
  • dimethyldiallylammonium chloride polymers acrylamide-dimethyldiallylammonium chloride copolymers, diethyl sulfate quaternized dimethylaminoethylmethacrylate-vinylpyrrolidone copolymers, vinylpyrrolidone-imidazolinium methochloride copolymers and quaternized polyvinyl alcohol, zwitterionic and amphoteric polymers such as acrylamidopropyltrimidine methylammonium chloride / acrylate copolymers and octylacrylamide / methyl methacrylate / tert-butyl
  • Butylaminoethyl methacrylate ⁇ -hydroxypropyl methacrylate copolymers anionic polymers such as polyacrylic acids, crosslinked polyacrylic acids,
  • Thickeners such as agar-agar, guar gum, alginates, xanthan gum, gum arabic,
  • Derivatives such as amylose, amylopectin and dextrins, clays such. B. bentonite or fully synthetic
  • Hydrocolloids such as e.g. polyvinyl alcohol,
  • Structural agents such as maleic acid and lactic acid, hair conditioning compounds such as phospholipids, for example soya lecithin, egg lecithin and cephalins,
  • Protein hydrolysates in particular elastin, collagen, keratin, milk protein, soy protein and
  • Solvents and mediators such as ethanol, isopropanol, ethylene glycol, propylene glycol, glycerol and diethylene glycol, fiber-structure-improving active ingredients, in particular mono-, di- and oligosaccharides such as, for example, glucose, galactose, fructose, fructose and lactose, quaternized amines such as methyl-1-alkylamidoethyl-2-alkylimidazolinium methosulfate defoamers such as silicones, colorants for dyeing the agent,
  • Antidandruff active ingredients such as Piroctone Olamine, zinc Omadine and climbazole, light stabilizers, in particular derivatized benzophenones, cinnamic acid derivatives and triazines, substances for adjusting the pH, such as customary acids, especially edible acids and bases,
  • Active ingredients such as allantoin, pyrrolidonecarboxylic acids and their salts, and also bisabolol, vitamins, provitamins and vitamin precursors, in particular those of groups A, B 3 , B 5 , B 6 , C, E, F and H,
  • Plant extracts such as extracts of green tea, oak bark, stinging nettle, witch hazel, hops, chamomile, burdock root, horsetail, hawthorn, lime blossom, almond, aloe vera, spruce needle, horse chestnut, sandalwood, juniper, coconut, mango, apricot, lime, wheat, kiwi , Melon, orange, grapefruit, sage, rosemary, birch, mallow, meadowfoam, quenelle, yarrow, thyme, lemon balm, toadstool, coltsfoot, marshmallow, meristem, ginseng and ginger root ,. Cholesterol,
  • Bodying agents such as sugar esters, polyol esters or polyol alkyl ethers, fats and waxes such as spermaceti, beeswax, montan wax and paraffins, fatty acid alkanolamides,
  • Complexing agents such as EDTA, NTA, ⁇ -alaninediacetic acid and phosphonic acids, swelling and penetrating agents such as glycerol, propylene glycol monoethyl ether, carbonates, bicarbonates, guanidines, ureas and primary, secondary and tertiary phosphates, opacifiers such as latex, styrene / PVP and styrene / acrylamide copolymers Pearlescing agents such as ethylene glycol mono- and distearate and PEG-3-distearate, pigments,
  • Stabilizers for hydrogen peroxide and other oxidizing agents include propellants such as propane-butane mixtures, N 2 O, dimethyl ether, CO 2 and air, antioxidants
  • the agents according to the invention preferably contain the dye precursors in a suitable aqueous, alcoholic or aqueous-alcoholic carrier.
  • a suitable aqueous, alcoholic or aqueous-alcoholic carrier are, for example, creams, emulsions, gels or surfactant-containing foaming solutions, such as shampoos, foam aerosols or other preparations which are suitable for use on the hair.
  • surfactant-containing foaming solutions such as shampoos, foam aerosols or other preparations which are suitable for use on the hair.
  • aqueous-alcoholic solutions are to be understood as meaning aqueous solutions containing from 3 to 70% by weight of a C 1 -C 4 -alcohol, in particular ethanol or isopropanol.
  • the compositions of the invention may additionally contain other organic solvents, such as methoxybutanol, benzyl alcohol, ethyl diglycol or 1, 2-propylene glycol. Preference is given to all water-soluble organic solvents.
  • the actual oxidative coloring of the fibers can be done basically with atmospheric oxygen.
  • a chemical oxidizing agent is used, especially if, in addition to the coloring, a lightening effect on human hair is desired.
  • Suitable oxidizing agents are persulfates, chlorites and in particular hydrogen peroxide or its addition products of urea, melamine and sodium borate.
  • the oxidation colorant can also be applied to the hair together with a catalyst which promotes the oxidation of the dye precursors, e.g. by atmospheric oxygen, activated.
  • catalysts are e.g. Metal ions, iodides, quinones or certain enzymes.
  • Suitable metal ions are, for example, Zn 2+ , Cu 2+ , Fe 2+ , Fe 3+ , Mn 2+ , Mn 4+ , Li + , Mg 2+ , Ca 2+ and Al 3+ . Particularly suitable are Zn 2+ , Cu 2+ and Mn 2+ .
  • the metal ions can in principle be used in the form of any physiologically acceptable salt or in the form of a complex compound.
  • Preferred salts are the acetates, sulfates, halides, lactates and tartrates.
  • Suitable enzymes include peroxidases, which can significantly enhance the effect of small amounts of hydrogen peroxide. Furthermore, such enzymes are suitable according to the invention which directly oxidize the oxidation dye precursors with the aid of atmospheric oxygen, such as, for example, the laccases, or generate small amounts of hydrogen peroxide in situ and thus biocatalytically activate the oxidation of the dye precursors.
  • catalysts for the oxidation of the dye precursors are the so-called 2-electron oxidoreductases in combination with the specific substrates, for example pyranose oxidase and, for example, D-glucose or galactose, Glucose oxidase and D-glucose, glycerol oxidase and glycerin,
  • Pyruvate oxidase and pyruvic acid or its salts - alcohol oxidase and alcohol (MeOH, EtOH), lactate oxidase and lactic acid and its salts, tyrosinase oxidase and tyrosine, uricase and uric acid or their salts, choline oxidase and choline, amino acid oxidase and amino acids.
  • the actual hair dye is expediently prepared immediately before use by mixing the preparation of the oxidizing agent with the preparation containing the dye precursors.
  • the resulting ready-to-use hair dye preparation should preferably have a pH in the range of 6 to 12. Particularly preferred is the use of the hair dye in a weakly alkaline medium.
  • the application temperatures can be in a range between 15 and 40 0 C.
  • the hair dye is removed by rinsing of the hair to be dyed. The washing with a shampoo is omitted if a strong surfactant-containing carrier, such as a dyeing shampoo was used.
  • the preparation with the dye precursors can also be applied to the hair without prior mixing with the oxidation component.
  • the oxidation component is then applied, if appropriate after an intermediate rinse.
  • the corresponding agent is adjusted to a pH of about 4 to 7.
  • an air oxidation is initially desired, wherein the applied agent preferably has a pH of 7 to 10.
  • the use of acidified peroxydisulfate solutions may be preferred as the oxidizing agent.
  • Another object of the present invention is a process for dyeing
  • Keratin fibers in particular human hair, in which optionally a pretreatment agent M1 is applied to the fiber, then a colorant M2 is applied to the fiber, wherein optionally the agent
  • this colorant M2 is rinsed from the fiber after a time of 1-60 minutes and, after the treatment, if appropriate, an aftertreatment agent M4 is applied to the fiber and rinsed off after a contact time of a few minutes, the agent M2 and / or the agent M3 comprising a preparation according to one of claims 1 to
  • coloring creams were prepared, wherein the pH, viscosity, the solvents and the dye precursors used vary depending on the particular shade.
  • the coloring creams C1 to C3 are mixed in the ratio 1: 1 with the following oxidizing agent preparation 01, then the resulting application preparation is applied to the hair to be treated and rinsed off after a contact time of 30 to 60 minutes.
  • the oxidizer preparation had a pH of from 3 to 3.5.
  • liquid dyeing formulations were prepared, wherein the pH, viscosity, the solvents and the dye precursors used vary depending on the particular shade.
  • dyeing creams FL1 and FL2 are mixed in the ratio 1: 1 with the following oxidizing agent preparation 02, then the resulting application preparation is applied to the hair to be treated and rinsed off after a contact time of 30 to 60 minutes.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical & Material Sciences (AREA)
  • Emergency Medicine (AREA)
  • Cosmetics (AREA)

Abstract

La présente invention concerne des agents servant à colorer des fibres kératiniques et contenant au moins un précurseur de colorant et au moins un constituant issu d'une plante du genre Butyrospermum. Les agents de l'invention améliorent nettement l'état de soin des fibres dès la coloration proprement dite ; en particulier, on note une nette amélioration du "toucher" des cheveux aussi bien mouillés que secs.
EP07765794A 2006-07-26 2007-07-04 Coloration capillaire contenant du beurre de karite Withdrawn EP2043597A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006035252A DE102006035252A1 (de) 2006-07-26 2006-07-26 Haarfärbemittel mit Shea Butter
PCT/EP2007/056740 WO2008012182A2 (fr) 2006-07-26 2007-07-04 Coloration capillaire contenant du beurre de karité

Publications (1)

Publication Number Publication Date
EP2043597A2 true EP2043597A2 (fr) 2009-04-08

Family

ID=38859464

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07765794A Withdrawn EP2043597A2 (fr) 2006-07-26 2007-07-04 Coloration capillaire contenant du beurre de karite

Country Status (4)

Country Link
EP (1) EP2043597A2 (fr)
JP (1) JP2009544644A (fr)
DE (1) DE102006035252A1 (fr)
WO (1) WO2008012182A2 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5731097B2 (ja) * 2008-11-05 2015-06-10 ホーユー株式会社 毛髪処理剤組成物
DE102009054569A1 (de) 2009-12-11 2010-10-14 Henkel Ag & Co. Kgaa Pflegende Haarbehandlungsmittel zur Farbveränderung
FR3124731A1 (fr) * 2021-06-30 2023-01-06 L'oreal Composition comprenant au moins un coupleur d’oxydation particulier, au moins un corps gras issu du karité et au moins un agent alcalin
WO2023275211A1 (fr) * 2021-06-30 2023-01-05 L'oreal Composition comprenant au moins un colorant d'oxydation particulier, au moins une substance grasse dérivée du karité et au moins un agent alcalin

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63316714A (ja) * 1987-06-18 1988-12-26 Lion Corp 毛髪化粧料
FR2679771A1 (fr) * 1991-08-01 1993-02-05 Oreal Utilisation pour la teinture temporaire des fibres keratiniques d'un pigment insoluble obtenu par polymerisation oxydante de derives indoliques.
EP0806947A4 (fr) * 1995-02-03 1998-10-14 Cosmederm Technologies Formulations et procedes permettant de reduire l'irritation cutanee
JP2001213737A (ja) * 2001-03-12 2001-08-07 Sanei Kagaku Kk 毛髪処理剤配合用組成物及び毛髪処理剤
JP4130755B2 (ja) * 2002-08-29 2008-08-06 ホーユー株式会社 毛髪化粧料組成物
JP2004143065A (ja) * 2002-10-23 2004-05-20 Kose Corp 毛髪化粧料
JP2004143095A (ja) * 2002-10-24 2004-05-20 Kose Corp 毛髪用化粧料
JP3922573B2 (ja) * 2003-04-15 2007-05-30 ホーユー株式会社 過酸化水素含有組成物
JP4287719B2 (ja) * 2003-08-28 2009-07-01 リアル化学株式会社 染毛剤およびそれを用いた染毛方法
DE10341654A1 (de) * 2003-09-08 2005-04-07 Beiersdorf Ag Mittel zur Anwendung auf der Haut und/oder dem Haar enthaltend 4-fach substituierte Cyclohexen-Verbindungen
US20050136085A1 (en) * 2003-12-19 2005-06-23 David Bellamy Panthenol and natural organic extracts for reducing skin irritation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008012182A2 *

Also Published As

Publication number Publication date
WO2008012182A3 (fr) 2008-06-12
JP2009544644A (ja) 2009-12-17
DE102006035252A1 (de) 2008-01-31
WO2008012182A2 (fr) 2008-01-31

Similar Documents

Publication Publication Date Title
EP1888021B1 (fr) Colorants capillaires a constituants d'aloes
DE102005062830A1 (de) Oxidationsfärbemittel zur Färbung keratinhaltiger Fasern
WO2006108458A1 (fr) Produits servant simultanement a colorer et a eclaircir des fibres keratiniques
EP1787632A1 (fr) Combinations nouvelles des colorants de base
EP1789140B1 (fr) Agents modificateurs de couleur contenant de l'extrait de moringa
EP2152226A2 (fr) Colorants d'oxydation destinés à colorer des fibres kératiniques au moyen d'oxygène atmosphérique comme unique agent d'oxydation
EP1797863A1 (fr) Association de précurseurs de colorants comprenant un dérivé de diaminopyrazole, un derivé de m-aminophénol et un derivé de m-phénylène diamine
EP1789015B1 (fr) Procede pour changer la couleur de fibres keratiniques selon la mode
EP2054021B1 (fr) Colorant capillaire avec de l'huile de germe de riz et un hydrolysat de protéines
EP1696871B1 (fr) Colorant d'oxydation en tube
EP2043597A2 (fr) Coloration capillaire contenant du beurre de karite
WO2006097167A1 (fr) Agent de coloration sans ammoniac destine a colorer des fibres contenant de la keratine et comprenant de l'oxygene atmospherique utilise comme agent d'oxydation unique
EP1762220A2 (fr) Composition de teinture des fibres keratiniques comprenant des polymères de poids moléculaire faible
EP1715837B1 (fr) Base de creme cationique
DE102006031502A1 (de) Oxidationsfärbemittel zur Färbung keratinhaltiger Fasern mit Luftsauerstoff als einzigem Oxidationsmittel
WO2006013036A1 (fr) Composes azoiques cationiques utilises comme colorations directes destinees a colorer des fibres keratiniques
EP1787685B1 (fr) Combinaisons de précurseurs de coloration
WO2009065632A1 (fr) Colorants par oxydation pour la coloration de fibres kératiniques avec l'oxygène de l'air en tant qu'oxydant exclusif
EP1637119A1 (fr) Colorants directs
DE102005062645A1 (de) Neue Kupplerkomponenten
EP1731196A1 (fr) Procédé en plusieurs étapes pour la coloration de fibres kératiniques
EP1962789B1 (fr) Produit capillaire volumisant
DE102004047137A1 (de) Kationische Cremegrundlage II
DE10333253A1 (de) Färbemittel mit Pflegestoffkombination
DE10361278A1 (de) Kationische Cremegrundlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090107

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20110516

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150202