EP2035858A1 - Ultraschallsensor, fahrzeug mit ultraschallsensor und verfahren zum betreiben des ultraschallsensors - Google Patents

Ultraschallsensor, fahrzeug mit ultraschallsensor und verfahren zum betreiben des ultraschallsensors

Info

Publication number
EP2035858A1
EP2035858A1 EP07725000A EP07725000A EP2035858A1 EP 2035858 A1 EP2035858 A1 EP 2035858A1 EP 07725000 A EP07725000 A EP 07725000A EP 07725000 A EP07725000 A EP 07725000A EP 2035858 A1 EP2035858 A1 EP 2035858A1
Authority
EP
European Patent Office
Prior art keywords
sensor
membrane
membrane elements
signals
membrane element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07725000A
Other languages
English (en)
French (fr)
Inventor
Anton Lill
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Schalter und Sensoren GmbH
Original Assignee
Valeo Schalter und Sensoren GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Schalter und Sensoren GmbH filed Critical Valeo Schalter und Sensoren GmbH
Publication of EP2035858A1 publication Critical patent/EP2035858A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/521Constructional features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/46Indirect determination of position data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/87Combinations of sonar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K9/00Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers
    • G10K9/12Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated
    • G10K9/122Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated using piezoelectric driving means
    • G10K9/125Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated using piezoelectric driving means with a plurality of active elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/46Indirect determination of position data
    • G01S2015/465Indirect determination of position data by Trilateration, i.e. two transducers determine separately the distance to a target, whereby with the knowledge of the baseline length, i.e. the distance between the transducers, the position data of the target is determined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2015/937Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles sensor installation details
    • G01S2015/938Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles sensor installation details in the bumper area

Definitions

  • the invention relates to an ultrasonic sensor for distance measurement of objects, comprising a converter having a housing and / or a carrier, in which and / or on which a vibratable membrane element is arranged for emitting signals and for receiving the emitted signals reflected on an object is.
  • FIGS. 1 to 5 show explanations of the prior art.
  • Figure 1 is a schematic representation of a prior art ultrasonic sensor
  • FIG. 2 shows transit times of the signals emitted by the ultrasonic sensor according to FIG. 1
  • Figure 3 is a plan view of a bumper of a
  • Figures 4 and 5 triangulations for determining the distance a of an object to the vehicle.
  • a previously known ultrasonic sensor is identified by the reference numeral 10.
  • the ultrasonic sensor 10 comprises a transducer 12, with which electrical signals are converted into sound signals and sound signals into electrical signals.
  • the transducer 12 comprises a housing 14 in which a membrane element 16 with an active surface 17 and an electronics unit 18 are arranged.
  • the electronics unit 18 serves to control the membrane element 16 and to preprocess the signals received by the membrane element 16.
  • the transducer 12 or the membrane element 16 can be controlled via an evaluation unit 20, with which the received signals are evaluated.
  • the membrane element 16 may be formed according to the prior art as a cup-shaped aluminum part, on which the active surface 17 forming bottom a piezoelectric element is arranged. With appropriate energization of the piezoelectric element, the membrane element 16, or its active surface 17, vibrated and it sound signals are emitted. When on the membrane element 16, or its active surface 17, incident sound signals is the Membrane element 16, or its active surface 17, also vibrated, these vibrations from the piezoelectric element into electrical signals that are preprocessed by the electronic unit 18 and evaluated by the evaluation unit 20, are implemented.
  • the distance a of the sensor 10, or of its membrane element 16, to an object 22 can be determined with such an ultrasonic sensor 10 together with the associated evaluation unit 20.
  • the acoustic radiation is emitted by the membrane element 16 or its active surface 17 for a short time.
  • these signals strike the object 22 at a distance a.
  • FIG. 2 shows a schematic plan view of a bumper 24 of a vehicle, which provides a total of four transducers 12.1, 12.2, 12.3 and 12.4.
  • the direct distance a ⁇ ji or a d4 from the respective converter 12.2 or 12.4 to the object 22.1 or 22.4 can be determined via the transducers 12.1 to 12.4.
  • This measured distance corresponds, as is apparent from Figure 3, not the actual distance a x of the obstacle 22.1 to the vehicle. Only in the event that the object 22 lies on the main axis h of the radiation lobe of the respective transducer, the measured distance corresponds to the actual distance.
  • the prior art attempts by means of triangulation to calculate the actual distance ai between the vehicle or bumpers 24 and the object 22 from a plurality of measurements with a plurality of transducers.
  • the method of triangulation described above can not be used even if, for example, an object extending over a larger subsection of the detection area, such as a wall, is present.
  • the present invention is therefore based on the object to provide ultrasonic sensors, by means of which, even in the presence of multiple objects in the detection range of the converter, a clear AbstandsbeStimmung the objects to a vehicle is possible.
  • an ultrasonic sensor having the features of claim 1.
  • Such an ultrasonic sensor is characterized in that at least one further membrane element for receiving the signals emitted by the first membrane element and reflected at the object is provided in the housing or on the carrier. Due to the provision of at least two directly adjacent to each other, provided in the same housing or on the same carrier membrane elements, it can be achieved that of only a signal transmitted to a membrane element, which are reflected on the same object, impinge on the two membrane elements with a very small time offset, provided that the object is not arranged in the region of the central longitudinal axis or centrally between the two main axes of the two membrane elements. Consequently, with only one measuring cycle, two distance values identifiable as belonging together are obtained. From these two, only very slightly differing distance values, one can then obtain the position of the object by triangulation.
  • ⁇ t is very low at the very close arranged membrane elements.
  • the distance x between the main axes of the at least two membrane elements arranged in the housing or on the common carrier is less than 10 cm and in particular in the range of 0.5 cm and 5 cm, ie x ⁇ 10 cm and in particular 0.5 cm ⁇ x ⁇ 5 cm.
  • the distance x can also be selected such that d ⁇ x ⁇ 4 * d, where d is the diameter or width of the active area a membrane element in the direction of the main axis of the adjacent membrane element.
  • the value x can be in the range of 2 * d to 3 * d.
  • the membrane elements provided are at least substantially identical and / or are the same when providing more than two membrane elements, the distances between adjacent major axes.
  • the main axes of the emission lobes of the at least two membrane elements run parallel to one another. In this way, a unique local relationship of the two membrane elements to each other can be produced, which is required for determining the respective distance from the respective membrane element to the object.
  • two further membrane elements can be provided so that the ultrasonic sensor has a total of three membrane elements.
  • the total of three membrane elements can lie on a right-angled, equilateral and / or isosceles triangle.
  • a first straight line intersecting the major axis of the first membrane element and the major axis of the second membrane element may be perpendicular to a major axis of the first membrane element and the major axis be arranged of the third membrane element intersecting second straight line.
  • the membrane elements can be arranged vertically one above the other in an installed position and / or two membrane elements horizontally next to each other.
  • the direction in which the object is present can be determined in a vertical plane.
  • the direction in which the object is present can be determined in a horizontal plane.
  • the direction in three-dimensional space in which the object is present can be determined.
  • the at least two membrane elements can each be designed as separate, separate components, which are spatially spaced from each other.
  • a decoupling means for vibration decoupling may be present between the two membrane elements.
  • the membrane elements are formed as one-piece, consisting of the same material component, said component then has two adjacent cup-shaped membrane recesses.
  • the floors of the Membrane recesses then form the active surfaces.
  • the component accommodating one membrane element and / or the two membrane elements can have a rectangular or round outer contour in plan view.
  • the plan view is the view along a major axis.
  • the senor may provide an electronic unit, which is arranged in the housing and / or on the carrier.
  • This electronic unit controls the at least two membrane elements or processes the received signals in such a way that an evaluation unit connected downstream of the electronic unit can evaluate the signals.
  • the membrane elements may in particular be cup-shaped and comprise a piezoelectric element which sets the active surface in oscillation or which converts the oscillations of the active surface of the membrane element into electrical signals.
  • the at least one further membrane element exclusively receives signals and does not emit any signals.
  • the sensor according to the invention may comprise an evaluation unit for evaluating the received signals, wherein the evaluation unit during operation of the sensor from the transit time difference of the signals received from the at least two membrane elements, the distance from the respective membrane element to the object and from the distances the direction at least within one of the main axes determined in each case two membrane elements plane, in which the object is detected.
  • the direction of the object within a plane formed by the major axes of two membrane elements can thereby be determined.
  • the direction of the object in three-dimensional space can be determined in a corresponding manner.
  • the evaluation unit in the operation of the sensor determines the signals received with the at least two membrane elements. Due to the very low observed differences in transit time at the membrane elements of the delay difference is determined by the phase angle.
  • phase comparators or phase demodulators can be used. From the wavelength and the phase difference of the received signals, the transit time difference can then be determined with the required accuracy.
  • the object mentioned at the outset is also achieved by a vehicle, in particular by a motor vehicle having an ultrasonic sensor according to the invention, the evaluation unit determining the actual, shortest distance of the object to the vehicle during operation of the sensor from the transit time difference of the signals received by the at least two membrane elements ,
  • the above-mentioned object is also achieved by a method for operating an ultrasonic sensor according to the invention, wherein a signal is transmitted with the first membrane element and wherein this signal reflected from the object is received by the first and at least one further membrane element, wherein from the transit time difference of the distance received by the respective membrane element to the object is calculated for the signals received by the at least two membrane elements.
  • a method for operating an ultrasonic sensor according to the invention wherein a signal is transmitted with the first membrane element and wherein this signal reflected from the object is received by the first and at least one further membrane element, wherein from the transit time difference of the distance received by the respective membrane element to the object is calculated for the signals received by the at least two membrane elements.
  • the direction in which the object is detected can be determined at least within a plane formed by the major axes of the two membrane elements.
  • the transit time difference can be determined from the phase angle between the signals received by the at least two membrane elements.
  • the further membrane element can advantageously serve exclusively for receiving signals. This has the advantage that objects located very close to the sensor can be clearly detected.
  • Figure 6 is a schematic representation of an ultrasonic sensor according to the invention
  • Figure 7 shows the time course of the sound signals of the ultrasonic sensor according to Figure 6;
  • FIG. 8 shows different phase shifts on an ultrasonic sensor according to the invention.
  • FIG. 10 shows different embodiments of transducers of different ultrasonic sensors according to the invention.
  • Figure 11 is a plan view of another ultrasonic sensor according to the invention.
  • FIG. 6 shows an inventive ultrasonic sensor 30, which differs from the ultrasonic sensor 10 according to FIG. 1 in that two mutually adjacent membrane elements S1 and S2 are provided in the housing 14.
  • the main axes hi and h 2 of the two membrane elements Sl and S2 or their active surfaces 17 are arranged parallel to each other.
  • the central main emission axis h lies centrally between the two main emission axes hi and h 2 .
  • the distance x between the two main emission axes hi and h 2 is less than 5 cm and is advantageously in the range between 2 cm and 3 cm.
  • the distance x is greater than the diameter d of the active sensor surfaces 17 and less than twice d.
  • the two membrane elements Sl and S2 are advantageously arranged side by side or one above the other.
  • the membrane element S1 is operated so that it can send and then receive.
  • the membrane element S2 can advantageously receive only.
  • the membrane element S 1 emits a sound signal at the time t i.
  • this signal strikes the object 22 at the distance a, where it is reflected.
  • the reflected signal impinges on the membrane element S2 and shortly thereafter, at the time t 4 on the membrane element Sl.
  • the reflected signals strike the object 22 later than the distance a S2 from S2 to the object 22 due to the greater distance a S i from the object 22 to the membrane element S 1 than to the membrane element S 2. If the object 22 were located on the main axis h, then the signals reflected at the object 22 would strike the two membrane elements S1 and S2 at the same time.
  • the position of the object 22 can be determined by triangulation from these two distance values a S i and a S2 and the distance x between the main axes hi and h 2 .
  • the angle ⁇ between the central main axis h and the average distance a s between the distances a S i and a S2 can also be determined in the plane spanned by the two main axes h ⁇ and h 2 .
  • the phase difference of the two incoming signals is evaluated. This can be done with phase comparators or phase demodulators. From the wavelength and the phase difference of the received signals, the transit time difference can be determined. For this purpose, three examples are shown in Figure 8, in which the phase angle ⁇ are shown for different positions of the object 22. Depending on the direction and magnitude of the phase shift, it is possible to deduce the associated transit time, and thus the associated angle ⁇ .
  • FIG. 9 shows for example, the transit times at the two membrane elements Sl and S2 for three objects 22.1, 22.2 and 22.3. It becomes clear that for each object present in the field of view of the two membrane elements, there are always incoming signals in pairs, as long as the objects are not located on a circle around the sensor.
  • the described sensor 30 and the associated method are also suitable for spatially extended objects, such as walls. This is because the measurement is carried out with the two small-spaced membrane elements Sl and S2 in only one measuring cycle, which is based on only one reflection point on the object.
  • the minimum measurable distance to an object is very small. This is due to the fact that with the provision of two, in particular acoustically well decoupled membrane elements, with the one membrane element a signal can be sent and with the other membrane element, the signal can be received, as long as the first membrane element still swinging. The second membrane element can consequently detect reflected signals, while the first membrane element can not detect such signals due to its decay phase.
  • two ultrasonic sensors can be used, wherein one ultrasonic sensor has two membrane elements arranged next to one another and the other ultrasonic sensor has two membrane elements arranged one above the other.
  • FIG. 10 shows various embodiments of conceivable transducers according to the invention of ultrasonic sensors.
  • a common membrane component 32 is provided which forms the two membrane elements S 1 and S 2 and in particular can be made of aluminum.
  • the component 32 provides two pot-shaped membrane recesses 34 and 36 arranged next to one another.
  • a piezoelectric element 38 which can be set into oscillation by energization is arranged at the bottom of the respective membrane recess 34 and 36.
  • the membrane component 32 is located in a housing 40, wherein a decoupling material 42 is provided between the housing 40 and the membrane component 32.
  • the membrane component 32 has a round outer contour.
  • the piezoelectric elements 38 are electrically connected to the electronic unit 18, which is not shown in FIG.
  • the transducer according to FIG. 10b substantially corresponds to the transducer according to FIG. 10a, wherein the outer contour of the Membrane component is not round here, but is substantially rectangular.
  • the converter according to FIG. 10 c in which the two membrane elements S 1 and S 2 are accommodated, provides for each of the two membrane elements S 1 and S 2 its own cup-shaped component 44.
  • the two components 44 are surrounded in their respective radially outer region of decoupling material 42, - between the two components 44 is decoupling material 42nd
  • FIG. 11 shows another ultrasonic sensor 50 according to the invention which has a total of three membrane elements S1, S2 and S3.
  • the ultrasonic sensor 50 is integrated in a bumper 24.
  • a plane perpendicular to the main axis hx of the membrane element Sl plane is the line g lf the main axis h x and the main axis h 2 of the membrane element S2 intersects.
  • Perpendicular to this straight line g x runs a straight line g 2 / which lies in the same plane and the main axis hi and the main axis h 3 of the membrane element S3 intersects.
  • the two membrane elements Sl and S2 are horizontal next to each other and the two membrane elements Sl and S3 vertically above the other.
  • the three, in particular identical, membrane elements S1, S2 and S3 lie in the illustrated view on an isosceles, right-angled triangle.
  • the distance Xi between the main axis hi and the main axis h 2 corresponds to the distance X 2 of the main axis h x to the main axis h 3 .
  • the distances Xi and X 2 are in the range of 2 * d to 3 * d, where d is the diameter of the active surface 17 of the membrane elements Sl, S2, S3.
  • d is the width of the active surface in the direction of the main axis of the respectively adjacent membrane element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

Die Erfindung betrifft einen Ultraschallsensor zur Abstandsmessung von Gegenständen, ein Fahrzeug mit einem Ultraschallsensor sowie ein Verfahren zum Betreiben eines derartigen Ultraschallsensors.

Description

Titel: Ultraschallsensor, Fahrzeug mit Ultraschallsensor und Verfahren zum Betreiben des Ultraschallsensors
Beschreibung
Die Erfindung betrifft einen Ultraschallsensor zur AbStandmessung von Gegenständen, mit einem ein Gehäuse und/oder einen Träger aufweisenden Wandler, in dem und/oder an dem ein in Schwingungen versetzbares Membranelement zum Aussenden von Signalen und zum Empfangen der ausgesendeten, an einem Objekt reflektierten Signale angeordnet ist.
Derartige Ultraschallsensoren sind aus dem vorbekannten Stand der Technik in vielfältiger Art und Weise bekannt.
Die Figuren 1 bis 5 zeigen hierzu Erläuterungen zum Stand der Technik, wobei im Einzelnen zeigt:
Figur 1 eine schematische Darstellung eines vorbekannten Ultraschallsensors ;
Figur 2 Laufzeiten der mit dem Ultraschallsensor gemäß Figur 1 ausgesendeten Signale,- Figur 3 eine Draufsicht auf einen Stoßfänger eines
Fahrzeugs, in dem bekannte Ultraschallsensoren angeordnet sind; und
Figuren 4 und 5 Triangulationen zur Bestimmung des Abstands a eines Objekts zum Fahrzeug.
In der Figur 1 ist ein vorbekannter Ultraschallsensor mit dem Bezugszeichen 10 gekennzeichnet. Der Ultraschallsensor 10 umfasst dabei einen Wandler 12, mit dem elektrische Signale in Schallsignale und Schallsignale in elektrische Signale umgewandelt werden. Der Wandler 12 umfasst ein Gehäuse 14, in dem ein Membranelement 16 mit einer aktiven Fläche 17 und eine Elektronikeinheit 18 angeordnet sind. Die Elektronikeinheit 18 dient zur Ansteuerung des Membranelements 16 sowie zur Vorverarbeitung der vom Membranelement 16 empfangenen Signale. Der Wandler 12 beziehungsweise das Membranelement 16 ist über eine Auswerteeinheit 20 ansteuerbar, mit der auch die empfangenen Signale ausgewertet werden.
Das Membranelement 16 kann dabei gemäß dem vorbekannten Stand der Technik als topfförmiges Aluminiumteil ausgebildet sein, auf dessen die aktive Fläche 17 bildenden Boden ein Piezoelement angeordnet ist. Bei entsprechender Bestromung des Piezoelements wird das Membranelement 16, bzw. dessen aktive Fläche 17, in Schwingung versetzt und es werden Schallsignale ausgesendet. Bei auf das Membranelement 16, bzw. dessen aktive Fläche 17, auftreffenden Schallsignalen wird das Membranelement 16, bzw. dessen aktive Fläche 17, ebenfalls in Schwingung versetzt, wobei diese Schwingungen vom Piezoelement in elektrische Signale, die von der Elektronikeinheit 18 vorverarbeitet und von der Auswerteeinheit 20 ausgewertet werden, umgesetzt werden.
Mit einem derartigen Ultraschallsensor 10 samt zugehöriger Auswerteeinheit 20 kann folglich der Abstand a des Sensors 10, beziehungsweise seines Membranelements 16, zu einem Objekt 22 ermittelt werden. Dazu werden gemäß Figur 2 zum Zeitpunkt tl vom Membranelement 16, bzw. dessen aktiver Fläche 17, für eine kurze Zeit akustische Schwingungen ausgesendet. Zum Zeitpunkt t2 treffen diese Signale im Abstand a auf das Objekt 22. Dort werden sie reflektiert und treffen zum Zeitpunkt t3 als Echosignale wieder auf das Membranelement 16, bzw. dessen aktiver Fläche 17. In der Auswerteeinheit 20 wird die Laufzeit des ausgesendeten und dann wieder empfangenen Signals gemessen, wobei gilt: tl = t3 - tl, mit tl : Laufzeit. Aus der Laufzeit tl und der Schallgeschwindigkeit c kann dann der Abstand a wie folgt berechnet werden: a = c * tl/2.
Es ist bekannt, dass mehrere solche Ultraschallsensoren 10, beziehungsweise zugehörige Wandler 12, an Fahrzeugen, und insbesondere in Stoßfängern von Fahrzeugen, untergebracht werden. Vorzugsweise ist eine Auswerteeinheit 20 vorgesehen, die die einzelnen Wandler ansteuert und deren Eingangssignale auswertet . Figur 3 zeigt eine schematische Draufsicht auf einen Stoßfänger 24 eines Fahrzeugs, der insgesamt vier Wandler 12.1, 12.2, 12.3 und 12.4 vorsieht. Wie zur Figur 2 beschrieben, kann über die Wandler 12.1 bis 12.4 die direkte Entfernung a<ji beziehungsweise ad4 vom jeweiligen Wandler 12.2 beziehungsweise 12.4 zum Objekt 22.1 beziehungsweise 22.4 bestimmt werden. Diese gemessene Entfernung entspricht, wie aus Figur 3 hervorgeht, nicht dem tatsächlichen Abstand ax des Hindernisses 22.1 zum Fahrzeug. Nur für den Fall, dass das Objekt 22 auf der Hauptachse h der Abstrahlkeule des jeweiligen Wandlers liegt, entspricht der gemessene Abstand dem tatsächlichen Abstand.
Um diese Abweichung zwischen gemessenen Abstand a<u und tatsächlichen Abstand ai zu beseitigen, wird beim Stand der Technik mittels Triangulation versucht, den tatsächlichen Abstand ai zwischen Fahrzeug beziehungsweise Stoßfängern 24 und dem Objekt 22 aus mehreren Messungen mit mehreren Wandlern zu berechnen.
Bei der Triangulation, die in Figur 4 dargestellt ist, wird davon ausgegangen, dass das Objekt 22 auf dem Schnittpunkt zweier Kreise Kl und K2, die jeweils um den Wandler 12.1 und 12.2 angeordnet sind, mit welchem das Objekt 22 detektiert wird. Die Radien der Kreise Kl und K2 entsprechen dann den jeweils gemessenen Abständen a<n und ad2, die von den beiden Wandlern 12.1 und 12.2 gemessen werden. Der tatsächliche Abstand a kann dann über die Höhe des Dreiecks Wandler 12.1, 12.2 und Objekt 22 berechnet werden. Dieses Verfahren der Triangulation versagt allerdings dann, wenn mehrere Gegenstände im Sichtfeld der einzelnen Wandler erkannt werden. Eine derartige Situation ist in Figur 5 dargestellt. Eine eindeutige Zuordnung, welcher gemessene Abstand adn, adi2 beziehungsweise ad2i, ad22 welchem erkannten Objekt 22.1 beziehungsweise 22.2 zugeordnet wird, ist hier nicht mehr möglich.
Das oben beschriebene Verfahren der Triangulation ist auch dann nicht einsetzbar, wenn beispielsweise ein sich über einen größeren Teilabschnitt des Erfassungsbereichs erstreckender Gegenstand, wie beispielsweise eine Mauer, vorhanden ist.
Der vorliegenden Erfindung liegt deshalb die Aufgabe zugrunde, Ultraschallsensoren bereitzustellen, mittels denen auch bei Vorhandensein von mehreren Objekten im Erfassungsbereich der Wandler eine eindeutige AbstandsbeStimmung der Objekte zu einem Fahrzeug möglich ist .
Diese Aufgabe wird durch einen Ultraschallsensor gelöst, der die Merkmale des Anspruchs 1 aufweist. Ein derartiger Ultraschallsensor zeichnet sich dadurch aus, dass im Gehäuse oder am Träger wenigstens ein weiteres Membranelement zum Empfangen der mit dem ersten Membranelement ausgesendeten und am Objekt reflektierten Signale vorgesehen ist. Aufgrund des Vorsehens von wenigstens zwei direkt benachbart zueinander, im gleichen Gehäuse oder am gleichen Träger vorgesehenen Membranelementen, kann erreicht werden, dass die von lediglich einem Membranelement ausgesendeten Signale, die am gleichen Objekt reflektiert werden, mit einem sehr geringen Zeitversatz auf die beiden Membranelemente auftreffen, sofern das Objekt nicht im Bereich der Mittellängsachse beziehungsweise mittig zwischen den beiden Hauptachsen der beiden Membranelemente angeordnet ist. Mit nur einem Messzyklus erhält man folglich zwei als zusammengehörig identifizierbare Abstandswerte. Aus diesen beiden, sich nur sehr geringfügig unterscheidenden Abstandswerten, kann man dann durch Triangulation die Position des Objekts erhalten.
Aus der Kenntnis des Abstandes zwischen den beiden Membranelementen, beziehungsweise deren beiden Hauptachsen, und der Laufzeitdifferenz Δt kann der Winkel α, unter dem der Wandler den Gegenstand sieht, berechnet werden. Die zusammengehörenden Eingangssignale an den Membranelementen, und die daraus resultierenden zusammengehörenden Abstandswerte, lassen sich eindeutig identifizieren, da die Laufzeitdifferenz
Δt an den sehr nahe beieinander angeordneten Membranelementen sehr gering ist.
Insbesondere ist vorteilhaft, wenn der Abstand x zwischen den Hauptachsen der wenigstens beiden im Gehäuse oder am gemeinsamen Träger angeordneten Membranelemente kleiner ist als 10 cm und insbesondere im Bereich von 0,5 cm und 5 cm liegt, also x < 10cm und insbesondere 0,5 cm < x < 5 cm. Der Abstand x kann auch so gewählt sein, dass gilt: d < x < 4*d, wobei d der Durchmesser oder die Breite der aktiven Fläche eines Membranelements in Richtung zur Hauptachse des benachbarten Membranelements ist. Insbesondere kann der Wert x im Bereich von 2*d bis 3*d liegen. Bei Vorsehen dieser Abstandswerte für x können die unterschiedlichen Laufzeiten eines an einem Objekt reflektierten Signals noch mit ausreichender Genauigkeit bestimmt werden.
Vorzugsweise sind die vorgesehenen Membranelemente wenigstens weitgehend identisch ausgebildet und/oder sind bei Vorsehen von mehr als zwei Membranelementen die Abstände benachbarter Hauptachsen gleich.
Vorteilhafterweise verlaufen dabei die Hauptachsen der Abstrahlkeulen der wenigstens beiden Membranelemente parallel zueinander. Hierdurch kann eine eindeutige örtliche Beziehung der beiden Membranelemente zueinander hergestellt werden, welche zur Bestimmung des jeweiligen Abstands vom jeweiligen Membranelement zum Objekt erforderlich ist.
Vorteilhafterweise können zwei weitere Membranelemente vorgesehen sein, so dass der Ultraschallsensor insgesamt drei Membranelemente aufweist. Die insgesamt drei Membranelemente können dabei auf einem rechtwinkligen, gleichseitigen und/oder gleichschenkligen Dreieck liegen. Bei einem rechtwinkligen Dreieck kann in einer senkrecht zur Hauptachse des ersten Membranelements angeordneten Ebene eine die Hauptachse des ersten Membranelements und die Hauptachse des zweiten Membranelements schneidende erste Gerade senkrecht zu einer die Hauptachse des ersten Membranelements und die Hauptachse des dritten Membranelements schneidenden zweiten Geraden angeordnet sein. Durch Vorsehen von wenigstens insgesamt drei Membranelementen kann die Richtung des Objekts im dreidimensionalen Raum bestimmt werden.
Vorteilhafterweise können dabei die Membranelemente in einer Einbaulage vertikal übereinander und/oder zwei Membranelemente horizontal nebeneinander angeordnet sein. Durch Vorsehen von zwei Membranelementen vertikal übereinander kann in einer vertikal verlaufenden Ebene die Richtung bestimmt werden, in welcher das Objekt vorhanden ist. Durch Vorsehen von zwei horizontal nebeneinander angeordneten Membranelementen kann in einer horizontal verlaufenden Ebene bestimmt werden, in welcher Richtung das Objekt innerhalb dieser Ebene liegt. Durch Überlagerung der beiden in den beiden Ebenen ermittelten Richtungen kann die im dreidimensionalen Raum vorhandene Richtung, in der das Objekt vorhanden ist, bestimmt werden.
Die wenigstens beiden Membranelemente können dabei jeweils als eigene, separate Bauteile ausgebildet sein, die voneinander räumlich beabstandet sind. Zwischen den beiden Membranelementen kann insbesondere ein Entkopplungsmittel zur Schwingungsentkopplung vorhanden sein.
Bei einer anderen Ausführungsform der Erfindung ist denkbar, dass die Membranelemente als einstückiges, aus dem gleichen Material bestehendes Bauteil ausgebildet sind, wobei dieses Bauteil dann zwei nebeneinander angeordnete topfartige Membranaussparungen aufweist. Die Böden der Membranaussparungen bilden dann jeweils die aktiven Flächen. Dies hat den Vorteil, dass lediglich ein Bauteil vorzusehen ist und dass die räumliche Distanz der beiden Membranaussparungen fest vorgebbar ist.
Das das eine Membranelement und/oder die beiden Membranelemente beherbergende Bauteil kann in Draufsicht eine rechteckige oder runde Außenkontur aufweisen. Die Draufsicht ist dabei die Sicht entlang einer Hauptachse.
Gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung kann der Sensor eine Elektronikeinheit vorsehen, die im Gehäuse und/oder am Träger angeordnet ist. Diese Elektronikeinheit steuert die wenigstens beiden Membranelemente an beziehungsweise verarbeitet die empfangenen Signale derart vor, dass eine der Elektronikeinheit nachgeschaltete Auswerteeinheit die Signale auswerten kann. Die Membranelemente können dabei insbesondere topfförmig ausgebildet sein und ein die aktive Fläche in Schwingung versetzendes beziehungsweise die Schwingungen der aktiven Fläche des Membranelements in elektrische Signale umsetzendes Piezoelement umfassen.
Gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung kann vorgesehen sein, dass im Betrieb des Sensors das wenigstens eine weitere Membranelement ausschließlich Signale empfängt und keine Signale aussendet. Dies hat den Vorteil, dass auch vergleichsweise geringe Abstände mit dem erfindungsgemäßen Sensor bestimmt werden können. Selbst dann, wenn das eine Membranelement, das zur Erzeugung von Signalen angeregt wird, sich noch in seiner Ausschwingphase befindet, können mit dem anderen Membranelement, das lediglich Signale empfängt, an einem Gegenstand reflektierte Signale empfangen werden. Ein derartiger Sensor kann folglich im Nahbereich des Sensors Gegenstände erkennen, die ein bekannter, in der Figur 1 dargestellter Sensor, aufgrund der Ausschwingdauer seines lediglich einen Membranelements nicht erfassen kann.
Der erfindungsgemäße Sensor kann eine Auswerteeinheit zur Auswertung der empfangenen Signale umfassen, wobei die Auswerteeinheit im Betrieb des Sensors aus der Laufzeitdifferenz der von den wenigstens beiden Membranelementen empfangenen Signalen den Abstand vom jeweiligen Membranelement zum Objekt und aus den Abständen die Richtung wenigstens innerhalb einer von den Hauptachsen jeweils zweier Membranelemente gebildeten Ebene bestimmt, in welcher das Objekt detektiert wird. Folglich kann dadurch im Betrieb des Sensors die Richtung des Objekts innerhalb einer von den Hauptachsen von zwei Membranelementen gebildeten Ebene bestimmt werden.
Werden drei Membranelemente vorgesehen, kann in entsprechender Art und Weise die Richtung des Objekts im dreidimensionalen Raum bestimmt werden.
Gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass die Auswerteeinheit im Betrieb des Sensors die Laufzeitdifferenz aus dem Phasenwinkel zwischen den mit den wenigstens beiden Membranelementen empfangenen Signalen bestimmt. Aufgrund den sehr geringen festzustellenden Laufzeitdifferenzen an den Membranelementen wird der Laufzeitunterschied über den Phasenwinkel bestimmt. Hierbei können Phasenkomparatoren oder Phasendemodulatoren Verwendung finden. Aus der Wellenlänge und der Phasendifferenz der empfangenen Signale kann dann die Laufzeitdifferenz mit der erforderlichen Genauigkeit ermittelt werden.
Die eingangs genannte Aufgabe wird auch durch ein Fahrzeug gelöst, insbesondere durch ein Kraftfahrzeug, das einen erfindungsgemäßen Ultraschallsensor aufweist, wobei die Auswerteeinheit im Betrieb des Sensors aus der Laufzeitdifferenz der von den wenigstens beiden Membranelementen empfangenen Signalen den tatsächlichen, kürzesten Abstand des Objekts zum Fahrzeug bestimmt.
Die eingangs genannte Aufgabe wird außerdem gelöst durch ein Verfahren zum Betreiben eines erfindungsgemäßen Ultraschallsensors, wobei mit dem ersten Membranelement ein Signal ausgesendet wird und wobei dieses an dem Objekt reflektierte Signal vom ersten und von wenigstens einem weiteren Membranelement empfangen wird, wobei aus der Laufzeitdifferenz der von den wenigstens beiden Membranelementen empfangenen Signalen der Abstand vom jeweiligen Membranelement zum Objekt berechnet wird. Hierbei ist eine eindeutige Zuordnung der zusammengehörigen, auf die Membranelemente auftreffenden Signale ohne Weiteres möglich, da diese aufgrund der räumlich benachbarten Membranelemente nahezu gleiche Laufzeiten haben.
Aus den Abständen der Membranelemente zum Objekt können unter Berücksichtigung von zwei Membranelementen die Richtung, in welcher das Objekt detektiert wird, wenigstens innerhalb einer von den Hauptachsen der beiden Membranelemente gebildeten Ebene bestimmt werden.
Vorteilhafterweise kann, wie bereits erwähnt, die Laufzeitdifferenz aus dem Phasenwinkel zwischen den mit den wenigstens beiden Membranelementen empfangenen Signalen bestimmt werden.
Ferner kann vorteilhafterweise, wie ebenfalls bereits erwähnt, das weitere Membranelement ausschließlich zum Empfangen von Signalen dienen. Dies hat den Vorteil, dass sehr nahe am Sensor vorhandene Objekte eindeutig detektiert werden können.
Weitere Vorteile und vorteilhafte Ausgestaltungen der Erfindung sind der nachfolgenden Beschreibung zu entnehmen, anhand derer verschiedene Ausführungsformen der Erfindung näher beschrieben und erläutert sind.
Dazu zeigen:
Figur 6 eine schematische Darstellung eines erfindungsgemäßen Ultraschallsensors ; Figur 7 der zeitliche Verlauf der Schallsignale des Ultraschallsensors gemäß Figur 6 ;
Figur 8 verschiedene Phasenverschiebungen an einem erfindungsgemäßen Ultraschallsensor;
Figur 9 Empfangssignale eines erfindungsgemäßen
Ultraschallsensors bei Vorhandensein mehrerer Obj ekte ;
Figur 10 verschiedene Ausführungsformen von Wandlern verschiedener erfindungsgemäßer Ultraschallsensoren; und
Figur 11 eine Draufsicht auf einen weiteren erfindungsgemäßen Ultraschallsensor .
In der Figur 6 ist ein erfindungsgemäßer Ultraschallsensor 30 dargestellt, der sich vom Ultraschallsensor 10 gemäß Figur 1 dadurch unterscheidet, dass im Gehäuse 14 zwei zueinander benachbarte Membranelemente Sl und S2 vorgesehen sind. Die Hauptachsen hi und h2 der beiden Membranelemente Sl und S2 bzw. deren aktiven Flächen 17 sind dabei parallel zueinander verlaufend angeordnet . Mittig zwischen den beiden Hauptabstrahlachsen hi und h2 liegt die zentrale Hauptabstrahlachse h. Vorteilhafterweise beträgt der Abstand x zwischen den beiden Hauptabstrahlachsen hi und h2 weniger als 5 cm und liegt vorteilhafterweise im Bereich zwischen 2 cm und 3 cm. Der Abstand x ist größer als der Durchmesser d der aktiven Sensorflächen 17 und kleiner als zweimal d.
In der Einbaulage des Ultraschallsensors 30 sind die beiden Membranelemente Sl und S2 vorteilhafterweise nebeneinander oder übereinander angeordnet.
Das Membranelement Sl wird derart betrieben, dass es senden und anschließend empfangen kann. Das Membranelement S2 kann dagegen vorteilhafterweise lediglich empfangen.
Zur Abstandsmessung, die unter Zuhilfenahme der Figuren 6 und 7 beschrieben wird, sendet das Membranelement Sl zum Zeitpunkt ti ein Schallsignal aus. Zum Zeitpunkt t2 trifft dieses Signal im Abstand a auf das Objekt 22, an dem es reflektiert wird. Zum Zeitpunkt t3 trifft das reflektierte Signal auf das Membranelement S2 und kurz darauf, zum Zeitpunkt t4 auf das Membranelement Sl. Die reflektierten Signale treffen aufgrund des größeren Abstandes aSi von Sl zum Objekt 22 als des Abstandes aS2 von S2 zum Objekt 22 später auf das Membranelement Sl als auf das Membranelement S2. Würde sich das Objekt 22 auf der Hauptachse h befinden, so würden die am Objekt 22 reflektierten Signale zeitgleich auf die beiden Membranelemente Sl und S2 auftreffen.
Für jedes der beiden Membranelemente Sl und S2 kann nun die Laufzeit des Signals ermittelt werden. Daraus kann der jeweilige Abstand aSi und aS2 berechnet werden. Insgesamt erhält man folglich mit nur einem Messzyklus zwei zusammengehörige Abstandswerte. Aus diesen beiden Abstandswerten aSi und aS2 sowie des Abstandes x zwischen den Hauptachsen hi und h2 kann durch Triangulation die Position des Objekts 22 bestimmt werden. Ferner kann auch der Winkel α zwischen der zentralen Hauptachse h und des mittleren, zwischen den Abständen aSi und aS2 gelegenen Abstandswertes as in der von den beiden Hauptachsen hλ und h2 aufgespannten Ebene bestimmt werden.
Um die beiden Laufzeiten, die sich nur sehr gering unterscheiden, mit hinreichender Genauigkeit zu bestimmen, kann vorgesehen werden, dass die Phasendifferenz der beiden eintreffenden Signale ausgewertet wird. Dies kann mit Phasenkomparatoren oder Phasendemodulatoren erfolgen. Aus der Wellenlänge und der Phasendifferenz der empfangenen Signale kann die Laufzeitdifferenz bestimmt werden. Dazu sind in Figur 8 drei Beispiele dargestellt, bei denen die Phasenwinkel φ für unterschiedliche Lagen des Objekts 22 dargestellt sind. Je nach Richtung und Größe der Phasenverschiebung kann auf die zugehörige Laufzeit, und damit auf den zugehörigen Winkel α, rückgeschlossen werden.
Selbst dann, wenn im Detektionsbereich eines Wandlers mehrere Objekte vorhanden sein sollten, kann eine eindeutige Zuordnung von empfangenen Signalen zu einem Objekt erreicht werden. Da die Membranelemente Sl und S2 dicht nebeneinander angeordnet sind, kommen eintreffende Signale für beide Membranelemente immer annähernd vom selben Reflexionspunkt auf dem selben Gegenstand. Dadurch ist ausgeschlossen, dass Schnittpunkte mit nicht zusammengehörigen Kreisen gebildet werden. Figur 9 zeigt beispielhaft die Laufzeiten an den beiden Membranelementen Sl und S2 für drei Objekte 22.1, 22.2 und 22.3. Deutlich wird, dass für jedes im Sichtfeld der beiden Membranelemente vorhandenen Objekts es immer paarweise eintreffende Signale gibt, solange die Objekte nicht auf einem Kreis um den Sensor liegen.
Der beschriebene Sensor 30 und das zugehörige Verfahren eignen sich auch für räumlich ausgedehnte Gegenstände, wie beispielsweise Wände. Dies deshalb, weil die Messung mit den beiden gering beabstandeten Membranelementen Sl und S2 in nur einem Messzyklus durchgeführt wird, dem nur ein Reflexionspunkt am Objekt zugrunde liegt.
Mit dem erfindungsgemäßen Sensor ist zudem der minimal messbare Abstand zu einem Objekt sehr gering. Dies liegt darin begründet, dass bei Vorsehen von zwei, insbesondere akustisch gut entkoppelten Membranelementen, mit dem einen Membranelement ein Signal ausgesendet werden kann und mit dem anderen Membranelement das Signal empfangen werden kann, solange das erste Membranelement noch ausschwingt. Das zweite Membranelement kann folglich reflektierte Signale erkennen, während das erste Membranelement derartige Signale aufgrund seiner Ausschwingphase nicht erkennen kann.
Werden gemäß Figur 6 nicht nur zwei Membranelemente Sl und S2, sondern drei Membranelemente verwendet, die nicht entlang einer Linie angeordnet sind, so kann auch ein Objekt eindeutig innerhalb des Raums über die zugehörigen Raumwinkel erkannt werden. Entsprechend können zwei Ultraschallsensoren Verwendung finden, wobei der eine Ultraschallsensor zwei nebeneinander angeordnete Membranelemente und der andere Ultraschallsensor zwei übereinander angeordnete Membranelemente aufweist.
In der Figur 10 sind verschiedene Ausführungsformen denkbarer Wandler erfindungsgemäßer Ultraschallsensoren dargestellt.
Gemäß Figur 10a kann vorgesehen sein, dass ein gemeinsames Membranbauteil 32 vorgesehen ist, welches die beiden Membranelemente Sl und S2 bildet und insbesondere aus Aluminium hergestellt sein kann. Das Bauteil 32 sieht, wie aus dem dargestellten Querschnitt deutlich wird, zwei nebeneinander angeordnete, topfartige Membranaussparungen 34 und 36 vor. Auf der der aktiven Fläche 17 des jeweiligen Membranelements Sl und S2 abgewandten Seite ist am Boden der jeweiligen Membranaussparung 34 und 36 ein durch Bestromung in Schwingungen versetzbares Piezoelement 38 angeordnet. Das Membranbauteil 32 befindet sich dabei in einem Gehäuse 40, wobei zwischen dem Gehäuse 40 und dem Membranbauteil 32 ein Entkopplungsmaterial 42 vorgesehen ist. In Draufsicht weist das Membranbauteil 32 eine runde Außenkontur auf. Die Piezoelemente 38 sind, was in der Figur 10 nicht dargestellt ist, mit der Elektronikeinheit 18 elektrisch verbunden.
Der Wandler gemäß Figur 10b entspricht im Wesentlichen dem Wandler gemäß Figur 10a, wobei die Außenkontur des Membranbauteils hier nicht rund, sondern im Wesentlichen rechteckig ausgebildet ist.
Der Wandler gemäß Figur 10c, in dem die beiden Membranelemente Sl und S2 untergebracht sind, sieht für jedes der beiden Membranelemente Sl und S2 eine eigenes topfartig ausgebildetes Bauteil 44 vor. Die beiden Bauteile 44 sind dabei in ihrem jeweiligen radial äußeren Bereich von Entkopplungsmaterial 42 umgeben,- auch zwischen den beiden Bauteilen 44 befindet sich Entkopplungsmaterial 42.
In Figur 11 ist ein weiterer erfindungsgemäßer Ultraschallsensor 50 vorgesehen, der insgesamt drei Membranelemente Sl, S2 und S3 aufweist. Der Ultraschallsensor 50 ist dabei in einen Stoßfänger 24 integriert. In einer senkrecht zur Hauptachse hx des Membranelements Sl liegenden Ebene verläuft die Gerade glf die die Hauptachse hx und die Hauptachse h2 des Membranelements S2 schneidet. Senkrecht zu dieser Geraden gx verläuft eine Gerade g2/ die in der gleichen Ebene liegt und die Hauptachse hi sowie die Hauptachse h3 des Membranelements S3 schneidet. In der Einbaulage liegen folglich die beiden Membranelemente Sl und S2 horizontal nebeneinander und die beiden Membranelemente Sl und S3 vertikal übereinander. Die drei insbesondere identisch ausgebildeten Membranelemente Sl, S2 und S3 liegen in der dargestellten Ansicht auf einem gleichschenkligen, rechtwinkligen Dreieck. Der Abstand Xi zwischen der Hauptachse hi und der Hauptachse h2 entspricht dem Abstand X2 der Hauptachse hx zur Hauptachse h3. Die Abstände Xi und X2 liegen im Bereich von 2*d bis 3*d, wobei d der Durchmesser der aktiven Fläche 17 der Membranelemente Sl, S2, S3 ist. Für den Fall, dass die Membranen der Membranelemente Sl, S2, S3 eine rechteckige Kontur (in Fig. 11 am Membranelement S2 gestrichelt angedeutete) aufweisen, ist d die Breite der aktiven Fläche in Richtung zur Hauptachse des jeweils benachbarten Membranelements.
Mit einem derartigen Ultraschallsensor kann ein Reflexionspunkt, und damit ein Objekt, im dreidimensionalen Raum eindeutig bestimmt werden.

Claims

Patentansprüche
1. Ultraschallsensor (30, 50), zur Abstandsmessung von Gegenständen, mit einem ein Gehäuse (14, 40) und/oder einen Träger aufweisenden Wandler (12), in dem und/oder an dem ein in Schwingungen versetzbares Membranelement
(Sl) zum Aussenden von Signalen und zum Empfangen der ausgesendeten, an einem Objekt (22) reflektierten Signale angeordnet ist, dadurch gekennzeichnet, dass im Gehäuse
(14, 40) oder am Träger wenigstens ein weiteres
Membranelement (S2, S3) zum Empfangen der mit dem ersten Membranelement (Sl) ausgesendeten und am Objekt (22) reflektierten Signale vorgesehen ist.
2. Sensor (30, 50) nach Anspruch 1, dadurch gekennzeichnet, dass für den Abstand x zwischen benachbarten Hauptachsen
(h1( h2, h3) der wenigstens beiden Membranelemente (Sl, S2, S3) gilt: x < 10cm und insbesondere 0,5 cm < x < 5 cm.
3. Sensor (30, 50) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass für den Abstand x zwischen benachbarten Hauptachsen (hi, h2, h3) der wenigstens beiden Membranelemente (Sl, S2 , S3) gilt: d < x < 4*d, wobei d der Durchmesser der aktiven Fläche (17) eines Membranelements (Sl, S2, S3) oder die Breite der aktiven Fläche (17) eines Membranelements (Sl, S2, S3) in Richtung zur Hauptachse (hx, h2, h3) des wenigstens einen benachbarten Membranelements (Sl, S2 , S3) ist.
4. Sensor (30) nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass die Hauptachsen (hi, h2/ h3) der wenigstens beiden Membranelemente (Sl, S2, S3) parallel zueinander verlaufend.
5. Sensor (30, 50) nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwei weitere Membranelemente (S2, S3) vorgesehen sind, wobei die insgesamt drei Membranelemente (Sl, S2 , S3) auf einem rechtwinkligen, gleichseitigen und/oder gleichschenkligen Dreieck liegen.
6. Sensor (30, 50) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die wenigstens beiden Membranelemente (Sl, S2, S3) in einer Einbaulage vertikal übereinander und/oder horizontal nebeneinander angeordnet sind.
7. Sensor (30, 50) nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die wenigstens beiden Membranelemente (Sl, S2 , S3) jeweils als separat ausgebildete, voneinander räumlich beabstandet angeordnete Bauteile (44) ausgebidlet sind.
8. Sensor (30, 50) nach wenigstens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die wenigstens beiden Membranelemente (Sl, S2, S3) als gemeinsames, einstückig und aus dem gleichen Material bestehenden Membranbauteil
(32) ausgebildet sind, das wenigstens zwei nebeneinander angeordnete topfartige Membranaussparungen (34, 36) aufweist.
9. Sensor (30, 50) nach Anspruch 8, dadurch gekennzeichnet, dass das Membranbauteil (32) in Draufsicht eine rechteckige oder runde Außenkontur aufweist .
10. Sensor (30, 50) nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Gehäuse (14, 40) und/oder am Träger eine Elektronikeinheit (18) angeordnet ist, die die Membranelemente (Sl, S2, S3) ansteuert und/oder die von den Membranelementen (Sl, S2 , S3) empfangenen Signale verarbeitet.
11. Sensor (30, 50) nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Betrieb des Sensors das wenigstens eine weitere Membranelement (S2, S3) ausschließlich Signale empfängt und keine Signale aussendet .
12. Sensor (30, 50) nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Sensor eine Auswerteinheit (20) zur Auswertung der empfangenen Signale umfasst, wobei die Auswerteinheit (20) im Betrieb des Sensors aus der Laufzeitdifferenz der von den wenigstens beiden Membranelementen (Sl, S2, S3) empfangenen Signalen den Abstand (aSi, aS2) vom jeweiligen Membranelement (Sl, S2 , S3) zum Objekt (22) und aus den Abständen (aSi, aS2) die Richtung (α) wenigstens innerhalb einer von den Hauptachsen jeweils zweier Membranelemente (Sl, S2 , S3) gebildeten Ebene bestimmt, in welcher das
Objekt (22) detektiert wird.
13. Sensor (30, 50) nach Anspruch 12, dadurch gekennzeichnet, dass die Auswerteeinheit (20) im Betrieb des Sensors aus der Laufzeitdifferenz bei Vorsehen von drei Membranelementen (Sl, S2, S3) aus den von den drei Membranelementen empfangenen Signalen die Richtung innerhalb des dreidimensionalen Raums bestimmt, in welcher das Objekt detektiert wird.
14. Sensor (30, 50) nach Anspruch 12 oder 13, nach einem der Ansprüche 10 oder 11, dadurch gekennzeichnet, dass die Auswerteinheit (20) im Betrieb des Sensors die Laufzeitdifferenz aus dem Phasenwinkel zwischen den mit den wenigstens beiden Membranelementen (Sl, S2, S3) empfangenen Signalen bestimmt.
15. Fahrzeug, insbesondere Kraftfahrzeug, umfassend wenigstens einen Ultraschallsensor (30, 50) nach wenigstens einem der Ansprüche 11, 12 oder 13, wobei die Auswerteinheit (20) im Betrieb des Sensors aus der Laufzeitdifferenz der von den wenigstens beiden Membranelementen empfangenen Signalen den tatsächlichen, kürzesten Abstand (a) des Objekts (22) zum Fahrzeug bestimmt .
16. Verfahren zum Betreiben eines Ultraschallsensors (30, 50) nach wenigstens einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass mit dem ersten Membranelement (Sl) ein Signal ausgesendet wird und dass dieses an einem Objekt (22) reflektierte Signal vom ersten und von wenigstens einem weiteren Membranelement (S2, S3) empfangen wird, wobei aus der Laufzeitdifferenz der von den wenigstens beiden Membranelementen (Sl, S2, S3) empfangenen Signalen der Abstand (aSi, aS2) vom jeweiligen Membranelement (Sl, S2, S3) zum Objekt (22) berechnet wird.
17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass aus den Abständen (aSi, aS2) die Richtung (α) wenigstens innerhalb einer von den Hauptachsen (hi, h2, h3) jeweils zweier Membranelemente (Sl, S2, S3) gebildeten Ebene bestimmt wird, in welcher das Objekt (22) detektiert wird.
18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass die Laufzeitdifferenz aus dem Phasenwinkel zwischen den mit den wenigstens beiden Membranelementen empfangenen Signalen bestimmt wird.
19. Verfahren nach Anspruch 17 oder 18, dadurch gekennzeichnet, dass das wenigstens eine weitere Membranelement (S2, S3) ausschließlich Signale empfängt und keine Signale aussendet.
EP07725000A 2006-07-04 2007-05-09 Ultraschallsensor, fahrzeug mit ultraschallsensor und verfahren zum betreiben des ultraschallsensors Withdrawn EP2035858A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006032125A DE102006032125A1 (de) 2006-07-04 2006-07-04 Ultraschallsensor, Fahrzeug mit Ultraschallsensor und Verfahren zum Betreiben des Ultraschallsensors
PCT/EP2007/004077 WO2008003364A1 (de) 2006-07-04 2007-05-09 Ultraschallsensor, fahrzeug mit ultraschallsensor und verfahren zum betreiben des ultraschallsensors

Publications (1)

Publication Number Publication Date
EP2035858A1 true EP2035858A1 (de) 2009-03-18

Family

ID=38462506

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07725000A Withdrawn EP2035858A1 (de) 2006-07-04 2007-05-09 Ultraschallsensor, fahrzeug mit ultraschallsensor und verfahren zum betreiben des ultraschallsensors

Country Status (3)

Country Link
EP (1) EP2035858A1 (de)
DE (1) DE102006032125A1 (de)
WO (1) WO2008003364A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008029808B4 (de) * 2008-06-24 2018-10-31 Volkswagen Ag Verfahren und Vorrichtung zur dreidimensionalen Positionsbestimmung eines Objektes
DE102013207823A1 (de) * 2013-04-29 2014-10-30 Robert Bosch Gmbh Verfahren und Vorrichtung zur Bestimmung der Koordinaten eines Objekts
DE102017210481A1 (de) 2017-02-02 2018-08-02 Robert Bosch Gmbh Verfahren zum Kalibrieren von Ultraschallwandlern und Anordnung zum Durchführen des Verfahrens
DE102017108341B4 (de) * 2017-04-20 2018-11-22 Valeo Schalter Und Sensoren Gmbh Ultraschallsensorvorrichtung für ein Kraftfahrzeug mit einer Sendeeinrichtung und separaten Empfangseinrichtungen, Fahrerassistenzsystem sowie Kraftfahrzeug
DE102017221021A1 (de) * 2017-11-24 2019-05-29 Zf Friedrichshafen Ag Echoortung mit richtungsabhängigem Resonator
DE102020205127A1 (de) 2020-04-23 2021-10-28 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Generieren einer Objektrepräsentation mittels empfangener Ultraschallsignale
EP3943981A1 (de) * 2020-07-22 2022-01-26 Elmos Semiconductor SE Verfahren und vorrichtung zum erfassen von umgebungsobjekten mit einem ultraschallsensorsystem sowie ultraschallsensorsystem

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3721209C2 (de) * 1987-06-26 1997-04-30 Grieshaber Vega Kg Schall-/Ultraschallmeßgerät
US5654997A (en) * 1995-10-02 1997-08-05 General Electric Company Ultrasonic ranging system for radiation imager position control
DE19615548A1 (de) * 1996-04-19 1997-10-23 Mayser Gmbh & Co Ultraschall-Bereichsüberwachungsanlage
DE19842250A1 (de) * 1998-09-15 2000-03-16 Mannesmann Vdo Ag Verfahren zur Bestimmung des Abstandes zwischen einem Objekt und einer sich örtlich verändernden Einrichtung, insbesondere einem Kraftfahrzeug
JP2001289939A (ja) * 2000-02-02 2001-10-19 Mitsubishi Electric Corp 超音波送受信装置及び車両周辺障害物検出装置
WO2003064215A1 (fr) * 2002-01-28 2003-08-07 Matsushita Electric Works, Ltd. Systeme d'alarme et de detection d'obstacles pour vehicule
JP4131174B2 (ja) * 2003-02-18 2008-08-13 松下電工株式会社 超音波送受波器
JP2005020315A (ja) * 2003-06-25 2005-01-20 Matsushita Electric Works Ltd 超音波用トランスデューサおよびその製造方法
US20050245824A1 (en) * 2004-04-20 2005-11-03 Acoustic Marketing Research, A Colorado Corporation, D/B/A Sonora Medical Systems, Inc. High-intensity focused-ultrasound hydrophone
DE102004026196A1 (de) * 2004-05-28 2005-12-29 Valeo Schalter Und Sensoren Gmbh Verfahren, Vorrichtung und Sensormodul zum Messen des Abstandes zwischen einem Fahrzeug und einem Hindernis

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008003364A1 *

Also Published As

Publication number Publication date
WO2008003364A1 (de) 2008-01-10
DE102006032125A1 (de) 2008-01-10

Similar Documents

Publication Publication Date Title
EP2856206B1 (de) Ultraschallsensor sowie vorrichtung und verfahren zur messung eines abstands zwischen einem fahrzeug und einem hindernis
EP2569650B1 (de) Verfahren und vorrichtung zur bestimmung der position eines objektes relativ zu einem fahrzeug, insbesondere einem kraftfahrzeug, zur verwendung in einem fahrerassistenzsystem des fahrzeuges
EP1058126B1 (de) Abstandserfassungsvorrichtung
EP2035858A1 (de) Ultraschallsensor, fahrzeug mit ultraschallsensor und verfahren zum betreiben des ultraschallsensors
DE102010021960B4 (de) Verrfahren zum Erkennen eines blockierten Zustands eines Ultraschallsensors eines Kraftfahrzeugs, Fahrerassistenzeinrichtung und Kraftfahrzeug
EP2293102B1 (de) Verfahren und Vorrichtung zur Bestimmung der Position eines Hindernisses relativ zu einem Fahrzeug, insbesondere einem Kraftfahrzeug, zur Verwendung in einem Fahrerassistenzsystem des Fahrzeuges
DE102015111264B4 (de) Verfahren zum Erfassen eines Objekts in einem Umgebungsbereich eines Kraftfahrzeugs durch Aussenden von Ultraschallsignalen mit unterschiedlicher Richtcharakteristik, Fahrerassistenzsystem sowie Kraftfahrzeug
DE102006005048A1 (de) Ultraschallsensor mit Sendeeinrichtung und Empfangseinrichtung für Ultraschallwellen
EP0510023B1 (de) Vorrichtung zum erkennen der anwesenheit eines fahrzeugs mittels einer ultraschallvorrichtung
DE102018200688B4 (de) Verfahren und Vorrichtung zum Betreiben eines akustischen Sensors
DE102008040911A1 (de) Verfahren zum Senden einer Ultraschallwelle und Vorrichtung zum Senden einer Ultraschallwelle
EP2639790B1 (de) Fahrerloses Fahrzeug mit mindestens einem Ultraschallsensor sowie Verfahren für dessen Betrieb
DE102017104145B4 (de) Verfahren zum Betreiben einer Ultraschallsensorvorrichtung für ein Kraftfahrzeug mit unterschiedlicher Anregung einer Membran, Ultraschallsensorvorrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
EP3329473B1 (de) Einrichtung und verfahren zur untersuchung von wertdokumenten und / oder des transports von wertdokumenten mittels ultraschall
DE102008027970B4 (de) Ultraschallsensor
DE102018100567A1 (de) Verfahren zum Bestimmen einer Position eines Objekts mit Richtungsschätzung mittels eines Ultraschallsensors, Steuergerät, Ultraschallsensorvorrichtung sowie Fahrerassistenzsystem
EP2983008B1 (de) Sensorvorrichtung mit kombiniertem ultraschallsensor und radarsensor zum erfassen eines objekts in einem umfeld eines kraftfahrzeugs und kraftfahrzeug
EP1922529B1 (de) Verfahren zur messung der füllhöhe und der neigung einer oberfläche einer flüssigkeit
DE102017122477A1 (de) Verfahren zum Betreiben eines Ultraschallsensors für ein Kraftfahrzeug mit Objekterkennung im Nahbereich und im Fernbereich, Ultraschallsensorvorrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
DE102016224928A1 (de) Verfahren zum Betrieb eines Ultraschallsensors
DE102010037981B4 (de) Ultraschallmessverfahren und -vorrichtung, insbesondere zur Aushärtungsüberwachung und Laminatdickenbestimmung bei der Faserverbundteilfertigung
WO2019096500A1 (de) Verfahren zum betreiben eines ultraschallsensors für ein kraftfahrzeug mit unterdrückung von störungen in einem zweiten empfangspfad, ultraschallsensor sowie fahrerassistenzsystem
DE102017220492A1 (de) Verfahren und Vorrichtung zum Verifizieren von Sensordaten in einer Umgebung eines Fahrzeuges
EP1724925B2 (de) Ultraschall-Näherungsschalter und Verfahren zur Erfassung strukturierter Oberflächen mittels Ultraschall
DE102017122428B4 (de) Ultraschallsensor für ein Kraftfahrzeug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081201

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20111024

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120504