EP3329473B1 - Einrichtung und verfahren zur untersuchung von wertdokumenten und / oder des transports von wertdokumenten mittels ultraschall - Google Patents
Einrichtung und verfahren zur untersuchung von wertdokumenten und / oder des transports von wertdokumenten mittels ultraschall Download PDFInfo
- Publication number
- EP3329473B1 EP3329473B1 EP16745416.4A EP16745416A EP3329473B1 EP 3329473 B1 EP3329473 B1 EP 3329473B1 EP 16745416 A EP16745416 A EP 16745416A EP 3329473 B1 EP3329473 B1 EP 3329473B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- ultrasound
- ultrasonic
- receivers
- transmitters
- capacitive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002604 ultrasonography Methods 0.000 title claims description 359
- 238000000034 method Methods 0.000 title claims description 66
- 238000011156 evaluation Methods 0.000 claims description 147
- 238000012545 processing Methods 0.000 claims description 28
- 230000008569 process Effects 0.000 claims description 27
- 230000003993 interaction Effects 0.000 claims description 8
- 238000012544 monitoring process Methods 0.000 claims description 2
- 230000032258 transport Effects 0.000 description 133
- 230000005540 biological transmission Effects 0.000 description 97
- 230000006870 function Effects 0.000 description 25
- 239000004020 conductor Substances 0.000 description 15
- 239000012528 membrane Substances 0.000 description 14
- 230000004044 response Effects 0.000 description 12
- 230000008901 benefit Effects 0.000 description 8
- 238000005259 measurement Methods 0.000 description 7
- 238000001914 filtration Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000004913 activation Effects 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 238000004590 computer program Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000013475 authorization Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002592 echocardiography Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07D—HANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
- G07D11/00—Devices accepting coins; Devices accepting, dispensing, sorting or counting valuable papers
- G07D11/10—Mechanical details
- G07D11/16—Handling of valuable papers
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07D—HANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
- G07D11/00—Devices accepting coins; Devices accepting, dispensing, sorting or counting valuable papers
- G07D11/50—Sorting or counting valuable papers
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07D—HANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
- G07D7/00—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
- G07D7/06—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
- G07D7/08—Acoustic waves
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07D—HANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
- G07D7/00—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
- G07D7/16—Testing the dimensions
- G07D7/162—Length or width
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07D—HANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
- G07D7/00—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
- G07D7/16—Testing the dimensions
- G07D7/164—Thickness
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07D—HANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
- G07D7/00—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
- G07D7/181—Testing mechanical properties or condition, e.g. wear or tear
- G07D7/183—Detecting folds or doubles
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07D—HANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
- G07D7/00—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
- G07D7/20—Testing patterns thereon
- G07D7/2075—Setting acceptance levels or parameters
Definitions
- the present invention relates to a device and a method for examining documents of value and / or the transport of documents of value by means of ultrasound.
- documents of value are understood to be card-shaped or preferably sheet-shaped objects which, for example, represent a monetary value or an authorization and should therefore not be able to be produced by unauthorized persons at will. They therefore do not have features that are easy to produce, in particular to be copied, whose presence is an indication of authenticity, i.e. production by an authorized body.
- Important examples of such documents of value are chip cards, coupons, vouchers, checks and, in particular, bank notes.
- Such documents of value are often processed by machine, for which purpose they are usually first separated from a stack and then separated, ie transported individually, along a transport path.
- Ultrasound for example, can be used to examine the documents of value with regard to their condition and / or their authenticity and to examine certain aspects of the processing, in particular the transport.
- the examination of the transport is understood to mean determining whether documents of value are transported individually and not overlapping and / or how they are oriented relative to their transport direction during transport and / or whether or at what points in time they reach a predetermined location of the transport path with a front edge in the transport direction or a rear edge in the transport direction.
- ultrasonic sensors that have one or more piezoelectric ultrasonic transducers are used for the investigation.
- the ultrasonic transducers use to generate ultrasound is a piezoelectric element that is excited to mechanical vibrations by a transmission signal in the form of an electrical alternating voltage.
- a voltage that occurs when pressure is exerted on the piezoelectric element is recorded and evaluated.
- DE 10 2013 015 224 A1 describes a method for checking a value document of a predetermined value document type for the presence of at least one irregularity of at least one predetermined type, for example an irregularity in the form of at least one adhesion, preferably an adhesive strip, and / or a fold and / or a material removal.
- an ultrasound data set is recorded which describes at least one ultrasound property, preferably the ultrasound transmission, of the value document in a spatially resolved manner, and a deviation data set is determined which describes a spatially resolved deviation between the ultrasound data set and a model and is determined in such a way that the deviation described by it is minimal with respect to the model, the model comprising a model for the location dependency of the at least one ultrasonic property of reference value documents of the specified value document type without irregularities of the at least one specified type.
- the deviation data record it is checked whether there is an indication of an irregularity of the at least one type on the value document. Means for carrying out the method are also described.
- the capacitive converter includes an element that has multiple types of cells.
- Each cell comprises: a first electrode, a vibrating layer having a second electrode, the second electrode facing the first electrode with a gap, and a support portion that supports the vibrating film to form the gap.
- the plural kinds of cells have different ratios of an area of one of the first electrode and the second electrode to an area of the gap when viewed in a direction normal to the vibrating film.
- the first electrodes or the second electrodes in the plurality of types of cells are electrically connected to each other.
- the present invention is therefore based on the object of specifying a device for examining documents of value and / or the transport of documents of value by means of ultrasound, which is easy to produce and / or allows good examination of documents of value.
- a method for examining documents of value and / or the transport of documents of value by means of ultrasound is also to be specified, which allows a good examination of documents of value.
- the object is achieved by a device with the features of claim 1 and in particular a device for examining documents of value and / or the transport of documents of value that are transported along a predetermined transport path in a predetermined transport direction, using ultrasound in a direction transverse to the transport direction staggered ultrasonic transmitters for emitting ultrasound onto the transport path for transmission signals and ultrasonic receivers arranged offset in a direction transverse to the transport direction for receiving ultrasound generated by the ultrasonic transmitter and for the delivery of received signals or with ultrasound transmitters / receivers arranged offset in a direction transverse to the transport direction for the delivery of ultrasound to the transport path in response to transmission signals and for receiving the ultrasound after interaction with at least one of the value documents and delivery of received signals.
- the ultrasonic transmitters and / or ultrasonic receivers each have at least one capacitive, micromechanical ultrasonic transducer or the ultrasonic transmitters / receivers each have at least one capacitive, micromechanical ultrasonic transducer.
- the object is therefore further achieved by a method with the features of claim 19 and in particular a method for examining documents of value and / or transporting documents of value by means of ultrasound, in which ultrasound is applied to a document of value transported along a transport path by means of at least one ultrasonic transmitter in response to transmission signals and the ultrasound emanating from the document of value is then received by means of at least one ultrasound receiver and received signals are generated, or by means of at least one ultrasound transmitter / receiver, ultrasound is emitted onto a document of value transported along a transport path by means of at least one ultrasound transmitter / receiver, and the ultrasound emanating from the document of value is then emitted by means of the at least an ultrasonic transmitter / receiver is received and received signals are formed, the at least one ultrasonic transmitter and / or the at least one ultrasonic receiver or the at least one ne ultrasonic transmitter / receiver have at least one capacitive, micromechanical ultrasonic transducer.
- the method according to the invention can in particular be carried out by means of a device according to the invention, the ultrasonic transmitters being used as the ultrasonic transmitter or ultrasonic receiver or ultrasonic transmitter / receiver in the method or ultrasound receiver or ultrasound transmitter / receiver of the facility are used.
- capacitive, micromechanical ultrasonic transducers are understood to mean ultrasonic transducers which have two, preferably flat, electrodes that form a capacitor.
- a first of the electrodes is formed, for example as a conductive layer region, on a substrate or, if the substrate is conductive, can be formed by a region of the substrate; the other electrode is formed, for example as a conductive layer area, on a membrane or plate spaced apart from the first electrode or, if the membrane or plate is conductive, can be formed by this so that the electrodes form the capacitor.
- the membrane or plate is designed in such a way that when a suitable electrical voltage is applied between the electrodes, a force is exerted between the membrane or plate and the substrate, which results in a movement of at least part of the membrane or plate, for example a change in shape. If a suitable time-varying voltage is applied between the electrodes, through which the electrodes attract or repel each other, the resulting movement of at least a part of the membrane can excite sound waves.
- Such structures are preferably produced using methods for producing micromechanical structures.
- the facility has an ultrasonic transmitter and receiver.
- the ultrasonic transmitters and / or the ultrasonic receivers each have at least one ultrasonic transducer, preferably a capacitive, micromechanical ultrasonic transducer.
- the ultrasonic transmitter sends in response to transmission signals or to the activation by transmission signals, ie in response to transmission signals fed to it, ultrasound in Direction of the transport path, the ultrasound receiver receives ultrasound that was or is generated by means of the ultrasound transmitter, possibly after interaction with a value document, ie reflection on or transmission through the value document, and generates corresponding received signals.
- the ultrasound is transmitted in response to activation by transmission signals by means of the at least one capacitive, micromechanical ultrasonic transducer of the respective ultrasonic transmitter or the ultrasound is received by means of the at least one capacitive, micromechanical ultrasonic transducer of the respective ultrasonic receiver.
- the device can have ultrasonic transmitters / receivers, that is to say elements that serve both as ultrasonic transmitters and as ultrasonic receivers. These can each have at least one capacitive, micromechanical ultrasonic transducer. This can first emit an ultrasound pulse as an ultrasound transmitter in response to a corresponding transmission signal, in order then to be used as a receiver after the emission of the ultrasound pulse, which receives the ultrasound pulse reflected from the value document and forms and outputs at least one corresponding reception signal.
- capacitive, micromechanical ultrasonic transducers can emit pulses of very short duration, preferably through appropriate activation with signals, in particular control signals, that is, they do not oscillate for a long time.
- This embodiment is characterized in particular by a compact structure and is therefore particularly suitable for use in smaller value document processing devices.
- the ultrasound receivers or the ultrasound transmitters / receivers in their function as receivers receive ultrasound in a frequency range in which the ultrasound transmitters or ultrasound transmitters / receivers send ultrasound as transmitters and form received signals that have at least one property of the received ultrasound, for example the intensity or amplitude or frequency.
- the ultrasonic transmitters and ultrasonic receivers can preferably be arranged and designed in such a way that one of the ultrasonic transmitters and at least one of the ultrasonic receivers each form an ultrasonic path.
- the ultrasound emitted by the respective ultrasound transmitter essentially propagates along this, i. H. except for scattering or diffraction losses, to the ultrasonic receiver.
- An ultrasonic transmitter and an ultrasonic receiver, which form an ultrasonic path, are referred to below as being assigned to one another. This alignment or assignment can, in particular, enable spatially resolved properties to be recorded, as will become clear below.
- the ultrasonic transmitter and the ultrasonic receiver of an ultrasonic path can preferably be arranged on opposite sides of the transport path. Documents of value are then transported through between the ultrasonic transmitters and the ultrasonic receivers.
- the fact that an ultrasound transmitter and an ultrasound receiver form an ultrasound path is understood when the ultrasound transmitter and ultrasound receiver are arranged on opposite sides of the transport path that the ultrasound transmitter emits ultrasound essentially in the direction of the ultrasound receiver and the ultrasound receiver receives ultrasound from the ultrasound transmitter; ie under the ultrasonic path the path along which the ultrasound essentially propagates from the ultrasound transmitter to the ultrasound receiver is understood. In particular, this can be the straight connecting line between the ultrasonic transmitter and the ultrasonic receiver.
- Both the ultrasonic transmitter and the ultrasonic receiver, which form an ultrasonic path preferably contain at least one capacitive micromechanical ultrasonic transducer.
- the ultrasonic transmitters and ultrasonic receivers are arranged and designed in such a way that one of the ultrasonic transmitters and at least one of the ultrasonic receivers are arranged on the same side of the transport path, so that the ultrasound emitted by a respective one of the ultrasonic transmitters only after interaction with one of the documents of value in the transport path is received by one of the ultrasonic receivers and the ultrasonic transmitter and the ultrasonic receiver thus form an ultrasonic path.
- the ultrasound path is understood to mean the path along which the ultrasound transmitted by the ultrasound transmitter essentially propagates as far as the document of value and, after reflection thereon, to the ultrasound receiver.
- both the ultrasonic transmitter and the ultrasonic receiver, which form an ultrasonic path then also contain at least one capacitive micromechanical ultrasonic transducer.
- the ultrasonic path preferably runs from the respective ultrasonic transmitter / receiver to the value document and back.
- the device can preferably also have a control and evaluation device which is connected to the ultrasonic transmitters and ultrasonic receivers is connected via signal connections, and forms transmission signals for the output of ultrasound by at least one of the ultrasound transmitters and outputs them to this and receives and processes reception signals at least one of the ultrasound receivers.
- the device contains ultrasonic transmitters / receivers, it can have a control and evaluation device which is connected to the ultrasonic transmitters / receivers via signal connections, and forms transmission signals for the output of ultrasound by at least one of the ultrasonic transmitters / receivers and sends them to and received signals receiving and processing the at least one of the ultrasonic transceivers; in particular, the same signal connection can be used for transmit signals and receive signals. This makes it easier to carry out an examination with spatial resolution.
- the control and evaluation device can be used in particular for generating and outputting the transmission signals and for receiving and processing the received signals.
- the control and evaluation device is used, among other things, to generate and output the transmission signals and to receive and process the received signals.
- it can preferably have at least one microcontroller and / or at least one processor and / or at least one FPGA; these are then preferably programmed accordingly.
- the ultrasonic transmitters or ultrasonic receivers are formed on a circuit carrier, for example a printed circuit board, at least some elements of the control and evaluation device can also be arranged on this.
- the transmission signals can be formed by the control and evaluation device in such a way that the ultrasonic transmitters respond to the transmission signals or continuously emit ultrasound in response to the transmitted signals.
- the at least one capacitive micromechanical ultrasonic transducer of at least some of the ultrasonic transmitters or ultrasonic transmitters / receivers and the control and evaluation device are designed so that the at least one capacitive micromechanical ultrasonic transducer of the respective ultrasonic transmitter or the ultrasonic transmitter / -Receiver emits ultrasound pulses of predetermined frequency and duration, which are preferably shorter than 100 milliseconds, as a function of transmission signals from the control and evaluation device or in response to transmission signals from the control and evaluation device.
- the at least one capacitive micromechanical ultrasonic transducer of at least some of the ultrasonic transmitters or ultrasonic transmitters / receivers is designed and transmission signals are formed and emitted in such a way that the at least one capacitive micromechanical ultrasonic transducer of the respective ultrasonic transmitter or the ultrasonic transmitter / -receiver emits ultrasound pulses of predetermined frequency and duration as a function of the transmission signals or in response to the transmission signals, which are preferably shorter than 100 milliseconds.
- the transmission signals can be generated and emitted by a control and evaluation device.
- all capacitive micromechanical ultrasonic transducers and the control and evaluation device can particularly preferably be designed to emit pulses of ultrasound of a predetermined frequency and duration, which are preferably shorter than 100 milliseconds.
- the frequency is preferably in the range from 20 kHz to 1 GHz, particularly preferably in the range between 40 kHz and 1 MHz.
- the pulse duration is preferably understood to mean the width at half the maximum of the sound intensity as a function of time (FWHM), with averaging over a period corresponding to the frequency.
- ultrasound pulses ie pulses of ultrasound, which preferably has the specified frequency
- a comparatively high spatial resolution in the transport direction is made possible by the fact that capacitive, micromechanical ultrasonic transducers are not very sluggish if they are appropriately designed and have a corresponding transmission signal. H. respond quickly to changes in the transmit signals. Therefore, short pulses can be generated relatively easily.
- the advantage then results that a high spatial resolution can be achieved. Furthermore, minor problems should arise due to undesired ultrasonic pulses reflected on the value document.
- the at least one capacitive micromechanical ultrasonic transducer of at least some of the ultrasonic receivers or ultrasonic transmitters / receivers is each designed so that it receives ultrasonic pulses of a predetermined frequency and duration, which are preferably shorter are than 100 milliseconds, and forms corresponding received signals, and that the control and evaluation device is designed to receive and process the received signals.
- the at least one capacitive micromechanical ultrasound transducer of at least some of the ultrasound receivers or ultrasound transmitters / receivers is each designed such that it receives ultrasound pulses of a predetermined frequency and duration, which are preferably shorter than 100 milliseconds, and forms corresponding received signals , and, preferably by means of the control and evaluation device of the device according to the invention, receive and process the received signals become.
- These ultrasonic transmitters and ultrasonic receivers each preferably form an ultrasonic path.
- the control and evaluation device can in particular be designed in such a way that it filters the received signals with regard to the frequency, so that the capacitive micromechanical ultrasonic transducers do not need to be used for ultrasound with a frequency close to a possible mechanical resonance frequency.
- the frequency is given by the frequency of the transmission signals for the assigned ultrasonic transmitter or the ultrasound emitted by the assigned ultrasonic transmitter.
- the filtering can also consist of attenuating or suppressing signal components with frequencies outside a predetermined narrow band within which the frequency of the transmitted ultrasound lies.
- the capacitive, micromechanical ultrasonic transducers can be designed individually and held in or on the device.
- at least one of the ultrasonic transmitters has at least two capacitive, micromechanical ultrasonic transducers and / or at least two of the ultrasonic transmitters each have at least one capacitive, micromechanical ultrasonic transducer, and that these capacitive, micromechanical ultrasonic transducers are arranged on a chip and each has electrodes which are contacted with conductor tracks on the respective chip and / or that at least one of the ultrasonic receivers has at least two capacitive, micromechanical ultrasonic transducers and / or at least two of the ultrasonic receivers each have at least one capacitive, micromechanical ultrasonic transducer, and these capacitive, micromechanical ultrasonic transducers on one Chip are arranged, each having electrodes that are contacted with conductor tracks on the respective chip or at least one of the ultrasonic transmitters / receivers ens two capaci
- This embodiment has the advantage that the capacitive, micromechanical ultrasonic transducers can not only be produced and contacted in large numbers, fairly precisely aligned with one another, in the same or different sizes, but can also be easily assembled to form an ultrasonic sensor, since the transducers are aligned with one another is given by the chip. At least 4, particularly preferably at least 20, capacitive, micromechanical ultrasonic transducers are preferably formed on a single chip.
- adjacent capacitive, micromechanical ultrasonic transducers formed on a chip preferably have a distance between 100 ⁇ m and 10 mm in the direction of transport and / or a distance between 100 ⁇ m and 10 mm transverse to the direction of transport, provided that the capacitive, micromechanical ultrasonic transducers in the respective Identify the direction of neighboring capacitive, micromechanical ultrasonic transducers.
- This makes it possible to measure ultrasonic properties along tracks on the document of value parallel to the transport direction, which are very closely adjacent, and thus to obtain these ultrasonic properties with a high spatial resolution transversely to the transport direction of the document of value.
- gaps running in the transport direction as they are generally further spaced from one another in the case of piezoelectric ones, can be used Ultrasonic transducers are created that can be kept small or avoided entirely when recording ultrasonic properties.
- the arrangement or formation on a chip also offers the advantage that the ultrasonic transducers can be easily manufactured with predetermined shapes and a wide range of dimensions.
- the capacitive, micromechanical ultrasonic transducers has an extension between 100 ⁇ m and 10 mm in the transport direction and / or an extension between 100 ⁇ m and 10 mm transverse to the transport direction. This preferably applies to all capacitive, micromechanical ultrasonic transducers.
- the extension is understood to mean the length of the longest straight stretch that runs in the specified direction and is limited by edge sections of the respective ultrasonic sensor.
- the device can also have at least two chips with capacitive, micromechanical ultrasonic transducers, wherein the capacitive, micromechanical ultrasonic transducers of an ultrasonic transmitter or ultrasonic receiver or ultrasonic transmitter / receiver are preferably arranged or formed on only one of the chips.
- a difficulty in the spatially resolved detection of ultrasonic properties is often that ultrasound transmitted on an ultrasonic path can also be detected directly or indirectly by ultrasonic receivers in adjacent ultrasonic paths. This leads to undesirable inaccuracies in the measurement on neighboring ultrasonic paths.
- the control and evaluation device is designed to emit transmission signals, preferably simultaneously, to at least two different, preferably adjacent, ultrasonic transmitters or ultrasonic transmitters / receivers, so that these emit ultrasound at different frequencies or pulses of ultrasound at different frequencies, and receive signals from the respective ultrasonic transmitter to receive and process an ultrasound receiver or ultrasound transmitter / receiver forming an ultrasound path, preferably according to the frequency of the ultrasound emitted by the respective ultrasound transmitter, ie depending on the position of the ultrasound receiver or the relative position of the ultrasonic receivers to each other or the relative position of the ultrasonic transmitters to each other to filter.
- transmission signals are emitted to at least two different, preferably adjacent ones of the ultrasonic transmitters or ultrasonic transmitters / receivers, so that they emit ultrasound at different frequencies or pulses of ultrasound at different frequencies, and receive signals from the respective ultrasonic transmitter an ultrasound path forming ultrasound receiver or the ultrasound transmitter / receiver or when receiving ultrasound generated by the ultrasound transmitter are received and processed, preferably accordingly, ie filtered depending on the position of the ultrasound receiver or the relative position of the ultrasonic receivers to each other or the relative position of the ultrasonic transmitters to each other become.
- the frequency of the ultrasound can be a function of the position of the ultrasound path along which the ultrasound propagates.
- the ultrasonic transmitters can particularly preferably be directly adjacent.
- the capacitive micromechanical ultrasonic transducers can preferably be designed such that they are each designed to emit ultrasonic pulses of the ultrasonic frequency corresponding to their position.
- the filtering of the received signals from one of the ultrasonic receivers can preferably take place at the frequency at which the assigned ultrasound transmitter emitted ultrasound.
- This embodiment has the advantage that ultrasound that has been sent on an ultrasound path cannot be received or only weakly received by the receiver of an adjacent ultrasound path and / or the corresponding interfering signals can be filtered out. In this way, the spatial resolution can be increased, since the distance between neighboring ultrasonic transmitters or ultrasonic receivers, which is otherwise necessary due to the risk of interference from measurements along neighboring ultrasonic paths or crosstalk, can be selected to be smaller.
- the overall result can be a very narrow-band characteristic for an ultrasonic path and thus particularly good suppression or avoidance of interference .
- At least one sequence of ultrasonic pulses can be generated in which successive ultrasonic pulses have a different predetermined ultrasonic frequency exhibit.
- the control and evaluation device can preferably be designed to output transmission signals to at least one of the ultrasonic transmitters or receivers, ie to control at least one of the ultrasonic transmitters and / or the ultrasonic transmitters / receivers with transmission signals that this emits a sequence of ultrasonic pulses, of which at least two successive ones have a predetermined different frequency and received signals from the dem to receive and process the respective ultrasound transmitter associated ultrasound receiver or the ultrasound transmitter / receiver, preferably to filter according to the frequencies or the sequence of frequencies of the emitted pulses.
- transmission signals are output to at least one of the ultrasound transmitters, i.e.
- At least one of the ultrasound transmitters is controlled with transmission signals in such a way that it emits a sequence of ultrasound pulses, of which at least two successive ones have a predetermined different frequency and receive signals from the respective ultrasound transmitter associated ultrasound receiver or the ultrasound transmitter / receiver received and processed, preferably filtered according to the frequency sequence of the emitted pulses.
- the ultrasonic pulses of the sequence thus each have an ultrasonic frequency according to a predetermined frequency sequence.
- the ultrasonic transmitters and / or ultrasonic receivers or ultrasonic transmitters / receivers each need to have only one capacitive micromechanical ultrasonic transducer.
- at least one of the ultrasonic transmitters and / or ultrasonic receivers or ultrasonic transmitters / receivers has at least two capacitive micromechanical ultrasonic transducers. These can be designed to be identical, at least in terms of their properties.
- transmit signals are preferably transmitted to these capacitive, micromechanical ultrasonic transducers in such a way that they transmit ultrasound at the same frequency, or the received signals are evaluated for a given, identical frequency.
- the capacitive, micromechanical ultrasonic transducers of the at least one ultrasonic transmitter or ultrasonic receiver or ultrasonic transmitter / receiver can be connected to the control and evaluation device, for example, and the control and evaluation device can be designed such that it is connected to the ultrasonic transducer Emits transmission signals, so that they emit ultrasound with the same frequency, or that it processes or evaluates the received signals for the same frequency, for example filters and processes them.
- the ultrasonic transducers can be connected in parallel; the corresponding electrodes of the ultrasonic transducers are then connected to the same connections of the control and evaluation device.
- the transmission signals do not necessarily differ, except perhaps in terms of their size, from those for ultrasonic transmitters or ultrasonic transmitters / receivers with only one capacitive, micromechanical ultrasonic transducer. This can be particularly advantageous when capacitive micromechanical ultrasonic transducers are to emit ultrasound with a frequency or intensity or in a solid angle or receive with a frequency or intensity or from a solid angle for which the shape and vibration properties of the ultrasonic transducers are not very favorable.
- the at least two ultrasonic transducers can also be individually connected to the control and evaluation device and the latter can be designed in such a way that the control and evaluation device can be connected to this ultrasonic transducer can emit transmission signals individually.
- the control and evaluation device is then preferably designed in such a way that it individually emits transmission signals to these capacitive, micromechanical ultrasonic transducers such that they emit ultrasound with the same predetermined frequency, ie that they emit ultrasound with the same frequency in response to the transmission signals, or that they Received signals from the at least two capacitive micromechanical ultrasonic transducers, which receive ultrasound of the same frequency, are processed or evaluated together for the same frequency.
- the transmission signals can then be formed such that the at least two ultrasound transducers emit the ultrasound essentially in phase or with the same phase.
- This embodiment can be advantageous, for example, in order to generate an ultrasonic field with a higher intensity or a greater extent.
- the control and evaluation device can be designed in such a way that it emits such transmission signals to the capacitive micromechanical ultrasonic transducers, which at least partially form an ultrasonic transmitter, that they emit ultrasound with the same frequency and different phase, preferably so that the emitted ultrasound of the two transducers is bundled or its direction is changed.
- the ultrasonic transducers are preferably given such transmit signals that they emit ultrasound with the same frequency and different phase, preferably so that the emitted ultrasound of the two transducers is bundled or its direction is changed. This allows the directional characteristic of the emitted ultrasound and thus the local resolution of the device to be improved without the intensity of the ultrasound having to be reduced.
- the control and evaluation device can also be designed to make the phases time-dependent to change that the main transmission direction of the resulting ultrasound is panned in a predetermined manner.
- the device according to the invention and the method according to the invention can in particular be used in devices for processing documents of value.
- the present invention therefore also relates to a device for processing documents of value with a feed device for receiving documents of value to be processed, an output device for outputting or receiving the processed documents of value, a transport device for transporting the documents of value from the feed device along a transport path to the output device and at least one
- the device according to the invention arranged in the area of a section of the transport path for examining the documents of value and / or the transport of the documents of value which are transported along the transport path.
- the control and evaluation device can also be designed to determine from the received signals at least one value that represents the weight per unit area and / or the thickness of the document of value.
- at least one value can preferably be determined from the received signals, preferably by means of an evaluation device or the control and evaluation device, which represents the weight per unit area and / or the thickness of the document of value.
- the control and evaluation device can particularly preferably be added to the device be designed to determine values from the received signals which represent the weight per unit area or the thickness as a function of the location on the value document.
- values can be determined from the received signals, preferably by means of an evaluation device or the control and evaluation device, which represent the weight per unit area or the thickness as a function of the location. In this way, for example, the presence of watermarks and possibly their properties and / or the presence of an adhesive strip on a document of value can be examined. This makes it possible to determine properties of the value document which play a role in its authenticity or condition.
- the processing of the received signals can include the further step of determining whether a value document for the received signals was received, transported as a single value document, or at least partially overlapping with another value document, and if at least partially overlapping value documents are identified, a Output signal representing the result of the determination.
- the feed device can preferably have a separator, by means of which documents of value can be separated from a stack of documents of value in an input area and fed to the transport device.
- control and evaluation device can then be further designed to determine when processing the received signals whether a value document for the received signals was received, transported as a single value document, or at least partially overlapping with another value document, and upon determination at least partially overlapping documents of value to emit a signal representing a result of the determination.
- the transport of a value document can be close, preferably immediately after the singler to examine whether a single value document is being transported.
- the ultrasonic transducers of the device according to the invention are then preferably arranged in the area of the transport path close to or on the separator.
- the device according to the invention is particularly suitable for this because it takes up little space.
- the event that documents of value overlap at least partially after singulation and are thus fed to the transport device is often referred to as a double print or multiple print.
- the transport of the value documents can be examined to determine whether or when a predetermined edge, for example the front edge of a value document in the transport direction, passes a predetermined location and / or whether or how the value document is aligned with a predetermined of its edges relative to the transport direction.
- a predetermined edge for example the front edge of a value document in the transport direction
- the control and evaluation device can preferably be designed to recognize when processing the received signals using the received signals whether and / or when at least one predetermined edge, preferably the one in front in the transport direction and / or the one in Transport direction rear edge, a document of value passes a predetermined location on the transport path, and / or to recognize their position and then preferably to output a corresponding signal, in particular the signal representing the time or the event.
- these are then preferably used to recognize whether and / or when at least one predetermined edge, preferably the front edge in the transport direction and / or the rear edge in the transport direction, of a document of value passes a predetermined location, and / or to recognize their location.
- the value document can run at an angle, d. H. an alignment of the edges of the value document neither parallel nor perpendicular to the transport direction, to recognize or the dimensions of a value document.
- the ultrasound transmitters or ultrasound transmitters / receivers can be arranged on a predetermined section of the transport path for this purpose.
- the device can have a machine control device which receives the signal from the device and controls components of the device as a function of the signal.
- a value document processing device 10 in Fig. 1 in the example a device for processing documents of value 12 in the form of banknotes, is designed to sort documents of value depending on the state determined by means of the document processing device 10 and the authenticity of processed documents of value checked by means of the document processing device.
- It has a feed device 14 for feeding documents of value, an output device 16 for receiving processed, i.e. H. sorted documents of value, and a transport device 18 for transporting separated documents of value from the feed device 14 to the output device 16.
- a feed device 14 for feeding documents of value
- an output device 16 for receiving processed, i.e. H. sorted documents of value
- a transport device 18 for transporting separated documents of value from the feed device 14 to the output device 16.
- the feed device 14 comprises an input compartment 20 for a stack of documents of value and a singulator 22 for singling out documents of value from the stack of value documents in the input compartment 20 and provision for or feed to the transport device 18.
- the output device 16 comprises three output sections 24, 25 and 26, into which processed documents of value can be sorted depending on the result of the processing, in the example verification.
- each of the sections comprises a stacking compartment and a stacking wheel, not shown, by means of which supplied documents of value can be stored in the stacking compartment.
- the transport device 18 has at least two, in the example three branches 28, 29 and 30, at the ends of which one of the output sections 24 or 25 or 26 is arranged, and at the branches via switches 32 and 34 which can be controlled by actuating signals Documents of value can be fed to branches 28 to 30 and thus to output sections 24 to 26 as a function of control signals.
- a sensor device 38 is arranged on a transport path 36 defined by the transport device 18 between the feed device 14, in the example more precisely the singler 22, and the first switch 32 in the transport direction T after the singler 22, which measures physical properties of the value documents while the value documents are being transported past and forms sensor signals which reproduce the measurement results and which represent sensor data.
- the sensor device 38 has three sensors, namely an optical remission sensor 40 that captures a remission color image of the value document, an optical transmission sensor 42 that captures a transmission image of the value document, and a device 44 for examining value documents and / or the transport of Documents of value that detects or measures spatially resolved ultrasonic transmission properties of the document of value. While the sensor device 38 outputs the sensor signals from the sensors 40 and 42 without evaluation, the sensor signals from the device 44 have already been at least partially evaluated.
- a machine control and evaluation device 46 is connected to the sensor device 38 and the transport device 18, in particular the switches 32 and 34, via signal connections.
- it classifies a value document as a function of the signals from the sensor device 38 for the value document into one of specified sorting classes.
- sorting classes can be specified, for example, as a function of a status value determined by means of the sensor data and an authenticity value that is likewise determined by means of the sensor data.
- the values “fit for circulation” or “not fit for use” can be used as status values, and the values “forged”, “suspected of being falsified” or “genuine” as authenticity values.
- the transport device 18 controls the transport device 18, in this case more precisely the switches 32 or 34, by emitting actuating signals so that the value document is output in an output section of the output device 16 assigned to the class according to its sorting class determined during the classification.
- the assignment to one of the predefined sorting classes or the classification takes place as a function of criteria predefined for assessing the condition and assessing authenticity, which criteria depend on at least some of the sensor data.
- the machine control and evaluation device 46 has a processor 48 and a memory 50 connected to the processor 48 in which at least one computer program with program code is stored Execution of the processor 48 controls the device or evaluates the sensor signals of the sensor device 38, in particular to determine a sorting class of a processed document of value, and controls the transport device 18 according to the evaluation.
- the machine control and evaluation device 46 determines from the sensor signals of the sensor device 38 during a sensor signal evaluation at least one value document property that is necessary for checking the bank notes is relevant in terms of their authenticity and / or condition. Several of these properties are preferably determined. In this example, a transmission image and a remission image are determined as the optical value document properties and the ultrasound transmission as the acoustic property as a function of the location on the value document.
- the machine control and evaluation device 46 determines sorting signals for the various sensors, which represent whether the value document properties determined represent an indication of the state or the authenticity of the value document or not. As a result of these signals, corresponding data can be stored in the machine control and evaluation device 46, for example the memory 50, for later use. Depending on the sorting signals, the machine control and evaluation device 46 then determines an overall result for the test according to a predetermined overall criterion and forms the sorting or control signal for the transport device 18 as a function of the result.
- documents of value 12 inserted into input compartment 20 as a stack or individually are fed singly and singly to transport device 18 by singler 22, which transports the singled documents of value 12 past sensor device 38.
- This records the properties of the value documents 12, with sensor signals being formed which reflect the properties of the respective value document.
- the machine control and evaluation device 46 detects the sensor signals, determines a sorting class as a function of them, in the example a combination of an authenticity class and a condition class of the respective value document and, depending on the result, controls the switches so that the value documents accordingly the ascertained sorting class is transported into an output section assigned to the respective sorting class.
- the device 44 is used for examining a value document, which is used as a transmission ultrasonic sensor and which records ultrasonic transmission data as a function of a location on the value document and is structured as follows in the example (cf. Figs. 2 and 3 ).
- the device 44 for examining documents of value by means of ultrasound has, as roughly schematically shown in FIG Fig. 2 shown, via a transmitter module 51 with a set of ultrasonic transmitters 52 and a receiver module 53 with a set of ultrasonic receivers 54, which are arranged on opposite sides of the transport path 36 along a line extending transversely to the transport direction.
- the ultrasound transmitters 52 emit ultrasound in response to corresponding transmission signals
- the ultrasound receivers 54 when receiving ultrasound, form at least one property of the ultrasound reproducing or describing reception signals.
- the number and arrangement of the ultrasonic transmitters 52 corresponds to the number and arrangement of the ultrasonic receivers 54. For the sake of better clarity, only a few ultrasonic transmitters or ultrasonic receivers are shown in the figures.
- each case there are in each case so many ultrasonic transmitters or receivers that the ultrasonic transmitters or receivers are arranged transversely to the transport path in a width that is greater than the corresponding extension of value documents of value document types intended for processing.
- one of the ultrasound transmitters 52 and one of the ultrasound receivers 54 are aligned with one another in such a way that the ultrasound emitted by the respective ultrasound transmitter, in particular after being transmitted through one along the transport path 36, is transported Document of value 12, is aligned with the respective ultrasound receiver, so that the ultrasound is emitted essentially, ie except for scattering and diffraction effects, in the direction of the ultrasound receiver and the latter can receive the ultrasound.
- the respective ultrasonic transmitter and the respective ultrasonic receiver thus form an ultrasonic path 56, shown dotted, which in this exemplary embodiment is oriented essentially perpendicular to the transport path and whose end points are formed by the ultrasonic transmitter and the ultrasonic receiver; the ultrasonic transmitter and the ultrasonic receiver are referred to as being associated with one another.
- a value for the ultrasound transmission of the document of value 12 at the location exposed to the ultrasound can be determined at a given time .
- the ultrasonic transmitters 52 and the ultrasonic receivers 54 are in FIGS Figures 3 and 4th shown roughly schematically.
- Each of the ultrasonic transmitters 52 and each of the ultrasonic receivers 54 has a capacitive micromechanical ultrasonic transducer.
- the capacitive micromechanical ultrasonic transducers of a pair of an ultrasonic transmitter 52 and an ultrasonic receiver 54, which forms an ultrasonic path 56, are identical educated. In this exemplary embodiment, all of the capacitive micromechanical ultrasonic transducers are designed essentially the same.
- the capacitive micromechanical ultrasonic transducers 63 of the ultrasonic transmitters 52 are formed on a chip 58; the same applies to the ultrasonic transducers of the ultrasonic receivers 54.
- the transmitter module has a circuit carrier 60, for example a printed circuit board, which also serves as a holder for the chip 58, on which the chip 58 is held and contacted with conductor tracks 59 on it.
- the conductor tracks 59 lead to the control and evaluation device 47.
- circuit carriers Since the chips and, apart from the arrangement of the conductor tracks and electrical components, the circuit carriers are essentially constructed in the same way, it is sufficient to only describe the circuit carrier 60 with the chip 58 with the capacitive micromechanical ultrasonic transducers 63, which form the ultrasonic transmitters 52.
- the chip 58 has a substrate 62 on which a first electrode 64 in the form of a section of an electrically conductive layer is formed in order to form an ultrasonic transducer 63 in each case.
- a further insulating layer 66 with cavities 68 is formed on this electrode 64.
- a region with a conductive layer, which forms a second electrode 70, is located above each of the cavities 68 on the insulating layer 66.
- the second electrodes 70 are therefore each arranged on a thin plate or membrane 72 which extends over the cavity 68.
- the electrodes 66 and 70 thus each form a capacitor.
- the electrodes together with the membrane 72 form the capacitive micromechanical ultrasonic transducer 63.
- the layer 66 in particular its material and thickness, are selected such that it can be elastically deformed by forces between the electrodes.
- the electrodes 64 and 70_ are connected to conductor tracks, of which in Fig. 3 only the conductor tracks 59 are shown.
- the conductor tracks are connected to the control and evaluation device 47 and form signal connections 49 to it.
- a deformation of the membrane 72 caused by the action of ultrasound leads to a corresponding change in the capacitance of the capacitor formed by the electrodes.
- the change in capacitance can be detected or a corresponding current can be generated by a suitable circuit of the ultrasonic transducer, not shown in the figures. This can be detected as a time-variable received signal by means of the control and evaluation device 47 connected via the signal connections 49.
- the electrodes 70 are connected via wires 74 (cf. Fig. 3 and 5 ) with the in Fig. 3 only partially shown conductor tracks 59 connected to the circuit carrier 60. The same applies to electrode 64, but the wires are not shown.
- the membranes 72 over the cavities 68 and thus essentially the ultrasonic transducers 63 formed in this way have a circular shape in the example, which has an extension D, in the example a diameter, of 2 mm transversely to the emission or reception direction.
- the capacitive micromechanical Ultrasonic transducers have a distance A, more precisely a distance between the circumferential lines, of 1 mm across the transport direction. These dimensions are provided for capacitive micromechanical ultrasonic transducers that are to be operated for generating or receiving ultrasound at 500 kHz.
- control and evaluation device 47 In order to generate and output the transmission signals and to receive and evaluate the received signals, the control and evaluation device 47 has, in addition to components on the circuit carriers, a processor or controller 75 which is connected to the signal connections 49. In addition to the processor 75, the control and evaluation device 47 has a memory in which instructions for a computer program are stored, during the execution of which the processor, as described below, generates and outputs the transmission signals or receives and processes or evaluates the received signals.
- the control and evaluation device 47 in the example in particular the instructions of the computer program, and the capacitive micromechanical ultrasonic transducers are designed in such a way that the control and evaluation device 47 controls the ultrasonic transducers of the ultrasonic transmitters with transmission signals or outputs such transmission signals to them that the capacitive micromechanical ultrasonic transducer, preferably essentially simultaneously, emit ultrasonic pulses with an ultrasonic frequency of 500 kHz and a duration of 10 microseconds. The pulses are emitted with a repetition frequency of 5 kHz. These values are preferably suitable for transport speeds of approximately 5 m / s to 10 m / s.
- control and evaluation device 47 is designed to coordinate with the control of the ultrasonic transmitter 52 or the output of the transmission signals to receive reception signals of the ultrasonic receivers 54, which these form when the transmitted ultrasonic pulses or the ultrasonic pulses of the frequency of the transmitted ultrasonic pulses are received, which are formed by the transmitted ultrasonic pulses through interaction with a document of value.
- the control and evaluation device 47 is designed in particular to filter the received signals according to the frequency of the emitted ultrasound and the pulse duration and to determine a property of the received ultrasound pulses or an ultrasound property of the value document at the location of the ultrasound receiver.
- the ultrasonic property can be the ultrasonic transmission through the value document.
- the control and evaluation device 47 is also designed to form and emit sensor signals which describe the locations on the value documents and the ultrasonic transmission determined for each location.
- the control and evaluation device 47 When a value document 12 is transported along the transport path 36 between the ultrasound transmitters 52 and ultrasound receivers 54, the control and evaluation device 47 emits transmission signals to the ultrasound transmitters 52 so that they emit ultrasound pulses of the specified duration and frequency to the value document 12 at regular intervals and the ultrasound receivers 54 receive the ultrasound pulses emanating (transmitted) from the value document 12 with the formation of received signals.
- the control and evaluation device 47 detects the received signals in accordance with the transmitted signals, which reproduce the intensity or power of individual received ultrasonic pulses as a function of time and thus also the location on the value document because of the constant transport speed.
- ultrasonic transmission values which describe the ultrasonic transmission at the locations on the respective value document.
- the locations are on tracks on the value document along the direction of transport. This takes place line by line, so that after the document of value has passed through, ultrasound transmission values are available in a spatially resolved manner for the entire document of value.
- the transmission values are given simply by the received ultrasonic pulse energies, assuming a fundamentally constant transmission power of the ultrasonic transmitters 52. In other exemplary embodiments, however, it is also possible to divide the received ultrasonic pulse energies by a predetermined or measured ultrasonic pulse energy of transmitted pulses and thus to obtain standardized transmission values.
- Sensor signals that describe the locations and the ultrasonic transmission values determined for them can then be transmitted from the control and evaluation device 47 to the machine control and evaluation device 46 and further evaluated by the latter.
- the evaluation can also be carried out by the control and evaluation device. For example, the limpness of a document of value could be determined or a check for the presence of an adhesive strip carried out, as is known from the prior art.
- a second embodiment in FIGS. 6 and 7 differs from the first exemplary embodiment in that a device 44 ′ for examining documents of value and / or for transporting documents of value by means of ultrasound is arranged on transport path 36 near singler 22.
- the device 44 in the sensor device 38 of the first exemplary embodiment is replaced by a conventional ultrasonic transmission sensor. Otherwise it will be appropriate for itself Components use the same reference numerals and the statements relating to the first exemplary embodiment also apply here accordingly.
- Fig. 6 therefore shows only a corresponding section from the device in FIG Fig. 1 including, inter alia, the feed device 14, a section of the transport path 36 and the device 44 '.
- the transmitter / receiver module 51 ' is designed essentially like the transmitter module 51 of the first exemplary embodiment, so that the statements of the first exemplary embodiment also apply here accordingly.
- the ultrasonic transmitters / receivers 52 ′ each have a capacitive micromechanical ultrasonic transducer and are formed in a chip.
- the chip is also held and contacted on a circuit carrier so that the ultrasound transmitters / receivers emit ultrasound onto the value document essentially in a vertical direction and receive ultrasound reflected back from the value document from a direction perpendicular to the transport plane of the value document. From each of the ultrasonic transmitters / receivers an ultrasound path 56 ′ is therefore formed, which in the example runs essentially perpendicular to a plane of the document of value.
- the conductor tracks and possibly other electrical components or circuits on the circuit carrier are modified in such a way that the capacitive micromechanical ultrasonic transducers can function as transmitters and receivers for ultrasound.
- the control and evaluation device 47 ' is designed in such a way that it emits transmission signals to the ultrasonic transmitter / receiver 52', in response to which the ultrasonic transmitter / receiver emits ultrasonic pulses as in the first exemplary embodiment, although the pulse duration is no longer than the transit time of one Ultrasonic pulse from the ultrasonic transmitter / receiver to the document of value, preferably not longer than between 10 microseconds and 10 ms.
- this device is characterized by the fact that it is particularly compact and takes up very little space.
- the device or the sensor 44 ' is designed to use ultrasound to detect whether a front or leading edge of a document of value in the transport direction passes the ultrasound transmitter / receiver arrangement or the transmitter / receiver module 51', i.e. at least one of the ultrasonic paths crosses.
- control and evaluation device 47 is further designed to receive the received signals and to check whether their level is below a predetermined threshold value, which is characteristic of the fact that no ultrasound has been reflected from a value document or not, and to output a signal to the machine control and evaluation device 46 as a function of the result of the test.
- the control and evaluation device 47 ' checks more precisely whether a pulse whose level is below the threshold value is followed by a pulse whose level is above the Threshold value lies. In this case, it emits a signal to the machine control and evaluation device 46, which indicates that a document of value is passing the device. This can use the signal to monitor the transport.
- the device or the sensor 44 in particular its control and evaluation device, can be designed to use ultrasound to detect whether a rear edge of a document of value in the transport direction is passing the ultrasound transmitter / receiver arrangement, i.e. one of the ultrasonic paths crosses. If this event is recognized, a corresponding signal can be emitted by the control and evaluation device.
- a third embodiment differs from the first embodiment in the control of the ultrasonic transmitters 52 and the evaluation of the received signals of the ultrasonic receivers 54, for which the device 44 is replaced by a device 44 ′′.
- the ultrasonic transducers are also adapted to the use of the different frequencies described below.
- at least two different, preferably adjacent, ultrasound transmitters 52 for emitting ultrasound with different frequencies, in this example pulses of ultrasound with different frequencies, are controlled and received signals from The ultrasonic receiver 54 assigned to the respective ultrasonic transmitter 52 or which forms an ultrasonic path with it are received.
- the received signals are then processed, in particular filtered depending on the position of the ultrasonic receivers or the position of the ultrasonic receivers relative to the ultrasonic transmitters.
- the ultrasonic transmitters are divided into two groups.
- the first group includes, viewed in the direction of the row of ultrasonic transmitters, the first and the next but one ultrasonic transmitter, the second the ultrasonic transmitters in between.
- the ultrasonic transmitters are therefore only assigned to one of the two groups.
- the control and evaluation device 47 ′′ is designed, on the one hand, to emit transmission signals to the ultrasonic transmitters of the first group so that they emit ultrasonic pulses with a predetermined pulse length and with a first predetermined ultrasonic frequency; it emits transmission signals to the ultrasonic transmitters of the second group, so that these emit ultrasonic pulses with the specified pulse length and with a second specified ultrasonic frequency.
- the ultrasonic receivers are also divided into two groups.
- the first group contains the ultrasonic receivers that are each assigned to one of the ultrasonic transmitters of the first group
- the second group contains the ultrasonic receivers that are each assigned to one of the ultrasonic transmitters of the second group.
- the control and evaluation device 47 ′′ is designed to process the received signals of the ultrasonic receivers of the first group according to the first ultrasonic frequency, in particular to filter them, and to process the received signals of the ultrasonic receivers of the second group accordingly the second ultrasonic frequency to process, in particular to filter.
- control and evaluation device 47 ′′ is designed like the control and evaluation device 47, but differs therefrom in two respects.
- control and evaluation device 47 ′′ is designed to control the next neighboring ultrasound transmitter for the output of pulses of ultrasound with different frequencies by emitting corresponding transmission signals.
- Fig. 9 in which, symbolized by squares, the position of the ultrasonic sections 56 or the ultrasonic transmitters 52 and ultrasonic receivers 54 delimiting them are shown in planes parallel to the transport plane or a transported document of value.
- the ultrasonic sections or the ultrasonic transmitters 52 and ultrasonic receivers 54 delimiting them are arranged along a line transverse to the transport direction T.
- the squares are patterned according to the frequency of the ultrasound that the ultrasound transmitters 52 emit or the ultrasound receivers 54 associated with them receive. In the example, the lighter squares with the thinner puncture illustrate a first frequency of 400 kHz and the darker squares with the denser puncture represent a second frequency of 600 kHz.
- the control and evaluation device 47 ′′ is so designed that it emits transmission signals, upon receipt of which the ultrasound transmitters alternately emit ultrasound pulses of the first or second frequency along the line, so that between two ultrasound transmitters, the ultrasound of the first frequency emit, an ultrasonic transmitter is arranged that emits ultrasound of the second frequency ..
- the ultrasound emitted in each case by one of the ultrasound transmitters is received by the assigned ultrasound receiver, here optionally after transmission through a document of value. This forms a received signal which is output to the control and evaluation device 47 ′′.
- the control and evaluation device 47 ′′ is therefore designed, on the other hand, to receive and process received signals from the ultrasound receiver assigned to a respective ultrasound transmitter, in particular as a function of the properties of the ultrasound emitted by the assigned ultrasound transmitter, ie here also on the location of the ultrasound receiver or the relative position of the ultrasonic receivers to the ultrasonic transmitters.
- the first and the second ultrasonic frequency are selected such that the ultrasonic properties of a document of value used do not depend heavily on which of the two frequencies they are detected at.
- they are selected so that the control and evaluation device 47 ′′ in the received signals can filter out any components that may occur from adjacent ultrasonic paths by frequency-dependent filtering and thus suppress them for further processing.
- the signals can be processed further as in the first exemplary embodiment.
- a fourth exemplary embodiment differs from the first exemplary embodiment in that the ultrasonic transmitters are now controlled with transmit signals in such a way that they each emit a sequence of ultrasonic pulses, of which at least two successive ones have a different frequency. Received signals from the ultrasonic receiver assigned to the respective ultrasonic transmitter are received and processed, in particular filtered according to the frequency sequence of the emitted ultrasonic pulses.
- the device 44 is replaced by a device 44 (4) (cf. Fig. 10 ).
- the first and second ultrasonic frequencies differ at least in such a way that the ultrasonic receivers used, in conjunction with the control and evaluation device that processes or evaluates their received signals, can clearly separate pulses with these frequencies, here by filtering in relation to the frequency.
- the control and evaluation device 47 (4) is designed on the one hand to generate transmission signals for each of the ultrasonic transmitters 52 and to send them to the respective To emit the ultrasonic transmitter, so that it emits a sequence of ultrasonic pulses in which directly successive different predetermined ultrasonic frequencies, here each have a different one of the two ultrasonic frequencies.
- the ultrasonic transmitters are activated by the control and evaluation device 47 (4) in such a way that they emit pulses essentially simultaneously, ie with a time delay of less than half a pulse duration between the ultrasonic transmitters.
- this can be such that first transmission signals for a pulse with the first ultrasonic frequency are output to the ultrasonic transmitter, then corresponding transmission signals for the next pulse with the second ultrasonic frequency; this sequence is then repeated several times if necessary.
- the frequency of the ultrasonic pulses in the sequence therefore alternates with the sequence in the sequence.
- control and evaluation device 47 (4) is designed to receive the received signals of the ultrasonic transmitters in coordination with the transmitted signals and to process them, in particular to filter them, in accordance with the transmitted ultrasonic frequency.
- FIG. 11 illustrates, which schematically illustrates for three immediately successive pulses of a pulse train emitted at a time interval ⁇ at times t, t + ⁇ , t + 2 ⁇ , which ultrasound frequency is used.
- the representation corresponds to that in Fig. 9 .
- Squares symbolize the position of the ultrasonic paths 56 or the ultrasonic transmitters 52 and ultrasonic receivers 54 delimiting them in planes parallel to the transport plane or a transported document of value.
- the ultrasound paths or the ultrasound transmitters 52 and ultrasound receivers 54 delimiting them are arranged along a line across the direction of transport T.
- the squares are patterned according to the frequency of the ultrasound that the ultrasound transmitters 52 emit or the ultrasound receivers 54 associated with them receive.
- the lighter squares with the thinner puncture illustrate a first frequency of 400 kHz and the darker squares with the denser puncture represent a second frequency of 600 kHz.
- Consecutive lines in the Fig. 9 represent the situation at successive points in time. The points in time are spaced apart by the period ⁇ , which corresponds to the frequency 1 / ⁇ with which the ultrasonic pulses are emitted, in the example 5 kHz.
- the control and evaluation device 47 (4) first emits transmission signals to the ultrasound transmitters, which essentially emit ultrasound pulses of the first frequency, which are received by the ultrasound receivers, possibly after interaction with a value document, here transmission through the value document.
- the ultrasonic receivers 54 form corresponding received signals, which they output to the control and evaluation device 47 ( FIG. 4) .
- the control and evaluation device 47 (4) then emits transmission signals to the ultrasound transmitters, which essentially emit ultrasound pulses of the second frequency, which is received by the ultrasound receivers, possibly after interaction with the value document, here transmission through the value document.
- the ultrasonic receivers generate corresponding received signals which they transmit to the control and evaluation device 47 (4) .
- connections from the control and evaluation device 47 (4) to the ultrasonic transmitters 52 can be replaced by a common connection that branches off from the control and evaluation device 47 (4) to the ultrasonic transmitters 52.
- a fifth exemplary embodiment differs from the third exemplary embodiment in that the ultrasound transmitters are controlled with transmission signals in such a way that these ultrasound is emitted and evaluated after receipt in a manner that combines the third and fourth exemplary embodiments in a certain way.
- the device 44 ′′ is replaced by a device 44 (5) (cf. Fig. 10 ).
- Each of the ultrasonic transmitters emits a sequence of ultrasonic pulses in which the ultrasonic frequencies of successive ultrasonic pulses differ; in particular, they can have a first and a second ultrasonic frequency.
- the consequences for directly adjacent ultrasound transmitters differ, however, in that ultrasound pulses emitted by them essentially simultaneously in terms of time also each have a different ultrasound frequency.
- Fig. 12 illustrates that, except for the sequence of the ultrasonic frequencies Fig. 11 corresponds.
- the control and evaluation device emits transmission signals to the ultrasonic transmitters in such a way that a first group of the ultrasonic transmitters emits an ultrasonic pulse of a first predetermined ultrasonic frequency and a second group of the ultrasonic transmitters emits ultrasonic pulses of a second predetermined ultrasonic frequency; for the choice of the two ultrasonic frequencies, the criteria as described in the two preceding exemplary embodiments preferably apply. In particular, they are selected as in the two previous exemplary embodiments. As in the third exemplary embodiment, the groups are selected such that between two ultrasonic transmitters of one of the groups there is ultrasonic transmitters of the other group.
- the ultrasound receivers each generate received signals which are fed separately to the control and evaluation device 47 (5) . This evaluates the received signals depending on the position of the ultrasonic transmitter and the ultrasonic receiver assigned to it, and filters the received signals according to the frequency of the transmitted ultrasound for the respective ultrasonic path or the ultrasonic transmitter or the respectively transmitted ultrasound.
- the control and evaluation device 47 For the next pulse in the sequence at time t + ⁇ , the control and evaluation device 47 (5) sends transmission signals to the ultrasonic transmitters in such a way that the first group of ultrasonic transmitters emits an ultrasonic pulse of the second predetermined ultrasonic frequency and the second group of ultrasonic transmitters emits ultrasonic pulses of the first predetermined ultrasonic frequency.
- the resulting pattern is in Fig. 12 shown on the second line; it corresponds to the pattern at time t, but the first and second frequencies are interchanged. This evaluates the received signals depending on the position of the ultrasonic transmitters and the ultrasonic receivers assigned to them, and filters the received signals according to the frequency of the transmitted signals for the respective ultrasonic path or the ultrasonic transmitter or the respectively transmitted ultrasound.
- control and evaluation device 47 For the following pulse of the sequence at time t + 2 ⁇ , the control and evaluation device 47 (5) emits transmit signals which correspond to those at time t and processes the received signals accordingly.
- the received signals of the ultrasonic receivers are processed in accordance with the frequencies of the ultrasonic pulses from the assigned ultrasonic transmitters and ultrasonic transmission data are output as a function of the location to the machine control and evaluation device.
- This procedure has the advantage that when evaluating a received signal for an ultrasonic path, possible disruptive influences from ultrasound on directly adjacent ultrasonic paths and disruptive influences can be at least partially filtered out by ultrasound of pulses for adjacent ultrasound paths for the previous pulse.
- This variant can be used realistically through the use of capacitive micromechanical ultrasonic transducers, since these enable short pulses, a broad frequency range that can be used and a high spatial resolution across the line.
- a sixth embodiment in Fig. 13 the transport of value documents is examined immediately after the singler for the presence of overlapping value documents.
- the device differs from that of the first exemplary embodiment, on the one hand, in that a device 44 ( FIG. 6) for examining the transport of documents of value by means of ultrasound is arranged on the transport path 36 near the singler 22.
- the device 44 in the sensor device 38 is replaced by a conventional ultrasonic transmission sensor.
- Fig. 13 therefore shows only a corresponding section of the modified device in Fig. 1 .
- the device 47 (6) differs from the device 47 in that the control and evaluation device 47 is replaced by a control and evaluation device 47 (6) .
- the control and evaluation device 47 (6) differs from the control and evaluation device 47 of the first exemplary embodiment only in that it is designed to process the received signals differently. Otherwise it is designed like the control and evaluation device of the first exemplary embodiment.
- the control and evaluation device 47 (6) is more precisely designed to check the received signals for ultrasonic pulses received essentially simultaneously by the ultrasonic receivers to determine whether the level or the intensity of the received signal is lower than a predetermined threshold value which is characteristic of that received signals for an individual value document have a value above the threshold value, while those for overlapping value documents have levels below the threshold value. If the control and evaluation device 47 (6) determines for a predetermined number of ultrasound receivers that the threshold value has not been exceeded, it outputs a corresponding signal to the machine control and evaluation device 46, which indicates that at least two at least partially overlapping documents of value are being transported become.
- the machine control and evaluation device can then control the transport device in such a way that the overlapping documents of value are transported into one of the output compartments which are predetermined for this purpose.
- the transport device can also be designed in such a way that the transport path has a branch in front of the sensor device 38, on which a switch that can be controlled by actuating signals is arranged. A compartment for documents of value that are not to be processed can then be arranged at the end of the branch that does not lead to the sensor device 38.
- the machine control and evaluation device can then be designed to emit an actuating signal to the switch on receipt of a signal from device 47 (5) so that the overlapping documents of value are transported into the compartment and deposited there.
- a seventh exemplary embodiment differs from the first exemplary embodiment only in that the device 44 is replaced by one Device 44 (7) for examining documents of value and / or the transport of documents of value. This differs from the device 44 in two ways.
- the transmitter module 51 (7) and the receiver module 53 (7) which are otherwise designed as in the first exemplary embodiment, and thus the ultrasonic transmitter and ultrasonic receiver are arranged on the same side of the transport path 36 in the example above the transport path; so that the ultrasound remission can be examined as a value document property.
- control and evaluation device 47 (7) differs from the control and evaluation device 47 only in that it is designed such that the received signals of the ultrasonic receivers are processed in such a way that an ultrasonic remission is determined as a function of a location on a value document .
- FIG Figures 14 and 15 illustrates; Fig. 14 shows a roughly schematic view of the device in a direction towards the transport path, Fig. 15 a section through the device in a direction transverse to the transport path.
- the signal connections 49 (7) are shown in particular combined, although, as in the first exemplary embodiment, individual signal connections each connect the transmitters or receivers to the control and evaluation device.
- the transmitter module 51 (7) and the receiver module 53 (7) are designed as in the first embodiment.
- the ultrasound transmitters 52 or their ultrasound transducers are oriented relative to the transport path 36 so that the ultrasound is inclined to the plane of the transport path or a document of value transported there, with no essential component in a direction transverse to the transport direction.
- the ultrasonic receiver 54 or their ultrasound transducers are arranged and aligned in such a way that they receive the ultrasound of the ultrasound transmitters 52, which was reflected on a value document, that is, their receiving direction is aligned with its direction of propagation.
- One ultrasonic transmitter and the associated ultrasonic receiver each form an ultrasonic path 56 (7) , which is shown in FIG Fig. 15 is symbolized by a dashed line.
- the ultrasonic transmitters and / or the ultrasonic receivers can each have at least two capacitive micromechanical ultrasonic transducers.
- the ultrasonic transducers of an ultrasonic transmitter or ultrasonic receiver are formed on the same chip.
- These ultrasonic transducers can be connected to the control and evaluation device 47 in such a way that they are controlled with the same transmission signals, i.e. H. the control and evaluation device emits only one transmission signal that is fed to the two ultrasonic transducers via the output or the same signal connection.
- Received signals from the ultrasonic transducers of an ultrasonic receiver can also be superimposed, which are fed to the control and evaluation device and received and processed by it like a received signal.
- the control and evaluation device is designed to generate transmission signals for only one ultrasonic transmitter and to output them to it, or to receive and process or evaluate the superimposed reception signals from only one ultrasonic receiver.
- An example of an ultrasonic transmitter 72 which has four capacitive micromechanical ultrasonic transducers 74, is shown roughly schematically Fig. 16 .
- the four capacitive micromechanical ultrasonic transducers 74 of the dotted Lines illustrated ultrasonic transmitters are formed the same, only partially shown chip 76, and except for their rectangular shape or the rectangular shape of the membrane on which the second electrode is formed, designed like the capacitive micromechanical ultrasonic transducers of the first embodiment.
- the first electrodes are jointly contacted with a conductor track (not shown); the same applies to the second electrodes, which are connected to branches of the conductor track 78.
- the control and evaluation device is designed to emit transmission signals which correspond to those of the first exemplary embodiment, possibly except for their level. Due to the enlarged vibrating surface of the four membranes vibrating in phase, a wider sound field and a higher sound intensity can be obtained for an ultrasonic transmitter.
- the ultrasonic transducers for one ultrasonic transmitter or ultrasonic receiver or ultrasonic transmitter / receiver are connected separately to the control and evaluation device via signal connections.
- the ultrasonic transducers of an ultrasonic transmitter can then be controlled so that they emit ultrasound at the same frequency.
- the transmission signals differ in their phase.
- the ultrasonic transmitter 80 which replaces an ultrasonic transmitter 52 in the first exemplary embodiment, has three identically designed capacitive micromechanical ones Ultrasonic transducers 82 which are arranged in a row and are arranged on the same chip, not shown.
- the ultrasonic transducers 82 are designed as in the first exemplary embodiment and are connected separately to separate conductor tracks 84, which in turn are individually connected to the control and evaluation device via separate signal connections.
- the control and evaluation device differs from that of the first exemplary embodiment only in that it emits separate transmission signals for the ultrasonic transducers 82 from each of the ultrasonic transmitters 80 to the ultrasonic transducers 82, so that the ultrasonic transducers generate ultrasonic pulses with the same frequency but different phases.
- the phases or phase differences are selected such that the resulting sound field is more strongly bundled or focused due to the superimposition of the ultrasound of the ultrasound transducers 82 of the ultrasound transmitter.
- Fig. 18 illustrated. This shows the sound field or the directional characteristic of the ultrasonic transducers of the ultrasonic transmitter 80, symbolized by a dashed straight line, when activated in phase by dashed lines.
- the corresponding sound field or the corresponding directional characteristic when actuated with different phases is shown roughly schematically by solid lines.
- the control and evaluation device emits transmission signals in such a way that the ultrasonic transducers emit ultrasonic pulses with different phases, so that a better directed directional characteristic or a more strongly directed or bundled sound field results.
- the control and evaluation device can preferably be designed to form and output the transmission signals in such a way that the phases vary over time.
- the transmission signals can be formed and emitted so that the directional characteristic as a function of time around one given angle is pivoted, which is in Fig. 18 is indicated by a double arrow.
- the ultrasonic transmitters and / or ultrasonic receivers or their capacitive micromechanical ultrasonic transducers can also be formed on at least two chips, the chips being held and contacted on a circuit carrier in such a way that their ultrasonic transducers are arranged along a line which transversely to the transport direction T. runs.
- the chips 92 are designed like the chip in the first exemplary embodiment, the explanations relating thereto and the reference symbols are also used here.
- the contacting and connection with the control and evaluation device takes place in such a way that the capacitive, micromechanical ultrasonic transducers of an ultrasonic transmitter or an ultrasonic receiver are formed or arranged on the same chip.
- Other exemplary embodiments differ from the first exemplary embodiment in the shape and distribution of the ultrasonic transmitters and ultrasonic receivers, which in turn are each formed by a capacitive micromechanical ultrasonic transducer.
- Fig. 20 shows an example in which the ultrasonic transducers 63 are arranged on a transmitter module uniformly with a small distance and therefore uniformly high resolution along a line which is longer than the extent of a value document 12 transverse to the transport direction T.
- Fig. 21 shows an example of a device in which the ultrasonic transducers 96 of a transmitter module 97 are designed with variable spacing and variable expansion.
- the ultrasonic transducers are again arranged in a row which is longer than the extent of a document of value 12 transversely to the transport direction T.
- the ultrasonic transducers in the middle of the row are arranged at a smaller distance from one another and therefore allow a correspondingly high spatial resolution of the measurement.
- the outer ultrasonic transducers are arranged at a greater distance from one another and have a larger sound-generating surface. The local resolution is therefore lower at the edge, but the sound level is higher.
- Fig. 22 shows an example in which the ultrasonic transmitters of a transmitter module 99 are again arranged along a line transverse to the transport direction T.
- the ultrasonic transmitters 98 in the middle each have two capacitive ultrasonic transducers 100 formed next to one another in the transport direction, which are contacted so that they can be controlled individually with phase-shifted transmission signals of the same frequency in order to obtain the described focusing in the transport direction.
- Fig. 23 shows an example in which a device for examining documents of value and / or the transport of documents of value by means of ultrasound a plurality of capacitive micromechanical ultrasonic transducers 102, which are formed on a chip 104, in a two-dimensional arrangement, in the example on the intersections of a square grid, having.
- a device for examining documents of value and / or the transport of documents of value by means of ultrasound a plurality of capacitive micromechanical ultrasonic transducers 102, which are formed on a chip 104, in a two-dimensional arrangement, in the example on the intersections of a square grid, having.
- Such a design is only available at low cost if the ultrasonic transducers are manufactured on a chip using methods known from micromechanics.
- the ultrasonic transducers can be combined individually as individual transmitters or receivers or in small groups can be controlled as a transmitter or receiver. In the latter case, in particular, a phase-shifted control of the ultrasonic transducers
- the chips can also be designed as SMT elements.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
- Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
Description
- Die vorliegende Erfindung betrifft eine Einrichtung und ein Verfahren zur Untersuchung von Wertdokumenten und/oder des Transports von Wertdokumenten mittels Ultraschall.
- Unter Wertdokumenten werden dabei karten- oder vorzugsweise blattförmige Gegenstände verstanden, die beispielsweise einen monetären Wert oder eine Berechtigung repräsentieren und daher nicht beliebig durch Unbefugte herstellbar sein sollen. Sie weisen daher nicht einfach herzustellende, insbesondere zu kopierende Merkmale auf, deren Vorhandsein ein Indiz für die Echtheit, d.h. die Herstellung durch eine dazu befugten Stelle, ist. Wichtige Beispiele für solche Wertdokumente sind Chipkarten, Coupons, Gutscheine, Schecks und insbesondere Banknoten.
- Solche Wertdokumente werden häufig maschinell bearbeitet, wozu sie meist zunächst aus einem Stapel vereinzelt und dann vereinzelt, d. h. einzeln, entlang eines Transportpfades transportiert werden. Zur Untersuchung der Wertdokumente in Bezug auf deren Zustand und/oder deren Echtheit und zur Untersuchung bestimmter Aspekte der Bearbeitung, insbesondere des Transports, kann beispielsweise Ultraschall verwendet werden. Unter dem Untersuchung des Transports wird im Rahmen der vorliegenden Erfindung verstanden, zu ermitteln, ob Wertdokumente einzeln und nicht überlappend transportiert werden und/oder wie sie während des Transports relativ zu deren Transportrichtung ausgerichtet sind und/oder ob oder zu welchen Zeitpunkten diese eine vorgegebene Stelle des Transportpfades mit einer in Transportrichtung vorderen Kante bzw. in Transportrichtung hinteren Kante passieren. Zur Untersuchung werden im Stand der Technik Ultraschallsensoren verwendet, die einen oder mehrere piezoelektrische Ultraschallwandler aufweisen. Die Ultraschallwandler verwenden zum Erzeugen von Ultraschall ein piezoelektrisches Element, das durch ein Sendesignal in Form einer elektrischen Wechselspannung zu mechanischen Schwingungen angeregt wird. Zum Empfangen von Ultraschall wird eine bei Ausüben von Druck auf das piezoelektrische Element auftretende Spannung erfasst und ausgewertet.
- Diese piezoelektrischen Ultraschallwandler müssen jedoch einzeln hergestellt und zu einem Sensor zusammengebaut werden, was relativ aufwendig ist. Darüber hinaus sind solche Ultraschallwandler relativ träge. Dementsprechend ist die damit erzielbare örtliche Auflösung nicht immer so gut, wie es wünschenswert wäre.
- In
DE 10 2013 015 224 A1 ein Verfahren zum Prüfen eines Wertdokumentes eines vorgegebenen Wertdokumenttyps auf das Vorhandensein wenigstens einer Irregularität wenigstens eines vorgegebenen Typs, beispielsweise einer Irregularität in Form wenigstens einer Anhaftung, vorzugsweise eines Klebestreifens, und/oder einer Falte und/ oder eines Materialabtrags beschrieben. Bei dem Verfahren wird ein Ultraschalldatensatz erfasst, der ortsaufgelöst wenigstens eine Ultraschalleigenschaft, vorzugsweise die Ultraschalltransmission, des Wertdokuments beschreibt, und ein Abweichungsdatensatz wird ermittelt, der ortsaufgelöst eine Abweichung zwischen dem Ultraschalldatensatz und einem Modell beschreibt und so ermittelt ist, dass die durch ihn beschriebene Abweichung in Bezug auf das Modell minimal ist, wobei das Modell ein Modell für die Ortsabhängigkeit der wenigstens einen Ultraschalleigenschaft von Referenzwertdokumenten des vorgegebenen Wertdokumenttyps ohne Irregularitäten des wenigstens einen vorgegebenen Typs umfasst. Unter Verwendung des Abweichungsdatensatzes wird geprüft, ob ein Hinweis auf eine Irregularität des wenigstens einen Typs auf dem Wertdokument vorliegt. Weiter sind Mittel zur Durchführung des Verfahrens beschrieben. - In
US 2014/010388 A1 ist ein kapazitiver Wandler mit Breitband-Frequenzcharakteristiken beschrieben. Der kapazitive Wandler umfasst ein Element, das mehrere Arten von Zellen aufweist. Jede Zelle umfasst: eine erste Elektrode, eine vibrierende Schicht mit einer zweiten Elektrode, wobei die zweite Elektrode der ersten Elektrode mit einer Lücke gegenüberliegt, und einen Stützabschnitt, der den vibrierenden Film trägt, um den Spalt zu bilden. Die mehreren Arten von Zellen haben, betrachtet in einer Richtung normal zu dem vibrierenden Film, unterschiedliche Verhältnisse einer Fläche von einer der ersten Elektrode und der zweiten Elektrode zu einer Fläche des Spalts. Die ersten Elektroden oder die zweiten Elektroden in den mehreren Arten von Zellen sind elektrisch miteinander verbunden. - Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, eine Einrichtung zur Untersuchung von Wertdokumenten und/ oder des Transports von Wertdokumenten mittels Ultraschall anzugeben, die einfach herstellbar ist und/ oder eine gute Untersuchung von Wertdokumenten zulässt. Weiter soll ein Verfahren zur Untersuchung von Wertdokumenten und/ oder des Transports von Wertdokumenten mittels Ultraschall angegeben werden, das eine gute Untersuchung von Wertdokumenten zulässt.
- Die Aufgabe wird gelöst durch eine Einrichtung mit den Merkmalen des Anspruchs 1 und insbesondere eine Einrichtung zur Untersuchung von Wertdokumenten und/oder des Transports von Wertdokumenten, die entlang eines vorgegebenen Transportpfades in einer vorgegebenen Transportrichtung transportiert werden, mittels Ultraschall mit in einer Richtung quer zur Transportrichtung versetzt angeordneten Ultraschallsendern zur Abgabe von Ultraschall auf den Transportpfad auf Sendesignale hin und in einer Richtung quer zur Transportrichtung versetzt angeordneten Ultraschallempfängern zum Empfang von Ultraschall, der mittels der Ultraschallsender erzeugt ist, und zur Abgabe von Empfangssignalen oder mit in einer Richtung quer zur Transportrichtung versetzt angeordneten Ultraschallsender/-empfängern zur Abgabe von Ultraschall auf den Transportpfad auf Sendesignale hin und zum Empfang des Ultraschalls nach Wechselwirkung mit wenigstens einem der Wertdokumente und Abgabe von Empfangssignalen. Die Ultraschallsender und/oder Ultraschallempfänger weisen dabei jeweils wenigstens einen kapazitiven, mikromechanischen Ultraschallwandler auf bzw. die Ultraschallsender/-empfänger weisen dabei jeweils wenigstens einen kapazitiven, mikromechanischen Ultraschallwandler auf.
- Die Aufgabe wird daher weiter gelöst durch ein Verfahren mit den Merkmalen des Anspruchs 19 und insbesondere ein Verfahren zur Untersuchung von Wertdokumenten und/oder des Transports von Wertdokumenten mittels Ultraschall, bei dem mittels wenigstens eines Ultraschallsenders auf Sendesignale hin Ultraschall auf ein entlang eines Transportpfades transportiertes Wertdokument abgegeben und der daraufhin von dem Wertdokument ausgehende Ultraschall mittels wenigstens eines Ultraschallempfängers empfangen und Empfangssignale gebildet werden, oder mittels wenigstens eines Ultraschallsender/-empfängers auf Sendesignale hin Ultraschall auf ein entlang eines Transportpfades transportiertes Wertdokument abgegeben und der daraufhin von dem Wertdokument ausgehende Ultraschall mittels des wenigstens einen Ultraschallsender/-empfängers empfangen wird und Empfangssignale gebildet werden, wobei der wenigstens eine Ultraschallsender und/oder der wenigstens eine Ultraschallempfänger bzw. der wenigstens eine Ultraschallsender/-empfänger wenigstens einen kapazitiven, mikromechanischen Ultraschallwandler aufweisen. Das erfindungsgemäße Verfahren kann insbesondere mittels einer erfindungsgemäßen Einrichtung durchgeführt werden, wobei bei dem Verfahren als Ultraschallsender bzw. Ultraschallempfänger bzw. Ultraschallsender/-empfänger die Ultraschallsender bzw. Ultraschallempfänger bzw. Ultraschallsender/-empfänger der Einrichtung verwendet werden.
- Unter kapazitiven, mikromechanischen Ultraschallwandlern werden im Rahmen der vorliegenden Erfindung Ultraschallwandler verstanden, die zwei, vorzugsweise flächige, Elektroden aufweisen, die einen Kondensator bilden. Eine erste der Elektroden ist, beispielsweise als leitfähiger Schichtbereich, auf einem Substrat ausgebildet oder kann, wenn das Substrat leitfähig ist, durch einen Bereich des Substrats gebildet werden; die andere Elektrode ist, beispielsweise als leitfähiger Schichtbereich, auf einer von der ersten Elektrode beabstandeten Membran oder Platte ausgebildet oder kann, wenn die Membran oder Platte leitfähig ist, durch diese gebildet werden, so dass die Elektroden den Kondensator bilden. Die Membran oder Platte ist derart ausgebildet, dass bei Anlegen einer geeigneten elektrischen Spannung zwischen den Elektroden eine Kraft zwischen Membran bzw. Platte und Substrat ausgeübt wird, die eine Bewegung wenigstens eines Teils der Membran bzw. Platte, beispielsweise eine Formänderung, zur Folge hat. Wird zwischen den Elektroden eine geeignete zeitlich veränderliche Spannung angelegt, durch die sich die Elektroden anziehen oder abstoßen, können durch die dadurch hervorgerufene Bewegung wenigstens eines Teils der Membran Schallwellen angeregt werden. Solche Strukturen sind vorzugsweise mit Verfahren zur Herstellung von mikromechanischen Strukturen hergestellt.
- Die Einrichtung verfügt nach einer Alternative über Ultraschallsender und -empfänger. Die Ultraschallsender und/oder die Ultraschallempfänger weisen jeweils wenigstens einen Ultraschallwandler, vorzugsweise einen kapazitiven, mikromechanischen Ultraschallwandler auf. Der Ultraschallsender sendet auf Sendesignale hin bzw. auf die Ansteuerung durch Sendesignale hin, d. h. in Antwort auf ihm zugeführte Sendesignale hin, Ultraschall in Richtung des Transportpfades, der Ultraschallempfänger empfängt Ultraschall, der mittels des Ultraschallsenders erzeugt wurde bzw. ist, gegebenenfalls nach Wechselwirkung mit einem Wertdokument, d. h. Reflexion an oder Transmission durch das Wertdokument, und erzeugt entsprechende Empfangssignale. Soweit der jeweilige Ultraschallsender bzw. jeweilige Ultraschallempfänger den wenigstens einen kapazitiven mikromechanischen Ultraschallwandler aufweist, erfolgt das Senden des Ultraschalls auf eine Ansteuerung durch Sendesignale mittels des wenigstens einen kapazitiven, mikromechanischen Ultraschallwandlers des jeweiligen Ultraschallsenders bzw. das Empfangen des Ultraschalls erfolgt mittels des wenigstens einen kapazitiven, mikromechanischen Ultraschallwandlers des jeweiligen Ultraschallempfängers.
- Es ist aber gemäß einer anderen Alternative möglich, dass die Einrichtung über Ultraschallsender/-empfänger verfügt, also Elemente, die sowohl als Ultraschallsender als auch als Ultraschallempfänger dienen. Diese können jeweils wenigstens einen kapazitiven, mikromechanischen Ultraschallwandler aufweisen. Dieser kann zunächst als Ultraschallsender auf ein entsprechendes Sendesignal hin einen Ultraschallpuls abgeben, um dann nach der Abgabe des Ultraschallpulses als Empfänger verwendet zu werden, der den von dem Wertdokument zurückgeworfenen, d. h. reflektierten Ultraschallpuls empfängt und wenigstens ein entsprechendes Empfangssignal bildet und abgibt. Gerade diese Ausführungsform wird dadurch ermöglicht, dass kapazitive, mikromechanische Ultraschallwandler, vorzugsweise durch entsprechende Ansteuerung mit Signalen, insbesondere Steuersignalen, Pulse sehr geringer Dauer abgegeben können, d. h. auch nicht lange nachschwingen. Diese Ausführungsform zeichnet sich besonders durch einen kompakten Aufbau aus und eignet sich damit insbesondere auch zur Verwendung in kleineren Wertdokumentbearbeitungsvorrichtungen.
- Die Ultraschallempfänger bzw. die Ultraschallsender/-empfänger in ihrer Funktion als Empfänger empfangen Ultraschall in einem Frequenzbereich, in dem die Ultraschallsender bzw. Ultraschallsender/-empfänger als Sender Ultraschall senden, und bilden Empfangssignale, die wenigstens eine Eigenschaft des empfangenen Ultraschalls, beispielsweise die Intensität oder Amplitude oder auch Frequenz, darstellen.
- Bei der Einrichtung können die Ultraschallsender und Ultraschallempfänger vorzugsweise so angeordnet und ausgebildet sein, dass jeweils einer der Ultraschallsender und wenigstens einer der Ultraschallempfänger eine Ultraschallstrecke bilden. Entlang dieser breitet sich der von dem jeweiligen Ultraschallsender abgegebene Ultraschall im Wesentlichen, d. h. bis auf Streu- oder Beugungsverluste, zu dem Ultraschallempfänger aus. Ein Ultraschallsender und ein Ultraschallempfänger, die eine Ultraschallstrecke bilden, werden im Folgenden als einander zugeordnet bezeichnet. Diese Ausrichtung bzw. Zuordnung kann insbesondere die Erfassung ortsaufgelöster Eigenschaften ermöglichen, wie im Folgenden noch deutlich wird.
- Ultraschallsender und Ultraschallempfänger einer Ultraschallstrecke können zum einen vorzugsweise auf sich gegenüberliegenden Seiten des Transportpfades angeordnet sein. Wertdokumente werden dann zwischen den Ultraschallsendern und den Ultraschallempfängern hindurchtransportiert. Darunter, dass ein Ultraschallsender und ein Ultraschallempfänger eine Ultraschallstrecke bilden, wird bei Anordnung von Ultraschallsender und Ultraschallempfänger auf sich gegenüberliegenden Seiten des Transportpfades verstanden, dass der Ultraschallsender Ultraschall im Wesentlichen in Richtung des Ultraschallempfängers abgibt und der Ultraschallempfänger Ultraschall des Ultraschallsenders empfängt; d. h. unter der Ultraschallstrecke wird der Weg verstanden, entlang dessen sich der Ultraschall von dem Ultraschallsender zu dem Ultraschallempfänger im Wesentlichen ausbreitet. Insbesondere kann dies die gerade Verbindungslinie zwischen dem Ultraschallsender und dem Ultraschallempfänger sein. Vorzugsweise enthalten sowohl der Ultraschallsender also auch der Ultraschallempfänger, die eine Ultraschallstrecke bilden, wenigstens einen kapazitiven mikromechanischen Ultraschallwandler.
- Bei der Einrichtung ist es zum anderen möglich, dass die Ultraschallsender und Ultraschallempfänger so angeordnet und ausgebildet sind, dass jeweils einer der Ultraschallsender und wenigstens einer der Ultraschallempfänger auf derselben Seite des Transportpfades angeordnet sind, so dass von einem jeweiligen der Ultraschallsender abgegebener Ultraschall erst nach Wechselwirkung mit einem der Wertdokumente in dem Transportpfad von einem der Ultraschallempfänger empfangen wird und der Ultraschallsender und der Ultraschallempfänger so eine Ultraschallstrecke bilden. In diesem Fall wird unter Ultraschallstrecke der Weg verstanden, entlang dessen sich der vom Ultraschallsender gesendete Ultraschall im Wesentlichen bis zum Wertdokument und nach Reflexion an diesem zum Ultraschallempfänger ausbreitet. Vorzugsweise enthalten auch dann sowohl der Ultraschallsender also auch der Ultraschallempfänger, die eine Ultraschallstrecke bilden, wenigstens einen kapazitiven mikromechanischen Ultraschallwandler.
- Weist die Einrichtung Ultraschallsender/-empfänger auf, verläuft die Ultraschallstrecke vorzugsweise von dem jeweiligen Ultraschallsender/ -empfänger zu dem Wertdokument und zurück.
- Vorzugsweise kann die Einrichtung weiter eine Steuer- und Auswerteinrichtung aufweisen, die mit den Ultraschallsendern und Ultraschallempfängern über Signalverbindungen verbunden ist, und Sendesignale zur Abgabe von Ultraschall durch wenigstens einen der Ultraschallsender bildet und an diesen abgibt und Empfangssignale wenigstens eines der Ultraschallempfänger empfängt und verarbeitet. Enthält die Einrichtung Ultraschallsender/ -empfänger, kann sie eine Steuer- und Auswerteinrichtung aufweisen, die mit den Ultraschallsender/-empfängern über Signalverbindungen verbunden ist, und Sendesignale zur Abgabe von Ultraschall durch wenigstens einen der Ultraschallsender/-empfänger bildet und an diesen abgibt und Empfangssignale des wenigstens einen der Ultraschallsender/-empfänger empfängt und verarbeitet; insbesondere kann dieselbe Signalverbindung für Sendesignale und Empfangssignale verwendet werden. Dies erleichtert eine Untersuchung mit Ortsauflösung durchzuführen. Die Steuer- und Auswerteeinrichtung kann bei dem Verfahren, wenn bei diesem die erfindungsgemäße Einrichtung verwendet wird, insbesondere zur Erzeugung und Abgabe der Sendesignale und zum Empfang und zur Verarbeitung der Empfangssignale verwendet werden.
- Die Steuer- und Auswerteeinrichtung dient unter anderem zur Bildung und Abgabe der Sendesignale und zum Empfang und der Verarbeitung der Empfangssignale. Dazu kann sie vorzugsweise unter anderem wenigstens einen Mikrocontroller und/oder wenigstens eine Prozessor und/oder wenigstens ein FPGA aufweisen; diese sind dann vorzugsweise entsprechend programmiert. Sind die Ultraschallsender bzw. Ultraschallempfänger auf einem Schaltungsträger, beispielsweise einer Leiterplatte ausgebildet, können wenigstens einige Element der Steuer- und Auswerteeinrichtung auch auf diesem angeordnet sein.
- Prinzipiell können die Sendesignale von der Steuer- und Auswerteeinrichtung so gebildet werden, dass die Ultraschallsender auf die Sendesignale hin bzw. in Antwort auf die Sendesignale kontinuierlich Ultraschall abgeben. Es ist jedoch bei der Einrichtung bevorzugt, dass der wenigstens eine kapazitive mikromechanische Ultraschallwandler wenigstens einiger der Ultraschallsender bzw. Ultraschallsender/-empfänger und die Steuer- und Auswerteeinrichtung so ausgebildet sind, dass der wenigstens eine kapazitive mikromechanische Ultraschallwandler der jeweiligen Ultraschallsender bzw. der Ultraschallsender/-empfänger in Abhängigkeit von Sendesignalen der Steuer- und Auswerteeinrichtung bzw. in Antwort auf Sendesignale der Steuer- und Auswerteeinrichtung Ultraschallpulse vorgegebener Frequenz und Dauer abgibt, die vorzugsweise kürzer als 100 Millisekunden sind. Bei dem Verfahren ist es bevorzugt, dass der wenigstens eine kapazitive mikromechanische Ultraschallwandler wenigstens einiger der Ultraschallsender bzw. Ultraschallsender/-empfänger so ausgebildet ist und Sendesignale so gebildet und abgegeben werden, dass der wenigstens eine kapazitive mikromechanische Ultraschallwandler der jeweiligen Ultraschallsender bzw. der Ultraschallsender/-empfänger in Abhängigkeit von den Sendesignalen bzw. in Antwort auf die Sendesignale Ultraschallpulse vorgegebener Frequenz und Dauer abgibt, die vorzugsweise kürzer als 100 Millisekunden sind. Bei dem Verfahren können die Sendesignale durch eine bzw. die Steuer- und Auswerteeinrichtung gebildet und abgegeben werden. Besonders bevorzugt können bei der Einrichtung und dem Verfahren alle kapazitiven mikromechanischen Ultraschallwandler und die Steuer- und Auswerteinrichtung zur Abgabe von Pulsen von Ultraschall vorgegebener Frequenz und Dauer, die vorzugsweise kürzer als 100 Millisekunden sind, ausgebildet sein. Vorzugsweise liegt die Frequenz im Bereich von 20 kHz bis 1 GHz, besonders bevorzugt im Bereich zwischen 40 kHz und 1 MHz. Unter der Pulsdauer wird vorzugsweise die Breite bei dem halben Maximum der Schallintensität als Funktion der Zeit (FWHM) verstanden, wobei über jeweils eine der Frequenz entsprechende Periode gemittelt wird.
- Die Verwendung von Ultraschallpulsen, also Pulsen von Ultraschall, der vorzugsweise die vorgegebene Frequenz aufweist, hat den Vorteil, dass eine Ortsauflösung der Untersuchung ermöglicht wird, wenn das Wertdokument während des Transports an der Einrichtung vorbei bzw. durch diese hindurch mit dem Ultraschall untersucht wird. Eine vergleichsweise hohe Ortsauflösung in Transportrichtung wird dadurch ermöglicht, dass kapazitive, mikromechanische Ultraschallwandler bei entsprechender Ausbildung und einem entsprechenden Sendesignal nicht sehr träge sind, d. h. schnell auf Änderungen in den Sendesignalen ansprechen. Daher sind kurze Pulse relativ einfach erzeugbar. Es ergibt sich dann der Vorteil, dass eine hohe Ortsauflösung erreicht werden kann. Weiter sollten geringere Probleme durch an dem Wertdokument reflektierte, unerwünschte Ultraschallpulse auftreten.
- Um solche Ultraschallpulse auch einzeln empfangen zu können, ist es bei der Einrichtung bevorzugt, dass der wenigstens eine kapazitive mikromechanische Ultraschallwandler wenigstens einiger der Ultraschallempfänger bzw. Ultraschallsender/-empfänger jeweils so ausgebildet ist, dass er Ultraschallpulse vorgegebener Frequenz und Dauer empfängt, die vorzugsweise kürzer als 100 Millisekunden sind, und entsprechende Empfangssignale bildet, und dass die Steuer- und Auswerteeinrichtung dazu ausgebildet ist, die Empfangssignale zu empfangen und zu verarbeiten. Bei dem Verfahren ist es bevorzugt, dass der wenigstens eine kapazitive mikromechanische Ultraschallwandler wenigstens einiger der Ultraschallempfänger bzw. Ultraschallsender/-empfänger jeweils so ausgebildet ist, dass er Ultraschallpulse vorgegebener Frequenz und Dauer empfängt, die vorzugsweise kürzer als 100 Millisekunden sind, und entsprechende Empfangssignale bildet, und, vorzugsweise mittels der Steuer- und Auswerteeinrichtung der erfindungsgemäßen Einrichtung, die Empfangssignale empfangen und verarbeitet werden. Vorzugsweise bilden diese Ultraschallsender und Ultraschallempfänger jeweils eine Ultraschallstrecke. Die Steuer- und Auswerteeinrichtung kann insbesondere so ausgebildet sein, dass sie die Empfangssignale bezüglich der Frequenz filtert, so dass die kapazitiven mikromechanischen Ultraschallwandler nicht für Ultraschall mit einer Frequenz nahe einer möglichen mechanischen Resonanzfrequenz verwendet zu werden brauchen. Die Frequenz ist dabei durch die Frequenz der Sendesignale für den zugeordneten Ultraschallsender bzw. des von dem zugeordneten Ultraschallsender abgegebenen Ultraschalls gegeben. Weiter kann die Filterung darin bestehen, Signalanteile mit Frequenzen außerhalb eines vorgegebenen schmalen Bandes, innerhalb dessen die Frequenz des gesendeten Ultraschalls liegt, abzuschwächen oder zu unterdrücken.
- Prinzipiell können die kapazitiven, mikromechanischen Ultraschallwandler einzeln ausgebildet und in oder an der Einrichtung gehalten sein. Es ist jedoch bei der Einrichtung bevorzugt, dass wenigstens einer der Ultraschallsender wenigstens zwei kapazitive, mikromechanische Ultraschallwandler aufweist und/oder wenigstens zwei der Ultraschallsender jeweils wenigstens einen kapazitiven, mikromechanischen Ultraschallwandler aufweist, und diese kapazitiven, mikromechanischen Ultraschallwandler auf einem Chip angeordnet sind und jeweils Elektroden aufweisen, die mit Leiterbahnen auf dem jeweiligen Chip kontaktiert sind und/oder dass wenigstens einer der Ultraschallempfänger wenigstens zwei kapazitive, mikromechanische Ultraschallwandler aufweist und/oder wenigstens zwei der Ultraschallempfänger jeweils wenigstens einen kapazitiven, mikromechanischen Ultraschallwandler aufweisen, und diese kapazitiven, mikromechanischen Ultraschallwandler auf einem Chip angeordnet sind, jeweils Elektroden aufweisen, die mit Leiterbahnen auf dem jeweiligen Chip kontaktiert sind oder bei der wenigstens einer der Ultraschallsender/-empfänger wenigstens zwei kapazitive, mikromechanische Ultraschallwandler und/oder wenigstens zwei der Ultraschallsender/-empfänger jeweils wenigstens einen kapazitiven, mikromechanischen Ultraschallwandler aufweisen, und diese kapazitiven, mikromechanischen Ultraschallwandler auf einem Chip angeordnet sind, und vorzugsweise jeweils Elektroden aufweisen, die mit Leiterbahnen auf dem jeweiligen Chip kontaktiert sind. Diese Ausführungsform hat den Vorteil, dass die kapazitiven, mikromechanischen Ultraschallwandler nicht nur einfach in größerer Zahl ziemlich genau zueinander ausgerichtet in gleichen oder verschiedenen Größen hergestellt und kontaktiert werden können, sondern auch die Montage zu einem Ultraschallsensor einfach erfolgen kann, da die Ausrichtung der Wandler zueinander durch den Chip vorgegeben ist. Vorzugsweise sind wenigstens 4, besonders bevorzugt wenigstens 20 kapazitive, mikromechanische Ultraschallwandler auf einem einzelnen Chip ausgebildet.
- So bietet diese Ausführungsform den Vorteil, dass die Ultraschallwandler mit geringen Abständen zueinander einfach hergestellt werden können. Vorzugsweise weisen bei der Einrichtung benachbarte der auf einem Chip ausgebildeten kapazitiven, mikromechanischen Ultraschallwandler einen Abstand zwischen 100 µm und 10 mm in Transportrichtung und/oder einen Abstand zwischen 100 µm und 10 mm quer zur Transportrichtung auf, soweit die kapazitiven, mikromechanischen Ultraschallwandler in der jeweiligen Richtung benachbarte kapazitive, mikromechanische Ultraschallwandler ausweisen. Dies ermöglicht es, Ultraschalleigenschaften entlang von Spuren auf dem Wertdokument parallel zur Transportrichtung zu messen, die sehr eng benachbart sind, und damit diese Ultraschalleigenschaften mit einer hohen Ortsauflösung quer zur Transportrichtung des Wertdokuments zu erhalten. Insbesondere können so in Transportrichtung verlaufende Lücken, wie sie bei piezoelektrischen, im Allgemeinen weiter voneinander beabstandeten Ultraschallwandlern entstehen, bei der Erfassung von Ultraschalleigenschaften klein gehalten oder ganz vermieden werden.
- Die Anordnung bzw. Ausbildung auf einem Chip bietet weiter den Vorteil, dass die Ultraschallwandler mit vorgegebenen Formen und einem weiten Bereich von Ausdehnungen einfach hergestellt werden können. Insbesondere kann es bei der Einrichtung bevorzugt sein, dass wenigstens einer der kapazitiven, mikromechanischen Ultraschallwandler eine Ausdehnung zwischen 100 µm und 10 mm in Transportrichtung und/oder eine Ausdehnung zwischen 100 µm und 10 mm quer zur Transportrichtung aufweist. Vorzugsweise gilt dies für alle kapazitiven, mikromechanischen Ultraschallwandler. Ein solcher Bereich von Ausdehnungen ermöglicht es, eine gute örtliche Auflösung der Ultraschalleigenschaften zu erhalten. Unter der Ausdehnung wird dabei die Länge der längsten geraden Strecke verstanden, die in der vorgegebenen Richtung verläuft und durch Randabschnitte des jeweiligen Ultraschallsensors begrenzt ist.
- Die Einrichtung kann auch wenigstens zwei Chips mit kapazitiven, mikromechanischen Ultraschallwandlern aufweisen, wobei vorzugsweise die kapazitiven, mikromechanischen Ultraschallwandler eines Ultraschallsenders bzw. Ultraschallempfängers bzw. Ultraschallsender/-empfängers auf nur einem der Chips angeordnet bzw. ausgebildet sind.
- Eine Schwierigkeit bei der örtlich aufgelösten Erfassung von Ultraschalleigenschaften besteht oft darin, dass auf einer Ultraschallstrecke gesendeter Ultraschall direkt oder indirekt auch von Ultraschallempfängern benachbarter Ultraschallstrecken erfasst werden kann. Dies führt zu unerwünschten Ungenauigkeiten der Messung auf benachbarten Ultraschallstrecken. Bei der Einrichtung ist es daher bevorzugt, dass die Steuer- und Auswerteeinrichtung dazu ausgebildet ist, an wenigstens zwei verschiedene, vorzugsweise benachbarte, der Ultraschallsender bzw. Ultraschallsender/-empfänger Sendesignale, vorzugsweise gleichzeitig, abzugeben, so dass diese Ultraschall mit unterschiedlicher Frequenz oder Pulse von Ultraschall mit unterschiedlicher Frequenz abgeben, und Empfangssignale des mit dem jeweiligen Ultraschallsender eine Ultraschallstrecke bildenden Ultraschallempfängers bzw. des Ultraschallsenders/-empfängers zu empfangen und zu verarbeiten, vorzugsweise also entsprechend der Frequenz des von dem jeweiligen Ultraschallsenders abgegebenen Ultraschalls, d. h. in Abhängigkeit von der Lage des Ultraschallempfängers oder der Relativlage der Ultraschallempfänger zueinander oder der Relativlage der Ultraschallsender zueinander zu filtern. Bei dem Verfahren ist es bevorzugt, dass an wenigstens zwei verschiedene, vorzugsweise benachbarte der Ultraschallsender bzw. Ultraschallsender/-empfänger Sendesignale abgegeben werden, so dass diese Ultraschall mit unterschiedlicher Frequenz oder Pulse von Ultraschall mit unterschiedlicher Frequenz abgeben, und Empfangssignale des mit dem jeweiligen Ultraschallsender eine Ultraschallstrecke bildenden Ultraschallempfängers bzw. des Ultraschallsenders/-empfängers bzw. bei Empfang von dem Ultraschallsender erzeugten Ultraschalls empfangen und verarbeitet werden, vorzugsweise also entsprechend, d. h. in Abhängigkeit von der Lage des Ultraschallempfängers oder der Relativlage der Ultraschallempfänger zueinander oder der Relativlage der Ultraschallsender zueinander gefiltert werden. Insbesondere kann die Frequenz des Ultraschalls eine Funktion der Lage der Ultraschallstrecke sein, entlang derer sich der Ultraschall ausbreitet. Weiter können die Ultraschallsender besonders bevorzugt unmittelbar benachbart sein. Die kapazitiven mikromechanischen Ultraschallwandler können dabei vorzugsweise so ausgebildet sein, dass sie jeweils zur Abgabe von Ultraschallpulsen der ihrer Lage entsprechenden Ultraschallfrequenz ausgebildet sind. Die Filterung der Empfangssignale eines der Ultraschallempfänger kann vorzugsweise bei der Frequenz erfolgen, bei der der zugeordnete Ultraschallsender Ultraschall abgegeben hat. Diese Ausführungsform hat den Vorteil, dass Ultraschall, der auf einer Ultraschallstrecke gesendet wurde, vom Empfänger einer benachbarten Ultraschallstrecke nicht oder nur schwach empfangen werden kann und/oder die entsprechenden Störsignale herausgefiltert werden können. Auf diese Weise kann die örtliche Auflösung erhöht werden, da der Abstand zwischen benachbarten Ultraschallsendern bzw. Ultraschallempfänger, der sonst durch die Gefahr der Störung durch Messungen entlang benachbarter Ultraschallstrecken bzw. Übersprechen notwendig ist, geringer gewählt werden kann. In Abhängigkeit von der Ausbildung der kapazitiven, mikromechanischen Ultraschallwandler in Bezug auf deren Sende- und auch Empfangsspektrum und vor allem der Steuer- und Auswerteeinrichtung, kann sich insgesamt eine sehr schmalbandige Charakteristik für eine Ultraschallstrecke ergeben und damit eine besonders gute Unterdrückung bzw. Vermeidung von Störungen.
- Gemäß einer weiteren, gegebenenfalls mit der in dem vorhergehenden Absatz geschilderten Möglichkeit kombinierbaren Möglichkeit zur Reduktion von Störungen bei der Messung an in Richtung der Transportrichtung des Wertdokuments benachbarten Orten, kann wenigstens eine Folge von Ultraschallpulsen erzeugt werden, bei der aufeinander folgende Ultraschallpulse eine unterschiedliche vorgegebene Ultraschallfrequenz aufweisen. Bei der Einrichtung kann vorzugsweise die Steuer- und Auswerteeinrichtung dazu ausgebildet sein, an wenigstens einen der Ultraschallsender bzw. bzw. der Ultraschallsenders/-empfänger Sendesignale so abzugeben, d. h. wenigstens einen der Ultraschallsender bzw. bzw. der Ultraschallsenders/-empfänger mit Sendesignalen so anzusteuern, dass dieser eine Folge von Ultraschallpulsen abgibt, von denen wenigstens zwei aufeinanderfolgende eine vorgegebene unterschiedliche Frequenz aufweisen und Empfangssignale des dem jeweiligen Ultraschallsender zugeordneten Ultraschallempfängers bzw. des Ultraschallsenders/-empfängers zu empfangen und zu verarbeiten, vorzugsweise entsprechend den Frequenzen bzw. der Abfolge der Frequenzen der abgegebenen Pulse zu filtern. Bei dem Verfahren ist esbevorzugt, dass an wenigstens einen der Ultraschallsender so Sendesignale abgegeben werden, d. h. wenigstens einer der Ultraschallsender so mit Sendesignalen angesteuert wird, dass dieser eine Folge von Ultraschallpulsen abgibt, von denen wenigstens zwei aufeinanderfolgende eine vorgegebene unterschiedliche Frequenz aufweisen und Empfangssignale des dem jeweiligen Ultraschallsender zugeordneten Ultraschallempfängers bzw. des Ultraschallsenders/-empfängers empfangen und verarbeitet, vorzugsweise entsprechend der Frequenzabfolge der abgegebenen Pulse gefiltert werden. Die Ultraschallpulse der Folge weisen also jeweils eine Ultraschallfrequenz gemäß einer vorgegebenen Frequenzfolge auf. Diese Weiterbildung hat den Vorteil, dass Echos, also von dem Wertdokument reflektierte, nicht zum Empfang vorgesehene Pulse, allenfalls einen schwachen vorzugsweise keinen Einfluss auf die Messung an in Transportrichtung benachbarten Orten haben. Insbesondere, wenn kapazitive mikromechanische Ultraschallwandler nicht bei ihrer Resonanzfrequenz betrieben werden, können einfach kurze Pulse und damit eine hohe Ortsauflösung erzeugt werden.
- Prinzipiell brauchen die Ultraschallsender und/oder Ultraschallempfänger bzw. Ultraschallsender/-empfänger jeweils nur einen kapazitiven mikromechanischen Ultraschallwandler aufzuweisen. Es ist aber auch möglich, dass bei der erfindungsgemäßen Einrichtung bzw. dem erfindungsgemäßen Verfahren vorzugsweise wenigstens einer der Ultraschallsender und/oder Ultraschallempfänger bzw. Ultraschallsender/-empfänger wenigstens zwei kapazitive mikromechanische Ultraschallwandler aufweist. Diese können zumindest in ihren Eigenschaften gleich ausgebildet sein. Bei dem Verfahren werden an diese kapazitiven, mikromechanischen Ultraschallwandler vorzugsweise Sendesignale so abgegeben, dass diese Ultraschall mit gleicher Frequenz abgeben, bzw. werden die Empfangssignale für eine vorgegebene gleiche Frequenz ausgewertet. Bei der Einrichtung bzw. dem Verfahren können die kapazitiven, mikromechanischen Ultraschallwandler des wenigstens einen Ultraschallsenders bzw. Ultraschallempfängers bzw. Ultraschallsender/-empfängers beispielsweise so mit der Steuer- und Auswerteeinrichtung verbunden und die Steuer- und Auswerteeinrichtung so ausgebildet sein, dass diese an die Ultraschallwandler Sendesignale abgibt, so dass diese Ultraschall mit gleicher Frequenz abgeben, bzw. dass diese die Empfangssignale für die gleiche Frequenz verarbeitet bzw. auswertet, beispielsweise filtert und verarbeitet.
- Beispielsweise können die Ultraschallwandler parallel geschaltet sein; deren sich entsprechende Elektroden der Ultraschallwandler sind dann mit jeweils denselben Anschlüssen der Steuer- und Auswerteeinrichtung verbunden. Die Sendesignale unterscheiden sich, bis vielleicht auf ihre Größe, dann nicht unbedingt von denen für Ultraschallsender bzw. Ultraschallsender/-empfänger mit nur einem kapazitiven, mikromechanischen Ultraschallwandler. Dies kann insbesondere dann vorteilhaft sein, wenn kapazitive mikromechanische Ultraschallwandler Ultraschall mit einer Frequenz oder Intensität oder in einen Raumwinkel abgeben oder mit einer Frequenz oder Intensität oder aus einen Raumwinkel empfangen sollen, für die Form und Schwingungseigenschaften der Ultraschallwandler nicht sehr günstig sind.
- Bei der Einrichtung können aber auch die wenigstens zwei Ultraschallwandler einzeln so mit der Steuer- und Auswerteeinrichtung verbunden und diese so ausgebildet sein, dass die Steuer- und Auswerteeinrichtung an diese Ultraschallwandler jeweils Sendesignale einzeln abgeben kann. Vorzugsweise ist die Steuer- und Auswerteeinrichtung dann so ausgebildet, dass sie an diese kapazitiven, mikromechanischen Ultraschallwandler einzeln solche Sendesignale abgibt, dass diese Ultraschall mit gleicher vorgegebener Frequenz abgeben, d. h. dass diese auf die Sendesignale hin Ultraschall mit gleicher Frequenz abgeben, bzw. dass sie Empfangssignale der wenigstens zwei kapazitiven mikromechanischen Ultraschallwandler, die Ultraschall gleicher Frequenz empfangen, gemeinsam für die gleiche Frequenz verarbeitet bzw. auswertet. Insbesondere können die Sendesignale dann so gebildet sein, dass die wenigstens zwei Ultraschallwandler den Ultraschall im Wesentlichen in Phase bzw. mit gleicher Phase abgeben. Diese Ausführungsform kann beispielsweise vorteilhaft sein, um ein Ultraschallfeld mit höherer Intensität oder größerer Ausdehnung zu erzeugen.
- Bei einer bevorzugten Variante kann bei der Einrichtung die Steuer- und Auswerteeinrichtung so ausgebildet sein, dass sie an die kapazitiven mikromechanischen Ultraschallwandler, die wenigstens teilweise einen Ultraschallsender bilden, solche Sendesignale abgibt, dass diese Ultraschall mit gleicher Frequenz und unterschiedlicher Phase abgeben, vorzugsweise so dass der abgegebene Ultraschall der beiden Wandler gebündelt oder dessen Richtung geändert ist. Bei dem Verfahren werden bei dieser Variante vorzugsweise an die Ultraschallwandler solche Sendesignale abgegeben, dass diese Ultraschall mit gleicher Frequenz und unterschiedlicher Phase abgeben, vorzugsweise so dass der abgegebene Ultraschall der beiden Wandler gebündelt oder dessen Richtung geändert ist. Dies erlaubt es die Richtcharakteristik des abgegebenen Ultraschalls und damit die örtliche Auflösung der Einrichtung zu verbessern, ohne dass die Intensität des Ultraschalls herabgesetzt werden müsste. Bei einer weiteren Variante kann die Steuer- und Auswerteeinrichtung weiter dazu ausgebildet sein, die Phasen so zeitabhängig zu verändern, dass die Hauptsenderichtung des resultierenden Ultraschalls in vorgegebener Weise geschwenkt wird.
- Die erfindungsgemäße Einrichtung und das erfindungsgemäße Verfahren können insbesondere in Vorrichtungen zur Bearbeitung von Wertdokumenten verwendet werden. Gegenstand der vorliegenden Erfindung ist daher auch eine Vorrichtung zur Bearbeitung von Wertdokumenten mit einer Zuführeinrichtung zur Aufnahme zu bearbeitender Wertdokumente, einer Ausgabeeinrichtung zur Ausgabe oder Aufnahme der bearbeiteten Wertdokumente, einer Transporteinrichtung zum Transportieren der Wertdokumente von der Zuführeinrichtung entlang eines Transportpfades zu der Ausgabeeinrichtung und wenigstens einer im Bereich eines Abschnitts des Transportpfades angeordneten erfindungsgemäßen Einrichtung zur Untersuchung der Wertdokumente und/oder des Transports der Wertdokumente, die entlang des Transportpfads transportiert werden.
- Bei der Einrichtung und dem Verfahren kann es als Verarbeitung der Empfangssignale genügen, nur Ultraschalltrans- oder remissionswerte als Funktion eines Orts, vorzugsweise für wenigstens eine vorgegebene Frequenz, auf einem Wertdokument er ermitteln.
- Bei der Einrichtung kann die Steuer- und Auswerteeinrichtung aber auch dazu ausgebildet sein, aus den Empfangssignalen wenigstens einen Wert zu ermitteln, der das Flächengewicht und/oder die Dicke des Wertdokuments darstellt. Bei dem Verfahren kann vorzugsweise aus den Empfangssignalen, vorzugsweise mittels einer Auswerteeinrichtung oder der Steuer- und Auswerteeinrichtung, wenigstens ein Wert ermittelt werden, der das Flächengewicht und/oder die Dicke des Wertdokuments darstellt. Besonders bevorzugt kann bei der Einrichtung die Steuer- und Auswerteeinrichtung dazu ausgebildet sein, aus den Empfangssignalen Werte zu ermitteln, die das Flächengewicht bzw. die Dicke in Abhängigkeit von dem Ort auf dem Wertdokument darstellen. Bei dem Verfahren können aus den Empfangssignalen, vorzugsweise mittels einer Auswerteeinrichtung oder der Steuer- und Auswerteeinrichtung, Werte ermittelt werden, die das Flächengewicht bzw. die Dicke in Abhängigkeit von dem Ort darstellen. Auf diese Weise können beispielsweise das Vorhandensein von Wasserzeichen und gegebenenfalls dessen Eigenschaften und/oder das Vorhandenseine eines Klebestreifens auf einem Wertdokument untersucht werden. Dies ermöglicht es, Eigenschaften des Wertdokuments zu ermitteln, die für dessen Echtheit oder Zustand eine Rolle spielen.
- Bei dem Verfahren kann das Verarbeiten der Empfangssignale den weiteren Schritt umfassen, zu ermitteln, ob ein Wertdokument für das Empfangssignale empfangen wurden, als einzelnes Wertdokument, oder wenigstens teilweise überlappend mit einem anderen Wertdokument transportiert wurde, und bei Ermittlung sich wenigstens teilweise überlappender Wertdokumente ein ein Ergebnis der Ermittlung darstellendes Signal abzugeben. Bei der Vorrichtung kann die Zuführeinrichtung vorzugsweise einen Vereinzler aufweisen, mittels dessen Wertdokumente aus einem Stapel von Wertdokumenten in einem Eingabebereich vereinzelt und der Transporteinrichtung zugeführt werden können. Bei der Einrichtung kann dann beispielsweise die Steuer- und Auswerteeinrichtung weiter so ausgebildet sein, bei der Verarbeitung der Empfangssignale zu ermitteln, ob ein Wertdokument für das Empfangssignale empfangen wurden, als einzelnes Wertdokument, oder wenigstens teilweise überlappend mit einem anderen Wertdokument transportiert wurde und bei Ermittlung sich wenigstens teilweise überlappender Wertdokumente ein ein Ergebnis der Ermittlung darstellendes Signal abzugeben. Insbesondere kann der Transport eines Wertdokuments nahe, vorzugsweise unmittelbar nach der Vereinzler, daraufhin zu untersuchen, ob ein einzelnes Wertdokument transportiert wird. Die Ultraschallwandler der erfindungsgemäßen Einrichtung sind dann vorzugsweise in dem Bereich des Transportpfades nahe bzw. am Vereinzler angeordnet. Die erfindungsgemäße Einrichtung eignet sich hierzu besonders, da sie nur wenig Bauraum beansprucht. Das Ereignis, dass sich Wertdokumente nach der Vereinzlung wenigstens teilweise überlappen und so der Transporteinrichtung zugeführt werden, wird oft als Doppelabzug bzw. Mehrfachabzug bezeichnet.
- Weiter kann der Transport der Wertdokumente dahingehend untersucht werden, ob bzw. wann eine vorgegebene Kante, beispielsweise die in Transportrichtung vordere Kante eines Wertdokuments einen vorgegebenen Ort passiert und/oder ob oder wie das Wertdokument mit einer vorgegebenen seiner Kanten relativ zu der Transportrichtung ausgerichtet ist.
- So kann bei einer vorteilhaften Variante der Einrichtung die Steuer- und Auswerteeinrichtung vorzugsweise dazu ausgebildet sein, bei der Verarbeitung der Empfangssignale unter Verwendung der Empfangssignale zu erkennen, ob und/oder wann wenigstens eine vorgegebene Kante, vorzugsweise die in Transportrichtung vordere und/oder die in Transportrichtung hintere Kante, eines Wertdokuments einen vorgegebenen Ort an dem Transportpfad passiert, und/oder deren Lage zu erkennen und vorzugsweise daraufhin ein entsprechendes Signal, insbesondere das oder den Zeitpunkt Ereignis darstellendes Signal, abzugeben. Bei dem Verfahren werden dann vorzugsweise beim Verarbeiten der Empfangssignale diese dazu verwendet, zu erkennen, ob und/oder wann wenigstens eine vorgegebene Kante, vorzugsweise die in Transportrichtung vordere und/oder die in Transportrichtung hintere Kante, eines Wertdokuments einen vorgegebenen Ort passiert, und/oder deren Lage zu erkennen. Nach dem Erkennen von Kanten können beispielsweise die Ankunft eines Wertdokuments an der Einrichtung, ein Verlassen des Wertdokuments eines Erfassungsbereichs der Einrichtung erkannt werden, wodurch eine Transportüberwachung ermöglicht wird.
- Es ist aber auch möglich, einen Schräglauf des Wertdokuments, d. h. eine Ausrichtung der Kanten des Wertdokuments weder parallel noch senkrecht zur Transportrichtung, zu erkennen oder die Dimensionen eines Wertdokuments.
- Bei der Vorrichtung können dazu die Ultraschallsender bzw. Ultraschallsender/-empfänger an einem vorgegebenen Abschnitt des Transportpfades angeordnet sein. Weiter kann die Vorrichtung eine Maschinensteuereinrichtung aufweisen, die das Signal der Einrichtung empfängt und Komponenten der Vorrichtung in Abhängigkeit von dem Signal steuert.
- Die Erfindung wird im Folgenden noch weiter beispielhaft an Hand der Zeichnungen erläutert. Es zeigen:
- Fig.1
- eine schematische Ansicht einer Wertdokumentbearbeitungsvorrichtung, im Beispiel einer Banknotensortiervorrichtung,
- Fig. 2
- eine schematische Darstellung eines Beispiels für eine Einrichtung zur Untersuchung von Wertdokumenten und/oder des Transports von Wertdokumenten mittels Ultraschall in der Vorrichtung in
Fig. 1 , - Fig. 3
- eine schematische Darstellung eines Schaltungsträgers der Einrichtung in
Fig. 2 mit auf einem Chip gebildeten kapazitiven mikromechanischen Ultraschallwandlern in einer Draufsicht, - Fig.4
- eine schematische Schnittansicht durch einen Abschnitt des Chips in
Fig. 3 , - Fig. 5
- eine schematische Seitenansicht des Schaltungsträgers in
Fig. 3 mit einer Kontaktierung zwischen dem Chip und dem Schaltungsträger, - Fig.6
- eine schematische Darstellung eines Abschnitts eines zweiten Beispiels für eine Wertdokumentbearbeitungsvorrichtung mit einer Zuführeinrichtung und einem zweiten Beispiel für eine Einrichtung zur Untersuchung von Wertdokumenten und/oder des Transports von Wertdokumenten,
- Fig.7
- eine schematische Darstellung der Einrichtung zur Untersuchung von Wertdokumenten und/oder des Transports von Wertdokumenten der Vorrichtung in
Fig. 6 , - Fig. 8
- eine
Fig. 2 entsprechende schematische Darstellung eines dritten Beispiels für eine Einrichtung zur Untersuchung von Wertdokumenten und/oder des Transports von Wertdokumenten mittels Ultraschall, - Fig. 9
- eine schematische Darstellung der von der Einrichtung in
Fig. 8 verwendeten Ultraschallfrequenzen für die Ultraschallsender und Ultraschallempfänger, - Fig. 10
- eine
Fig. 2 entsprechende schematische Darstellung eines vierten Beispiels für eine Einrichtung zur Untersuchung von Wertdokumenten und/oder des Transports von Wertdokumenten mittels Ultraschall, - Fig. 11
- eine schematische Darstellung der von der Einrichtung in
Fig. 10 verwendeten Ultraschallfrequenzen für die Ultraschallsender und Ultraschallempfänger, - Fig. 12
- eine schematische Darstellung der von einer Einrichtung eines fünften Beispiels verwendeten Ultraschallfrequenzen für die Ultraschallsender und Ultraschallempfänger,
- Fig. 13
- eine schematische Darstellung eines Abschnitts eines sechsten Beispiels für eine Wertdokumentbearbeitungsvorrichtung mit einer Zuführeinrichtung und einem sechsten Beispiel für eine Einrichtung zur Untersuchung von Wertdokumenten und/oder des Transports von Wertdokumenten,
- Fig. 14
- eine grob schematische Ansicht auf eine Einrichtung zur Untersuchung von Wertdokumenten und/oder des Transports von Wertdokumenten eines siebten Ausführungsbeispiels in einer Richtung auf den Transportpfad,
- Fig. 15
- eine grob schematische Ansicht auf die Einrichtung in
Fig. 14 in einer Richtung quer zu dem Transportpfad, - Fig. 16
- eine grob schematische Ansicht auf einen Abschnitt eines Chips von oben mit einem Ultraschallsender, der vier parallel geschaltete kapazitive mikromechanische Ultraschallwandler aufweist.
- Fig. 17
- eine grob schematische Ansicht auf einen Abschnitt eines Chips von oben mit einem Ultraschallsender, der drei kapazitive mikromechanische Ultraschallwandler aufweist,
- Fig. 18
- unterschiedliche Richtcharakteristiken des Schallfeldes bei unterschiedlicher Phasenansteuerung mehrerer kapazitiver, mikromechanischer Ultraschallwandler eines Ultraschallsenders,
- Fig. 19
- eine schematische Darstellung eines Schaltungsträgers eines weiteren Beispiels für eine Einrichtung zur Untersuchung von Wertdokumenten und/oder des Transports von Wertdokumenten mit auf zwei Chips gebildeten kapazitiven mikromechanischen Ultraschallwandlern in einer Draufsicht,
- Fig. 20
- eine schematische Darstellung eines Chips mit darauf entlang einer Zeile quer zur Transportrichtung gebildeten in gleichem Abstand mit gleicher Größe ausgebildeten kapazitiven mikromechanischen Ultraschallwandlern in einer Draufsicht,
- Fig.
- 21 eine schematische Darstellung eines Chips mit darauf entlang einer Zeile quer zur Transportrichtung ausgebildeten in variablem Abstand mit unterschiedlicher Größe ausgebildeten kapazitiven mikromechanischen Ultraschallwandlern in einer Draufsicht
- Fig. 22
- eine schematische Darstellung eines Chips mit darauf entlang einer Zeile quer zur Transportrichtung ausgebildeten Ultraschallsendern mit unterschiedlichen Anzahlen von kapazitiven mikromechanischen Ultraschallwandlern in einer Draufsicht, und
- Fig. 23
- eine schematische Darstellung eines Chips mit darauf auf einem Quadratgitter ausgebildeten in gleichem Abstand mit gleicher Größe ausgebildeten kapazitiven mikromechanischen Ultraschallwandlern in einer Draufsicht
- Eine Wertdokumentbearbeitungsvorrichtung 10 in
Fig. 1 , im Beispiel eine Vorrichtung zur Bearbeitung von Wertdokumenten 12 in Form von Banknoten, ist zur Sortierung von Wertdokumenten in Abhängigkeit von dem mittels der Wertdokumentbearbeitungsvorrichtung 10 ermittelten Zustand und dem mittels der Wertdokumentbearbeitungsvorrichtung geprüften Echtheit von bearbeiteten Wertdokumenten ausgebildet. - Sie verfügt über einen Zuführeinrichtung 14 zur Zuführung von Wertdokumenten, eine Ausgabeeinrichtung 16 zur Aufnahme bearbeiteter, d. h. sortierter Wertdokumente, und eine Transporteinrichtung 18 zum Transportieren von vereinzelten Wertdokumenten von der Zuführeinrichtung 14 zu der Ausgabeeinrichtung 16.
- Die Zuführeinrichtung 14 umfasst im Beispiel ein Eingabefach 20 für einen Wertdokumentstapel und einen Vereinzler 22 zur Vereinzelung von Wertdokumenten aus dem Wertdokumentstapel in dem Eingabefach 20 und Bereitstellung für die bzw. Zuführung zu der Transporteinrichtung 18.
- Die Ausgabeeinrichtung 16 umfasst im Beispiel drei Ausgabeabschnitte 24, 25 und 26, in die bearbeitete Wertdokumente je nach dem Ergebnis der Bearbeitung, im Beispiel Prüfung, sortiert werden können. Im Beispiel umfasst jeder der Abschnitte ein Stapelfach und ein nicht gezeigtes Stapelrad, mittels dessen zugeführte Wertdokumente in dem Stapelfach abgelegt werden können.
- Die Transporteinrichtung 18 verfügt über wenigstens zwei, im Beispiel drei Zweige 28, 29 und 30, an deren Enden jeweils einer der Ausgabeabschnitte 24 bzw. 25 bzw. 26 angeordnet ist, und an den Verzweigungen über durch Stellsignale steuerbare Weichen 32 und 34, mittels derer Wertdokumente in Abhängigkeit von Stellsignalen den Zweigen 28 bis 30 und damit den Ausgabeabschnitten 24 bis 26 zuführbar sind.
- An einem durch die Transporteinrichtung 18 definierten Transportpfad 36 zwischen der Zuführeinrichtung 14, im Beispiel genauer dem Vereinzler 22, und der in Transportrichtung T ersten Weiche 32 nach dem Vereinzler 22 ist eine Sensoreinrichtung 38 angeordnet, die während des Vorbeitransports von Wertdokumenten physikalische Eigenschaften der Wertdokumente misst und die Messergebnisse wiedergebende Sensorsignale bildet, die Sensordaten darstellen. In diesem Beispiel verfügt die Sensoreinrichtung 38 über drei Sensoren, nämlich einen optischen Remissionssensor 40, der ein Remissionsfarbbild des Wertdokuments erfasst, einen optischen Transmissionssensor 42, der ein Transmissionsbild des Wertdokuments erfasst, und eine Einrichtung 44 zur Untersuchung von Wertdokumenten und/oder des Transports von Wertdokumenten, die ortsaufgelöst Ultraschalltransmissionseigenschaften des Wertdokuments erfasst bzw. misst. Während die Sensoreinrichtung 38 die Sensorsignale der Sensoren 40 und 42 ohne Auswertung ausgibt, sind die Sensorsignale der Einrichtung 44 bereits wenigstens teilweise ausgewertet.
- Eine Maschinensteuer- und -auswerteeinrichtung 46 ist über Signalverbindungen mit der Sensoreinrichtung 38 und der Transporteinrichtung 18, insbesondere den Weichen 32 und 34, verbunden. In Verbindung mit der Sensoreinrichtung 38 klassifiziert sie ein Wertdokument in Abhängigkeit von den Signalen der Sensoreinrichtung 38 für das Wertdokument in eine von vorgegebenen Sortierklassen. Diese Sortierklassen können beispielsweise in Abhängigkeit von einem mittels der Sensordaten ermittelten Zustandswert und einem ebenfalls in Abhängigkeit von einem mittels der Sensordaten ermittelten Echtheitswert vorgegeben sein. Als Zustandswerte können beispielsweise die Werte "umlauffähig" oder "nicht umlauffähig", als Echtheitswerte die Werte "gefälscht", "fälschungsverdächtig" oder "echt" verwendet werden. In Abhängigkeit von der ermittelten Sortierklasse steuert sie durch Abgabe von Stellsignalen die Transporteinrichtung 18, hier genauer die Weichen 32 bzw. 34 so an, dass das Wertdokument entsprechend seiner bei der Klassifizierung ermittelten Sortierklasse in einen der Klasse zugeordneten Ausgabeabschnitt der Ausgabeeinrichtung 16 ausgegeben wird. Die Zuordnung zu einer der vorgegebenen Sortierklassen bzw. die Klassifizierung erfolgt dabei in Abhängigkeit von für die Beurteilung des Zustands und die Beurteilung der Echtheit vorgegebenen Kriterien, die von wenigstens einem Teil der Sensordaten abhängen.
- Die Maschinensteuer- und Auswerteeinrichtung 46 verfügt dazu insbesondere neben entsprechenden Schnittstellen für die Sensoreinrichtung 38 bzw. deren Sensoren und der Einrichtung 44 über einen Prozessor 48 und einen mit dem Prozessor 48 verbundenen Speicher 50, in dem wenigstens ein Computerprogramm mit Programmcode gespeichert ist, bei dessen Ausführung der Prozessor 48 die Vorrichtung steuert bzw. die Sensorsignale der Sensoreinrichtung 38, insbesondere zur Ermittlung einer Sortierklasse eines bearbeiteten Wertdokuments, auswertet und entsprechend der Auswertung die Transporteinrichtung 18 ansteuert.
- Die Maschinensteuer- und Auswerteeinrichtung 46 ermittelt aus den Sensorsignalen der Sensoreinrichtung 38 bei einer Sensorsignalauswertung wenigstens eine Wertdokumenteigenschaft, die für die Überprüfung der Banknoten in Bezug auf deren Echtheit und/oder Zustand relevant ist. Vorzugsweise werden mehrere dieser Eigenschaften ermittelt. In diesem Beispiel werden als optische Wertdokumenteigenschaften ein Transmissionsbild und ein Remissionsbild und als akustische Eigenschaft die Ultraschalltransmission in Abhängigkeit von dem Ort auf dem Wertdokument ermittelt.
- In Abhängigkeit von den Wertdokumenteigenschaften ermittelt die Maschinensteuer- und Auswerteeinrichtung 46 für die verschiedenen Sensoren jeweils Sortiersignale, die darstellen, ob die ermittelten Wertdokumenteigenschaften einen Hinweis auf den Zustand bzw. die Echtheit des Wertdokuments darstellen oder nicht. In Folge dieser Signale können entsprechende Daten in der Maschinensteuer- und Auswerteeinrichtung 46, beispielsweise dem Speicher 50, zur späteren Verwendung gespeichert werden. In Abhängigkeit von den Sortiersignalen ermittelt die Maschinensteuer- und Auswerteeinrichtung 46 dann ein Gesamtergebnis für die Prüfung gemäß einem vorgegebenen Gesamtkriterium und bildet in Abhängigkeit von dem Ergebnis das Sortier- bzw. Steuersignal für die Transporteinrichtung 18.
- Zur Bearbeitung von Wertdokumenten 12 werden in das Eingabefach 20 als Stapel oder einzeln eingelegte Wertdokumente 12 von dem Vereinzeler 22 vereinzelt und vereinzelt der Transporteinrichtung 18 zugeführt, die die vereinzelten Wertdokumente 12 an der Sensoreinrichtung 38 vorbeitransportiert. Diese erfasst die Eigenschaften der Wertdokumente 12, wobei Sensorsignale gebildet werden, die die Eigenschaften des jeweiligen Wertdokuments wiedergeben. Die Maschinensteuer- und Auswerteeinrichtung 46 erfasst die Sensorsignale, ermittelt in Abhängigkeit von diesen eine Sortierklasse, im Beispiel eine Kombination aus einer Echtheitsklasse und einer Zustandsklasse, des jeweiligen Wertdokuments und steuert in Abhängigkeit von dem Ergebnis die Weichen so an, dass die Wertdokumente entsprechend der ermittelten Sortierklasse in einen der jeweiligen Sortierklasse zugeordneten Ausgabeabschnitt transportiert wird.
- Zur Ermittlung einer Sortierklasse auf der Basis von Ultraschalleigenschaften dient die Einrichtung 44 zur Untersuchung eines Wertdokuments, die als Transmissionsultraschallsensor verwendet wird und Ultraschalltransmissionsdaten als Funktion eines Ortes auf dem Wertdokument erfasst und im Beispiel folgender maßen aufgebaut ist (vgl.
Fig. 2 und 3 ). - Die Einrichtung 44 zur Untersuchung von Wertdokumenten mittels Ultraschall, verfügt, wie grob schematisch in
Fig. 2 gezeigt, über ein Sendermodul 51 mit einem Satz von Ultraschallsendern 52 und ein Empfängermodul 53 mit einem Satz von Ultraschallempfängern 54, die auf sich gegenüberliegenden Seiten des Transportpfades 36 entlang einer quer zur Transportrichtung verlaufenden Zeile angeordnet sind. Die Ultraschallsender 52 geben auf entsprechende Sendesignale hin Ultraschall ab, die Ultraschallempfänger 54 bilden bei Empfang von Ultraschall wenigstens eine Eigenschaft des Ultraschalls wiedergebenden bzw. beschreibende Empfangssignale. Die Anzahl und Anordnung der Ultraschallsender 52 entspricht dabei der Anzahl und Anordnung der Ultraschallempfänger 54. In den Figuren sind der besseren Übersicht halber nur einige Ultraschallsender bzw. Ultraschallempfänger gezeigt. Tatsächlich sind jeweils so viele Ultraschallsender bzw. -empfänger vorhanden, dass Ultraschallsender bzw. -empfänger quer zum Transportpfad in einer Breite angeordnet sind, die größer ist als die entsprechende Ausdehnung von Wertdokumenten von zur Bearbeitung vorgesehenen Wertdokumenttypen. Jeweils einer der Ultraschallsender 52 und einer der Ultraschallempfänger 54 sind so aufeinander ausgerichtet, dass der von dem jeweiligen Ultraschallsender abgestrahlte Ultraschall, insbesondere nach Transmission durch ein entlang des Transportpfades 36 transportiertes Wertdokument 12, auf den jeweiligen Ultraschallempfänger ausgerichtet ist, so dass der Ultraschall im Wesentlichen, d. h. bis beispielsweise auf Streu- und Beugungseffekte, in Richtung des Ultraschallempfängers abgegeben wird und dieser den Ultraschall empfangen kann. Der jeweilige Ultraschallsender und der jeweilige Ultraschallempfänger bilden so eine gepunktet dargestellte Ultraschallstrecke 56, die in diesem Ausführungsbeispiel im Wesentlichen senkrecht zum Transportpfad ausgerichtet ist und deren Endpunkte der Ultraschallsender und der Ultraschallempfänger bilden; der Ultraschallsender und der Ultraschallempfänger werden als einander zugeordnet bezeichnet. - Zur Ansteuerung der Ultraschallsender 52 mit Sendesignalen und zum Empfang von Empfangssignalen der Ultraschallempfänger 54 und deren Verarbeitung sind diese einzeln mit einer Steuer- und Auswerteeinrichtung 47 der Einrichtung 44 mittels nur grob schematisch gezeigten Signalverbindungen 49 verbunden.
- Mit jedem Paar aus einem der Ultraschallsender und dem diesen zugeordneten Ultraschallempfänger 54 bzw. mit jeder Ultraschallstrecke 56 in Verbindung mit der Steuer- und Auswerteeinrichtung 47 ist damit zu einer gegebenen Zeit ein Wert für die Ultraschalltransmission des Wertdokuments 12 an dem mit dem Ultraschall beschallten Ort ermittelbar.
- Die Ultraschallsender 52 und die Ultraschallempfänger 54 sind in den
Figuren 3 und4 grob schematisch gezeigt. Jeder der Ultraschallsender 52 und jeder der Ultraschallempfänger 54 weist einen kapazitiven mikromechanischen Ultraschallwandler auf. Dabei sind die kapazitiven mikromechanischen Ultraschallwandler eines Paares aus einem Ultraschallsender 52 und einem Ultraschallempfänger 54, das eine Ultraschallstrecke 56 bildet, gleich ausgebildet. In diesem Ausführungsbeispiel sind alle kapazitiven mikromechanischen Ultraschallwandler im Wesentlichen gleich ausgebildet. Die kapazitiven mikromechanischen Ultraschallwandler 63 der Ultraschallsender 52 sind auf einem Chip 58 ausgebildet, entsprechendes gilt für die Ultraschallwandler der Ultraschallempfänger 54. Das Sendermodul weist neben dem Chip 58 einen auch als Halter für den Chip 58 dienenden Schaltungsträger 60, zum Beispiel einer Leiterplatte, auf, auf dem der Chip 58 gehalten und mit Leiterbahnen 59 auf diesem kontaktiert ist. Die Leiterbahnen 59 führen zu der Steuer- und Auswerteeinrichtung 47. - Da die Chips und bis auf die Anordnung der Leiterbahnen und von elektrischen Bauelementen die Schaltungsträger im Wesentlichen gleich aufgebaut sind, genügt es, nur der Schaltungsträger 60 mit dem Chip 58 mit den kapazitiven mikromechanischen Ultraschallwandlern 63, die die Ultraschallsender 52 bilden, zu beschreiben.
- Der Chip 58 verfügt über ein Substrat 62, auf dem zur Bildung jeweils eines Ultraschallwandlers 63 eine erste Elektrode 64 in Form eines Abschnitts einer elektrisch leitfähigen Schicht ausgebildet ist. Auf dieser Elektrode 64 ist eine weitere isolierende Schicht 66 mit Hohlräumen 68 ausgebildet. Über jedem der Hohlräume 68 befindet sich auf der isolierenden Schicht 66 jeweils ein Bereich mit einer leitfähigen Schicht, der eine zweite Elektrode 70 bildet. Die zweiten Elektroden 70 sind daher jeweils auf einer dünnen Platte oder Membran 72 angeordnet, die sich über dem Hohlraum 68 erstreckt. Die Elektroden 66 und 70 bilden so jeweils einen Kondensator. Die Elektroden zusammen mit der Membran 72 bilden den kapazitiven mikromechanischen Ultraschallwandler 63. Die Schicht 66, insbesondere deren Material und Dicke, sind so gewählt, dass diese sich durch Kräfte zwischen den Elektroden elastisch verformen kann.
- Die Elektroden 64 und 70_sind mit Leiterbahnen verbunden, von denen in
Fig. 3 nur die Leiterbahnen 59 gezeigt sind. Die Leiterbahnen sind mit der Steuer- und Auswerteeinrichtung 47 verbunden und bilden Signalverbindungen 49 zu dieser. Bei Anlegen einer Spannung zwischen jeweils einem durch einen der Hohlräume 68 getrennten Paar von Elektroden 64 und 70 wird eine Kraft auf diese ausgeübt, die zu einer Verformung der Membran 72 führt. Bei Anlegen einer Spannung mit einer geeigneten Frequenz im Bereich der Ultraschallfrequenzen, d. h. mit mehr als 20 kHz, kann eine Verformung wenigstens eines Teils der Membran 72 mit der entsprechenden Frequenz und durch die entsprechende Bewegung Ultraschall erzeugt werden, der Wandler arbeitet als Sender. Umgekehrt führt eine durch die Einwirkung von Ultraschall hervorgerufene Verformung der Membran 72 zu einer entsprechenden Änderung der Kapazität des durch die Elektroden gebildeten Kondensators. Durch eine in den Figuren nicht gezeigte geeignete Schaltung des Ultraschallwandlers kann die Änderung der Kapazität erfasst werden, bzw. kann ein entsprechender Strom erzeugt werden. Dies ist mittels der über die Signalverbindungen 49 verbundenen Steuer- und Auswerteeinrichtung 47 als zeitlich veränderliches Empfangssignal detektierbar. - In diesem Beispiel sind die Elektroden 70 über Drähte 74 (vgl.
Fig. 3 und5 ) mit den inFig. 3 nur zum Teil gezeigten Leiterbahnen 59 auf dem Schaltungsträger 60 verbunden. Ähnliches gilt für die Elektrode 64, die Drähte sind jedoch nicht gezeigt. - Die Membranen 72 über den Hohlräumen 68 und damit im Wesentlichen die so gebildeten Ultraschallwandler 63 weisen quer zur Abstrahl- bzw. Empfangsrichtung eine im Beispiel kreisförmige Form auf, die eine Ausdehnung D, im Beispiel einen Durchmesser, von 2 mm hat. Die kapazitiven mikromechanischen Ultraschallwandler haben dabei einen Abstand A, genauer einen Abstand der Umfangslinien, von 1 mm quer zur Transportrichtung. Diese Dimensionen sind für kapazitive mikromechanische Ultraschallwandler vorgesehen, die zur Erzeugung bzw. zum Empfang von Ultraschall mit 500 kHz betrieben werden sollen.
- Zur Bildung und Abgabe der Sendesignale und zum Empfang und zur Auswertung der Empfangssignale verfügt die Steuer- und Auswerteeinrichtung 47 neben Bauelementen auf den Schaltungsträgern über einen Prozessor bzw. Controller 75 der mit den Signalverbindungen 49 verbunden ist. Neben dem Prozessor 75 verfügt die Steuer- und Auswerteeinrichtung 47 über einen Speicher, in dem Instruktionen für ein Computerprogramm gespeichert sind, bei dessen Ausführung der Prozessor wie im Folgenden beschrieben die Sendesignale bildet und abgibt bzw. die Empfangssignale empfängt und verarbeitet bzw. auswertet.
- Die Steuer- und Auswerteeinrichtung 47, im Beispiel insbesondere die Instruktionen des Computerprogramms, und die kapazitiven mikromechanischen Ultraschallwandler sind so ausgebildet, dass die Steuer- und Auswerteeinrichtung 47 die Ultraschallwandler der Ultraschallsender mit Sendesignalen so ansteuert bzw. solche Sendesignale an diese abgibt, dass die kapazitiven mikromechanischen Ultraschallwandler, vorzugsweise im Wesentlichen gleichzeitig, Ultraschallpulse mit einer Ultraschallfrequenz von 500 kHz und einer Dauer von 10 µs abgeben. Die Pulse werden dabei mit einer Folgefrequenz von 5 kHz abgegeben. Diese Werte eignen sich vorzugsweise für Transportgeschwindigkeiten von ungefähr 5 m/s bis 10 m/s.
- Weiter ist die Steuer- und Auswerteeinrichtung 47 dazu ausgebildet, in Abstimmung mit der Ansteuerung der Ultraschallsender 52 bzw. der Abgabe der Sendesignale Empfangssignale der Ultraschallempfänger 54 zu empfangen, die diese bei Empfang der gesendeten Ultraschallpulse bzw. der Ultraschallpulse der Frequenz der gesendeten Ultraschallpulse, die durch die gesendeten Ultraschallpulse durch Wechselwirkung mit einem Wertdokument gebildet werden, bilden. Die Steuer- und Auswerteeinrichtung 47 ist insbesondere dazu ausgebildet, die Empfangssignale entsprechend der Frequenz des abgegebenen Ultraschalls und der Pulsdauer zu filtern und eine Eigenschaft der empfangenen Ultraschallpulse bzw. eine Ultraschalleigenschaft des Wertdokuments am Orte des Ultraschallempfängers zu ermitteln. Bei der Ultraschalleigenschaft kann es sich im Beispiel um die Ultraschalltransmission durch das Wertdokument handeln. Die Steuer- und Auswerteeinrichtung 47 ist weiter dazu ausgebildet, Sensorsignale zu bilden und abzugeben, die Orte auf dem Wertdokumente und die jeweils für die Orte ermittelte Ultraschalltransmission beschreiben.
- Bei einem Transport eines Wertdokuments 12 entlang des Transportpfades 36 zwischen den Ultraschallsendern 52 und Ultraschallempfängern 54 hindurch, gibt die Steuer- und Auswerteeinrichtung 47 Sendesignale an die Ultraschallsender 52 ab, so dass diese in regelmäßigen Abständen Ultraschallpulse der genannten Dauer und Frequenz auf das Wertdokument 12 abgegeben und die Ultraschallempfänger 54 die daraufhin von dem Wertdokument 12 ausgehenden (transmittierten) Ultraschallpulse unter Bildung von Empfangssignalen empfangen. Die Steuer- und Auswerteeinrichtung 47 erfasst entsprechend den Sendesignalen die Empfangssignale, die die Intensität bzw. Leistung einzelner empfangener Ultraschallpulse als Funktion der Zeit und damit wegen der konstanten Transportgeschwindigkeit auch des Ortes auf dem Wertdokument wiedergeben. Sie ermittelt so für die Ultraschallstrecken zwischen den Ultraschallsendern 52 und Ultraschallempfängern 54 und damit Orte, die durch den Ultraschall auf der Ultraschallstrecke getroffen sind, Ultraschalltransmissionswerte, die die Ultraschalltransmission an den Orten auf dem jeweiligen Wertdokument beschreiben. Die Orte liegen auf Spuren auf dem Wertdokument entlang der Transportrichtung. Dies geschieht zeilenweise, so dass nach Passieren des Wertdokuments für das ganze Wertdokument ortsaufgelöst Ultraschalltransmissionswerte vorliegen. Die Transmissionswerte sind dabei unter der Annahme einer grundsätzlich konstanten Sendeleistung der Ultraschallsender 52 einfach durch die empfangenen Ultraschallpulsenergien gegeben. In anderen Ausführungsbeispielen ist es jedoch auch möglich, die empfangenen Ultraschallpulsenergien durch eine vorgegebene oder gemessene Ultraschallpulsenergie gesendeter Pulse zu dividieren und damit normierte Transmissionswerte zu erhalten.
- Sensorsignale, die die Orte und die dafür ermittelten Ultraschalltransmissionswerte beschreiben, können dann von der Steuer- und Auswerteeinrichtung 47 an die Maschinensteuer- und Auswerteeinrichtung 46 übertragen und von dieser weiter ausgewertet werden. In anderen Ausführungsbeispielen kann die Auswertung auch von der Steuer- und Auswerteeinrichtung durchgeführt werden. Beispielsweise könnte die Lappigkeit eines Wertdokuments ermittelt oder eine Prüfung auf das Vorhandensein eines Klebestreifens durchgeführt werden, wie dies aus dem Stand der Technik bekannt ist.
- Ein zweites Ausführungsbeispiel in
Fig. 6 und Fig. 7 unterscheidet sich von dem ersten Ausführungsbeispiel zum einen dadurch, dass eine Einrichtung 44' zur Untersuchung von Wertdokumenten und/oder des Transports von Wertdokumenten mittels Ultraschall am Transportpfad 36 nahe dem Vereinzler 22 angeordnet ist. Zum anderen ist in der Sensoreinrichtung 38 des ersten Ausführungsbeispiels die Einrichtung 44 durch einen konventionellen Ultraschalltransmissionssensor ersetzt. Ansonsten werden für sich entsprechende Komponenten gleiche Bezugszeichen verwendet und die Ausführungen zu dem ersten Ausführungsbeispiel gelten auch hier entsprechend.Fig. 6 zeigt daher nur einen entsprechenden Ausschnitt aus der Vorrichtung inFig. 1 mit unter anderem der Zuführeinrichtung 14, einem Abschnitt des Transportpfades 36 und der Einrichtung 44'. Die Einrichtung 44' unterscheidet sich von der Einrichtung 44 zum einen darin, dass statt des Sendermoduls 51 und des Empfängermoduls 53 bzw. statt der Sätze von Ultraschallsendern 52 bzw. Ultraschallempfängern 54 nur ein Sender-/Empfängermodul 51' mit einem Satz von Ultraschallsender/- empfängern 52' aufweist und dementsprechend die Steuer- und Auswerteeinrichtung 47 durch eine Steuer- und Auswerteeinrichtung 47' ersetzt ist. Wie inFig. 7 veranschaulicht, sind die Ultraschallsender/-empfänger 52' jeweils einzeln über Signalverbindungen 49' mit der Steuer- und Auswerteeinrichtung 47' verbunden. Für jeden der Ultraschallsender/-empfänger 52' werden daher die Sendesignale und die Empfangssignale über dieselbe Signalverbindung geleitet. - Das Sender-/Empfängermodul 51' ist im Wesentlichen wie das Sendermodul 51 des ersten Ausführungsbeispiels ausgebildet, so dass die Ausführungen des ersten Ausführungsbeispiels auch hier entsprechend gelten. Insbesondere weisen die Ultraschallsender/-empfänger 52' jeweils einen kapazitiven mikromechanischen Ultraschallwandler auf und sind in einem Chip ausgebildet.
- Der Chip ist ebenfalls auf einem Schaltungsträger gehalten und kontaktiert, so dass die Ultraschallsender/ -empfänger Ultraschall im Wesentlichen in senkrechter Richtung auf das Wertdokument abgeben und von dem Wertdokument zurückgeworfenen Ultraschall aus einer Richtung senkrecht zur Transportebene des Wertdokuments empfangen. Von jeweils einem der Ultraschallsender/-empfänger wird daher eine Ultraschallstrecke 56' gebildet, die im Beispiel im Wesentlichen senkrecht zu einer Ebene des Wertdokuments verläuft. Allerdings sind die Leiterbahnen und gegebenenfalls andere elektrische Bauelemente oder Schaltungen auf dem Schaltungsträger so geändert, dass die kapazitiven mikromechanischen Ultraschallwandler als Sender von und Empfänger für Ultraschall fungieren können.
- Die Steuer- und Auswerteeinrichtung 47' ist so ausgebildet, dass diese Sendesignale an die Ultraschallsender/-empfänger 52' abgibt, auf die hin die Ultraschallsender/-empfänger Ultraschallpulse wie im ersten Ausführungsbeispiel abgeben, wobei allerdings die Pulsdauer nicht länger ist als die Laufzeit eines Ultraschallpulses von dem Ultraschallsender/-empfänger zu dem Wertdokument, vorzugsweise nicht länger ist als zwischen 10 µs und 10 ms.
- Wie in
Fig. 6 und Fig. 7 erkennbar, zeichnet sich diese Einrichtung dadurch aus, dass sie besonders kompakt ist und nur besonders wenig Raum beansprucht. - Die Einrichtung bzw. der Sensor 44' ist dazu ausgebildet, mittels Ultraschall zu erkennen, ob eine in Transportrichtung vordere bzw. führende Kante eines Wertdokuments die Ultraschallsender/-empfängeranordnung bzw. das Sender-/Empfängermodul 51' passiert, d.h. wenigstens eine der Ultraschallstrecken kreuzt.
- Hierzu ist die Steuer- und Auswerteeinrichtung 47' weiter dazu ausgebildet, die Empfangssignale zu empfangen und zu prüfen, ob deren Pegel unterhalb eines vorgegebenen Schwellwerts liegt, der charakteristisch dafür ist, dass kein Ultraschall von einem Wertdokument reflektiert wurde, oder nicht, und in Abhängigkeit von dem Ergebnis der Prüfung ein Signal an die Maschinensteuer- und -auswerteeinrichtung 46 abzugeben.. Die Steuer- und Auswerteeinrichtung 47' prüft genauer, ob nach einem Puls, dessen Pegel unterhalb des Schwellwerts liegt, ein Puls folgt, dessen Pegel oberhalb des Schwellwertes liegt. In diesem Fall gibt sie ein Signal an die Maschinensteuer- und -auswerteeinrichtung 46 ab, das anzeigt, dass ein Wertdokument die Einrichtung passiert. Dies kann das Signal zur Überwachung des Transports verwenden.
- Alternativ oder zusätzlich kann die Einrichtung bzw. der Sensor 44, insbesondere deren Steuer- und Auswerteeinrichtung dazu ausgebildet sein, mittels Ultraschall zu erkennen, ob eine in Transportrichtung hintere Kante eines Wertdokuments die Ultraschallsender/-empfängeranordnung passiert, d.h. eine der Ultraschallstrecken kreuzt. Wenn dieses Ereignis erkannt wird, kann von der Steuer- und Auswerteeinrichtung ein entsprechendes Signal abgegeben werden.
- Ein drittes Ausführungsbeispiel unterscheidet sich von dem ersten Ausführungsbeispiel in der Ansteuerung der Ultraschallsender 52 und der Auswertung der Empfangssignale der Ultraschallempfänger 54, wozu die Einrichtung 44 durch eine Einrichtung 44" ersetzt ist. Diese unterscheidet sich von der Einrichtung 44 lediglich dadurch, dass die Steuer- und Auswerteeinrichtung 47 durch eine Steuer- und Auswerteeinrichtung 47" ersetzt ist (vgl.
Fig. 8 ). Weiter sind die Ultraschallwandler an die Verwendung der im Folgenden beschriebenen unterschiedlichen Frequenzen angepasst. Insbesondere werden bei diesem Ausführungsbeispiel wenigstens zwei verschiedene, vorzugsweise benachbarte, der Ultraschallsender 52 zur Abgabe von Ultraschall mit unterschiedlicher Frequenz, in diesem Beispiel von Pulsen von Ultraschall mit unterschiedlicher Frequenz, angesteuert und Empfangssignale des dem jeweiligen Ultraschallsender 52 zugeordneten bzw. mit diesem eine Ultraschallstrecke bildenden Ultraschallempfängers 54 empfangen. Die Empfangssignale werden dann verarbeitet, insbesondere in Abhängigkeit von der Lage der Ultraschallempfänger oder der Relativlage der Ultraschallempfänger zu den Ultraschallsendern gefiltert. - Die Ultraschallsender sind in zwei Gruppen aufgeteilt. Die erste Gruppe umfasst, in Richtung der Zeile der Ultraschallsender betrachtet, den erste und den jeweils übernächsten Ultraschallsender, die zweite die dazwischenliegenden Ultraschallsender. Die Ultraschallsender sind also jeweils nur einer der beiden Gruppen zugeordnet.
- Die Steuer- und Auswerteeinrichtung 47" ist zum einen so ausgebildet, dass sie an die Ultraschallsender der ersten Gruppe Sendesignale abgibt, sodass diese Ultraschallpulse mit einer vorgegebenen Pulslänge und mit einer ersten vorgegebenen Ultraschallfrequenz abgeben; an die Ultraschallsender der zweiten Gruppe gibt sie Sendesignale ab, sodass diese Ultraschallpulse mit der vorgegebenen Pulslänge und mit einer zweiten vorgegebenen Ultraschallfrequenz abgeben.
- Entsprechend der Aufteilung der Ultraschallsender in zwei Gruppen sind auch die Ultraschallempfänger in zwei Gruppen aufgeteilt. Die erste Gruppe enthält die Ultraschallempfänger, die jeweils einem der Ultraschallsender der ersten Gruppe zugeordnet sind, die zweite Gruppe die Ultraschallempfänger, die jeweils einem der Ultraschallsender der zweiten Gruppe zugeordnet sind. Die Steuer- und Auswerteeinrichtung 47" ist dazu ausgebildet, die Empfangssignale der Ultraschallempfänger der ersten Gruppe entsprechend der ersten Ultraschallfrequenz zu verarbeiten, insbesondere zu filtern, und die Empfangssignale der Ultraschallempfänger der zweiten Gruppe entsprechend der zweiten Ultraschallfrequenz zu verarbeiten, insbesondere zu filtern.
- Genauer ist die Steuer- und Auswerteeinrichtung 47" wie die Steuer- und Auswerteeinrichtung 47 ausgebildet, unterscheidet sich von dieser aber in zweierlei Hinsicht.
- Zum einen ist die Steuer- und Auswerteeinrichtung 47" dazu ausgebildet, durch Abgabe von entsprechenden Sendesignalen jeweils nächstbenachbarte Ultraschallsender zur Abgabe von Pulsen von Ultraschall mit unterschiedlicher Frequenz anzusteuern.
- Dies ist in
Fig. 9 veranschaulicht, in der durch Quadrate symbolisiert, die Lage der Ultraschallstrecken 56 bzw. der sie jeweils begrenzenden Ultraschallsender 52 und Ultraschallempfänger 54 in Ebenen parallel zu der Transportebene bzw. einem transportierten Wertdokument gezeigt sind. Die Ultraschallstrecken bzw. die sie jeweils begrenzenden Ultraschallsender 52 und Ultraschallempfänger 54 sind entlang einer Zeile quer zur Transportrichtung T angeordnet. Die Quadrate sind entsprechend der Frequenz des Ultraschalls, den die Ultraschallsender 52 abgeben bzw. die diesen jeweils zugeordneten Ultraschallempfänger 54 empfangen, gemustert. Im Beispiel veranschaulichen die helleren Quadrate mit der dünneren Punktierung eine erste Frequenz von 400 kHz und die dunkleren Quadrate mit der dichteren Punktierung eine zweite Frequenz von 600 kHz. - Die Steuer- und Auswerteinrichtung 47" ist also so ausgebildet, dass sie Sendesignale abgibt, bei deren Empfang die Ultraschallsender entlang der Zeile alternierend Ultraschallpulse der ersten bzw. zweiten Frequenz abgegeben, so dass zwischen zwei Ultraschallsendern, die Ultraschall der ersten Frequenz abgeben, ein Ultraschallsender angeordnet ist, der Ultraschall der zweiten Frequenz abgibt..
- Der jeweils von einem der Ultraschallsender abgegebene Ultraschall wird, hier gegebenenfalls nach Transmission durch ein Wertdokument, von dem zugeordneten Ultraschallempfänger empfangen. Dieser bildet ein Empfangssignale, das an die Steuer- und Auswerteeinrichtung 47" abgegeben wird.
- Die Steuer- und Auswerteeinrichtung 47" ist daher zum anderen dazu ausgebildet, Empfangssignale des einem jeweiligen Ultraschallsender zugeordneten Ultraschallempfängers zu empfangen und zu verarbeiten, insbesondere in Abhängigkeit von den Eigenschaften des von dem zugeordneten Ultraschallsender abgegebenen Ultraschalls, d. h. hier auch von der Lage der Ultraschallempfänger oder der Relativlage der Ultraschallempfänger zu den Ultraschallsendern, zu filtern.
- Die erste und die zweite Ultraschallfrequenz sind zum einen so gewählt, dass die verwendeten Ultraschalleigenschaften eines Wertdokuments nicht stark davon abhängen, bei welcher der beiden Frequenzen sie erfasst werden. Zum anderen sind sie so gewählt, dass die Steuer- und Auswerteeinrichtung 47" in den Empfangssignalen durch frequenzabhängige Filterung gegebenenfalls auftretende Anteile von benachbarten Ultraschallstrecken herausfiltern und damit für die weitere Verarbeitung unterdrücken kann.
- Damit wird ein Übersprechen zwischen direkt benachbarten Ultraschallwandlern vermieden, obwohl die Ultraschallpulse im Wesentlichen gleichzeitig abgegeben werden.
- Nach dem Filtern können die Signale wie im ersten Ausführungsbeispiel weiterverarbeitet werden.
- Ein viertes Ausführungsbeispiel unterscheidet sich von dem ersten Ausführungsbeispiel dadurch, dass nun die Ultraschallsender so mit Sendesignalen angesteuert werden, dass diese jeweils eine Folge von Ultraschallpulsen abgeben, von denen wenigstens zwei aufeinanderfolgende eine unterschiedliche Frequenz aufweisen. Empfangssignale des dem jeweiligen Ultraschallsender zugeordneten Ultraschallempfängers werden empfangen und verarbeitet, insbesondere entsprechend der Frequenzabfolge der abgegebenen Ultraschallpulse gefiltert. Gegenüber dem ersten Ausführungsbeispiel ist daher nur die Einrichtung 44 durch eine Einrichtung 44(4) ersetzt (vgl.
Fig. 10 ). Diese unterscheidet sich von der Einrichtung 44 nur dadurch, dass die Steuer- und Auswerteeinrichtung 47 durch eine Steuer- und Auswerteeinrichtung 47(4) ersetzt ist und die kapazitiven mikromechanischen Ultraschallwandler auf die verwendeten Ultraschallfrequenzen ausgelegt sind. Ansonsten gelten die Ausführungen zu dem ersten Ausführungsbeispiel auch hier entsprechend. - Die erste und die zweite Ultraschallfrequenz unterscheiden sich wenigstens so, dass die verwendeten Ultraschallempfänger in Verbindung mit der deren Empfangssignale verarbeitenden bzw. auswertenden Steuer- und Auswerteeinrichtung Pulse mit diesen Frequenzen, hier durch Filterung in Bezug auf die Frequenz, eindeutig trennen kann. Je näher die verwendeten Ultraschallfrequenzen zueinander liegen, desto längere Pulsdauern müssen verwendet werden, um eine Trennung noch zu ermöglichen.
- Die Steuer- und Auswerteeinrichtung 47(4) ist zum einen dazu ausgebildet, für jeden der Ultraschallsender 52 Sendesignale zu bilden und an den jeweiligen Ultraschallsender abzugeben, so dass dieser eine Folge von Ultraschallpulsen abgibt, bei der unmittelbar aufeinanderfolgende unterschiedliche vorgegebenen Ultraschallfrequenzen, hier jeweils eine andere der beiden Ultraschallfrequenzen aufweisen. Die Ultraschallsender werden dabei von der Steuer- und Auswerteeinrichtung 47(4) so angesteuert, dass sie Pulse jeweils im Wesentlichen gleichzeitig, d. h. mit einer zeitlichen Verzögerung von weniger als einer halbe Pulsdauer zwischen den Ultraschallsendern, abgegeben. Beispielsweise kann dies so aussehen, dass zunächst Sendesignale für einen Puls mit der ersten Ultraschallfrequenz an die Ultraschallsender abgegeben werden, dann für den nächsten Puls mit der zweiten Ultraschallfrequenz entsprechende Sendesignale; diese Sequenz wird dann gegebenenfalls mehrfach wiederholt. Die Frequenz der Ultraschallpulse der Folge alterniert daher mit der Reihenfolge in der Folge.
- Die Steuer- und Auswerteeinrichtung 47(4) ist zum anderen dazu ausgebildet, in Abstimmung mit den Sendesignalen die Empfangssignale der Ultraschallsender zu empfangen und entsprechend der gesendeten Ultraschallfrequenz zu verarbeiten, insbesondere zu filtern.
- Dies ist in
Fig. 11 veranschaulicht, die schematisch für drei unmittelbar aufeinanderfolgende, in einem zeitlichen Abstand Δ abgegebene Pulse einer Pulsfolge zu Zeiten t, t+Δ, t+2Δ veranschaulicht, Ultraschall welcher Frequenz verwendet wird. - Die Darstellung entspricht der in
Fig. 9 . Quadrate symbolisieren die Lage der Ultraschallstrecken 56 bzw. der sie jeweils begrenzenden Ultraschallsender 52 und Ultraschallempfänger 54 in Ebenen parallel zu der Transportebene bzw. einem transportierten Wertdokument. Die Ultraschallstrecken bzw. die sie jeweils begrenzenden Ultraschallsender 52 und Ultraschallempfänger 54 sind entlang einer Zeile quer zur Transportrichtung T angeordnet. Die Quadrate sind entsprechend der Frequenz des Ultraschalls, den die Ultraschallsender 52 abgeben bzw. die diesen jeweils zugeordneten Ultraschallempfänger 54 empfangen, gemustert. Im Beispiel veranschaulichen die helleren Quadrate mit der dünneren Punktierung eine erste Frequenz von 400 kHz und die dunkleren Quadrate mit der dichteren Punktierung eine zweite Frequenz von 600 kHz. Aufeinanderfolgende Zeilen in derFig. 9 stellen die Situation zu aufeinanderfolgenden Zeitpunkten dar. Die Zeitpunkte sind um die Periode Δ beabstandet, die der Frequenz 1/Δ entspricht, mit der Ultraschallpulse abgegeben werden, im Beispiel 5 kHz. - Die Steuer- und Auswerteeinrichtung 47(4) gibt zunächst Sendesignale an die Ultraschallsender ab, die im wesentlichen Ultraschallpulse der ersten Frequenz abgeben, der, gegebenenfalls nach Wechselwirkung mit einem Wertdokument, hier Transmission durch das Wertdokument, von den Ultraschallempfängern empfangen wird. Die Ultraschallempfänger 54 bilden entsprechende Empfangssignale, die sie an die Steuer- und Auswerteeinrichtung 47(4) abgegeben. Diese filtert die Empfangssignale entsprechend der Ultraschallfrequenz der Ultraschallpulse und erzeugt Ultraschalltransmissionsdaten. Die Steuer- und Auswerteeinrichtung 47(4) gibt danach Sendesignale an die Ultraschallsender ab, die im wesentlichen Ultraschallpulse der zweiten Frequenz abgeben, der, gegebenenfalls nach Wechselwirkung mit dem Wertdokument, hier Transmission durch das Wertdokument, von den Ultraschallempfängern empfangen wird. Die Ultraschallempfänger bilden entsprechende Empfangssignale, die sie an die Steuer- und Auswerteeinrichtung 47(4) abgegeben. Diese filtert die Empfangssignale entsprechend der Ultraschallfrequenz der Ultraschallpulse und erzeugt wieder Ultraschalltransmissionsdaten. Diese Schritte wiederholen sich, so dass für ein Wertdokument, das mit einer bekannten Geschwindigkeit transportiert wird, Ultraschalltransmissionsdaten als Funktion des Ortes ermittelt werden. Diese können dann wie im ersten Ausführungsbeispiel weiterverarbeitet werden.
- Auf diese Weise können unerwünschte Reflexionen von Ultraschallpulsen, die sich zeitlich mit folgenden Ultraschallpulsen überlappen, gut von den gewünschten Ultraschallpulsen getrennt werden. Insbesondere können so Störungen durch Messungen an in Transportrichtung unmittelbar benachbarten Orten gemindert werden.
- Bei einer Variante dieses Ausführungsbeispiels können die Verbindungen von der Steuer- und Auswerteeinrichtung 47(4) zu den Ultraschallsendern 52 durch eine gemeinsame Verbindung ersetzt sein, die von der Steuer- und Auswerteeinrichtung 47(4) kommend zu den Ultraschallsendern 52 verzweigt.
- Ein fünftes Ausführungsbeispiel unterscheidet sich von dem dritten Ausführungsbeispiel dadurch, dass die Ultraschallsender so mit Sendesignalen angesteuert werden, dass diese Ultraschall in einer Weise abgegeben und nach Empfang ausgewertet wird, die das dritte und vierte Ausführungsbeispiel in gewisser Weise kombiniert.
- Gegenüber dem dritten Ausführungsbeispiel ist daher nur die Einrichtung 44" durch eine Einrichtung 44(5) ersetzt (vgl.
Fig. 10 ). Diese unterscheidet sich von der Einrichtung 44" nur dadurch, dass die Steuer- und Auswerteeinrichtung 47" durch eine Steuer- und Auswerteeinrichtung 47(5) ersetzt ist und die kapazitiven mikromechanischen Ultraschallwandler auf die verwendeten Ultraschallfrequenzen ausgelegt sind. Ansonsten gelten die Ausführungen zu dem ersten Ausführungsbeispiel auch hier entsprechend. - Jeder der Ultraschallsender gibt wieder eine Folge von Ultraschallpulse ab, bei der sich die Ultraschallfrequenzen aufeinanderfolgender Ultraschallpulse unterscheiden; insbesondere können sie eine erste und eine zweite Ultraschallfrequenz haben. Die Folgen für unmittelbar benachbarte Ultraschallsender unterscheiden sich jedoch insofern, als zeitlich im Wesentlichen gleichzeitig von diesen abgegebene Ultraschallpulse auch eine jeweils unterschiedliche Ultraschallfrequenz aufweisen.
- Dies ist in
Fig. 12 veranschaulicht, die, bis auf die Abfolge der Ultraschallfrequenzen derFig. 11 entspricht. - Für jeden Zeitpunkt, zu dem Pulse abgegeben werden sollen, gibt die Steuer- und Auswerteeinrichtung Sendesignale so an die Ultraschallsender ab, dass eine erste Gruppe der Ultraschallsender jeweils einen Ultraschallpuls einer ersten vorgegebenen Ultraschallfrequenz abgibt und eine zweite Gruppen der Ultraschallsender Ultraschallpulse einer zweiten vorgegebenen Ultraschallfrequenz; für die Wahl der beiden Ultraschallfrequenzen gelten vorzugsweise die Kriterien wie in den beiden vorhergehenden Ausführungsbeispielen beschrieben. Insbesondere sind sie wie in den beiden vorhergehenden Ausführungsbeispielen gewählt. Die Gruppen sind wie im dritten Ausführungsbeispiel so gewählt, dass zwischen zwei Ultraschallsender einer der Gruppen jeweils Ultraschallsender der anderen Gruppe liegt. Es ergibt sich so beispielsweise zur Zeit t ein Schema das dem in
Fig. 10 entspricht. Bei Empfang des Ultraschalls bilden die Ultraschallempfänger jeweils Empfangssignale, die getrennt der Steuer- und Auswerteeinrichtung 47(5) zugeführt werden. Diese wertet die Empfangssignale in Abhängigkeit von der Lage der Ultraschallsender und der diesen zugeordneten Ultraschallempfänger aus, und filtert die Empfangssignale entsprechend der Frequenz des gesendeten Ultraschalls für die jeweilige Ultraschallstrecke bzw. den Ultraschallsender bzw. des jeweils gesendeten Ultraschalls. - Für den nächsten Puls der Folge zur Zeit t+Δ gibt die Steuer- und Auswerteeinrichtung 47(5) Sendesignale an die Ultraschallsender so ab, dass die erste Gruppe der Ultraschallsender jeweils einen Ultraschallpuls der zweiten vorgegebenen Ultraschallfrequenz abgibt und die zweite Gruppe der Ultraschallsender Ultraschallpulse der ersten vorgegebenen Ultraschallfrequenz. Das sich ergebende Muster ist in
Fig. 12 in der zweiten Zeile gezeigt; es entspricht dem Muster zur Zeit t, wobei aber jeweils erste und zweite Frequenz vertauscht sind. Diese wertet die Empfangssignale in Abhängigkeit von der Lage der Ultraschallsender und der diesen zugeordneten Ultraschallempfänger aus, und filtert die Empfangssignale entsprechend der Frequenz der Sendesignale für die jeweilige Ultraschallstrecke bzw. den Ultraschallsender bzw. des jeweils gesendeten Ultraschalls. - Für den folgenden Puls der Folge zur Zeit t+2Δ gibt die Steuer- und Auswerteeinrichtung 47(5) Sendesignale ab, die denen zur Zeit t entsprechen und verarbeitet die Empfangssignale entsprechend.
- Bei diesen Schritten werden jeweils die Empfangssignale der Ultraschallempfänger entsprechend den Frequenzen der von den zugeordneten Ultraschallsendern Ultraschallpulse verarbeitet und Ultraschalltransmissionsdaten als Funktion des Orts an die Maschinensteuer- und Auswerteeinrichtung ausgegeben.
- Dieses Vorgehen hat den Vorteil, dass bei der Auswertung eines Empfangssignals für eine Ultraschallstrecke, mögliche störende Einflüsse durch Ultraschall auf direkt benachbarten Ultraschallstrecken und störende Einflüsse durch Ultraschall von Pulsen für benachbarte Ultraschallstrecken für den vorhergehenden Puls wenigstens teilweise herausgefiltert werden können. Diese Variante wird durch die Verwendung von kapazitiven mikromechanischen Ultraschallwandlern realistisch anwendbar, da diese kurze Pulse, einen breiten einsetzbaren Frequenzbereich und eine hohe örtliche Auflösung quer zur Zeile ermöglichen.
- Bei einem sechsten Ausführungsbeispiel in
Fig. 13 wird der Transport von Wertdokumenten unmittelbar nach dem Vereinzler auf das Vorliegen von sich überlappenden Wertdokumenten untersucht. Die Vorrichtung unterscheidet sich von der des ersten Ausführungsbeispiels zum einen dadurch, dass eine Einrichtung 44(6) zur Untersuchung des Transports von Wertdokumenten mittels Ultraschall am Transportpfad 36 nahe dem Vereinzler 22 angeordnet ist. Zum anderen ist in der Sensoreinrichtung 38 die Einrichtung 44 durch einen konventionellen Ultraschalltransmissionssensor ersetzt. Ansonsten werden für sich entsprechende Komponenten gleiche Bezugszeichen verwendet und die Ausführungen zu dem ersten Ausführungsbeispiel gelten auch hier entsprechend.Fig. 13 zeigt daher nur einen entsprechenden Ausschnitt der geänderten Vorrichtung inFig. 1 . - Die Einrichtung 47(6) unterscheidet sich von der Einrichtung 47 darin, dass die Steuer- und Auswerteeinrichtung 47 durch eine Steuer- und Auswerteeinrichtung 47(6) ersetzt ist. Die Steuer- und Auswerteeinrichtung 47(6) unterscheidet sich von der Steuer- und Auswerteeinrichtung 47 des ersten Ausführungsbeispiels nur dadurch, dass sie dazu ausgebildet ist, die Empfangssignale anders zu verarbeiten. Ansonsten ist sie wie die Steuer- und Auswerteeinrichtung des ersten Ausführungsbeispiels ausgebildet.
- Die Steuer- und Auswerteeinrichtung 47(6) ist genauer dazu ausgebildet, die Empfangssignale für im Wesentlichen gleichzeitig von den Ultraschallempfängern empfangene Ultraschallpulse dahingehend zu überprüfen, ob der Pegel bzw. die Intensität des Empfangssignals geringer als ein vorgegebener Schwellwert ist, der charakteristisch dafür ist, dass Empfangssignale für ein einzelnes Wertdokument einen Wert oberhalb des Schwellwertes aufweisen, solche für sich überlappende Wertdokumente jedoch Pegel unterhalb des Schwellwertes. Stellt die Steuer- und Auswerteeinrichtung 47(6) für eine vorgegebene Anzahl von Ultraschallempfängern fest, dass der Schwellwert unterschritten wird, gibt sie an die Maschinensteuer- und Auswerteeinrichtung 46 ein entsprechendes Signal aus, das anzeigt, dass wenigstens zwei sich wenigstens teilweise überlappende Wertdokumente transportiert werden.
- Die Maschinensteuer- und Auswerteeinrichtung kann dann bei Empfang eines solchen Signals die Transporteinrichtung so ansteuern, dass die sich überlappenden Wertdokumente in ein dafür vorgegebenes der Ausgabefächer transportiert werden. In anderen Ausführungsbeispielen kann die Transporteinrichtung auch so ausgebildet sein, dass der Transportpfad vor der Sensoreinrichtung 38 eine Verzweigung aufweist, an der eine durch Stellsignale ansteuerbare Weiche angeordnet ist. An dem Ende des nicht zur Sensoreinrichtung 38 führenden Zweiges kann dann ein Fach für nicht zu bearbeitende Wertdokumenten angeordnet sein. Die Maschinensteuer- und Auswerteeinrichtung kann dann dazu ausgebildet sein, bei Empfang eines Signals der Einrichtung 47(5) ein Stellsignal an die Weiche abzugeben, so dass die sich überlappenden Wertdokumente in das Fach transportiert und dort abgelegt werden.
- Ein siebtes Ausführungsbeispiel unterscheidet sich von dem ersten Ausführungsbeispiel nur dadurch, dass die Einrichtung 44 ersetzt ist durch eine Einrichtung 44(7) zur Untersuchung von Wertdokumenten und/oder des Transports von Wertdokumenten. Diese unterscheidet sich von der Einrichtung 44 in zweierlei Hinsicht. Zum einen sind das Sendermodul 51(7) und das Empfängermodul 53(7), die ansonsten wie im ersten Ausführungsbeispiel ausgebildet sind, und damit die Ultraschallsender und Ultraschallempfänger auf derselben Seite des Transportpfades 36 im Beispiel oberhalb des Transportpfades angeordnet; sodass eine Untersuchung der Ultraschallremission als Wertdokumenteigenschaft erfolgen kann. Zum anderen unterscheidet sich die Steuer- und Auswerteeinrichtung 47(7) von der Steuer- und Auswerteeinrichtung 47 nur darin, dass sie so ausgebildet ist, dass die Empfangssignale der Ultraschallempfänger so verarbeitet werden, dass eine Ultraschallremission als Funktion eines Ortes auf einem Wertdokument ermittelt wird.
- Die Anordnung des Sendermoduls 51(7) und des Empfängermoduls 53(7) und damit der Ultraschallsender 52 und Ultraschallempfänger 54 bzw. Ultraschallwandler ist in
Fig. 14 und Fig. 15 veranschaulicht;Fig. 14 zeigt eine grob schematische Ansicht auf die Einrichtung in einer Richtung auf den Transportpfad,Fig. 15 einen Schnitt durch die Einrichtung in einer Richtung quer zum Transportpfad. Die Signalverbindungen 49(7) sind insbesondere zusammengefasst dargestellt, obwohl wie im ersten Ausführungsbeispiel jeweils einzelne Signalverbindungen die Sender bzw. Empfänger mit der Steuer- und Auswerteeinrichtung verbinden. - Das Sendermodul 51(7) und das Empfängermodul 53(7) sind wie im ersten Ausführungsbeispiel ausgebildet. Die Ultraschallsender 52 bzw. deren Ultraschallwandler sind so relativ zu dem Transportpfad 36 ausgerichtet, dass der Ultraschall jeweils geneigt zu der Ebene des Transportpfades bzw. eines dort transportierten Wertdokuments ist, wobei er keine wesentliche Komponente in einer Richtung quer zur Transportrichtung aufweist. Die Ultraschallempfänger 54 bzw. deren Ultraschallwandler sind so angeordnet und ausgerichtet, dass sie den Ultraschall der Ultraschallsender 52, der an einem Wertdokument reflektiert wurde, empfangen, d. h. mit ihrer Empfangsrichtung auf dessen Ausbreitungsrichtung ausgerichtet sind. Je ein Ultraschallsender und der zugeordnete Ultraschallempfänger bilden so eine Ultraschallstrecke 56(7), was in
Fig. 15 durch eine gestrichelte Linie symbolisiert ist. - In anderen Ausführungsbeispielen können die Ultraschallsender und/oder die Ultraschallempfänger jeweils wenigstens zwei kapazitive mikromechanische Ultraschallwandler aufweisen. In diesem Fall sind die Ultraschallwandler jeweils eines Ultraschallsenders bzw. Ultraschallempfängers auf demselben Chip ausgebildet. Diese Ultraschallwandler können so mit der Steuer- und Auswerteeinrichtung 47 verbunden sein, dass sie mit denselben Sendesignalen angesteuert werden, d. h. die Steuer- und Auswerteeinrichtung jeweils nur ein Sendesignal abgibt, dass den beiden Ultraschallwandlern über den Ausgang bzw. dieselbe Signalverbindung zugeführt wird. Ebenso können Empfangssignale der Ultraschallwandler jeweils eines Ultraschallempfängers überlagert werden, die der Steuer- und Auswerteeinrichtung zugeführt und von dieser wie ein Empfangssignal empfangen und verarbeitet werden.
- Die Steuer- und Auswerteeinrichtung ist dazu ausgebildet, Sendesignale für jeweils nur einen Ultraschallsender zu bilden und an diesen abzugeben, bzw. die überlagerten Empfangssignale von jeweils nur einem Ultraschallempfänger zu empfangen und zu verarbeiten bzw. auszuwerten.
- Ein Beispiel für einen Ultraschallsender 72, der vier kapazitive mikromechanische Ultraschallwandler 74 aufweist, zeigt grob schematisch
Fig. 16 . Die vier kapazitiven mikromechanischen Ultraschallwandler 74 des durch gepunktete Linien veranschaulichten Ultraschallsenders sind gleich auf demselben, nur teilweise gezeigten Chip 76 ausgebildet, und bis auf deren rechteckige Form bzw. der rechteckigen Form der Membran, auf der die zweite Elektrode ausgebildet ist, wie die kapazitiven mikromechanischen Ultraschallwandler des ersten Ausführungsbeispiels ausgebildet. Die ersten Elektroden sind gemeinsam mit einer nicht gezeigten Leiterbahn kontaktiert, gleiches gilt für die zweiten Elektroden, die mit Zweigen der Leiterbahn 78 verbunden sind. Die Steuer- und Auswerteeinrichtung ist dazu ausgebildet Sendesignale abzugeben, die denen des ersten Ausführungsbeispiels, gegebenenfalls bis auf deren Pegel, entsprechen. Durch die vergrößerte schwingende Fläche der nun vier in Phase schwingenden Membranen können ein breiteres Schallfeld und eine höhere Schallintensität für einen Ultraschallsender erhalten werden. - In einem anderen Ausführungsbeispiel sind die Ultraschallwandler für jeweils einen Ultraschallsender bzw. Ultraschallempfänger bzw. Ultraschallsender/-empfänger getrennt mit der Steuer- und Auswerteeinrichtung über Signalverbindungen verbunden sind. Die Ultraschallwandler eines Ultraschallsenders können dann so angesteuert werden, so dass diese Ultraschall mit gleicher Frequenz abgeben. In diesem Ausführungsbeispiel unterscheiden sich die Sendesignale aber in ihrer Phase.
- Dieses Ausführungsbeispiel unterscheidet sich von dem ersten Ausführungsbeispiel durch die Ausbildung der Ultraschallsender und die der Steuer- und Auswerteeinrichtung. Alle anderen Ausführungen zu dem ersten Ausführungsbeispiel gelten hier entsprechend. In
Fig. 17 ist ein durch gestrichelte Linien angedeuteten Ultraschallsender veranschaulicht. Der Ultraschallsender 80, der einen Ultraschallsender 52 im ersten Ausführungsbeispiel ersetzt, verfügt über drei gleich ausgebildete kapazitive mikromechanische Ultraschallwandler 82, die in einer Zeile angeordnet und auf demselben nicht gezeigten Chip angeordnet sind. Die Ultraschallwandler 82 sind wie im ersten Ausführungsbeispiel ausgebildet und getrennt mit getrennten Leiterbahnen 84 verbunden, die wiederum einzeln über getrennte Signalverbindungen mit der Steuer- und Auswerteeinrichtung verbunden sind. - Die Steuer- und Auswerteeinrichtung unterscheidet sich von der des ersten Ausführungsbeispiels nur darin, dass sie für die Ultraschallwandler 82 jedes der Ultraschallsender 80 getrennte Sendesignale an die Ultraschallwandler 82 abgibt, so dass die Ultraschallwandler Ultraschallpulse mit gleicher Frequenz aber unterschiedlicher Phase erzeugen. Die Phasen bzw. Phasenunterschiede sind so gewählt, dass das resultierende Schallfeld durch die Überlagerung des Ultraschalls der Ultraschallwandler 82 des Ultraschallsenders stärker gebündelt bzw. fokussiert ist. Dies ist in
Fig. 18 veranschaulicht. In dieser ist das Schallfeld bzw. die Richtcharakteristik der Ultraschallwandler des durch eine gestrichelte Gerade symbolisierten Ultraschallsenders 80 bei Ansteuerung in Phase durch gestrichelte Linien gezeigt. Das entsprechende Schallfeld bzw. die entsprechende Richtcharakteristik bei Ansteuerung mit unterschiedlichen Phasen ist durch durchgezogene Linien grob schematisch dargestellt. Die Steuer- und Auswerteeinrichtung gibt Sendesignale so ab, dass die Ultraschallwandler Ultraschallpulse mit unterschiedlicher Phase abgeben, so dass eine besser gerichtete Richtcharakteristik bzw. ein stärker gerichtetes bzw. gebündeltes Schallfeld resultiert. - Vorzugsweise kann die Steuer- und Auswerteeinrichtung dazu ausgebildet sind, die Sendesignale so zu bilden und abzugeben, dass die Phasen zeitlich variieren. Beispielsweise können die Sendesignale so gebildet und abgegeben werden, dass die Richtcharakteristik als Funktion der Zeit um einen vorgegebenen Winkel geschwenkt wird, was in
Fig. 18 durch einen Doppelpfeil angedeutet ist. - In anderen Ausführungsbeispielen können die Ultraschallsender und/oder Ultraschallempfänger bzw. deren kapazitive mikromechanische Ultraschallwandler auch auf wenigstens zwei Chips ausgebildet sein, wobei die Chips so auf einem Schaltungsträger gehalten und kontaktiert sind, dass deren Ultraschallwandler entlang einer Zeile angeordnet sind, die quer zur Transportrichtung T verläuft. Dies ist in
Fig. 19 für den Fall eines Sendermoduls veranschaulicht, in der auf einem Schaltungsträger 90 des Moduls zwei gleich ausgebildete Chips 92 mit kapazitiven mikromechanischen Ultraschallwandlern angeordnet und mit Leiterbahnen wie im ersten Ausführungsbeispiel kontaktiert sind. Die Chips 92 sind wie der Chip im ersten Ausführungsbeispiel ausgebildet, die Erläuterungen dazu und die Bezugszeichen werden auch hier verwendet. Die Kontaktierung und Verbindung mit der Steuer- und Auswerteinrichtung erfolgt dabei so, dass die kapazitiven, mikromechanischen Ultraschallwandler jeweils eines Ultraschallsender bzw. eines Ultraschallempfängers auf demselben Chip ausgebildet bzw. angeordnet sind. - Andere Ausführungsbeispiele unterscheiden sich von dem ersten Ausführungsbeispiel durch Form und Verteilung der Ultraschallsender und Ultraschallempfänger, die wiederum jeweils durch einen kapazitiven mikromechanischen Ultraschallwandler gebildet sind.
-
Fig. 20 zeigt ein Beispiel, bei dem die Ultraschallwandler 63 auf einem Sendermodul gleichmäßig mit geringem Abstand und daher gleichmäßig hoher Auflösung entlang einer Zeile angeordnet sind, die länger ist als die Ausdehnung eines Wertdokuments 12 quer zur Transportrichtung T. -
Fig. 21 zeigt demgegenüber ein Beispiel für eine Einrichtung bei der die Ultraschallwandler 96 eines Sendermoduls 97 in variablem Abstand und mit variabler Ausdehnung ausgebildet sind. Die Ultraschallwandler sind wieder in einer Zeile angeordnet, die länger ist als die Ausdehnung eines Wertdokuments 12 quer zur Transportrichtung T. Die Ultraschallwandler in der Mitte der Zeile sind mit einem geringeren Abstand voneinander angeordnet, und erlauben daher ein entsprechend hohe örtliche Auflösung der Messung. Die äußeren Ultraschallwandler sind in größerem Abstand voneinander angeordnet und weisen eine größere schallerzeugende Fläche auf. Die örtliche Auflösung ist daher am Rand geringer, dafür ist der Schallpegel höher. -
Fig. 22 zeigt ein Beispiel, bei dem die Ultraschallsender eines Sendermoduls 99 wiederum entlang einer Zeile quer zur Transportrichtung T angeordnet sind. Die Ultraschallsender 98 in der Mitte weisen jeweils zwei in Transportrichtung nebeneinander ausgebildete kapazitive Ultraschallwandler 100 auf, die so kontaktier sind, dass sie einzeln mit phasenversetzten Sendesignalen gleicher Frequenz angesteuert werden können, um so die beschriebene Fokussierung in Transportrichtung zu erhalten. -
Fig. 23 zeigt ein Beispiel, bei dem eine Einrichtung zur Untersuchung von Wertdokumenten und/oder des Transports von Wertdokumenten mittels Ultraschall eine Vielzahl von kapazitiven mikromechanischen Ultraschallwandlern 102, die auf einem Chip 104 ausgebildet sind, in einer zweidimensionalen Anordnung, im Beispiel auf den Schnittpunkten eines Quadratgitters, aufweist. Eine solche Ausbildung ist zu günstigen Kosten nur erhältlich, wenn die Ultraschallwandler auf einem Chip mit aus der Mikromechanik bekannten Methoden hergestellt werden. Die Ultraschallwandler können einzeln als einzelne Sender bzw. Empfänger oder in kleinen Gruppen zusammengefasst als Sender bzw. Empfänger angesteuert werden. In letzterem Fall ist insbesondere eine phasenversetzte Ansteuerung der Ultraschallwandler jeweils eines Senders möglich. - In anderen Ausführungsbeispielen können die Chips auch als SMT-Elemente ausgebildet sein.
Claims (28)
- Einrichtung zur Untersuchung von Wertdokumenten (12) und/oder des Transports von Wertdokumenten (12), die entlang eines vorgegebenen Transportpfades (36) in einer vorgegebenen Transportrichtung transportiert werden, mittels Ultraschall mit
in einer Richtung quer zur Transportrichtung versetzt angeordneten Ultraschallsendern (52) zur Abgabe von Ultraschall auf den Transportpfad (36) auf Sendesignale hin und in einer Richtung quer zur Transportrichtung versetzt angeordneten Ultraschallempfängern (54) zum Empfang von Ultraschall, der mittels der Ultraschallsender (52) erzeugt ist, und zur Abgabe von Empfangssignalen oder
mit in einer Richtung quer zur Transportrichtung versetzt angeordneten Ultraschallsender/-empfängern (52') zur Abgabe von Ultraschall auf den Transportpfad (36) auf Sendesignale hin und zum Empfang des Ultraschalls nach Wechselwirkung mit wenigstens einem der Wertdokumente (12) und Abgabe von Empfangssignalen, dadurch gekennzeichnet, dass die Ultraschallsender (52) und/oder Ultraschallempfänger (54) jeweils wenigstens einen kapazitiven, mikromechanischen Ultraschallwandler (63) aufweisen bzw. wobei die Ultraschallsender/-empfänger (52') jeweils wenigstens einen kapazitiven, mikromechanischen Ultraschallwandler (63) aufweisen. - Einrichtung nach Anspruch 1, bei der die Ultraschallsender (52) und Ultraschallempfänger (54) so angeordnet und ausgebildet sind, dass jeweils einer der Ultraschallsender (52) und wenigstens einer der Ultraschallempfänger (54) eine Ultraschallstrecke (56; 56'; 56(7)) bilden und vorzugsweise auf sich gegenüberliegenden Seiten des Transportpfades (36) angeordnet sind.
- Einrichtung nach Anspruch 1, bei die Ultraschallsender (52) und Ultraschallempfänger (54) so angeordnet und ausgebildet sind, dass jeweils einer der Ultraschallsender (52) und wenigstens einer der Ultraschallempfänger (54) auf derselben Seite des Transportpfades (36) angeordnet sind, so dass von einem jeweiligen der Ultraschallwandler (63) abgegebener Ultraschall nach Wechselwirkung mit einem der Wertdokumente (12) in dem Transportpfad (36) von einem der Ultraschallempfänger (54) empfangen wird und der Ultraschallsender (52) und der Ultraschallempfänger (54) eine Ultraschallstrecke (56; 56'; 56(7)) bilden.
- Einrichtung nach einem der vorhergehenden Ansprüche, die weiter eine Steuer- und Auswerteinrichtung (47) aufweist, die mit den Ultraschallsendern (52) und Ultraschallempfängern (54) verbunden ist, und Sendesignale zur Abgabe von Ultraschall durch wenigstens einen der Ultraschallsender (52) bildet und abgibt und Empfangssignale wenigstens eines der Ultraschallempfänger (52) empfängt und verarbeitet oder
die weiter eine Steuer- und Auswerteinrichtung (47') aufweist, die mit den Ultraschallsender/-empfängern (52') verbunden ist, und Sendesignale zur Abgabe von Ultraschall durch wenigstens einen der Ultraschallsender/ -empfänger (52') bildet und an diesen abgibt und Empfangssignale des wenigstens einen der Ultraschallsender/-empfänger (54') empfängt und verarbeitet. - Einrichtung nach Anspruch 4, bei der der wenigstens eine kapazitive mikromechanische Ultraschallwandler (63) wenigstens einiger der Ultraschallsender (52) bzw. Ultraschallsender/-empfänger (52') und die Steuer- und Auswerteeinrichtung (47; 47') so ausgebildet sind, dass der wenigstens eine kapazitive mikromechanische Ultraschallwandler (63) der jeweiligen Ultraschallsender (52) bzw. der Ultraschallsender/-empfänger (52') in Abhängigkeit von Sendesignalen der Steuer- und Auswerteeinrichtung (47; 47') Ultraschallpulse vorgegebener Frequenz und Dauer abgibt, die vorzugsweise kürzer als 100 Millisekunden sind.
- Einrichtung nach einem der Ansprüche 4 oder 5, bei der der wenigstens eine kapazitive mikromechanische Ultraschallwandler (63) wenigstens einiger der Ultraschallempfänger (54) bzw. Ultraschallsender/- empfänger (52') jeweils so ausgebildet ist, dass er Ultraschallpulse vorgegebener Frequenz und Dauer empfängt, die vorzugsweise kürzer als 100 Millisekunden sind, und entsprechende Empfangssignale bilden, und dass die Steuer- und Auswerteeinrichtung (47; 47') dazu ausgebildet ist, die Empfangssignale zu empfangen und zu verarbeiten.
- Einrichtung nach einem der vorhergehenden Ansprüche, bei der wenigstens einer der Ultraschallsender (52) wenigstens zwei kapazitive, mikromechanische Ultraschallwandler (63) aufweist und/ oder wenigstens zwei der Ultraschallsender (52) jeweils wenigstens einen kapazitiven, mikromechanischen Ultraschallwandler (63) aufweisen, und diese kapazitiven, mikromechanischen Ultraschallwandler (63) auf einem Chip angeordnet sind und jeweils Elektroden aufweisen, die mit Leiterbahnen auf dem jeweiligen Chip (58) kontaktiert sind und/oder
bei der wenigstens einer der Ultraschallempfänger (54) wenigstens zwei kapazitive, mikromechanische Ultraschallwandler (63) aufweist und/oder wenigstens zwei der Ultraschallempfänger (54) jeweils wenigstens einen kapazitiven, mikromechanischen Ultraschallwandler (63) aufweisen, und diese kapazitiven, mikromechanischen Ultraschallwandler (63) auf einem Chip (58) angeordnet sind, jeweils Elektroden aufweisen, die mit Leiterbahnen auf dem jeweiligen Chip (58) kontaktiert sind oder bei der wenigstens einer der Ultraschallsender/-empfänger (52') wenigstens zwei kapazitive, mikromechanische Ultraschallwandler (63) und/oder wenigstens zweier der Ultraschallsender/-empfänger jeweils wenigstens einen kapazitiven, mikromechanischen Ultraschallwandler (63) aufweist, und diese kapazitiven, mikromechanischen Ultraschallwandler (63) auf einem Chip (58) angeordnet sind, jeweils Elektroden aufweisen, die mit Leiterbahnen auf dem jeweiligen Chip (58) kontaktiert sind. - Einrichtung nach einem der vorhergehenden Ansprüche, bei der benachbarte der auf einem Chip (58) ausgebildeten kapazitiven, mikromechanischen Ultraschallwandler (63) einen Abstand zwischen 100 µm und 10 mm in Transportrichtung und/oder einen Abstand zwischen 100 µm und 10 mm quer zur Transportrichtung aufweisen.
- Einrichtung nach einem der vorhergehenden Ansprüche, bei der wenigstens einer der kapazitiven, mikromechanischen Ultraschallwandler (63) eine Ausdehnung zwischen 100 µm und 10 mm in Transportrichtung und/ oder eine Ausdehnung zwischen 100 µm und 10 mm quer zur Transportrichtung aufweisen.
- Einrichtung nach Anspruch 4 oder einem der Ansprüche 5 bis 9 in Verbindung mit Anspruch 4, bei der die Steuer- und Auswerteeinrichtung (47; 47') dazu ausgebildet ist, an wenigstens zwei verschiedene, vorzugsweise benachbarte, der Ultraschallsender (52) bzw. Ultraschallsender/-empfänger (52') Sendesignale, vorzugsweise gleichzeitig, abzugeben, so dass diese Ultraschall mit unterschiedlicher Frequenz oder Pulse von Ultraschall mit unterschiedlicher Frequenz abgeben und Empfangssignale des mit dem jeweiligen Ultraschallsender (52) eine Ultraschallstrecke (56; 56'; 56(7)) bildenden Ultraschallempfängers (54) bzw. des Ultraschallsenders/-empfängers (47') zu empfangen und zu verarbeiten, insbesondere entsprechend zu filtern.
- Einrichtung nach Anspruch 4 oder einem der Ansprüche 5 bis 10 in Verbindung mit Anspruch 4, bei der die Steuer- und Auswerteeinrichtung (47; 47') dazu ausgebildet ist, an wenigstens einen der Ultraschallsender (52) bzw. bzw. der Ultraschallsenders/-empfänger (52') Sendesignalen so abzugeben, dass dieser eine Folge von Ultraschallpulsen abgibt, von denen wenigstens zwei aufeinanderfolgende eine unterschiedliche Frequenz aufweisen und Empfangssignale des dem jeweiligen Ultraschallsender (52) zugeordneten Ultraschallempfängers (54) bzw. des Ultraschallsenders/-empfängers (52') zu empfangen und zu verarbeiten, vorzugsweise entsprechend den Frequenzen bzw. der Abfolge der Frequenzen der abgegebenen Pulse zu filtern.
- Einrichtung nach Anspruch 4 oder einem der Ansprüche 5 bis 11 in Verbindung mit Anspruch 4, bei der wenigstens einer der Ultraschallsender (52) bzw. wenigstens einer der Ultraschallsender/-empfänger (52') wenigstens zwei kapazitive, mikromechanische Ultraschallwandler (63) aufweist und die Ultraschallwandler (63) des wenigstens einen Ultraschallsenders (52) bzw. Ultraschallempfängers (54) bzw. Ultraschallsender/-empfängers (52') so mit der Steuer- und Auswerteeinrichtung (47; 47') verbunden und die Steuer- und Auswerteeinrichtung (47; 47') so ausgebildet sind, dass diese an die Ultraschallwandler (63) Sendesignale abgibt, so dass diese Ultraschall mit gleicher Frequenz abgeben, bzw. dass diese die Empfangssignale gemeinsam für eine gleiche Frequenz verarbeitet.
- Einrichtung nach Anspruch 4 oder einem der Ansprüche 5 bis 12 in Verbindung mit Anspruch 4, bei der die Steuer- und Auswerteeinrichtung (47; 47') so ausgebildet, dass sie an die kapazitiven mikromechanischen Ultraschallwandler (63) solche Sendesignale abgibt, dass diese Ultraschall mit gleicher Frequenz und unterschiedlicher Phase abgeben.
- Einrichtung nach Anspruch 4 oder einem der Ansprüche 5 bis 13 in Verbindung mit Anspruch 4, bei der die Steuer- und Auswerteeinrichtung (47; 47') dazu ausgebildet ist, beim Verarbeiten der Empfangssignale aus diesen wenigstens einen Wert zu ermitteln, der das Flächengewicht und/oder die Dicke eines Wertdokuments (12) darstellt.
- Einrichtung nach Anspruch 4 oder einem der Ansprüche 5 bis 14 in Verbindung mit Anspruch 4, bei der die Steuer- und Auswerteeinrichtung (47; 47') dazu ausgebildet ist, beim Verarbeiten der Empfangssignale aus diesen ein örtliches Flächengewichtsprofil bzw. Dickenprofil zu ermitteln.
- Einrichtung nach Anspruch 4 oder einem der Ansprüche 5 bis 15 in Verbindung mit Anspruch 4, bei der die Steuer- und Auswerteeinrichtung (47; 47') dazu ausgebildet ist, beim Verarbeiten der Empfangssignale zu ermitteln, ob ein Wertdokument (12) für das Empfangssignale empfangen wurden, als einzelnes Wertdokument (12), oder wenigstens teilweise überlappend mit einem anderen Wertdokument (12) transportiert wurde und bei Ermittlung sich wenigstens teilweise überlappender Wertdokumente (12) ein ein Ergebnis der Ermittlung darstellendes Signal abzugeben.
- Einrichtung nach Anspruch 4 oder einem der Ansprüche 5 bis 16 in Verbindung mit Anspruch 4, bei der die Steuer- und Auswerteeinrichtung (47; 47') dazu ausgebildet ist, bei der Verarbeitung der Empfangssignale unter Verwendung der Empfangssignale Kanten, vorzugsweise Vorder- oder Hinterkanten, eines transportierten Wertdokuments (12) zu erkennen, und bei dem die Steuer- und Auswerteeinrichtung (47; 47') vorzugsweise dazu ausgebildet ist, bei der Verarbeitung der Empfangssignale zu erkennen, ob und/oder wann wenigstens eine vorgegebene Kante, vorzugsweise die in Transportrichtung vordere und/oder die in Transportrichtung hintere Kante, eines Wertdokuments (12) einen vorgegebenen Ort an dem Transportpfad (36) passiert, und/oder deren Lage zu erkennen, und vorzugsweise daraufhin ein entsprechendes Signal abzugeben.
- Vorrichtung zur Bearbeitung von Wertdokumenten (12) mit
einer Zuführeinrichtung (14) zur Aufnahme zu bearbeitender Wertdokumente (12),
einer Ausgabeeinrichtung zur Ausgabe oder Aufnahme der bearbeiteten Wertdokumente (12),
einer Transporteinrichtung (18) zum Transportieren der Wertdokumente (12) von der Zuführeinrichtung (14) entlang eines Transportpfades (36) zu der Ausgabeeinrichtung und
mit wenigstens einer im Bereich eines Abschnitts des Transportpfades (36) angeordneten Einrichtung zur Untersuchung der Wertdokumente (12) und/ oder des Transports der Wertdokumente (12), die entlang des Transportpfads (36) transportiert werden, nach einem der Ansprüche 1 bis 17. - Verfahren zur Untersuchung von Wertdokumenten (12) und/oder zur Überwachung des Transports von Wertdokumenten (12) mittels Ultraschall, bei dem
mittels wenigstens eines Ultraschallsenders (52) auf Sendesignale hin Ultraschall auf ein entlang eines Transportpfades (36) transportiertes Wertdokument (12) abgegeben und der daraufhin von dem Wertdokument (12) ausgehende Ultraschall mittels wenigstens eines Ultraschallempfängers (54) empfangen und Empfangssignale gebildet werden, oder mittels wenigstens eines Ultraschallsender/-empfängers (52') auf Sendesignale hin Ultraschall auf ein entlang eines Transportpfades (36) transportiertes Wertdokument (12) abgegeben und der daraufhin von dem Wertdokument (12) ausgehende Ultraschall mittels des wenigstens einen Ultraschallsender/-empfängers (52') empfangen und Empfangssignale gebildet werden,
dadurch gekennzeichnet, dass der wenigstens eine Ultraschallsender (52) und/ oder der wenigstens eine Ultraschallempfänger (54) bzw. der wenigstens eine Ultraschallsender/-empfänger (52') wenigstens einen kapazitiven, mikromechanischen Ultraschallwandler (63) aufweisen. - Verfahren nach Anspruch 19, bei dem eine Einrichtung nach einem der vorhergehenden Ansprüche verwendet wird und die Ultraschallsender (52) und Ultraschallempfänger (54) bzw. Ultraschallsender/-empfänger (52') der Einrichtung als der wenigstens eine Ultraschallsender (52) und der wenigstens eine Ultraschallempfänger (54) bzw. die Ultraschallsender/ -empfänger (52') als der wenigstens eine Ultraschallsender/- empfänger (52') verwendet wird, und Sendesignale an den wenigstens einen Ultraschallsender (52) bzw. den wenigstens einen Ultraschallsender/-empfänger (52') abgegeben werden, der daraufhin Ultraschall abgibt, und bei Empfang des gebildeten Ultraschalls Empfangssignale des wenigstens einen Ultraschallempfängers (54) bzw. Ultraschallsender/- empfängers (52') empfangen und ausgewertet werden.
- Verfahren nach Anspruch 19 oder 20, bei dem der wenigstens eine kapazitive mikromechanische Ultraschallwandler (63) wenigstens einiger der Ultraschallsender (52) bzw. Ultraschallsender/-empfänger (52') so ausgebildet ist und Sendesignale so gebildet und abgegeben werden, dass der wenigstens eine kapazitive mikromechanische Ultraschallwandler (63) der jeweiligen Ultraschallsender (52) bzw. der Ultraschallsender/- empfänger (52') in Abhängigkeit von den Sendesignalen der Steuer- und Auswerteeinrichtung (47; 47') Ultraschallpulse vorgegebener Frequenz und Dauer abgibt, die vorzugsweise kürzer als 100 Millisekunden sind.
- Verfahren nach einem der Ansprüche 19 bis 21, bei dem wenigstens eine kapazitive mikromechanische Ultraschallwandler (63) wenigstens einiger der Ultraschallempfänger (54) bzw. Ultraschallsender/-empfänger (52') jeweils so ausgebildet ist, dass er Ultraschallpulse vorgegebener Frequenz und Dauer empfängt, die vorzugsweise kürzer als 100 Millisekunden sind, und entsprechende Empfangssignale bildet, und die Empfangssignale empfangen und verarbeitet werden.
- Verfahren nach einem der Ansprüche 19 bis 22, bei dem an wenigstens zwei verschiedene, vorzugsweise benachbarte, der Ultraschallsender (52) bzw. Ultraschallsender/-empfänger (52') Sendesignale abgegeben werden, so dass diese Ultraschall mit unterschiedlicher Frequenz oder Pulse von Ultraschall mit unterschiedlicher Frequenz abgeben, und Empfangssignale des mit dem jeweiligen Ultraschallsender (52) eine Ultraschallstrecke (56; 56'; 56(7)) bildenden Ultraschallempfängers (54) bzw. des Ultraschallsenders/-empfängers (52') empfangen und verarbeitet werden, insbesondere entsprechend gefiltert werden.
- Verfahren nach einem der Ansprüche 19 bis 23, bei dem wenigstens einer der Ultraschallsender (52) so mit Sendesignalen angesteuert wird, dass dieser eine Folge von Ultraschallpulsen abgibt, von denen wenigstens zwei aufeinanderfolgende eine unterschiedliche Frequenz aufweisen und Empfangssignale des dem jeweiligen Ultraschallsender (52) zugeordneten Ultraschallempfängers (54) bzw. des Ultraschallsenders/-empfängers (52') empfangen und verarbeitet, vorzugsweise entsprechend den Frequenzen bzw. der Abfolge der Frequenzen der abgegebenen Pulse gefiltert werden.
- Verfahren nach einem der Ansprüche 19 bis 24, bei dem wenigstens einer der Ultraschallsender (52) und/oder Ultraschallempfänger (54) bzw. Ultraschallsender/-empfänger (52') wenigstens zwei kapazitive mikromechanische Ultraschallwandler (63) aufweist, und bei dem an diese kapazitiven, mikromechanischen Ultraschallwandler (63) vorzugsweise Sendesignale so abgegeben werden, dass diese Ultraschall mit gleicher Frequenz abgeben, bzw. werden die Empfangssignale für eine vorgegebene gleiche Frequenz ausgewertet.
- Verfahren nach einem der Ansprüche 19 bis 25, bei dem aus den Empfangssignalen, vorzugsweise mittels einer Auswerteeinrichtung oder der Steuer- und Auswerteeinrichtung (47; 47'), wenigstens ein Wert ermittelt wird, der das Flächengewicht und/oder die Dicke des Wertdokuments (12) darstellt.
- Verfahren nach einem der Ansprüche 19 bis 26, bei dem aus den Empfangssignalen , vorzugsweise mittels einer Auswerteeinrichtung oder der Steuer- und Auswerteeinrichtung (47; 47'), Werte ermittelt werden, die das Flächengewicht bzw. die Dicke in Abhängigkeit von dem Ort darstellen.
- Verfahren nach einem der Ansprüche 19 bis 27, bei dem beim Verarbeiten der Empfangssignale diese dazu verwendet werden, zu erkennen, ob und/oder wann wenigstens eine vorgegebene Kante, vorzugsweise die in Transportrichtung vordere und/oder die in Transportrichtung hintere Kante, eines Wertdokuments (12) einen vorgegebenen Ort passiert, und/ oder deren Lage zu erkennen.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102015009899.3A DE102015009899A1 (de) | 2015-07-30 | 2015-07-30 | Einrichtung und Verfahren zur Untersuchung von Wertdokumenten und / oder des Transports von Wertdokumenten mittels Ultraschall |
PCT/EP2016/001324 WO2017016673A1 (de) | 2015-07-30 | 2016-07-29 | Einrichtung und verfahren zur untersuchung von wertdokumenten und / oder des transports von wertdokumenten mittels ultraschall |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3329473A1 EP3329473A1 (de) | 2018-06-06 |
EP3329473B1 true EP3329473B1 (de) | 2020-09-09 |
Family
ID=56557661
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16745416.4A Active EP3329473B1 (de) | 2015-07-30 | 2016-07-29 | Einrichtung und verfahren zur untersuchung von wertdokumenten und / oder des transports von wertdokumenten mittels ultraschall |
Country Status (5)
Country | Link |
---|---|
US (1) | US20190012866A1 (de) |
EP (1) | EP3329473B1 (de) |
DE (1) | DE102015009899A1 (de) |
RU (1) | RU2735576C2 (de) |
WO (1) | WO2017016673A1 (de) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6685982B2 (ja) * | 2017-09-20 | 2020-04-22 | 株式会社東芝 | トランスデューサおよび検査装置 |
CN107909709A (zh) * | 2017-11-23 | 2018-04-13 | 深圳怡化电脑股份有限公司 | 钞箱内纸币张数的确定方法及系统 |
CN108335403B (zh) * | 2018-01-05 | 2020-04-28 | 深圳怡化电脑股份有限公司 | 一种纸币的厚度检测方法、装置、终端设备和存储介质 |
CN109870130B (zh) * | 2019-04-09 | 2024-07-02 | 中国科学技术大学 | 一种超声阵列检测物件平整度的测量方法与装置 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3048710A1 (de) * | 1980-12-23 | 1982-07-15 | GAO Gesellschaft für Automation und Organisation mbH, 8000 München | "verfahren zur pruefung des flaechengewichts von duennem material" |
GB0204572D0 (en) * | 2002-02-27 | 2002-04-10 | Univ Warwick | Non contacting air-coupled ultrasonic inspection system for food and drinks |
DE10318104A1 (de) * | 2003-04-22 | 2004-11-11 | Giesecke & Devrient Gmbh | Verfahren und Vorrichtung zur Bestimmung der Lappigkeit von Blattgut |
DE10318756B4 (de) * | 2003-04-25 | 2013-06-06 | Giesecke & Devrient Gmbh | Verfahren und Vorrichtung zur Bestimmung der Dicke von Blattgut |
US8764664B2 (en) * | 2005-11-28 | 2014-07-01 | Vizyontech Imaging, Inc. | Methods and apparatus for conformable medical data acquisition pad and configurable imaging system |
DE102006008476A1 (de) * | 2006-02-23 | 2007-09-13 | Siemens Ag | Verfahren und Vorrichtung zur Erzeugung eines Laufzeitsignals für eine Bestimmung eines Abstands eines Objekts durch Messung der Laufzeit von Ultraschallpulsen |
DE102006033001A1 (de) * | 2006-07-17 | 2008-01-24 | Giesecke & Devrient Gmbh | Verfahren zur Beurteilung eines Zustands eines Wertdokuments im Hinblick auf Lappigkeit und Mittel zur Durchführung des Verfahrens |
DE102006043882A1 (de) * | 2006-09-19 | 2008-03-27 | Giesecke & Devrient Gmbh | Sensor zur Untersuchung eines Wertdokuments und Verfahren zur Herstellung des Sensors |
JP5734620B2 (ja) * | 2010-10-27 | 2015-06-17 | オリンパス株式会社 | 超音波プローブ装置及びその制御方法 |
JP5986441B2 (ja) * | 2012-07-06 | 2016-09-06 | キヤノン株式会社 | 静電容量型トランスデューサ |
US9542787B2 (en) * | 2013-03-15 | 2017-01-10 | De La Rue North America Inc. | Systems and methods for detecting a document attribute using acoustics |
DE102013015224A1 (de) * | 2013-09-13 | 2015-03-19 | Giesecke & Devrient Gmbh | Verfahren und Vorrichtung zum Prüfen von Wertdokumenten auf Irregularitäten |
CN104050746B (zh) * | 2014-06-30 | 2017-04-26 | 广州广电运通金融电子股份有限公司 | 一种厚度检测装置 |
JP6757350B2 (ja) * | 2018-03-15 | 2020-09-16 | 株式会社東芝 | 検査装置及び検査方法 |
-
2015
- 2015-07-30 DE DE102015009899.3A patent/DE102015009899A1/de not_active Withdrawn
-
2016
- 2016-07-29 WO PCT/EP2016/001324 patent/WO2017016673A1/de active Application Filing
- 2016-07-29 EP EP16745416.4A patent/EP3329473B1/de active Active
- 2016-07-29 RU RU2018106967A patent/RU2735576C2/ru active
- 2016-07-29 US US15/746,975 patent/US20190012866A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
DE102015009899A1 (de) | 2017-02-02 |
WO2017016673A1 (de) | 2017-02-02 |
RU2018106967A (ru) | 2019-08-28 |
RU2018106967A3 (de) | 2019-11-13 |
US20190012866A1 (en) | 2019-01-10 |
EP3329473A1 (de) | 2018-06-06 |
RU2735576C2 (ru) | 2020-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3329473B1 (de) | Einrichtung und verfahren zur untersuchung von wertdokumenten und / oder des transports von wertdokumenten mittels ultraschall | |
EP2044426B1 (de) | Verfahren zur beurteilung eines zustands eines wertdokuments im hinblick auf lappigkeit mittels ultraschall und mittel zur durchführung des verfahrens | |
EP2430474B1 (de) | Verfahren zur funktionsprüfung eines ultraschallsensors an einem kraftfahrzeug, verfahren zum betrieb eines ultraschallsensors an einem kraftfahrzeug und abstandsmessvorrichtung mit mindestens einem ultraschallsensor zur verwendung in einem kraftfahrzeug | |
EP2795589B1 (de) | Verfahren und vorrichtung zur prüfung eines sicherheitsmerkmals eines wertdokuments | |
CH653767A5 (de) | Verfahren zur beruehrungslosen bestimmung des flaechengewichts von duennem material. | |
EP3044767B1 (de) | Verfahren und vorrichtung zum prüfen von wertdokumenten auf irregularitäten | |
EP2795591B1 (de) | Verfahren und vorrichtung zur untersuchung eines wertdokuments | |
EP1059620B1 (de) | Piezo-Effekt-basiertes Sicherheitsmerkmal an Wert- und Sicherheitsdokumenten und dazugehöriges Nachweisverfahren | |
EP1625551B1 (de) | Verfahren und vorrichtung zur bestimmung der lappigkeit von blattgut mittels ultraschall | |
DE102018200688A1 (de) | Verfahren und Vorrichtung zum Betreiben eines akustischen Sensors | |
EP2795590B1 (de) | Verfahren und vorrichtung zum prüfen eines wertdokumentes | |
DE69917438T2 (de) | Anordnung zur erkennung/prüfung von gegenständen | |
WO2008003364A1 (de) | Ultraschallsensor, fahrzeug mit ultraschallsensor und verfahren zum betreiben des ultraschallsensors | |
EP3396404B1 (de) | Verfahren zur lageerkennung von objekten | |
EP2362213B1 (de) | Verfahren zur Überwachung und Überprüfung von plattenförmigen Bauteilen | |
DE10318756A1 (de) | Verfahren und Vorrichtung zur Bestimmung der Dicke von Blattgut | |
EP3134878B1 (de) | Verfahren zum prüfen eines wertdokuments | |
DE102005034589A1 (de) | Anordnung und Verfahren zur richtungssensitiven Erfassung mechanischer Schwingungen | |
EP2884774A1 (de) | Verfahren zur kontaktlosen Funktionsprüfung eines Signalwandlers | |
DE102020212475A1 (de) | Sensorvorrichtung und Verfahren zur Bestimmung einer Eigenschaft einer Magnetisierung einer Sensorstruktur für eine Drehmomenterkennung | |
WO2024149643A1 (de) | Verfahren zum betreiben einer elektroakustischen wandlervorrichtung und system zum durchführen des verfahrens | |
EP3408839A1 (de) | Verfahren und vorrichtung zur untersuchung von wertdokumenten |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180228 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200318 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1312541 Country of ref document: AT Kind code of ref document: T Effective date: 20200915 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502016011131 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL AND PARTN, CH |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201210 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201209 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210111 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210109 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502016011131 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20210610 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20210721 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20210730 Year of fee payment: 6 Ref country code: FR Payment date: 20210722 Year of fee payment: 6 Ref country code: AT Payment date: 20210720 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20210723 Year of fee payment: 6 Ref country code: GB Payment date: 20210722 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210729 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20220801 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1312541 Country of ref document: AT Kind code of ref document: T Effective date: 20220729 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20220729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220731 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220731 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20160729 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220729 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230520 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220801 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200909 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240731 Year of fee payment: 9 |