EP2015871B1 - Drei-phasen-trennseparator mit einer schälscheibe und feststoffaustragsöffnungen - Google Patents

Drei-phasen-trennseparator mit einer schälscheibe und feststoffaustragsöffnungen Download PDF

Info

Publication number
EP2015871B1
EP2015871B1 EP06724790.8A EP06724790A EP2015871B1 EP 2015871 B1 EP2015871 B1 EP 2015871B1 EP 06724790 A EP06724790 A EP 06724790A EP 2015871 B1 EP2015871 B1 EP 2015871B1
Authority
EP
European Patent Office
Prior art keywords
drum
separator
phase
disk
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06724790.8A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP2015871A1 (de
Inventor
Kim TRÄGER
Herbert Kunz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Mechanical Equipment GmbH
Original Assignee
GEA Mechanical Equipment GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GEA Mechanical Equipment GmbH filed Critical GEA Mechanical Equipment GmbH
Publication of EP2015871A1 publication Critical patent/EP2015871A1/de
Application granted granted Critical
Publication of EP2015871B1 publication Critical patent/EP2015871B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B11/00Feeding, charging, or discharging bowls
    • B04B11/08Skimmers or scrapers for discharging ; Regulating thereof
    • B04B11/082Skimmers for discharging liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B1/00Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles
    • B04B1/04Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles with inserted separating walls
    • B04B1/08Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles with inserted separating walls of conical shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B1/00Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles
    • B04B1/10Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles with discharging outlets in the plane of the maximum diameter of the bowl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B11/00Feeding, charging, or discharging bowls
    • B04B11/02Continuous feeding or discharging; Control arrangements therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B13/00Control arrangements specially designed for centrifuges; Programme control of centrifuges
    • B04B2013/006Interface detection or monitoring of separated components

Definitions

  • the invention relates to a separator according to the preamble of claim 1 as from WO 96/34693 is known and a method for three-phase separation with such a separator.
  • Such separators have been known for a long time.
  • the liquid discharges are provided with so-called peeling discs, in which the effect is exploited that the rotational energy of the incoming liquid is converted into a back pressure in the discharge line.
  • peeling discs have proven themselves.
  • a well-known three-phase separator is in Fig. 3 shown. If one or both of the two fluid outlets from the drum are assigned a paring disc and the further outlet is nozzle-like, the result is an area delta LP within which the paring disc permits a displacement of the separation zone in the drum by throttling (see, eg, US Pat WO 86/01436 ).
  • the range of displaceability of the separation zone is still relatively low and it is not readily possible to move the separating zone in operation fast enough about the peeling discs.
  • the shift also does not always lead to stable process conditions, since the variation of the throttling of the peeling disk processes directly affects several parameters of the process.
  • the invention has the object of developing the generic separator such that in a simple manner during operation, a displacement of the separation zone within the drum over a larger radial range is possible, with an improved adjustability of the position of the separation zone should be possible.
  • a method for operating such a separator is also to be proposed.
  • Throttle devices also on the type in operation non-rotating annular discs are known from the field of solid bowl screw centrifuges known per se - so from the DE 102 09 925 A1 or the DE 102 03 652 A1 , However, the drums of these centrifuges are stored in the region of both axial ends and not oscillating like centrifuges. This results in the difference that the drums of the decanter or solid bowl centrifuges rotate about a defined axis, while the Separatortrommeln Perform a certain precession movement, so that it was assumed that the conditions at the drain ring gap are not constant enough to achieve a defined adjustment of the separation zone between light and heavy phase and a shift of the drainage radius of the heavy liquid phase by means of an adjustable throttle plate. This assumption has not been confirmed. Contrary to expectations, stable conditions also occur at the outlet gap of the separator at the throttle disk. Rather, the throttle disc improves process efficiency as well as fine tuning and process stability.
  • the separator is suitable for a wide variety of three-phase separation tasks, in particular crude oil processing, in which the crude oil is clarified by solids and water is separated from the crude oil.
  • the invention also provides a use of a separator according to the invention according to one of the corresponding claims for crude oil treatment in which the crude oil is clarified by solids and water is separated from the crude oil.
  • the invention also provides a process for the three-phase separation and clarification of a product to be processed in at least two liquid phases and a solid phase, wherein the processing of the product takes place in a separator according to one of the corresponding claims directed to this, wherein for adjusting the separation zone once in operation adjusting the radius of the light liquid phase LP by means of the paring disc and then adjusting the heavy liquid phase (HP) and thus the separation zone by means of the throttle device, preferably the annular disc takes place.
  • Fig.1 to 3 each show separator drums 1, which have a vertically oriented axis of rotation at the radius r 0 .
  • the Separatortrommeln 1 are each set to a rotary spindle 2, for example, the type of Fig. 4 driven directly or via a belt (not shown here) or otherwise (eg a gearbox) is.
  • the rotary spindle 2 may be designed conically in its upper peripheral region.
  • the rotary spindle 2 is mounted with at least one or more bearings 3 on one side of the drum - here below the drum - oscillating and therefore describes in operation due to residual unbalance unlike a decanter a new axis adjusts a kind of precession movement around the vertical r 0 ( please refer Fig. 4 in which the inclination angle ⁇ is shown).
  • constructions are also known in which a lower drum is quasi “suspended" on an upper rotary spindle. Again, however, the drum is rotatably mounted oscillating only at one of its ends or subsequent to one of its axial ends.
  • the separator drum 1 has a feed pipe 4 for a product P to be hurled, to which a distributor 5 adjoins, which is provided with at least one or more outlet openings 6, through which incoming centrifugal material (crossed hatching) into the interior of the separator drum 1 and the Rising channel 7 of the plate package can be passed.
  • a feed through the spindle e.g. from below is also possible.
  • the construction is chosen such that the outlet openings 6 below a riser channel 7 in a plate package 8 (outer diameter at reference numeral 8) of conically shaped separating plates 9 are.
  • the plate package 8 of a Sheath plate 17 completed, which has a larger diameter than the plate package.
  • the Emulionsline or dividing line (also called E line) - forms a separation zone between a lighter liquid phase LP (hatching from the left bottom right top) and a heavier liquid phase HP (hatching to the lower right).
  • the lighter liquid phase LP (light phase) is conducted at an inner radius r LP with the aid of a paring disc 10 (also called a gripper) from the drum.
  • a paring disc 10 also called a gripper
  • the paring disc acts like a pump.
  • the peeling disk is downstream of a valve 18 for throttling, for example, outside the separator in its downstream discharge.
  • the heavy liquid phase HP flows around the outer circumference of the disc plate 17 through discharge passage 11 to a liquid outlet 12 at the upper axial end of the drum 1 (radius r HP ).
  • the constructions of the invention Fig. 1 and 2 are different than the construction of the Fig. 3 provided in the region of the liquid outlet 12 with an adjustable throttle device 13, by means of which the cross section is variable at the liquid outlet.
  • this throttle device 13 In order to realize this throttle device 13 structurally in a simple manner, it is proposed according to the type Fig. 2 and 3 to arrange in the axial direction above the liquid outlet 12 outside the drum 1, a kind of annular or throttle plate 19, which is arranged and formed spaced from the at least one liquid outlet opening, wherein the position of the annular disc 19 to the at least one Outlet opening is variable.
  • the disc may have a flat surface or be provided with grooves, for example.
  • the surface of the annular disc is preferably - but not necessarily - aligned perpendicular to the drum axis.
  • the annular disc 19 is e.g. axially displaceable or arranged pivotably on one of its peripheral edges and the annular disc is associated with a drive which is adapted to change the distance between the preferably stationary during operation annular disc 19 and the outlet opening 12.
  • the annular disc 19 is designed to be stationary during operation and does not rotate with the drum 1 with.
  • the radius of the E-line can be moved within the drum by a certain range.
  • the double conical drum in the region of its largest diameter solid discharge nozzles 21, which serve for the continuous discharge of solid particles S from the drum.
  • This embodiment is preferred. Embodiments without an additional solids discharge are also conceivable.
  • the displaceable annular disc leads to a significant improvement in the adjustability of the emulsion line (E-line) and to a better controllability and controllability of the process. This also results in an enlarged adjustment range of the separation zone.
  • E-line emulsion line
  • the outlet openings 12 may have a round shape in the manner of bores or may be e.g. Wedge-like or step-like widening from the inside out, which increases the control capability in different cases .. It could also be a tube placed in the outlet openings, which would have the advantage that the liquid flow does not attach to the drum.
  • This consists of a liquid outlet in the drum upstream disk 15 which extends from the outer periphery of the paring disc 10 to the outside and having a maximum circumferential radius which is greater than the largest radius to which the outlet openings 12 extend.
  • the standing still, non-rotating (shutter) disc 15 is in turn connected upstream of the drum 1, a kind of annular disc 16 as the first weir, which extends from the inner periphery of the drum cover of the drum 1 inwardly and whose inner radius is smaller than the largest Radius to which the disc 15 and the outlet openings 12 extend, so that in the region between the annular disc 16 and the outlet openings 12 (as 2nd weir) on the inner circumference of the drum cover of the drum 1, the Hydrohermitikringformat 14 is formed.
  • This chamber prevents the uncontrolled escape of gases or steam from the drum through the outlet openings 12 or labyrinths or other gaps or the like, which would cause a short-term instability in the region of the emulsion line - separation zone -.
  • the throttling device 13 alone can achieve an adjustability of the discharge radius of the heavy liquid phase of about 336 to 384 mm (ie 48 mm) or a compensation of the density variance (K) of 0.884 to 0.915 (0.031), because either by reaction to shifts or in product changes by changing the gap width of the gap 20 counteracted a displacement of the separation zone to keep them at a constant radius as possible to keep the process stable.
  • the peeling disk 10 alone can achieve an adjustment of the radius of the dividing line of 360 to 392 mm (32 mm) or a compensation of the density change (K) of 0.878 to 0.900 (0.022).
  • the throttling device 13 and the peeling disk 10 can achieve an adjustment of the separating zone or the radius of the E-line of 336 to 414 mm (corresponding to 78 mm) or a density ratio variance (K) of 0.863 to 0.915 (0.052).
  • a separate and independent water supply into the drum (not shown here, feasible, for example, by a concentric supply pipe within the supply pipe 4 for the product and further through the manifold into the drum) to provide in the three-phase separation - without a To exert additional hydraulic load on the stack of plates - to ensure that there is always a sufficient back pressure at the gap 20. If, on the other hand, the gap were not completely traversed, there would possibly be an uncontrolled shift in the e-line.
  • the discharge volume flow through the gap 20 is preferably observed and possibly also measured in order to prevent such dry runs and to minimize the volume of water to be added as much as possible.
  • the nozzle discharge capacity may be initially determined theoretically based on the machine design and drum rotation speed. This capacity is hereinafter referred to as "nominal" capacity or derivative rate.
  • the nozzles 21 will show wear and a period of time within which it is advisable to repair the solids discharge nozzles 21 may be indicated. This is advantageous because it is possible to maximize the time to change nozzles.
  • the measured "drain rate" is less than the nominal rate, one can conclude that one or more of the solids discharge nozzles 21 are clogged.
  • the system may be configured to automatically correct the effect of nozzle wear when determining whether the solids discharge nozzles are clogged or not.
  • the pressure drop across the throttle device depends on the flow rate or quantity and the size of the gap 20.
  • the pressure drop over the paring disc 10 depends on the flow rate and the throttling pressure on the valve 20 of the paring disc.
  • the pressure drops affect the discharge rates of the heavy and light phases. Combined and considered individually, the discharge line radii also influence the position of the E-line.
  • the user can conclude that a greater proportion of heavy phase is in the light phase and vice versa.
  • a stable separation process can be maintained although fluctuation in the product feed rate and composition may occur or density fluctuations of the heavy and / or lighter liquid phases LP and HP.
  • Such effects occur e.g. in natural products such as fish oil or in the treatment of crude oil (separation of water from the crude oil) or in the treatment of water (in particular separation of oil residues from the water).
  • a correction of the flow rate of the solids can be performed by measuring the solids content, since the solids density is a relatively constant parameter.
  • the light phase density and finally the density can be measured directly.
  • the inflow and outflow rates of the heavy and light phases can be determined.
  • This simple expert system can be supplemented by an online measurement of the exact heavy phase composition and the light phases. Neither the heavy nor the light phases typically have a polarity which would make measuring the volumetric concentration easy.

Landscapes

  • Centrifugal Separators (AREA)
EP06724790.8A 2006-05-11 2006-05-11 Drei-phasen-trennseparator mit einer schälscheibe und feststoffaustragsöffnungen Active EP2015871B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2006/004414 WO2007131515A1 (de) 2006-05-11 2006-05-11 Drei-phasen-trennseparator mit einer schälscheibe und feststoffaustragsöffnungen

Publications (2)

Publication Number Publication Date
EP2015871A1 EP2015871A1 (de) 2009-01-21
EP2015871B1 true EP2015871B1 (de) 2017-04-26

Family

ID=37547697

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06724790.8A Active EP2015871B1 (de) 2006-05-11 2006-05-11 Drei-phasen-trennseparator mit einer schälscheibe und feststoffaustragsöffnungen

Country Status (6)

Country Link
US (1) US8192342B2 (zh)
EP (1) EP2015871B1 (zh)
CN (1) CN101189068B (zh)
CA (1) CA2619883C (zh)
NO (1) NO341606B1 (zh)
WO (1) WO2007131515A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2619883C (en) * 2006-05-11 2014-04-15 Westfalia Separator Ag Separator having a liquid outlet including a throttling device
EP2091656A1 (en) * 2006-11-15 2009-08-26 Westfalia Separator Australia Pty.Ltd. Continuous self-cleaning centrifuge assembly
DE202007009212U1 (de) * 2007-06-30 2008-12-11 Gea Westfalia Separator Gmbh Drei-Phasen-Trennseparator
SE535959C2 (sv) * 2010-01-29 2013-03-05 Alfa Laval Corp Ab System innefattande centrifugalseparator samt metod för kontroll av detsamma
EP2366457B1 (en) * 2010-03-19 2013-03-06 Alfa Laval Corporate AB Device and method for monitoring and adjusting the radial position of an interface layer in a centrifugal separator
CN102179315A (zh) * 2010-09-20 2011-09-14 辽宁双联化工制药机械有限公司 油田老化油处理用碟式分离机
DE102010038195A1 (de) * 2010-10-14 2012-04-19 Gea Mechanical Equipment Gmbh Verfahren zur Phasentrennung eines Produktes mit einer Zentrifuge
US8317672B2 (en) * 2010-11-19 2012-11-27 Kensey Nash Corporation Centrifuge method and apparatus
CN103406211B (zh) * 2013-06-27 2015-06-24 国宇新兴(北京)技术发展有限公司 离心真空复合分离机
CN103316782A (zh) * 2013-07-05 2013-09-25 安徽赛而特离心机有限公司 一种三相碟式分离机转鼓组
US9400196B2 (en) * 2013-11-12 2016-07-26 Syncrude Canada Ltd. Method of detecting and controlling E-line loss in a centrifuge
CN103962248A (zh) * 2014-05-07 2014-08-06 江苏巨能机械有限公司 三相碟式分离机
ES2807592T3 (es) * 2015-04-24 2021-02-23 Alfa Laval Corp Ab Separador centrífugo y métodos relacionados con el mismo
SE538912C2 (sv) * 2015-05-27 2017-02-07 Apparatus for cleaning crank case gases
BR102015028129B1 (pt) 2015-11-09 2021-11-03 Delp Engenharia Mecânica S.A. Separador centrífugo
DE102018105586A1 (de) * 2018-03-12 2019-09-12 Hengst Se Rotor eines Zentrifugalabscheiders und Zentrifugalabscheider
EP3666388A1 (en) * 2018-12-10 2020-06-17 Alfa Laval Corporate AB Centrifugal separation system and method
US20210245175A1 (en) 2020-02-06 2021-08-12 Poet Research, Inc. Centrifuge, and related systems and methods

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3179334A (en) * 1961-09-15 1965-04-20 Pennsalt Chemicals Corp Centrifuge discharge means
DE1220012B (de) 1963-07-24 1966-06-30 Lohmann & Welschehold Kg Schnurschalter mit Glimmlampe
US4042172A (en) * 1976-04-14 1977-08-16 Andrei Stepanovich Nozdrovsky Bowl centrifuge rotor
DE2617692A1 (de) 1976-04-23 1977-11-03 G P I Nii Gipronikel Schleudertrommel einer absetzzentrifuge
DE2707111C3 (de) 1977-02-18 1979-08-23 Flottweg-Werk Dr. Georg Bruckmayer Gmbh & Co Kg, 8313 Vilsbiburg Vollmantel-Schneckenzentrifuge zur Trennung eines Feststoff-Flüssigkeitsgemisches
DE3104578A1 (de) 1980-04-15 1982-10-28 Klöckner-Humboldt-Deutz AG, 5000 Köln Verfahren zum entfernen von metallen aus metallsalzloesungen
DE3014315C2 (de) 1980-04-15 1985-07-18 Klöckner-Humboldt-Deutz AG, 5000 Köln Verfahren und Vorrichtung zum Entfernen von Metallen aus Metallsalzlösungen
SE8302215D0 (sv) * 1983-04-20 1983-04-20 Alfa Laval Marine Power Eng Centrifugalseparator
DK410284A (da) 1984-08-28 1986-03-01 Alfa Laval Zeta As Fremgangsmaade til styring af graensefladen mellem olie og vand ved slamudtoemning fra en centrifuge til separering af olie og vand og slam
SE456801B (sv) * 1987-03-19 1988-11-07 Alfa Laval Separation Ab Utloppsanordning vid centrifugalseparator
DE3728901C1 (en) 1987-08-29 1988-11-17 Westfalia Separator Ag Weir for adjusting the level of liquid in solid-bowl centrifuge drums of worm centrifuges
DE3822983A1 (de) 1988-07-07 1990-01-11 Hiller Gmbh Vollmantel-schneckenzentrifuge
DE3921327A1 (de) 1989-06-29 1991-01-03 Kloeckner Humboldt Deutz Ag Wehr zum einstellen des fluessigkeitsstandes in vollmantelzentrifugen
DE4132029A1 (de) 1991-09-26 1993-04-01 Westfalia Separator Ag Wehrscheibe zum einstellen des fluessigkeitsstandes in vollmantelschleudertrommeln von schneckenzentrifugen
DE4320265C2 (de) * 1993-06-18 1995-08-03 Westfalia Separator Ag Wehr für Vollmantelschleudertrommeln
DE19500600C1 (de) 1995-01-11 1996-02-08 Westfalia Separator Ag Vollmantelzentrifuge
SE505440C2 (sv) 1995-05-02 1997-08-25 Alfa Laval Ab Förfarande och centrifugalseparator för separering av två vätskor
US5643169A (en) * 1995-06-06 1997-07-01 Baker Hughes Incorporated Decanter centrifuge with adjustable gate control
US5695442A (en) * 1995-06-06 1997-12-09 Baker Hughes Incorporated Decanter centrifuge and associated method for producing cake with reduced moisture content and high throughput
SE9600299D0 (sv) * 1996-01-29 1996-01-29 Tetra Laval Holdings & Finance Utloppsanordning och en centrifugalseparator försedd med en sådan utloppsanordning
US6368264B1 (en) 1999-03-29 2002-04-09 M-I L.L.C. Centrifuge control system and method with operation monitoring and pump control
SE521432C2 (sv) * 1999-06-03 2003-11-04 Alfa Laval Corp Ab Sätt att ställa in ett gränsskikts radiella nivå i en centrifugalseparator
US6572524B1 (en) 2000-07-14 2003-06-03 Alfa Laval Inc. Decanter centrifuge having a heavy phase solids baffle
EP1232794B1 (de) 2001-02-08 2004-06-09 Westfalia Separator AG Verfahren zum Trennen eines Mehrphasengemisches und Dekantierzentrifungensystem zur Durchführung des Verfahrens
DE10203652B4 (de) * 2002-01-30 2006-10-19 Westfalia Separator Ag Vollmantel-Schneckenzentrifuge mit einem Wehr
DE10209925B4 (de) 2002-03-07 2010-06-17 Gea Westfalia Separator Gmbh Dreiphasen-Vollmantel-Schneckenzentrifuge, Vollmantel-Schneckenzentrifuge und Verfahren zum Betreiben einer Dreiphasen-Vollmantel-Schneckenzentrifuge
DE10223802B4 (de) 2002-05-29 2005-06-09 Westfalia Separator Ag Vollmantel-Schneckenzentrifuge
CN2756319Y (zh) * 2004-08-19 2006-02-08 上海航发机械有限公司 悬吊转鼓碟式分离机
SE528387C2 (sv) 2005-03-08 2006-10-31 Alfa Laval Corp Ab Centrifugalseparator och förfarande för separering av en produkt i åtminstone en relativt tung fas och en relativt lätt fas
CA2619883C (en) * 2006-05-11 2014-04-15 Westfalia Separator Ag Separator having a liquid outlet including a throttling device
DE202007009212U1 (de) * 2007-06-30 2008-12-11 Gea Westfalia Separator Gmbh Drei-Phasen-Trennseparator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2007131515A1 (de) 2007-11-22
EP2015871A1 (de) 2009-01-21
NO20085146L (no) 2008-12-10
NO341606B1 (no) 2017-12-11
CA2619883C (en) 2014-04-15
US20090298666A1 (en) 2009-12-03
CN101189068A (zh) 2008-05-28
CN101189068B (zh) 2011-09-28
US8192342B2 (en) 2012-06-05
CA2619883A1 (en) 2007-11-22

Similar Documents

Publication Publication Date Title
EP2015871B1 (de) Drei-phasen-trennseparator mit einer schälscheibe und feststoffaustragsöffnungen
EP1901849B1 (de) Drei-phasen-vollmantel-schneckenzentrifuge und verfahren zur regelung des trennprozesses
EP2162225A1 (de) Drei-phasen-trennseparator
EP2902112B1 (de) Auslassvorrichtung einer Vollmantelschneckenzentrifuge
EP3426405B1 (de) Separator
DE19508792A1 (de) Vorrichtung zum selbständigen Ausgleich einer Unwucht bei einem rotierenden Körper
DE10336350B4 (de) Vollmantel-Schneckenzentrifuge, mit Schälscheibe
DE3019737C2 (de) Schleudertrommel zum Klären und Trennen von Schleuderflüssigkeiten
DE10209925B4 (de) Dreiphasen-Vollmantel-Schneckenzentrifuge, Vollmantel-Schneckenzentrifuge und Verfahren zum Betreiben einer Dreiphasen-Vollmantel-Schneckenzentrifuge
WO2012049118A1 (de) Verfahren zur phasentrennung eines produktes mit einer zentrifuge
DE102005021331A1 (de) Drei-Phasen-Trennseparator mit einer Schälscheibe und Feststoffaustragsöffnungen
EP2627452B1 (de) Verfahren zur phasentrennung eines produktes mit einer zentrifuge
DE3728901C1 (en) Weir for adjusting the level of liquid in solid-bowl centrifuge drums of worm centrifuges
WO2017016827A1 (de) Separatortrommel und separator
DE19962645C2 (de) Wehreinrichtung für eine Zentrifuge
EP3570981B1 (de) Zentrifuge
WO2023135051A1 (de) Vollmantel-schneckenzentrifuge und verfahren zur regelung des trennprozesses der vollmantel-schneckenzentrifuge
EP2125238A1 (de) Verfahren zur phasentrennung eines produktes mit einer zentrifuge und separator
EP2643092A2 (de) Getaktete produktzufuhr bei einer zentrifuge und zentrifuge dafür
DE2229139A1 (de) Vollmantel-zentrifuge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071121

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GEA MECHANICAL EQUIPMENT GMBH

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161006

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTC Intention to grant announced (deleted)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

INTG Intention to grant announced

Effective date: 20170303

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 887407

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006015484

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170426

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170826

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170726

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006015484

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170511

26N No opposition filed

Effective date: 20180129

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180321

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170626

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 887407

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060511

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20190524

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170426

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190524

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200512

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200511

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230328

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230525

Year of fee payment: 18