EP2013457B1 - Système de refroidissement d'un moteur à combustion interne avec deux échangeurs de chaleur - Google Patents

Système de refroidissement d'un moteur à combustion interne avec deux échangeurs de chaleur Download PDF

Info

Publication number
EP2013457B1
EP2013457B1 EP07711811.5A EP07711811A EP2013457B1 EP 2013457 B1 EP2013457 B1 EP 2013457B1 EP 07711811 A EP07711811 A EP 07711811A EP 2013457 B1 EP2013457 B1 EP 2013457B1
Authority
EP
European Patent Office
Prior art keywords
coolant
pump
cooling system
impeller
inlets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07711811.5A
Other languages
German (de)
English (en)
Other versions
EP2013457A1 (fr
Inventor
Christoph Platz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Publication of EP2013457A1 publication Critical patent/EP2013457A1/fr
Application granted granted Critical
Publication of EP2013457B1 publication Critical patent/EP2013457B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/18Arrangements or mounting of liquid-to-air heat-exchangers
    • F01P2003/182Arrangements or mounting of liquid-to-air heat-exchangers with multiple heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2037/00Controlling
    • F01P2037/02Controlling starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control

Definitions

  • the present invention relates to a cooling system of an internal combustion engine having two heat exchangers and a coolant pump, which has two inlets and two outlets and one in a circular in cross-section pump chamber of a pump housing rotatably arranged impeller, wherein in not flowed through by coolant heat exchangers, only one inlet and two outlets are flowed through.
  • Cooling systems for internal combustion engines have already become known in many forms.
  • an engine cooling system has become known, which has a rotationally driven via a crankshaft of the engine coolant pump having two outlets, one of which discharges coolant into an associated inlet of a cylinder bank of a V-engine coolant and the coolant pump has only one suction line insert portion, so a Inlet through which coolant flows into the coolant pump and in the direction of the axis of rotation of the impeller of the coolant pump.
  • the coolant pump in the direction of the axis of rotation of the impeller has a large axial length.
  • a water pump for the cooling circuit of an internal combustion engine has become known, wherein the water pump has an axially extending collection opening into which coolant from several, can be closed by means of a rotary valve inlet openings.
  • a cooling system with two heat exchangers and a pump with two inlets and one outlet is off DE10055452 known.
  • a cooling device for a motor wherein the water pump provided in this cooling device has two inlets and two outlets, wherein a first outlet is traversed at a small active circuit and the second inlet is flowed through with a large active circuit.
  • the small circle or cycle corresponds to the Coolant circuit during the warm-up phase of the engine, so while the engine has not yet reached operating temperature and the coolant is not passed through a corresponding coolant heat exchanger.
  • the large circle corresponds to that with respect to the coolant circuit with actively flowed through the coolant heat exchanger, so if the engine has already reached its operating temperature.
  • Fig. 11 of this document shows that the coolant pump is flowing in the direction of the axis of rotation of the impeller and thus in turn has a large axial length.
  • a coolant pump to be provided on an internal combustion engine having two horizontally opposed cylinders ie an internal combustion engine in boxer or counter-rotor design
  • the coolant pump can be directly driven via a correspondingly shaped crankshaft stub of the engine, so that the coolant pump, for example, in a direction of travel equipped with the internal combustion engine vehicle front end side of the internal combustion engine are arranged so that eliminates a Drehachsraum in the impeller of the internal combustion engine long design.
  • the vehicle is a motorcycle in which the clear distance between the front of the engine and the front wheel is short and thus exudes such a long design.
  • the present invention is based on the object, a generic cooling system of an internal combustion engine such that the required in Drehachsplatz the impeller axial space of the coolant pump can be significantly reduced compared to known coolant pumps.
  • the invention now provides a cooling system of an internal combustion engine with two heat exchangers and a coolant pump, which has two inlets and two outlets and one in a circular in cross-section pump chamber of a pump housing rotatably arranged impeller, wherein in non-coolant flowed through heat exchangers only one inlet and two outlets are flowed through and flows through both inlets and both outlets when flowed through by coolant heat exchangers.
  • the coolant pump flows through only one inlet and two outlets, while in large active circuit, so if both heat exchangers are flowed through both inlets and both outlets of the coolant pump ,
  • a short in the direction of the axis of rotation of the impeller design of the coolant pump can be achieved in that the inlets and outlets are formed by itself from the pump housing in pairs parallel directed away extending tubular piece approaches.
  • a configuration of the coolant pump is achieved, wherein each one inlet parallel to an outlet runs and the inlets and outlets, for example, at right angles to the axis of rotation of the impeller, so that the coolant pump in Drehachsplatz of the impeller has a very short construction.
  • the inlets and outlets relative to the axis of rotation of the impeller are arranged crosswise opposite each other and offset in the direction of the axis of rotation of the impeller.
  • the coolant flows flowing through the two inlets into the pump chamber, for example, but not butt, which is unfavorable in terms of flow, but the inflowing coolant flows at a radial distance from the axis of rotation of the impeller from considered meet the impeller and so for a low energy requirement for the drive power of the coolant pump.
  • the coolant thus flowing into the pump chamber can now flow through passages for the flow of the coolant from the suction side, ie the inlet side, to the pressure side, ie the outlet side, in the impeller, with the inlets and outlets being offset from one another in the direction of the axis of rotation of the impeller for this purpose are.
  • the inlets are arranged relative to the pump chamber such that the coolant acts on the impeller tangentially from the outer periphery of the impeller ago.
  • the pump chamber has a dividing wall which separates the coolant inlet streams from each other before the impeller is acted upon extends from an outer wall of the pump housing toward an end face of the impeller.
  • the impeller can be positively driven by a crankshaft stub of the engine, it may have on its intended to engage with the crankshaft stub page a form-fitting hub, with which the impeller forms a positive shaft-hub connection with the crankshaft stub and thus an axial length requiring interposition of an auxiliary drive is avoided.
  • FIG. 1 The drawing shows a schematic representation of a cooling system according to the present invention with a two-cylinder boxer engine as an internal combustion engine.
  • the engine 1 has two cylinders 2, 3, through which the coolant circulating in the cooling system flows.
  • a diagrammatic only thermostat 4 which is designed so that it can switch the cooling system from the small circle or circuit to the large circle or circuit. If the engine 1 is in the warm-up phase, that is, if it has not yet reached its operating temperature, then the thermostat 4 ensures that the coolant circulated by a coolant pump 5 in the cooling system is pumped through the cylinders 2, 3 but not through the heat exchanger 6 , 7 in the cooling system.
  • the thermostat 4 ensures that the two heat exchangers 6, 7 are flowed through by the coolant.
  • the coolant pump 5 now has two inlets 8, 9 and two outlets 10, 11. If now the small circuit is active, so enters coolant in the coolant pump 5 only via an inlet 8 and leaves the coolant through both outlets 10, 11 and from there through cylinder inlets 12, 13 in a corresponding coolant jacket of the cylinder 2, 3 a , After the coolant has flowed through the cylinders 2, 3, after a corresponding heating, it leaves through cylinder outlets 14, 15 and flows in the direction of the arrow to the thermostat 4. If the engine 1 has not yet reached its operating temperature, the thermostat 4 ensures that the Coolant flows back to the inlet 8 of the coolant pump 5.
  • the thermostat 4 ensures that the heated coolant flowing out of the cylinder outlets 14, 15 flows through the heat exchangers via corresponding heat exchanger inlets 16, 17 of the heat exchangers 6, 7 and back into their respective heat exchanger outlets 18, 19 Direction to the coolant pump 5 flows. Now, if this large circle is active, so the two heat exchangers 6, 7 are flowed through, then the coolant flows into the coolant pump 5 both via the inlet 8 and via the inlet 9 and leaves the coolant pump 5 via the outlets 10, 11 and enters the cylinders 2, 3 again.
  • FIG. 2 The drawing now shows in a view from the rear of the coolant pump 5 with its inlets 8, 9 and their outlets 10, 11.
  • the two inlets 8, 9 relative to the axis of rotation of in Fig. 3 apparent impeller 20 crosswise to each other and also the outlets 10, 11 are crosswise opposite each other.
  • the outlets 10, 11 lie in the axial direction of the axis of rotation of the impeller 20 offset from the inlets 8, 9th
  • Fig. 4 The drawing now shows a sectional view of the coolant pump 5 with its pump housing 21 and a formed in the pump housing 21, in cross-section circular pump chamber 22.
  • the impeller 20 is rotatably received.
  • the coolant flows into the pump housing 21 via an inlet 8 and is prevented from flowing into the space 26 by a partition wall 23 which extends from an outer wall 24 of the pump housing 21 towards an end face 25 of the pump wheel 20. which represents the inflow region of the coolant flowing from the inlet 9 into the pump housing 21, so that the coolant sub-streams entering through the two inlets 8, 9 do not butt against one another and thus flow-unfavorably.
  • the coolant flowing in via the inlet 8 flows through a passage 27 of the impeller and from there into the region of a space 28 formed in the pump housing 21, from which it can flow via the outlet 10 to the cylinder inlet 13 of the cylinder 3.
  • the impeller 20 has a hub 29, with which it can be brought into a positive engagement with a not shown crankshaft stub of the engine 1 to be rotated directly by the crankshaft can.
  • FIG. 5 The drawing now shows a partially sectioned illustration of the coolant pump after Fig. 2 in which the outer wall 24 has been omitted.
  • coolant flows toward the impeller 20 tangentially from the outer circumference of impeller 20, and the two partial refrigerant streams are prevented from dividing wall 23 from flowing against each other prior to impingement of pump impeller 20 hold true.
  • Fig. 6 The drawing now shows the coolant pump 5 in a perspective and oblique view, in which case it can be seen again that the inlets 8, 9 and the outlets 10, 11 in the rotational axis of the impeller 20 are axially offset from each other, so in axial offset from each other arranged levels are located.
  • FIG. 7 a sectional perspective view of the coolant pump 5 in a view obliquely from above, wherein for ease of illustration, the inlet 8 of the coolant pump 5 has been omitted.
  • Fig. 7 serves to explain the flow conditions and shows the flow path of the coolant by means of arrows 30.
  • the coolant enters via an inlet 9 - the second inlet 8 has been omitted due to a simplification of the drawing - in the pump housing 21 and passes through passages 27 in the impeller 20, the impeller from the suction side to the pressure side and there discharged through outlets 10, 11 to enter the cylinder inlets 12, 13 of the cylinder 2, 3.
  • the invention now provides a coolant pump of extremely short design in the rotational axis direction of the impeller. Due to the design of the coolant pump such that the coolant can enter the pump housing via two inlets, specifically tangentially to the outer circumference of the impeller, this axial short design of the coolant pump is achieved. In the pump chamber of the coolant pump there is an efficient mixing of the coolant sub-streams flowing in via the two inlets, and thus an efficient temperature compensation of the coolant, so that when using the cooling system according to the invention On a two-cylinder internal combustion engine, a uniform temperature balance of both cylinders is achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Claims (8)

  1. Système de refroidissement d'un moteur à combustion interne comprenant deux échangeurs de chaleur (6, 7) équipés chacun d'une sortie d'échangeur (18, 19) ainsi qu'une pompe à fluide de refroidissement (5) comprenant deux entrées (8, 9) respectivement reliées à la sortie d'un échangeur de chaleur (18, 19) et deux sorties (10, 11), la pompe de fluide de refroidissement (5) comprenant une roue de pompe (20) montée mobile en rotation dans une chambre de pompe (22) ayant une section circulaire d'un boîtier de pompe (21), et le système de refroidissement comprenant un thermostat (4) réalisé de sorte que lorsque les échangeurs de chaleur (6, 7) ne sont pas traversés par le fluide de refroidissement, seule une entrée (8) et les deux sorties (10) sont traversées par ce fluide,
    caractérisé en ce que
    le système de refroidissement est réalisé de sorte que, lorsque les échangeurs de chaleur (6, 7) sont traversés par le fluide de refroidissement, les deux entrées (8, 9) et les deux sorties (10, 11) sont traversées par ce fluide, et les entrées (8, 9) et les sorties (10, 11) sont formées par des embouts (8, 9) en forme de pièces tubulaires sortant respectivement parallèlement par paires à partir du boîtier de pompe (21).
  2. Système de refroidissement conforme à la revendication 1,
    caractérisé en ce que
    les entrées (8, 9) et les sorties (10, 11) sont opposées en forme de croix par rapport à l'axe de rotation de la roue de pompe (20) et sont décalées en direction de cet axe de rotation.
  3. Système de refroidissement conforme à la revendication 1 ou 2,
    caractérisé en ce que
    les entrées (8, 9) sont positionnées par rapport à la chambre de pompe (22) de sorte que le fluide de refroidissement alimente tangentiellement la roue de pompe à partir de la périphérie externe de cette roue (20).
  4. Système de refroidissement conforme à l'une des revendications précédentes,
    caractérisé en ce que
    la chambre de pompe (22) comporte une paroi de séparation (23) séparant les deux flux d'entrée de l'agent de refroidissement avant l'alimentation de la roue de pompe (20), et s'étendant à partir de la paroi externe du boîtier de pompe (21) en direction de la face frontale (25) de la roue de pompe.
  5. Système de refroidissement conforme à l'une des revendications précédentes,
    caractérisé en ce que
    les deux flux d'entrée de l'agent de refroidissement se mélangent dans la chambre de pompe (22).
  6. Système de refroidissement conforme à l'une des revendications précédentes,
    caractérisé en ce que
    la roue de pompe (20) comporte un moyeu (29) réalisé pour pouvoir venir en prise par une liaison par la forme avec un embout du vilebrequin du moteur à combustion interne.
  7. Système de refroidissement conforme à l'une des revendications précédentes,
    caractérisé en ce que
    la roue de pompe (20) comporte des passages (27) permettant le transfert du fluide de refroidissement du côté de l'entrée de la chambre de pompe (22) au côté de la sortie de celle-ci.
  8. Système de refroidissement conforme à l'une des revendications précédentes,
    caractérisé en ce que
    le moteur à combustion interne comporte deux cylindres (2, 3) horizontaux opposés.
EP07711811.5A 2006-04-28 2007-03-07 Système de refroidissement d'un moteur à combustion interne avec deux échangeurs de chaleur Not-in-force EP2013457B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006019737A DE102006019737A1 (de) 2006-04-28 2006-04-28 Kühlsystem einer Brennkraftmaschine mit zwei Wärmetauschern
PCT/EP2007/001937 WO2007124812A1 (fr) 2006-04-28 2007-03-07 Système de refroidissement d'un moteur à combustion interne avec deux échangeurs de chaleur

Publications (2)

Publication Number Publication Date
EP2013457A1 EP2013457A1 (fr) 2009-01-14
EP2013457B1 true EP2013457B1 (fr) 2017-05-17

Family

ID=37908257

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07711811.5A Not-in-force EP2013457B1 (fr) 2006-04-28 2007-03-07 Système de refroidissement d'un moteur à combustion interne avec deux échangeurs de chaleur

Country Status (4)

Country Link
EP (1) EP2013457B1 (fr)
DE (1) DE102006019737A1 (fr)
ES (1) ES2626659T3 (fr)
WO (1) WO2007124812A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150379A1 (fr) * 2009-06-25 2010-12-29 株式会社Tbk Pompe à débit variable
DE102017206939A1 (de) 2017-04-25 2018-10-25 Mahle International Gmbh Mehrflutige Kühlmittelpumpe zum Fördern eines Kühlmittels
US11060441B2 (en) * 2019-04-05 2021-07-13 Perkins Engines Company Limited Water pump with twin return ports
DE102020116359A1 (de) * 2020-06-22 2021-12-23 Man Truck & Bus Se Vorrichtung zum Fördern eines Kühlmittels

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2713332A (en) * 1953-03-27 1955-07-19 Int Harvester Co Internal combustion engine cooling system
US6422182B1 (en) * 1999-11-09 2002-07-23 Honda Giken Kogyo Kabushiki Kaisha Engine cooling apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940000896Y1 (ko) * 1989-09-25 1994-02-21 마쯔다 가부시기가이샤 엔진의 냉각장치
DE19719199A1 (de) * 1996-10-26 1998-04-30 Knecht Filterwerke Gmbh Kühlmittelpumpe, insbesondere für ein Kraftfahrzeug
DE19809123B4 (de) * 1998-03-04 2005-12-01 Daimlerchrysler Ag Wasserpumpe für den Kühlkreislauf einer Brennkraftmaschine
JP3881796B2 (ja) * 1998-11-25 2007-02-14 本田技研工業株式会社 エンジンの冷却装置
DE10021526C2 (de) * 2000-05-03 2002-07-18 Porsche Ag Anordnung zur Kühlung einer mehrzylindrigen Brennkraftmaschine
DE10117090B4 (de) * 2001-04-06 2013-08-14 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Wassergekühlte, mehrzylindrige Brennkraftmaschine
US6843209B2 (en) * 2001-06-20 2005-01-18 Honda Giken Kogyo Kabushiki Kaisha Engine cooling water passage structure and gas/liquid separator for engine cooling system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2713332A (en) * 1953-03-27 1955-07-19 Int Harvester Co Internal combustion engine cooling system
US6422182B1 (en) * 1999-11-09 2002-07-23 Honda Giken Kogyo Kabushiki Kaisha Engine cooling apparatus

Also Published As

Publication number Publication date
EP2013457A1 (fr) 2009-01-14
WO2007124812A1 (fr) 2007-11-08
DE102006019737A1 (de) 2007-10-31
ES2626659T3 (es) 2017-07-25

Similar Documents

Publication Publication Date Title
DE102004028158B4 (de) Turbolader
EP1985953B1 (fr) Echangeur thermique, en particulier destiné au refroidissement des gaz d'échappement, procédé d'utilisation d'un tel échangeur et système comprenant un refroidisseur EGR
DE2715513C2 (fr)
EP2025911B1 (fr) Dispositif de refroidissement de gaz d'échappement pour un moteur à combustion interne
DE102005031300A1 (de) Brennkraftmaschine mit Kühlsystem und Abgasrückführsystem
DE19809124A1 (de) Steuervorrichtung für den Kühl- und Heizungskreislauf einer Brennkraftmaschine
EP0394796B1 (fr) Système de chauffage, notamment pour véhicules à moteur à combustion interne et appareil de chauffage
DE2849675A1 (de) Kuehlanlage fuer brennkraftmaschinen, insbesondere in fahrzeugen
EP2013457B1 (fr) Système de refroidissement d'un moteur à combustion interne avec deux échangeurs de chaleur
EP2037201A2 (fr) Module d'air de suralimentation pour un moteur à combustion interne
DE102013215234A1 (de) Ansaugmodul für eine Brennkraftmaschine
EP2466089A2 (fr) Refroidisseur d'air de suralimentation
DE102008006153B3 (de) Luftansaugkanalsystem mit einem integrierten Ladeluftkühler
DE102008056810B4 (de) Kühlvorrichtung für eine Verbrennungskraftmaschine
DE2105657C3 (de) Wärmetauscher
DE10155337B4 (de) Kühlkreislauf
EP1489373A2 (fr) Echangeur de chaleur à plaques sans enveloppe et avec chambres collectrices
DE3408624A1 (de) Luftgekuehlte hubkolbenbrennkraftmaschine
EP2194245A2 (fr) Module de refroidissement de gaz d'échappement et d'huile pour un moteur à combustion interne
EP0933510B1 (fr) Moteur à combustion interne
EP0203480A2 (fr) Moteur rotatif à combustion interne
WO2005071328A1 (fr) Climatisation
DE4033796A1 (de) Einkreiskuehlsystem fuer brennkraftmaschinen
DE2216586A1 (de) Umlaufender waermeaustauscher
DE102017206939A1 (de) Mehrflutige Kühlmittelpumpe zum Fördern eines Kühlmittels

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080814

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 20100609

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYERISCHE MOTOREN WERKE AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170119

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007015650

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2626659

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170725

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007015650

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

26N No opposition filed

Effective date: 20180220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200325

Year of fee payment: 14

Ref country code: GB

Payment date: 20200325

Year of fee payment: 14

Ref country code: DE

Payment date: 20200313

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200324

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200421

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007015650

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211001

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210307

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210307

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210308

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230502