EP2013372B1 - Method for the production and removal of a temporary protective layer for a cathodic coating - Google Patents

Method for the production and removal of a temporary protective layer for a cathodic coating Download PDF

Info

Publication number
EP2013372B1
EP2013372B1 EP08707416A EP08707416A EP2013372B1 EP 2013372 B1 EP2013372 B1 EP 2013372B1 EP 08707416 A EP08707416 A EP 08707416A EP 08707416 A EP08707416 A EP 08707416A EP 2013372 B1 EP2013372 B1 EP 2013372B1
Authority
EP
European Patent Office
Prior art keywords
layer
dip coating
zinc
protective layer
during
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08707416A
Other languages
German (de)
French (fr)
Other versions
EP2013372A1 (en
Inventor
Martin Peruzzi
Siegfried Kolnberger
Josef Faderl
Werner BRANDSTÄTTER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Stahl GmbH
Original Assignee
Voestalpine Stahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voestalpine Stahl GmbH filed Critical Voestalpine Stahl GmbH
Publication of EP2013372A1 publication Critical patent/EP2013372A1/en
Application granted granted Critical
Publication of EP2013372B1 publication Critical patent/EP2013372B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/003Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods using material which dissolves or changes phase after the treatment, e.g. ice, CO2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/08Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for polishing surfaces, e.g. smoothing a surface by making use of liquid-borne abrasives
    • B24C1/086Descaling; Removing coating films
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/68Temporary coatings or embedding materials applied before or during heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0478Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular surface treatment
    • C21D8/0484Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath

Definitions

  • the invention relates to a method for producing and removing a temporary protective layer for a cathodic coating on carrier metals.
  • a method for removing a layer of a component is known.
  • This is a layer of organic binder that is to be removed from a substrate without damaging the substrate.
  • a jet of dry ice particles is guided over the surface, so that material is removed from the layer containing an organic binder by the action of the occurring dry ice particles.
  • the removal of dry ice is intended to prevent contamination by foreign substances and to not impair the metallic basic body of the component.
  • a method for removing a metal layer wherein a layer system comprising the metal layer and a substrate coated by the metal layer and the removal process is a blasting process.
  • the blasting process can be a sandblasting process, whereby the metal layer is strongly cooled in order to achieve low-temperature embrittlement of the layer with respect to the substrate.
  • a method and an apparatus for irradiating with different blasting agents are known.
  • an abrasive blast treatment with blasting agents in which the abrasive effect of the blasting agent is between the blasting agents present in fluid form under normal conditions and the blasting agents present in solid state under normal conditions.
  • a mixture of a first blasting agent such as dry ice and a second abrasive blasting agent such as sand is used.
  • an apparatus and method for removing a coating from a substrate which is said to be gentle on materials and suitable for removing both soft and hard coatings.
  • a cold treatment by irradiation with a refrigerant which leads to embrittlement of the coating and then an abrasive cleaning effect are performed with a machining tool, which can be performed by the cold treatment, the mechanical abrasive machining with tool parts lower hardness than in processing tools according to the prior art ,
  • a method and apparatus for removing layers formed by heating and cooling on pieces of metal are known. Because when removing, for example, scale, oxydsilicate and slag layers on metal workpieces and especially metal workpieces with non-planar surfaces, such as axle and bodywork components for vehicles, the solid particles in abrasive pressurized gas jets are not intended to completely remove metal workpieces from the compressed gas flow with the aid of, for example, dry ice particles be applied to the metal workpiece to be cleaned, preheated and have a temperature which is greater than the temperature of the air surrounding the metal workpiece and / or as the surface temperature of the metal workpiece.
  • the layers to be removed from the surface of the piece of metal are removed by the mechanical action of the high velocity impacting dry ice particles and by the localized cooling of the surface and the layer due to the dry ice particles.
  • the addition of the oxygen-affine elements causes the oxygen-affinity elements diffuse from the composition of the cathodic protection layer to the surface and form there a very fine protective layer.
  • This very fine protective layer may for example consist of magnesium oxide or aluminum oxide or mixtures thereof. From the WO 2005/021820 It is also known to apply such a method in roll profiling.
  • the object of the invention is to provide a method with which the paint adhesion can be improved on provided with a cathodic protective layer hardened steel components.
  • the paint adhesion may not be optimal with cathodic anticorrosion coatings provided with a fine surface protection coating.
  • there is no alternative to the formation of these thin layers since otherwise only a post-galvanizing of these components could be carried out, which is very complex and expensive.
  • the fine protective layer of one or more oxygen-affine elements is formed so that it can be removed again, ie only temporarily present, in order to protect the cathodic layer during heating above the austenitizing temperature, ie. H. of the glow, to ensure.
  • this thin protective layer is formed from at least one oxide of the oxygen-affine elements in such a way that cracks and / or defects form in this layer. These cracks allow to detach the scales of the oxide limited by the cracks and / or defects by means of dry ice irradiation.
  • the radiation is carried out only with dry ice without additives, wherein the dry ice particles penetrate through the cracks and / or defects in the cavities under the protective layer and sublimate under up to 800-fold volume increase.
  • the potentially loose or to be dissolved particles from the oxide of / the oxygen-affine elements / element along with any zinc oxide particles thereon are blasted off.
  • the extra thermal shock from the cryogenic Dry ice particles lead to further thermal stresses in the oxide / oxygen-sensitive element / element layer and thus support the desired removal.
  • an abrasive removal should and must be avoided, as this attacks the cathodic protective layer.
  • the thickness and the crackiness of the fine protective layer of the oxide of the / the oxygen affinity elements / elements arrive at the pretreatment of the bare steel strip and its influence on the interfacial kinetics or formation between zinc and steel substrate in the hot dip coating and on the zinc deposit.
  • An inhibiting layer is a layer which occurs as a result of aluminum addition in the zinc bath between the steel substrate and the zinc layer during the continuous hot-dip coating and, if appropriate, subsequent heat treatment.
  • the object of the inhibition layer in general is to brake an excessively strong alloy or reaction between iron and zinc.
  • FIG. 1 The surface in which the Al 2 O 3 protective layer shows cracks and / or defects as a result of the heat treatment or hardening is ideally to be cleaned with dry ice.
  • the dry ice particles penetrate through the cracks shown in the cavities under the Al 2 O 3 layer and sublimate there as already stated.
  • the dry ice cleaning is carried out such that the dry ice particles do not attack the underlying under the Al 2 O 3 layer iron-zinc layer and not even break off the particles that adhere so firmly to the iron-zinc layer that they are responsible for the Paintability does not pose a problem.
  • FIG. 1 The surface in which the Al 2 O 3 protective layer shows cracks and / or defects as a result of the heat treatment or hardening is ideally to be cleaned with dry ice.
  • the dry ice particles penetrate through the cracks shown in the cavities under the Al 2 O 3 layer and sublimate there as already stated.
  • the dry ice cleaning is carried out such that the dry ice particles do not attack the underlying under the Al 2 O 3
  • the necessary requirements are met, according to which cavities must be present under the Al 2 O 3 layer, the Al 2 O 3 layer must have a certain thickness and cracks must also be present.
  • the cracks also allow molten zinc to evaporate, reacting with the atmospheric oxygen to form zinc oxide and recondensing on the Al 2 O 3 protective layer.
  • both the ripple the iron-zinc layer is lower and the Al 2 O 3 layer has larger closed areas that go beyond the cavities caused by the waviness of the iron-zinc layer. Accordingly, little zinc oxide is formed in the region of the cracks. Since parts of the cavities are covered by the Al 2 O 3 layer, it is not possible to cause blistering by sublimation in the cavities.
  • FIGS. 3 and 4 are the in FIGS. 1 and 2 schematized states shown in a plan view by electron microscope. In both cases it is a sheet of 1.0 mm thickness, which was annealed at 910 ° C for 250 sec. In a radiant oven and then cured between cooled steel plates.
  • FIG. 4 shows the surface after curing in the case of a thick inhibitor layer formation and / or too high a zinc deposit. Since the Al 2 O 3 protective layer is comparatively thin in this case, the electron beam can penetrate it more easily. The cavities located under the Al 2 O 3 protective layer are therefore recognizable in the recording as dark areas, since less backscattered electrons from the Al 2 O 3 protective layer contribute to the detector signal.
  • the thickness of the Al 2 O 3 layer is approximately 150 nm to 200 nm
  • FIG. 3 shown state is the desired state while in FIG. 4 shown unwanted condition according to the conditions FIG. 2 equivalent.
  • FIG. 5 is a surface according to FIG. 3 shown, which has been subjected to the cleaning process according to the invention.
  • the iron-zinc phases are very evident.
  • a large area Al 2 O 3 - and zinc oxide occupancy is no longer recognizable.
  • This surface produced according to the invention can be phosphated very well or aftertreated in another way and shows a very good paint adhesion.
  • FIG. 6 is the surface after FIG. 4 after performing the dry ice cleaning process.
  • the darker areas show uncoated Al 2 O 3 and a surface that only allows poor paintability.
  • the inventive method is in FIG. 7 in which dry ice particles are brought onto the Al 2 O 3 layer with a dry ice blasting gun, enter the cavities and sublimate there.
  • a dry ice blasting gun enters the cavities and sublimate there.
  • Al 2 O 3 flakes are removed together with zinc oxide constituents adhering to them, so that the roughness of the iron-zinc layer (see US Pat FIG. 5 ) stays behind.
  • the pretreatment and hot-dip coating is performed so that in the pre-oxidation a FeO layer is greater than 100 nm but less than 1000 nm and preferably forms an inhibiting layer having an aluminum content of 0.15 g / m 2 to 0.4 g / m 2 has.
  • a FeO layer is greater than 100 nm but less than 1000 nm and preferably forms an inhibiting layer having an aluminum content of 0.15 g / m 2 to 0.4 g / m 2 has.
  • the zinc layer support for carrying out the method according to the invention preferably lies between Z100 and Z200, which means between 7 ⁇ m and 14 ⁇ m per side.
  • the reaction of the zinc-iron phases can be delayed to the surface, whereby the Al 2 O 3 layer is only slightly damaged and thus remains thin.
  • cathodic protection may be too low.
  • a sheet of 22MnB5 steel 1.0mm thick is subjected to pre-oxidation and hot dip coating of about 0.2% by weight aluminum in the zinc bath.
  • the pre-oxidation is carried out so that a FeO layer thickness of greater than 100 nm but less than 1,000 nm is set.
  • the galvanizing is carried out in such a way that a zinc coating Z200, that means 14 ⁇ m per side is achieved.
  • the aluminum content of the inhibiting layer is adjusted to 0.3 g / m 2 .
  • the sheet is then placed for four minutes in a 910 ° C hot air oven with normal air atmosphere.
  • layer formation is according to Figures 3 and 5 or according to FIG. 1 to recognize. This layer is easy to clean with dry ice and it results in the surface according to FIG. 5 and in subsequent experiments, the correspondingly good paint adhesion.
  • a sheet of 22MnB5 steel of 1.0 mm thickness is subjected to preoxidation and hot dip coating of about 0.2 wt% aluminum in the zinc bath.
  • the pre-oxidation of the bare steel sheet is carried out so that a FeO layer thickness of greater than 100 nm and less than 1,000 nm is set.
  • the zinc coating is carried out in such a way that a zinc coating of Z200, ie 14 ⁇ m per side, is achieved.
  • the aluminum content of the inhibitor layer is set to 0.8 g / m 2 and the annealing conditions are as in Example 1.
  • an aluminum oxide-rich surface is achieved with little zinc oxide, which is difficult to clean with dry ice.
  • the surface corresponds FIG. 6 or before cleaning FIG. 4 and in subsequent Lackier barnen results in the poor paint adhesion due to large-area Al 2 O 3 occupancy.
  • a steel sheet according to Examples 1 and 2 is formed instead of a zinc coating Z200 with a zinc coating Z300, ie 21 microns per side.
  • the pre-oxidation of the bare steel strip is carried out so that a FeO layer thickness of greater than 100 nm and less than 1,000 nm is set.
  • the aluminum content of the inhibiting layer is adjusted to 0.3 g / m 2 .
  • the sheet is then placed for four minutes in a 910 ° C hot air oven with normal air atmosphere. Again, the non-inventive Al 2 O 3 -rich surface is formed again with little zinc oxide, which is poorly cleansed with dry ice and the illustrated Surface in FIG. 4 equivalent. In subsequent Lackier barnen also a poor paint adhesion is achieved.
  • the cathodic protective layer protects the steel against oxidation during the heating process and in particular scale formation protects and wherein after a heat treatment and hardening of the steel component with simple means a very good paintable surface is created.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

The invention relates to a method for the production and removal of a temporary protective layer for a cathodic coating, particularly for the production of a hardened steel component with an easily paintable surface, wherein a steel sheet made of a hardenable steel alloy is subjected to a preoxidation, wherein said preoxidation forms a FeO layer with a thickness of 100 nm to 1,000 nm and subsequently a melt dip coating is conducted, wherein, during the melt dip coating, a zinc layer is applied having a thickness of 5 to 20 μm, preferably 7 to 14 μm, on each side, wherein the melt dip process and the aluminum content of the zinc bath is adjusted such that, during the melt dip coating, an aluminum content for the barrier layer results of 0.15 g/m2 to 0.8 g/m2 and the steel sheet or sheet components made therefrom is subsequently heated to a temperature above the austenitizing temperature and is then cooled at a speed greater than the critical hardening speed in order to cause hardening, wherein oxygen-affine elements are contained in the zinc bath for the melt dip coating in a concentration of 0.10 wt.-% to 15 wt.-% that, during the austenitizing on the surface of the cathodic protective layer, form a thin skin comprised of the oxide of the oxygen-affine elements and said oxide layer is blasted after hardening by irradiation of the sheet component with dry ice particles.

Description

Die Erfindung betrifft ein Verfahren zum Erzeugen und Entfernen einer temporären Schutzschicht für eine kathodische Beschichtung auf Trägermetallen.The invention relates to a method for producing and removing a temporary protective layer for a cathodic coating on carrier metals.

Aus der EP 1 561 542 A1 ist ein Verfahren zum Entfernen einer Schicht eines Bauteils bekannt. Hierbei handelt es sich um eine Schicht aus einem organischen Binder, der von einem Substrat entfernt werden soll, ohne das Substrat zu schädigen. Hierzu wird ein Strahl aus Trockeneispartikeln über die Oberfläche geführt, so dass durch die Einwirkung der auftretenden Trockeneispartikel Material von der einen organischen Binder enthaltenen Schicht abgetragen wird. Durch die Trockeneisabtragung soll eine Kontamination durch Fremdstoffe vermieden werden und der metallische Grundkörper des Bauteils nicht beeinträchtigt werden.From the EP 1 561 542 A1 For example, a method for removing a layer of a component is known. This is a layer of organic binder that is to be removed from a substrate without damaging the substrate. For this purpose, a jet of dry ice particles is guided over the surface, so that material is removed from the layer containing an organic binder by the action of the occurring dry ice particles. The removal of dry ice is intended to prevent contamination by foreign substances and to not impair the metallic basic body of the component.

Aus der EP 1 321 625 B1 ist ein Verfahren zum Abtragen einer Metallschicht bekannt, wobei ein Schichtsystem mit der Metallschicht und einem von der Metallschicht beschichteten Substrat umfasst und der Entfernungsprozess ein Strahlprozess ist. Der Strahlprozess kann hierbei ein Sandstrahlprozess sein, wobei die Metallschicht stark gekühlt wird, um eine Tieftemperaturversprödung der Schicht gegenüber dem Substrat zu erreichen. Aus der EP 1 034 890 A2 sind ein Verfahren und eine Vorrichtung zum Bestrahlen mit verschiedenen Strahlmitteln bekannt. Hierbei soll eine abrasive Strahlbehandlung mit Strahlmitteln aufgezeigt werden, bei welcher die abrasive Wirkung der Strahlmittel zwischen der von bei Normalbedingungen in fluider Form vorliegenden Strahlmitteln und der bei Normalbedingungen in festem Aggregatszustand vorliegenden Strahlmitteln liegt. Hierbei wird eine Mischung aus einem ersten Strahlmittel wie Trockeneis und einem zweiten Abrasivstrahlmittel wie beispielsweise Sand verwendet.From the EP 1 321 625 B1 For example, a method for removing a metal layer is known, wherein a layer system comprising the metal layer and a substrate coated by the metal layer and the removal process is a blasting process. In this case, the blasting process can be a sandblasting process, whereby the metal layer is strongly cooled in order to achieve low-temperature embrittlement of the layer with respect to the substrate. From the EP 1 034 890 A2 For example, a method and an apparatus for irradiating with different blasting agents are known. In this case, an abrasive blast treatment with blasting agents is to be shown, in which the abrasive effect of the blasting agent is between the blasting agents present in fluid form under normal conditions and the blasting agents present in solid state under normal conditions. Here, a mixture of a first blasting agent such as dry ice and a second abrasive blasting agent such as sand is used.

Aus der DE 199 46 975 C1 sind eine Vorrichtung und ein Verfahren zum Entfernen einer Beschichtung von einem Substrat bekannt, die materialschonend und zum Entfernen sowohl weicher als auch harter Beschichtung geeignet sein soll. Hierbei soll eine Kältebehandlung durch Bestrahlung mit einem Kältemittel welches zu einer Versprödung der Beschichtung führt und anschließend ein abrasiver Reinigungseffekt mit einem Bearbeitungswerkzeug durchgeführt werden, wobei durch die Kältebehandlung die mechanische abrasive Bearbeitung mit Werkzeugteilen geringerer Härte als bei Bearbeitungswerkzeugen nach dem Stand der Technik ausgeführt werden kann.From the DE 199 46 975 C1 For example, an apparatus and method are known for removing a coating from a substrate which is said to be gentle on materials and suitable for removing both soft and hard coatings. Here is a cold treatment by irradiation with a refrigerant which leads to embrittlement of the coating and then an abrasive cleaning effect are performed with a machining tool, which can be performed by the cold treatment, the mechanical abrasive machining with tool parts lower hardness than in processing tools according to the prior art ,

Aus der DE 199 42 785 A1 ist ein Verfahren zum Entfernen von festen Bearbeitungsrückständen, Oberflächenbeschichtungen oder Oxydschichten bekannt, wobei nur dort eine Reinigung erfolgen soll wo feste Bearbeitungsrückstände befinden. Die Reinigung kann hierbei mit Dampfstrahlen, Trockeneisstrahlen oder reinigen mit technisch induzierten Schockwellen, so genannten Lasercleanern, stattfinden. Die CO2-Reinigung kann durch an sich bekannte Trockeneispellets erfolgen.From the DE 199 42 785 A1 a method for removing solid processing residues, surface coatings or oxide layers is known, only where a cleaning should take place where solid processing residues are. The cleaning can take place here with steam jets, dry ice blasting or cleaning with technically induced shock waves, so-called Lasercleanern. The CO 2 purification can be done by known dry ice pellets.

Aus der DE 102 43 035 B4 sind ein Verfahren und eine Vorrichtung zum Entfernen von durch Erhitzung und Abkühlen auf Metallstücken sich bildenden Schichten bekannt. Da beim Entfernen von Beispielsweise Zunder, Oxydsilikat und Schlackeschichten auf Metallwerkstücken und insbesondere bei Metallwerkstücken mit nicht ebenen Oberflächen, beispielsweise Achs- und Karosseriebauteilen für Fahrzeuge, die Festkörperteilchen in abrasiven Druckgasstrahlen nicht in allen Fällen vollständig von Metallwerkstücken entfernen soll der Druckgasstrom mit dessen Hilfe beispielsweise Trockeneisteilchen auf das zu reinigende Metallwerkstück aufgebracht werden, vorgewärmt werden und eine Temperatur besitzen, die größer ist als die Temperatur der das Metallwerkstück umgebenden Luft und/oder als die Oberflächentemperatur des Metallwerkstücks. Hierdurch soll erreicht werden, dass einerseits das Metallwerkstück nicht zu stark unterkühlt wird und andererseits das Druckgas zumindest im Wesentlichen frei von Feuchtigkeit ist und damit unerwünschte Kondensatbildung vermieden wird. Die von der Oberfläche des Metallstücks zu entfernenden Schichten werden durch die mechanische Einwirkung der mit hoher Geschwindigkeit auftreffenden und dadurch eine abrasive Wirkung aufweisenden Trockeneisteilchen sowie durch die aufgrund der Trockeneisteilchen verursachten örtlich begrenzten Abkühlung der Oberfläche und der Schicht abgetragen.From the DE 102 43 035 B4 For example, a method and apparatus for removing layers formed by heating and cooling on pieces of metal are known. Because when removing, for example, scale, oxydsilicate and slag layers on metal workpieces and especially metal workpieces with non-planar surfaces, such as axle and bodywork components for vehicles, the solid particles in abrasive pressurized gas jets are not intended to completely remove metal workpieces from the compressed gas flow with the aid of, for example, dry ice particles be applied to the metal workpiece to be cleaned, preheated and have a temperature which is greater than the temperature of the air surrounding the metal workpiece and / or as the surface temperature of the metal workpiece. This is intended to ensure that, on the one hand, the metal workpiece is not excessively overcooled and, on the other hand, that the compressed gas is at least substantially free of moisture and thus undesired formation of condensate is avoided. The layers to be removed from the surface of the piece of metal are removed by the mechanical action of the high velocity impacting dry ice particles and by the localized cooling of the surface and the layer due to the dry ice particles.

Aus der WO 2005/021822 der Anmelderin ist es bekannt, zum Schutz einer kathodischen Korrosionsschutzschicht sauerstoffaffine Elemente in das die kathodische Schutzschicht ausbildende Metall in gewissen Grenzen zuzufügen, um beim Härten eines mit dem kathodisch geschützten Metall hergestellten Bauteils einen Schutz der kathodischen Schutzschicht zu bewirken. Zum Härten derartiger Bauteil müssen diese über die Austenitisierungstemperatur des Grundmetalls, in diesem Fall Stahl, aufgeheizt werden. Insbesondere bei hoch härtbaren Stählen liegt diese Temperatur oberhalb von 800°C. Bei derartigen Temperaturen werden die meisten kathodischen Schutzschichten durch Abdampfen oder Oxidation zerstört, so dass ein derart behandeltes Bauteil nach der Härtung keinen kathodischen Schutz besitzen würde. Der Zusatz der sauerstoffaffinen Elemente führt dazu, dass die sauerstoffaffinen Elemente aus der Zusammensetzung der kathodischen Schutzschicht an die Oberfläche diffundieren und dort eine sehr feine Schutzschicht ausbilden. Diese sehr feine Schutzschicht kann beispielsweise aus Magnesiumoxyd oder Aluminiumoxyd oder Mischungen hieraus bestehen. Aus der WO 2005/021820 ist es zudem bekannt, ein derartiges Verfahren beim Rollprofilieren anzuwenden.From the WO 2005/021822 It is known to the Applicant, in order to protect a cathodic anti-corrosive layer, to add oxygen-affine elements into the metal forming the cathodic protective layer within certain limits in order to provide protection of the cathodic protective layer when curing a component made with the cathodically protected metal. For hardening such components, they must be heated above the austenitizing temperature of the base metal, in this case steel. Especially with highly hardenable steels this temperature is above 800 ° C. At such temperatures, most cathodic protective layers are destroyed by evaporation or oxidation, so that a component treated in this way would not have cathodic protection after curing. The addition of the oxygen-affine elements causes the oxygen-affinity elements diffuse from the composition of the cathodic protection layer to the surface and form there a very fine protective layer. This very fine protective layer may for example consist of magnesium oxide or aluminum oxide or mixtures thereof. From the WO 2005/021820 It is also known to apply such a method in roll profiling.

Aufgabe der Erfindung ist es, ein Verfahren zu schaffen, mit dem die Lackhaftung auf mit einer kathodischen Schutzschicht versehenen gehärteten Stahlbauteilen verbessert werden kann.The object of the invention is to provide a method with which the paint adhesion can be improved on provided with a cathodic protective layer hardened steel components.

Die Aufgabe wird mit einem Verfahren mit den Merkmalen des Anspruchs 1 gelöst.The object is achieved by a method having the features of claim 1.

Vorteilhafte Weiterbildungen sind in Unteransprüchen gekennzeichnet.Advantageous developments are characterized in the subclaims.

Erfindungsgemäß wurde erkannt, dass unter bestimmten Voraussetzungen die Lackhaftung bei mit einer feinen Oberflächenschutzbeschichtung versehenen kathodischen Korrosionsschutzschichten nicht optimal sein kann. Andererseits gibt es zur Ausbildung dieser dünnen Schichten keine Alternative, da ansonsten nur eine Nachverzinkung dieser Bauteile durchgeführt werden könnte, die jedoch sehr aufwändig und teuer ist.According to the invention, it has been recognized that, under certain conditions, the paint adhesion may not be optimal with cathodic anticorrosion coatings provided with a fine surface protection coating. On the other hand, there is no alternative to the formation of these thin layers, since otherwise only a post-galvanizing of these components could be carried out, which is very complex and expensive.

Zudem wurde herausgefunden, dass unter bestimmten Umständen eine solche Schutzschicht für eine kathodische Schutzschicht schon eine Phosphatierungsvorbehandlung für das Lackieren erschwert.In addition, it has been found that under certain circumstances, such a protective layer for a cathodic protective layer Already a Phosphatierungsvorbehandlung for painting difficult.

Erfindungsgemäß wird daher die feine Schutzschicht aus einem oder mehreren sauerstoffaffinen Elementen so ausgebildet, dass sie sich wieder entfernen lässt, also nur temporär vorhanden ist, um einen Schutz der kathodischen Schicht während des Aufheizens über Austenitisierungstemperatur, d. h. des Glühens, zu gewährleisten.According to the invention, therefore, the fine protective layer of one or more oxygen-affine elements is formed so that it can be removed again, ie only temporarily present, in order to protect the cathodic layer during heating above the austenitizing temperature, ie. H. of the glow, to ensure.

Erfindungsgemäß wird diese dünne Schutzschicht aus zumindest einem Oxyd der sauerstoffaffinen Elemente so ausgebildet, dass sich Risse und/oder Defekte in dieser Schicht bilden. Diese Risse lassen es zu, die von den Rissen und/oder Defekten begrenzten Schuppen aus dem Oxyd mittels einer Trockeneisbestrahlung abzulösen.According to the invention, this thin protective layer is formed from at least one oxide of the oxygen-affine elements in such a way that cracks and / or defects form in this layer. These cracks allow to detach the scales of the oxide limited by the cracks and / or defects by means of dry ice irradiation.

Das herkömmliche Sandstrahlen versagt jedoch bzw. ist nur beschränkt bei den neuesten kathodischen Schutzbeschichtungen, die eine Schutzschicht aus Oxyden sauerstoffaffiner Elemente besitzen, einsetzbar, da die herkömmlichen Reinigungsverfahren abrasiver Art einen Großteil der kathodischen Schicht beseitigen würden. Zudem wirkt sich das Sandstrahlen auch negativ auf die Maßhaltigkeit der Bauteile aus und erfordert zudem eine Nachreinigung.Conventional sandblasting, however, is limited in use with the newest cathodic protective coatings having a protective layer of oxygen-affine element oxides because the conventional abrasive cleaning methods would eliminate most of the cathodic layer. In addition, the sandblasting also has a negative effect on the dimensional accuracy of the components and also requires a post-cleaning.

Erfindungsgemäß wird die Strahlung lediglich mit Trockeneis ohne Zusätze durchgeführt, wobei die Trockeneispartikel durch die Risse und/oder Defekte in die Hohlräume unter der Schutzschicht eindringen und unter bis zu 800-facher Volumenzunahme sublimieren. Hierdurch werden die potentiell losen oder zu lösenden Partikel aus dem Oxyd der/des sauerstoffaffinen Elemente/Elements samt ggf. darauf befindlichen Zinkoxydpartikel abgesprengt. Der zusätzliche thermische Schock durch die tiefkalten Trockeneispartikel führt zu weiteren thermischen Spannungen in der Schicht aus dem Oxyd der/des sauerstoffaffinen Elemente/Elements und unterstützt somit den erwünschten Abtrag. Ein abrasiver Abtrag soll und muss jedoch vermieden werden, da hierdurch die kathodische Schutzschicht angegriffen wird.According to the invention, the radiation is carried out only with dry ice without additives, wherein the dry ice particles penetrate through the cracks and / or defects in the cavities under the protective layer and sublimate under up to 800-fold volume increase. As a result, the potentially loose or to be dissolved particles from the oxide of / the oxygen-affine elements / element along with any zinc oxide particles thereon are blasted off. The extra thermal shock from the cryogenic Dry ice particles lead to further thermal stresses in the oxide / oxygen-sensitive element / element layer and thus support the desired removal. However, an abrasive removal should and must be avoided, as this attacks the cathodic protective layer.

Die gewünschte und für den kathodischen Korrosionsschutz notwendige Zink bzw. Zink-Eisen-Schicht wird hierdurch nicht beeinflusst und auch nicht abgetragen. Mit dem erfindungsgemäßen Verfahren ist somit ein selektiver Abtrag der schlecht haftenden Oxyde möglich. Gut auf der Oberfläche haftende Oxyde bleiben hingegen auf der Oberfläche zurück und haben auf die Lackierbarkeit auch keinen negativen Einfluss.The desired and for the cathodic corrosion protection necessary zinc or zinc-iron layer is thereby not affected and not removed. With the method according to the invention thus a selective removal of poorly adhering oxides is possible. Good adhering oxides on the surface, on the other hand, remain on the surface and have no negative influence on the paintability.

Erfindungsgemäß hat sich herausgestellt, dass für die Ausbildung der Risse in der Schicht Verfahrensschritte notwendig sind, die lange vor der Erzeugung der kathodischen Schicht am Bauteil selbst durchzuführen sind. Während sich die Hohlräume unter der feinen Schutzschicht immer ausbilden, was auf die ablaufende Eisen-Zink-Reaktion in der kathodischen Korrosionsschutzschicht beim Glühen im Strahlungsofen zurückzuführen ist, konnte erfindungsgemäß herausgefunden werden, dass es bei der Dicke und Rissigkeit der feinen Schutzschicht aus dem Oxyd des/der sauerstoffaffinen Elements/Elemente auf die Vorbehandlung des blanken Stahlbandes und deren Einfluss auf die Grenzflächenkinetik bzw. -ausbildung zwischen Zink und Stahlsubstrat bei der Schmelztauchbeschichtung und auf die Zinkauflage ankommt.According to the invention, it has been found that, for the formation of the cracks in the layer, it is necessary to carry out process steps which are to be carried out long before the formation of the cathodic layer on the component itself. While the voids under the fine protective layer are always formed due to the progressing iron-zinc reaction in the cathodic anti-corrosive layer upon annealing in the radiant oven, it has been found in the present invention that the thickness and the crackiness of the fine protective layer of the oxide of the / the oxygen affinity elements / elements arrive at the pretreatment of the bare steel strip and its influence on the interfacial kinetics or formation between zinc and steel substrate in the hot dip coating and on the zinc deposit.

Unter Vorbehandlung ist eine Voroxidation des blanken Stahlbandes zu verstehen, wie sie in der DE 100 59 566 B3 und im EU-Forschungsbericht Nr. 7210-PA/118 beschrieben wird. Diese Art der Behandlung ist üblich, um das Eigenschaftsprofil von Stählen mit hoher Festigkeit zu optimieren. Dadurch werden die Haftungseigenschaften des Zinküberzugs bei der Schmelztauchbeschichtung, insbesondere bei Stahlbändern mit hohen Legierungsbestandteilen, verbessert.Under pretreatment is a pre-oxidation of the bare steel strip to understand, as in the DE 100 59 566 B3 and described in EU Research Report No. 7210-PA / 118. This type of treatment is common to the property profile of To optimize steels with high strength. This improves the adhesion properties of the zinc coating in the hot-dip coating, in particular in steel strips with high alloy constituents.

In Folge kann sich dabei die Hemmschichtausbildung auf die Dicke und Rissigkeit der feinen Schutzschicht auswirken. Als Hemmschicht wird eine Schicht bezeichnet, die durch einen Aluminiumzusatz im Zinkbad zwischen dem Stahlsubstrat und der Zinkschicht während der kontinuierlichen Schmelztauchbeschichtung und ggf. nachfolgenden Wärmebehandlung auftritt. Die Aufgabe der Hemmschicht generell ist es, eine zu starke Legierung bzw. Reaktion zwischen Eisen und Zink zu bremsen.As a result, the inhibitor layer formation can affect the thickness and the cracking of the fine protective layer. An inhibiting layer is a layer which occurs as a result of aluminum addition in the zinc bath between the steel substrate and the zinc layer during the continuous hot-dip coating and, if appropriate, subsequent heat treatment. The object of the inhibition layer in general is to brake an excessively strong alloy or reaction between iron and zinc.

Wird diese Hemmschicht zu dick ausgebildet, tritt die Reaktion von Zink mit Eisen beim Aufheizen über Austenitisierungstemperatur verlangsamt ein und die darüber liegende und weiter leicht anwachsende Schicht aus dem Oxyd der/des sauerstoffaffinen Elemente/Elements wird von den entstehenden Eisen-Zink-Phasen nur gering oder gar nicht geschädigt. Hiermit wächst die Dicke der feinen Schutzschicht nur langsam an und es kommt auch zu keiner starken Rissbildung, da sich die nun eher dünne Al2O3-Schicht wie eine dünne Haut über die Eisen-Zink-Phasen legt. Der gleiche Effekt tritt auf, wenn die Zinkauflage zu hoch gewählt ist.If this inhibitor layer is formed too thick, the reaction of zinc with iron during heating over Austenitisierungstemperatur slows down and the overlying and further slightly increasing layer of the oxide of the oxygen-related element / element of the resulting iron-zinc phases only small or not damaged at all. Hereby, the thickness of the fine protective layer grows only slowly and there is also no severe cracking, as the now rather thin Al 2 O 3 layer lays like a thin skin over the iron-zinc phases. The same effect occurs when the zinc coating is too high.

Die Erfindung wird anhand einer Zeichnung beispielhaft erläutert. Es zeigen dabei:

Figur 1:
einen Schichtaufbau nach der Erfindung, der mit dem erfindungsgemäßen Verfahren gut bearbeitbar ist;
Figur 2:
eine vergleichende Darstellung einer nicht gut zu reinigenden Oberfläche;
Figur 3:
eine gut zu reinigende Oberfläche gemäß Figur 1 in einer rasterelektronenmikroskopischen Draufsicht;
Figur 4:
eine Draufsicht auf eine schlecht zu reinigende Fläche gemäß Figur 2 in einer rasterelektronenmikroskopischen Aufnahme;
Figur 5:
die Oberfläche der Probe gemäß Figur 3 nach dem erfindungsgemäßen Reinigungsschritt;
Figur 6:
eine Oberfläche nach Figur 4 nach der Durchführung eines Reinigungsverfahrens;
Figur 7:
schematisch der Reinigungsprozess nach der Erfindung.
The invention will be explained by way of example with reference to a drawing. It shows:
FIG. 1:
a layer structure according to the invention, which is easy to work with the inventive method;
FIG. 2:
a comparative representation of a surface that is not easy to clean;
FIG. 3:
a well-cleaned surface according to FIG. 1 in a scanning electron microscope top view;
FIG. 4:
a plan view of a poorly clean surface according to FIG. 2 in a scanning electron micrograph;
FIG. 5:
the surface of the sample according to FIG. 3 after the purification step according to the invention;
FIG. 6:
a surface after FIG. 4 after performing a cleaning process;
FIG. 7:
schematically the cleaning process according to the invention.

Die in Figur 1 dargestellte Oberfläche, bei der in der Al2O3-Schutzschicht Risse und/oder Defekte aufgrund der Wärmebehandlung bzw. dem Härten auftreten, ist ideal mit Trockeneis zu reinigen. Die Trockeneispartikel dringen durch die dargestellten Risse in die Hohlräume unter der Al2O3-Schicht ein und sublimieren dort wie bereits dargelegt. Hierbei wird die Trockeneisreinigung derart durchgeführt, dass die Trockeneispartikel die unter der Al2O3-Schicht liegende Eisen-Zink-Schicht nicht angreifen und nicht einmal die Partikel absprengen, die so fest an der Eisen-Zink-Schicht haften, dass sie für die Lackierbarkeit kein Problem darstellen. Wie in Figur 1 ersichtlich werden die notwendigen Forderungen erfüllt, wonach Hohlräume unter der Al2O3-Schicht vorhanden sein müssen, die Al2O3-Schicht eine gewisse Dicke aufweisen muss und zudem Risse vorhanden sein müssen. Durch die Risse kann zudem schmelzflüssiges Zink verdampfen, wobei es mit dem Luftsauerstoff zu Zinkoxid reagiert und auf der Al2O3-Schutzschicht rekondensiert. Im Gegensatz hierzu sieht man in Figur 2, dass sowohl die Welligkeit der Eisen-Zink-Schicht geringer ist als auch die Al2O3-Schicht größere geschlossene Bereiche aufweist, die über die durch die Welligkeit der Eisen-Zink-Schicht verursachten Hohlräume hinweg gehen. Dementsprechend ist im Bereich der Risse auch wenig Zinkoxyd ausgebildet. Da Teile der Hohlräume durch die Al2O3-Schicht abgedeckt sind, ist es nicht möglich eine Absprengung durch Sublimation in den Hohlräumen herbeizuführen.In the FIG. 1 The surface in which the Al 2 O 3 protective layer shows cracks and / or defects as a result of the heat treatment or hardening is ideally to be cleaned with dry ice. The dry ice particles penetrate through the cracks shown in the cavities under the Al 2 O 3 layer and sublimate there as already stated. Here, the dry ice cleaning is carried out such that the dry ice particles do not attack the underlying under the Al 2 O 3 layer iron-zinc layer and not even break off the particles that adhere so firmly to the iron-zinc layer that they are responsible for the Paintability does not pose a problem. As in FIG. 1 Obviously, the necessary requirements are met, according to which cavities must be present under the Al 2 O 3 layer, the Al 2 O 3 layer must have a certain thickness and cracks must also be present. The cracks also allow molten zinc to evaporate, reacting with the atmospheric oxygen to form zinc oxide and recondensing on the Al 2 O 3 protective layer. In contrast, one sees in FIG. 2 that both the ripple the iron-zinc layer is lower and the Al 2 O 3 layer has larger closed areas that go beyond the cavities caused by the waviness of the iron-zinc layer. Accordingly, little zinc oxide is formed in the region of the cracks. Since parts of the cavities are covered by the Al 2 O 3 layer, it is not possible to cause blistering by sublimation in the cavities.

In den Figuren 3 und 4 sind die in Figur 1 und 2 schematisiert dargestellten Zustände in einer Draufsicht mittels Elektronenmikroskop gezeigt. In beiden Fällen handelt es sich um ein Blech mit 1,0 mm Dicke, welches bei 910°C für 250 sec. in einem Strahlungsofen geglüht wurde und anschließend zwischen gekühlten Stahlplatten gehärtet wurde. Figur 4 zeigt die Oberfläche nach dem Härten für den Fall einer dicken Hemmschichtausbildung und/oder einer zu hohen Zinkauflage. Da die Al2O3-Schutzschicht in diesem Fall vergleichsweise dünn ist, kann der Elektronenstrahl diese leichter durchdringen. Die unter der Al2O3-Schutzschicht befindlichen Hohlräume sind deshalb in der Aufnahme als dunkle Flächen erkennbar, da hier weniger Rückstreuelektronen aus der Al2O3-Schutzschicht zum Detektorsignal beiträgt.In the FIGS. 3 and 4 are the in FIGS. 1 and 2 schematized states shown in a plan view by electron microscope. In both cases it is a sheet of 1.0 mm thickness, which was annealed at 910 ° C for 250 sec. In a radiant oven and then cured between cooled steel plates. FIG. 4 shows the surface after curing in the case of a thick inhibitor layer formation and / or too high a zinc deposit. Since the Al 2 O 3 protective layer is comparatively thin in this case, the electron beam can penetrate it more easily. The cavities located under the Al 2 O 3 protective layer are therefore recognizable in the recording as dark areas, since less backscattered electrons from the Al 2 O 3 protective layer contribute to the detector signal.

Ist die Aluminiumoxydschicht dicker und mit mehr Rissen behaftet ist im Rasterelektronenmikroskop eine durchgehende Al2O3-Schicht ohne dunkle Flecken zu erkennen. Im in Figur 3 gezeigten Fall beträgt die Dicke der Al2O3-Schicht in etwa 150 nm bis 200 nm. Der in Figur 3 dargestellte Zustand ist der gewünschte Zustand, während der in Figur 4 gezeigte nicht gewünschte Zustand den Verhältnissen gemäß Figur 2 entspricht.If the aluminum oxide layer is thicker and has more cracks, a continuous Al 2 O 3 layer without dark spots can be recognized in the scanning electron microscope. Im in FIG. 3 In the case shown, the thickness of the Al 2 O 3 layer is approximately 150 nm to 200 nm FIG. 3 shown state is the desired state while in FIG. 4 shown unwanted condition according to the conditions FIG. 2 equivalent.

In Figur 5 ist eine Oberfläche gemäß Figur 3 gezeigt, die dem erfindungsgemäßen Reinigungsverfahren unterzogen wurde. Die Eisen-Zink-Phasen kommen sehr gut zum Vorschein. Eine großflächige Al2O3- und Zinkoxydbelegung ist nicht mehr erkennbar. Diese erfindungsgemäß erzeugte Oberfläche lässt sich sehr gut phosphatieren oder in anderer Weise nachbehandeln und zeigt eine sehr gute Lackhaftung.In FIG. 5 is a surface according to FIG. 3 shown, which has been subjected to the cleaning process according to the invention. The iron-zinc phases are very evident. A large area Al 2 O 3 - and zinc oxide occupancy is no longer recognizable. This surface produced according to the invention can be phosphated very well or aftertreated in another way and shows a very good paint adhesion.

In Figur 6 ist die Oberfläche nach Figur 4 nach Durchführung des Trockeneisreinigungsverfahrens gezeigt. Die dunkleren Flächen zeigen nicht abgetragenes Al2O3 und eine Oberfläche, die nur eine schlechte Lackierbarkeit zulässt.In FIG. 6 is the surface after FIG. 4 after performing the dry ice cleaning process. The darker areas show uncoated Al 2 O 3 and a surface that only allows poor paintability.

Das erfindungsgemäße Verfahren ist in Figur 7 gezeigt, wobei mit einer Trockeneisstrahlpistole Trockeneispartikel auf die Al2O3-Schicht gebracht werden, in die Hohlräume gelangen und dort sublimieren. Durch die enorme Volumenausdehnung bei der Sublimation werden Al2O3-Schuppen zusammen mit darauf haftenden Zinkoxydbestandteilen abgelöst, so dass die Eisen-Zink-Schicht mit ihrer Rauhigkeit (siehe Figur 5) zurück bleibt.The inventive method is in FIG. 7 in which dry ice particles are brought onto the Al 2 O 3 layer with a dry ice blasting gun, enter the cavities and sublimate there. As a result of the enormous volume expansion during sublimation, Al 2 O 3 flakes are removed together with zinc oxide constituents adhering to them, so that the roughness of the iron-zinc layer (see US Pat FIG. 5 ) stays behind.

Erfindungsgemäß wird die Vorbehandlung und Schmelztauchbeschichtung so durchgeführt, dass sich bei der Voroxidation eine FeO-Schicht größer als 100 nm aber kleiner als 1.000 nm einstellt und bevorzugt eine Hemmschicht ausbildet, die einen Aluminiumgehalt von 0,15 g/m2 bis 0,4 g/m2 besitzt. Beim Aufheizen über Austenitisierungstemperatur im Strahlungsofen kommt es zu einer verstärkten Zink-Eisen-Reaktion, die zum Aufbrechen der Al2O3-Schutzschicht führt. Höhere Aluminiumgehalte führen zu einem Zustand, wie in Figur 4 beschrieben. Geringere Aluminiumgehalte führen zu einer unvollständigen Ausbildung der Hemmschicht und zu einer Zink-Eisen-Reaktion bereits beim Verzinkungsprozess. Dies hat wiederum zur Folge, dass bei der Kaltumformung das Zink abplatzen kann.According to the invention, the pretreatment and hot-dip coating is performed so that in the pre-oxidation a FeO layer is greater than 100 nm but less than 1000 nm and preferably forms an inhibiting layer having an aluminum content of 0.15 g / m 2 to 0.4 g / m 2 has. When heated above the austenitizing temperature in the radiation furnace, there is an increased zinc-iron reaction, which leads to the break-up of the Al 2 O 3 protective layer. Higher aluminum contents lead to a condition as in FIG. 4 described. Lower aluminum contents lead to incomplete formation of the inhibiting layer and to a zinc-iron reaction already during the galvanizing process. This in turn means that the zinc can chip off during cold forming.

Vorzugsweise liegt zudem die Zinkschichtauflage zur Durchführung des erfindungsgemäßen Verfahrens zwischen Z100 und Z200, was bedeutet, zwischen 7 µm und 14 µm je Seite. Bei höheren Auflagen kann die Durchreaktion der Zink-Eisen-Phasen bis an die Oberfläche verzögert werden, wodurch die Al2O3-Schicht nur wenig geschädigt wird und somit dünn bleibt. Bei niedrigeren Auflagen kann der kathodische Korrosionsschutz zu gering sein.In addition, the zinc layer support for carrying out the method according to the invention preferably lies between Z100 and Z200, which means between 7 μm and 14 μm per side. For longer runs, the reaction of the zinc-iron phases can be delayed to the surface, whereby the Al 2 O 3 layer is only slightly damaged and thus remains thin. For lower runs, cathodic protection may be too low.

Ganz allgemein kann zudem noch angeführt werden, dass durch vermehrte Risse und/oder Defekte in der Al2O3-Schutzschicht diese durch Sauerstoffdiffusion von unten her anwächst. Dickere Al2O3-Schutzschichten neigen weiters schon zu Rissen aufgrund thermischer Spannungen während des Aufheizens über Austenitisierungstemperatur. Bei einer dünneren Al2O3-Schutzschicht bilden sich wenige Risse in der Al2O3-Schutzschicht während des Aufheizens über Austenitisierungstemperatur und die geringe Sauerstoffdiffusion führt nur zu einer dünnen Al2O3-Haut über den Zink-Eisen-Mischphasen.In general, it can also be stated that increased cracks and / or defects in the Al 2 O 3 protective layer increase them by oxygen diffusion from below. Thicker Al 2 O 3 protective layers are more prone to cracking due to thermal stress during heating above austenitizing temperature. With a thinner Al 2 O 3 protective layer, few cracks form in the Al 2 O 3 protective layer during the heating above the austenitizing temperature and the low oxygen diffusion leads only to a thin Al 2 O 3 skin over the zinc-iron mixed phases.

Die Erfindung wird anhand von Beispielen erläutert.The invention will be explained by way of examples.

Beispiel 1:Example 1:

Ein Blech aus einem 22MnB5-Stahl mit 1,0 mm Dicke wird einer Voroxidation und einer Schmelztauchbeschichtung mit circa 0,2 Gew.% Aluminium im Zinkbad unterworfen. Die Voroxidation wird so durchgeführt, dass eine FeO-Schichtdicke von größer 100 nm aber kleiner als 1.000 nm eingestellt wird. Die Verzinkung wird hierbei so durchgeführt, dass eine Zinkauflage Z200, das bedeutet 14 µm je Seite erreicht wird. Der Aluminiumgehalt der Hemmschicht wird auf 0,3 g/m2 eingestellt. Das Blech wird in Folge für vier Minuten in einen 910°C heißen Strahlungsofen mit normaler Luftatmosphäre gegeben. Im Ergebnis ist eine Schichtausbildung gemäß Figuren 3 und 5 bzw. gemäß Figur 1 zu erkennen. Diese Schicht ist mit Trockeneis gut reinigbar und es ergibt sich die Oberfläche gemäß Figur 5 und in nachfolgenden Versuchen die entsprechend gute Lackhaftung.A sheet of 22MnB5 steel 1.0mm thick is subjected to pre-oxidation and hot dip coating of about 0.2% by weight aluminum in the zinc bath. The pre-oxidation is carried out so that a FeO layer thickness of greater than 100 nm but less than 1,000 nm is set. The galvanizing is carried out in such a way that a zinc coating Z200, that means 14 μm per side is achieved. The aluminum content of the inhibiting layer is adjusted to 0.3 g / m 2 . The sheet is then placed for four minutes in a 910 ° C hot air oven with normal air atmosphere. As a result, layer formation is according to Figures 3 and 5 or according to FIG. 1 to recognize. This layer is easy to clean with dry ice and it results in the surface according to FIG. 5 and in subsequent experiments, the correspondingly good paint adhesion.

Beispiel 2:Example 2:

Ein Blech aus 22MnB5-Stahl mit 1,0 mm Dicke wird einer Voroxidation und einer Schmelztauchbeschichtung mit circa 0,2 Gew.% Aluminium im Zinkbad unterworfen. Die Voroxidation des blanken Stahlblechs wird so durchgeführt, dass eine FeO-Schichtdicke von größer 100 nm und kleiner 1.000 nm eingestellt wird. Die Verzinkung wird hierbei so durchgeführt, dass eine Zinkauflage von Z200, das bedeutet 14 µm je Seite erreicht wird. Der Aluminiumgehalt der Hemmschicht wird auf 0,8 g/m2 eingestellt und die Glühbedingungen entsprechen Beispiel 1. Im Ergebnis wird eine aluminiumoxydreiche Oberfläche mit wenig Zinkoxyd erreicht, welche sich nur schlecht mit Trockeneis reinigen lässt. Im Ergebnis entspricht die Oberfläche Figur 6 bzw. vor der Reinigung Figur 4 und in nachfolgenden Lackierversuchen ergibt sich die schlechte Lackhaftung aufgrund großflächiger Al2O3-Belegung.A sheet of 22MnB5 steel of 1.0 mm thickness is subjected to preoxidation and hot dip coating of about 0.2 wt% aluminum in the zinc bath. The pre-oxidation of the bare steel sheet is carried out so that a FeO layer thickness of greater than 100 nm and less than 1,000 nm is set. The zinc coating is carried out in such a way that a zinc coating of Z200, ie 14 μm per side, is achieved. The aluminum content of the inhibitor layer is set to 0.8 g / m 2 and the annealing conditions are as in Example 1. As a result, an aluminum oxide-rich surface is achieved with little zinc oxide, which is difficult to clean with dry ice. As a result, the surface corresponds FIG. 6 or before cleaning FIG. 4 and in subsequent Lackierversuchen results in the poor paint adhesion due to large-area Al 2 O 3 occupancy.

Beispiel 3:Example 3:

Ein Stahlblech entsprechend der Beispiele 1 und 2 wird anstelle einer Zinkauflage Z200 mit einer Zinkauflage Z300, d. h. 21 µm je Seite ausgebildet. Wiederum wird die Voroxidation des blanken Stahlbandes so durchgeführt, dass eine FeO-Schichtdicke von größer 100 nm und kleiner 1.000 nm eingestellt wird. Der Aluminiumgehalt der Hemmschicht wird auf 0,3 g/m2 eingestellt. Das Blech wird in Folge für vier Minuten in einen 910°C heißen Strahlungsofen mit normaler Luftatmosphäre gegeben. Auch hier bildet sich wieder die nicht erfindungsgemäße Al2O3-reiche Oberfläche mit wenig Zinkoxyd aus, die schlecht mit Trockeneis reinigbar ist und der dargestellten Oberfläche in Figur 4 entspricht. In anschließenden Lackierversuchen wird ebenfalls eine schlechte Lackhaftung erreicht.A steel sheet according to Examples 1 and 2 is formed instead of a zinc coating Z200 with a zinc coating Z300, ie 21 microns per side. Again, the pre-oxidation of the bare steel strip is carried out so that a FeO layer thickness of greater than 100 nm and less than 1,000 nm is set. The aluminum content of the inhibiting layer is adjusted to 0.3 g / m 2 . The sheet is then placed for four minutes in a 910 ° C hot air oven with normal air atmosphere. Again, the non-inventive Al 2 O 3 -rich surface is formed again with little zinc oxide, which is poorly cleansed with dry ice and the illustrated Surface in FIG. 4 equivalent. In subsequent Lackierversuchen also a poor paint adhesion is achieved.

Bei der Erfindung ist von Vorteil, dass ein Verfahren zum Erzeugen und Entfernen einer temporären Schutzschicht für eine kathodische Beschichtung geschaffen wird, mit dem es gelingt ein gehärtetes Stahlbauteil mit einem kathodischen Schutz zu schaffen, wobei die kathodische Schutzschicht den Stahl schon während des Aufheizens vor Oxydation und insbesondere Zunderbildung schützt und wobei nach einer Wärmebehandlung und Härtung des Stahlbauteils mit einfachen Mitteln eine sehr gut lackierbare Oberfläche geschaffen wird.In the invention, it is advantageous to provide a method for producing and removing a temporary protective layer for a cathodic coating, with which it is possible to provide a hardened steel component with a cathodic protection, wherein the cathodic protective layer protects the steel against oxidation during the heating process and in particular scale formation protects and wherein after a heat treatment and hardening of the steel component with simple means a very good paintable surface is created.

Claims (3)

  1. Method for producing and removing a temporary protective layer for a cathodic coating, particularly for manufacturing a hardened steel component with a highly paintable surface, wherein a steel sheet consisting of a hardenable steel alloy is subjected to a preoxidization process, wherein, during the preoxidization process, an FeO layer with a thickness of 100 nm to 1,000 nm is formed and a hot-dip coating process is then carried out, wherein, during the hot-dip coating process, a zinc layer with a thickness of 5 to 20 µm, preferably 7 to 14 µm per side is deposited, wherein the hot-dip coating process and the aluminium content in the zinc bath is set so that during the hot-dip coating process, an aluminium content of 0.15 g/m2 to 0.8 g/m2, preferably 0.2 g/m2 to 0.5 g/m2 is realized in the inhibiting layer and the steel sheet or the components manufactured therefrom is/are then heated to a temperature above the austenitizing temperature and then cooled at a rate that lies above the critical hardening rate, in order to effect a hardening, wherein elements with an oxygen affinity are contained in the zinc bath for the hot-dip coating process in a quantity of from 0.10 wt. % to 15 wt. %, which form a thin skin consisting of the oxide of the elements with an oxygen affinity on the surface of a cathodic protective layer during the austenitization and this oxide layer is blown off after hardening by blasting the sheet metal component with dry ice particles.
  2. Method according to claim 1, characterized in that magnesium and/or silicon and/or titanium and/or calcium and/or aluminium and/or manganese and/or boron are used as elements with an oxygen affinity in the zinc bath.
  3. Method according to any one of the preceding claims, characterized in that the element with an oxygen affinity is aluminium and the aluminium forms a thin aluminium-oxide skin.
EP08707416A 2007-05-11 2008-01-30 Method for the production and removal of a temporary protective layer for a cathodic coating Active EP2013372B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007022174A DE102007022174B3 (en) 2007-05-11 2007-05-11 Method for creating and removing a temporary protective layer for a cathodic coating
PCT/EP2008/000721 WO2008138412A1 (en) 2007-05-11 2008-01-30 Method for the production and removal of a temporary protective layer for a cathodic coating

Publications (2)

Publication Number Publication Date
EP2013372A1 EP2013372A1 (en) 2009-01-14
EP2013372B1 true EP2013372B1 (en) 2012-03-14

Family

ID=39322691

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08707416A Active EP2013372B1 (en) 2007-05-11 2008-01-30 Method for the production and removal of a temporary protective layer for a cathodic coating

Country Status (9)

Country Link
US (1) US9822436B2 (en)
EP (1) EP2013372B1 (en)
JP (1) JP5226067B2 (en)
KR (1) KR101448188B1 (en)
CN (1) CN101707942B (en)
AT (1) ATE549429T1 (en)
DE (1) DE102007022174B3 (en)
ES (1) ES2382496T3 (en)
WO (1) WO2008138412A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022116082A1 (en) 2022-06-28 2023-12-28 Voestalpine Metal Forming Gmbh Process for conditioning the surfaces of heat-treated galvanized steel sheets

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007061489A1 (en) 2007-12-20 2009-06-25 Voestalpine Stahl Gmbh Process for producing hardened hardenable steel components and hardenable steel strip therefor
DE102009015160A1 (en) 2009-03-26 2010-09-30 Bayerische Motoren Werke Aktiengesellschaft Process for producing a coated and / or available sheet metal part with a corrosion protection coating
DE102009016852A1 (en) 2009-04-08 2010-10-14 Bayerische Motoren Werke Aktiengesellschaft Process for the preparation of heat-treated sheet metal parts from a steel sheet material with a corrosion protection coating and such sheet metal part
KR101798257B1 (en) 2010-02-19 2017-11-15 타타 스틸 네덜란드 테크날러지 베.뷔. Strip, sheet or blank suitable for hot forming and process for the production thereof
IT1399945B1 (en) * 2010-04-29 2013-05-09 Turbocoating S P A METHOD AND APPARATUS FOR REMOVING CERAMIC COATINGS, WITH CARBON DIOXIDE SOLID SOLID.
DE102010037077B4 (en) * 2010-08-19 2014-03-13 Voestalpine Stahl Gmbh Process for conditioning the surface of hardened corrosion-protected steel sheet components
EP2474649A1 (en) * 2011-01-05 2012-07-11 Voestalpine Stahl GmbH Method for treating the surface of a substrate with a protective coating
CN102380491A (en) * 2011-08-01 2012-03-21 迪普干冰制造(大连)有限公司 Heating dust suction and dry ice cleaning surface depainting treatment equipment and method
WO2013160566A1 (en) 2012-04-25 2013-10-31 Arcelormittal Investigacion Y Desarrollo, S.L. Method for producing a metal sheet having oiled zn-al-mg coatings, and corresponding metal sheet
JP6509483B2 (en) * 2013-09-03 2019-05-08 昭和電工ガスプロダクツ株式会社 Melting equipment
JP5963271B2 (en) * 2013-09-03 2016-08-03 昭和電工ガスプロダクツ株式会社 Metal processing method
US10385415B2 (en) 2016-04-28 2019-08-20 GM Global Technology Operations LLC Zinc-coated hot formed high strength steel part with through-thickness gradient microstructure
US10619223B2 (en) 2016-04-28 2020-04-14 GM Global Technology Operations LLC Zinc-coated hot formed steel component with tailored property
JP6751530B2 (en) * 2017-03-17 2020-09-09 新東工業株式会社 How to remove deposits
JP6751529B2 (en) * 2016-08-09 2020-09-09 新東工業株式会社 How to remove deposits
EP3499548B1 (en) * 2016-08-09 2024-01-31 Sintokogio, Ltd. Deposit removing method
CN112513310A (en) 2018-05-24 2021-03-16 通用汽车环球科技运作有限责任公司 Method for improving strength and ductility of press-hardened steel
CN112534078A (en) 2018-06-19 2021-03-19 通用汽车环球科技运作有限责任公司 Low density press hardened steel with enhanced mechanical properties
CN109551372A (en) * 2018-11-07 2019-04-02 广州供电局有限公司 The restorative procedure of substation's internal corrosion steel construction piece
US11530469B2 (en) 2019-07-02 2022-12-20 GM Global Technology Operations LLC Press hardened steel with surface layered homogenous oxide after hot forming
EP3872231A1 (en) 2020-02-28 2021-09-01 voestalpine Stahl GmbH Method for conditioning the surface of a metal strip coated with a zinc alloy corrosion protection layer
EP3872229A1 (en) 2020-02-28 2021-09-01 voestalpine Stahl GmbH Method for producing hardened steel components with a conditioned zinc alloy corrosion protection layer
EP3872230A1 (en) 2020-02-28 2021-09-01 voestalpine Stahl GmbH Method for producing hardened steel components with a conditioned zinc alloy corrosion protection layer

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1240412A1 (en) * 1984-09-01 1986-06-30 Ленинградское Адмиралтейское объединение Arrangement for cleaning surfaces
JP2782451B2 (en) * 1989-03-28 1998-07-30 新日本製鐵株式会社 High corrosion resistance superimposed plated steel sheet
JPH06269839A (en) * 1993-03-23 1994-09-27 Sumitomo Metal Ind Ltd Descaling method and rolling method for slab
JPH10140311A (en) * 1996-11-14 1998-05-26 Nkk Corp Method of hot dip plating for hot rolled steel sheet and hot dip plating equipment
JPH1150284A (en) * 1997-07-31 1999-02-23 Mitsubishi Heavy Ind Ltd Degreasing method and device for steel sheet
DE10010012A1 (en) 1999-03-05 2000-09-07 Linde Ag Method and appliance for exposing workpieces to blasting equipment, involve tubes leading from plant to blasting member
DE19942785A1 (en) * 1999-09-08 2001-03-22 Thyssen Krupp Automotive Ag Processing residue, surface coating or oxide layer removal process,
EP1321625B1 (en) * 2001-12-21 2004-09-22 Siemens Aktiengesellschaft Method for removing a metallic layer
DE10243035B4 (en) * 2002-09-17 2006-01-05 Daimlerchrysler Ag Method and device for removing layers formed by heating and cooling on metal workpieces
CN1829817B (en) * 2003-07-29 2015-01-07 沃斯特阿尔派因钢铁有限责任公司 Method for producing a hardened steel part
EP1561542A1 (en) * 2004-02-03 2005-08-10 Siemens Aktiengesellschaft Process of removing of component layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022116082A1 (en) 2022-06-28 2023-12-28 Voestalpine Metal Forming Gmbh Process for conditioning the surfaces of heat-treated galvanized steel sheets

Also Published As

Publication number Publication date
ATE549429T1 (en) 2012-03-15
KR20100017770A (en) 2010-02-16
CN101707942A (en) 2010-05-12
EP2013372A1 (en) 2009-01-14
US9822436B2 (en) 2017-11-21
DE102007022174B3 (en) 2008-09-18
JP2010526937A (en) 2010-08-05
ES2382496T3 (en) 2012-06-08
KR101448188B1 (en) 2014-10-07
CN101707942B (en) 2012-08-22
JP5226067B2 (en) 2013-07-03
WO2008138412A1 (en) 2008-11-20
US20110139308A1 (en) 2011-06-16

Similar Documents

Publication Publication Date Title
EP2013372B1 (en) Method for the production and removal of a temporary protective layer for a cathodic coating
EP2683843B1 (en) Flat steel product and method for producing a flat steel product
DE102010037077B4 (en) Process for conditioning the surface of hardened corrosion-protected steel sheet components
EP2848715B1 (en) Method for producing a steel component with an anti-corrosive metal coating
WO2012085256A2 (en) Method for producing hardened structural elements
EP1767670A1 (en) Method for producing a corrosion protected steel flat product
DE10348086A1 (en) High-strength steel component with zinc corrosion protection layer
DE2722904C2 (en) Process for the production of steel sheet provided with a metal coating on one side and its use
EP2513346A2 (en) Method for producing an easily deformable flat steel product, flat steel product, and method for producing a component from such a flat steel product
EP3880860B1 (en) Method for the zinc plating, in particular galvanising, of iron and steel products
WO2015173023A1 (en) Method for producing a steel component which is shaped by hot-forming a steel sheet which has a metal coating, such a steel sheet, and a steel component produced from said steel sheet by means of a hot-forming process
WO2021170860A1 (en) Method for producing hardened steel components with a conditioned zinc anti-corrosive layer
DE102005055374A1 (en) Hot-formed and press-hardened structural or safety component for a motor vehicle comprises high-strength steel with an anticorrosion layer of zinc/iron alloy produced by solid phase diffusion
DE10158622A1 (en) Removing oxide layers from steel component and simultaneously coating them, jet blasts them with particles at just under mach one
DE102019126378A1 (en) Method for the production of a press-hardened sheet steel component with an aluminum-based coating and a starting plate and a press-hardened sheet steel component from it
DE10321259B4 (en) Process for the surface treatment of dynamically loaded metal components and use of the method
EP2071047A1 (en) Method for producing a zinc-plated shaped component made of steel
EP4110971A1 (en) Method of electrolytic galvanization of steel strip with a conditioned zinc layer
WO2021170862A1 (en) Method for producing hardened steel components with a conditioned zinc alloy anti-corrosive layer
WO2024002507A1 (en) Method for conditioning the surfaces of heat-treated galvanised steel sheets
DE2947799A1 (en) METHOD FOR LOCAL PROTECTION OF IRON AND STEEL PARTS IN HEAT TREATMENTS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080605

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KOLNBERGER, SIEGFRIED

Inventor name: FADERL, JOSEF

Inventor name: BRANDSTAETTER, WERNER

Inventor name: PERUZZI, MARTIN

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B24C 1/00 20060101ALI20111205BHEP

Ipc: C23C 2/02 20060101AFI20111205BHEP

Ipc: C23C 2/26 20060101ALI20111205BHEP

Ipc: B24C 1/08 20060101ALI20111205BHEP

Ipc: C23C 2/06 20060101ALI20111205BHEP

Ipc: C23C 2/28 20060101ALI20111205BHEP

Ipc: C21D 1/68 20060101ALI20111205BHEP

Ipc: C21D 8/04 20060101ALI20111205BHEP

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 549429

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120315

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008006685

Country of ref document: DE

Effective date: 20120510

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2382496

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120608

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120614

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120615

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120714

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120716

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

26N No opposition filed

Effective date: 20121217

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008006685

Country of ref document: DE

Effective date: 20121217

BERE Be: lapsed

Owner name: VOESTALPINE STAHL GMBH

Effective date: 20130131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 549429

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080130

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130130

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240201

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240129

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240122

Year of fee payment: 17

Ref country code: FR

Payment date: 20240125

Year of fee payment: 17