EP2012902A2 - Procédé et dispositif de récupération de chaleur dans un flux de gaz de processus - Google Patents

Procédé et dispositif de récupération de chaleur dans un flux de gaz de processus

Info

Publication number
EP2012902A2
EP2012902A2 EP06829774A EP06829774A EP2012902A2 EP 2012902 A2 EP2012902 A2 EP 2012902A2 EP 06829774 A EP06829774 A EP 06829774A EP 06829774 A EP06829774 A EP 06829774A EP 2012902 A2 EP2012902 A2 EP 2012902A2
Authority
EP
European Patent Office
Prior art keywords
working fluid
temperature
heat
expansion turbine
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06829774A
Other languages
German (de)
English (en)
Inventor
Rudolf Zeyen
Frank Castillo-Welter
Dirk Burghardt
Christian Bartosch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide Global E&C Solutions Germany GmbH
Original Assignee
Lurgi GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lurgi GmbH filed Critical Lurgi GmbH
Publication of EP2012902A2 publication Critical patent/EP2012902A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/007Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid combination of cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/10Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output supplying working fluid to a user, e.g. a chemical process, which returns working fluid to a turbine of the plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/16Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being hot liquid or hot vapour, e.g. waste liquid, waste vapour
    • F22B1/167Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being hot liquid or hot vapour, e.g. waste liquid, waste vapour using an organic fluid

Definitions

  • the invention relates to a method and a device for the continuous recovery of heat quantities of at least 5 MW, preferably 10 to 30 MW from a process gas stream formed from condensable and optionally inert components at a temperature of 70 to 220 ° C, preferably 130 to 150 ° C by indirect heat transfer to a heat-absorbing working fluid flowing in a closed circuit, by partially or completely condensing the process gas stream, the pressurized, liquid working fluid is evaporated, the resulting condensate is partially or completely fed back to the process or from the process is discharged, the vaporous working fluid is relaxed after reheating in an expansion turbine, then condensed again and increased in pressure.
  • the heat-absorbing fluid consists of a compound or a mixture of compounds whose boiling point is at atmospheric pressure in the range of - 100 to + 90 ° C, wherein individually or in a mixture of propane, isopropane, butane, isobutane, n-pentane, isopentane, ammonia , halogenated hydrocarbon compounds used as refrigerants.
  • This method is particularly suitable for the recovery of relatively large amounts of heat, preferably in the range of 5 to 30 megawatts at relatively low temperatures in the range of 70 to 220 ° C.
  • a disadvantage is that in the recovery of large amounts of heat, the use of a relatively large amount of circulating heat-absorbing working fluid is required.
  • a leakage gas flow which is composed of vaporous working fluid and sealing gas, escapes as a result of construction-related leaks.
  • the leak rate, ie, the magnitude of the loss of working fluid may be several thousandths of the circulating amount, typically ⁇ 1% o, corresponding to a loss of several 100 kg / h. It is therefore the object of the present invention, the method described above and the apparatus for performing the method to be designed so that no or only a minimal loss of working fluid occurs.
  • This object is achieved in that the existing in the expansion turbine due to construction leaks consisting of vaporous working fluid and gas barrier gas leakage is separated into a phase containing the working fluid and a substantially barrier gas-containing phase, the working fluid is recirculated and the sealing gas from the Process is discharged or reused as a barrier gas after sufficient separation of the remaining traces of working fluid.
  • the purge gas mostly nitrogen, is used on the expansion turbine shaft seal to minimize the loss of working fluid to the environment. By this measure, the working fluid can be almost completely, i. up to 99.9%, from which recover in the area of the expansion turbine through leaks leaking gas flow.
  • a particular embodiment of the method according to the invention is that the working fluid is increased from an initial temperature of 20 to 70 ° C in its evaporation to a temperature which is 1 to 50 ° C below the temperature of the heat-emitting process gas stream, then the vapor Working fluid is overheated by at least 3 ° C and then expanded in the expansion turbine to a pressure corresponding to the vapor pressure of the working fluid at the condensation temperature and thus restores the initial temperature. After the expansion turbine downstream condensation, the working fluid is brought back to the initial pressure.
  • the respective working pressures in the working fluid circuit depend on the vapor pressure of the particular working fluid used.
  • the accumulated in the expansion turbine primary loss of working fluid is recovered from the leakage gas flow, for example by condensation at a temperature of -10 to -90 ° C, and recycled.
  • Propane, isopropane, butane, isobutane, n-pentane, isopentane, ammonia and halogenated hydrocarbon compounds have proven particularly suitable as working fluids, which can be used individually or as a mixture in a mixture. Due to the boiling properties of these substances, a correspondingly high yield of heat can be achieved.
  • the selection of the working fluid and specific working conditions is due to the main process, i. adapted to the temperature of the process gas stream so that the heat output is optimized.
  • cryofluid for example, liquid nitrogen (boiling point: - 195.8 ° C) operated refrigeration system, a so-called cryostat, with recovery of Kryofluids or a compression system with subsequent condensation or a membrane unit or an adsorption or Druckrucadsorptionsstrom or a combination of these systems in a substantially containing the working fluid phase and a substantially barrier gas-containing phase separately.
  • a cryofluid for example, liquid nitrogen (boiling point: - 195.8 ° C) operated refrigeration system, a so-called cryostat, with recovery of Kryofluids or a compression system with subsequent condensation or a membrane unit or an adsorption or Druckrucadsorptionsstrom or a combination of these systems in a substantially containing the working fluid phase and a substantially barrier gas-containing phase separately.
  • this can also be used again as a sealing gas, or it is discharged from the process.
  • an evaporator for the liquid working fluid through which the process gas flow, a reheater for the vaporous working fluid downstream of the evaporator, an expansion turbine downstream of the reheater for the expansion of the vaporous Working fluid, a downstream of the expansion turbine condenser for the condensation of the vaporous working fluid, a condenser downstream to the evaporator promoting pump for increasing the pressure of the liquid working fluid and a shunt attached to the circulation system recovery system for the recovery of Working fluid from the leakage gas flow and the feed of the working fluid in the circuit.
  • a heat exchanger for preheating the working fluid is provided between the condensed working fluid rebooster pump and the liquid working fluid reboiler.
  • FIG. 1 The invention is explained in more detail below by an exemplary embodiment and the process flow diagram shown in FIG. 1:
  • process gas stream which is formed in the oxidation of a raw material, such as paraxylene while supplying air in the liquid phase at a temperature of 150 to 180 ° C, and with a temperature of 140 ° C. and a pressure of 5.5 to 6.5 bar (a) via the line (1) through an evaporator (2) through which n-pentane serving as a heat-absorbing working fluid is passed in a closed circuit, fed.
  • the process gas stream is thereby cooled to a temperature of about 85 ° C and at the same time the working fluid to a temperature of 117 ° C and evaporated, with a heat quantity of 120 MW is transmitted.
  • the condensate consisting essentially of water, is discharged via the line (3) from the evaporator (2) and discharged from the process or completely or only partially recycled into the process.
  • Via line (4) the vaporous working fluid is fed to a reheater (5), in which the temperature is increased to 127 ° C.
  • the superheated working fluid is supplied via the line (6) to an expansion turbine (7), in which the working fluid to a pressure of 1, 6 bar (a) is released.
  • the output from the expansion turbine (7) work power is 12 to 13 MW and is used directly to drive a generator (8) or can alternatively serve for direct drive of a large machine in the core process, such as an air compressor.
  • the working fluid exiting via the line (9) from the expansion turbine (7) is cooled and condensed in a condenser (10) to an initial temperature of 40 ° C., whereupon the condensate flows via the line (11) into the feed tank (12), from this via the line (13) through the pump (14) sucked to the initial pressure of 9.5 to 11 bar (a) brought and then via line (15) into the evaporator (2) is passed.
  • the recirculated mass flow of working fluid is 840,000 kg / h, so that the circuit in the region of the expansion turbine (7) can not be made completely dense due to the design.
  • the leakage gas flow consisting of working fluid and sealing gas is fed via the line (16) to a refrigeration system (17) in which the working fluid condenses and via the line (18) into the feed tank (12) for the pump (14 ) and thus returned to the cycle. In this way, the primary losses of working fluid can be recovered to at least 98%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Procédé de récupération de chaleur dans un flux de gaz de processus contenant une grande quantité de chaleur et possédant une température située entre 70 et 220 °C, selon lequel une transmission de chaleur indirecte s'effectue sur un fluide de travail circulant en circuit fermé et absorbant le chaleur. Par condensation du flux de gaz de processus, le fluide de travail liquide à pression accrue est vaporisé, puis détendu dans une turbine d'expansion et enfin condensé puis remis sous pression. Selon la présente invention, pour récupérer les pertes primaires constituées de fluide de travail et de gaz d'arrêt se produisant à la suite de défauts d'étanchéité dans la zone de la turbine d'expansion, le flux de gaz de fuite est séparé en une phase contenant le fluide de travail qui est renvoyée dans le circuit, et en une phase contenant le gaz d'arrêt.
EP06829774A 2005-12-20 2006-12-20 Procédé et dispositif de récupération de chaleur dans un flux de gaz de processus Withdrawn EP2012902A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200510061328 DE102005061328B4 (de) 2005-12-20 2005-12-20 Verfahren und Vorrichtung zur Rückgewinnung von Wärmemengen aus einem Prozess-Gasstrom
PCT/EP2006/012293 WO2007079940A2 (fr) 2005-12-20 2006-12-20 Procédé et dispositif de récupération de chaleur dans un flux de gaz de processus

Publications (1)

Publication Number Publication Date
EP2012902A2 true EP2012902A2 (fr) 2009-01-14

Family

ID=38108752

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06829774A Withdrawn EP2012902A2 (fr) 2005-12-20 2006-12-20 Procédé et dispositif de récupération de chaleur dans un flux de gaz de processus

Country Status (3)

Country Link
EP (1) EP2012902A2 (fr)
DE (1) DE102005061328B4 (fr)
WO (1) WO2007079940A2 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008024427B4 (de) * 2008-05-20 2010-03-11 Lurgi Gmbh Verfahren und Anlage zur Rückgewinnung von Arbeitsfluid
EP2378089A1 (fr) * 2010-04-13 2011-10-19 ABB Schweiz AG Système de conversion pour convertir une chaleur de déchets en puissance d'arbre
GB2519150A (en) * 2013-10-11 2015-04-15 Reaction Engines Ltd Rotational machine
CN116378781B (zh) * 2023-04-28 2025-10-10 西安热工研究院有限公司 一种干气密封近零泄漏及工质回收系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4005580A (en) * 1975-06-12 1977-02-01 Swearingen Judson S Seal system and method
DE2842899A1 (de) * 1977-11-24 1979-05-31 Sulzer Ag Dampfkreislauf
ES2005135A6 (es) * 1987-04-08 1989-03-01 Carnot Sa Ciclo termico con fluido de trabajo mezcla
US5531073A (en) * 1989-07-01 1996-07-02 Ormat Turbines (1965) Ltd Rankine cycle power plant utilizing organic working fluid
US5743094A (en) * 1994-02-22 1998-04-28 Ormat Industries Ltd. Method of and apparatus for cooling a seal for machinery
US7049465B2 (en) * 2003-07-10 2006-05-23 Eastman Chemical Company Process for energy recovery in processes for the preparation of aromatic carboxylic acids

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007079940A3 *

Also Published As

Publication number Publication date
DE102005061328A1 (de) 2007-06-28
WO2007079940A2 (fr) 2007-07-19
DE102005061328B4 (de) 2007-12-06
WO2007079940A3 (fr) 2008-02-28

Similar Documents

Publication Publication Date Title
EP2347102B1 (fr) Procédé de fonctionnement d'un circuit thermodynamique et circuit thermodynamique
US9440163B2 (en) System and method for water treatment
DE3708649C2 (fr)
US4311019A (en) Process for producing cold and/or heat with use of an absorption cycle
JP2765697B2 (ja) 液体炭化水素類を回収する方法
EP2188500A2 (fr) Procédé et dispositif visant à convertir de l'énergie thermique en énergie mécanique
KR840006058A (ko) 에너지 발생 방법
EP1967249A1 (fr) Procédé basé sur la distillation diphasique destiné à l'utilisation de chaleur à basse température pour la régénération de solvants CO2 lors de la séparation du CO2 contenu dans des fumèes à l'aide d'un lavage de CO2
DE2713359A1 (de) Verfahren zur fraktionierung von crackgasen mit hilfe der kaeltetechnik
EP2682569A1 (fr) Procédé et dispositif destinés à la transformation d'énergie
EP4251595A1 (fr) Procédé écoénergétique d'élimination de butènes de courants d'hydrocarbures en c4
DE2224306A1 (de) Verfahren zur Herstellung von Ammoniak
EP1706598B1 (fr) Procede pour transformer l'energie thermique generee par des machines frigorifiques
DE102006028746B4 (de) Vorrichtung zur Energieumwandlung nach dem organischen Rankine-Kreisprozess-Verfahren sowie System mit derartigen Vorrichtungen
DE102012003741B4 (de) Verfahren zur Rückgewinnung von Kohlenwasserstoffen aus Polyolefinanlagen und dafür geeignete Vorrichtung
DE102005061328B4 (de) Verfahren und Vorrichtung zur Rückgewinnung von Wärmemengen aus einem Prozess-Gasstrom
EP3115336A1 (fr) Installation et procede de refroidissement de gaz de synthese
DE2602895B2 (de) Verfahren zur Verwertung der bei der katalytischen Oxidation von o-Xylol zu Phthalsäureanhydrid anfallenden Reaktionswärme
EP3423401B1 (fr) Procédé et dispositif de production d'acide sulfurique
US20190003343A1 (en) Process and apparatus for using a waste heat stream in an aromatics complex
DE1031285B (de) Verfahren zur weitgehenden Abscheidung des Reaktionsproduktes bei der Ausfuehrung chemischer Verfahren
JP2025537411A (ja) C4炭化水素流からブテンを分離するためのエネルギー効率の良いプロセス
DE102006005472A1 (de) Verfahren zur Erzeugung mechanischer/elektrischer Energie mithilfe eines Sorptionskraftprozesses
WO2025186008A1 (fr) Procédé économe en énergie pour la purification de gaz de synthèse brut
DE3433057A1 (de) Verfahren und einrichtung fuer die gewinnung elektrischer oder mechanischer energie aus heisser geothermischer sole

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081125

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LURGI GMBH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BARTOSCH, CHRISTIAN

Inventor name: BURGHARDT, DIRK

Inventor name: CASTILLO-WELTER, FRANK

Inventor name: ZEYEN, RUDOLF

17Q First examination report despatched

Effective date: 20090326

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100601