EP2009286B1 - Wellendichtung für eine Turbomaschine - Google Patents

Wellendichtung für eine Turbomaschine Download PDF

Info

Publication number
EP2009286B1
EP2009286B1 EP07012721A EP07012721A EP2009286B1 EP 2009286 B1 EP2009286 B1 EP 2009286B1 EP 07012721 A EP07012721 A EP 07012721A EP 07012721 A EP07012721 A EP 07012721A EP 2009286 B1 EP2009286 B1 EP 2009286B1
Authority
EP
European Patent Office
Prior art keywords
rotor
turbo
magnetic bearing
shaft seal
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07012721A
Other languages
English (en)
French (fr)
Other versions
EP2009286A1 (de
Inventor
Rainer Dr. Gausmann
Volker Hütten
Marcus Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to DE502007004562T priority Critical patent/DE502007004562D1/de
Priority to ES07012721T priority patent/ES2348890T3/es
Priority to EP07012721A priority patent/EP2009286B1/de
Priority to AT07012721T priority patent/ATE475806T1/de
Publication of EP2009286A1 publication Critical patent/EP2009286A1/de
Application granted granted Critical
Publication of EP2009286B1 publication Critical patent/EP2009286B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/10Shaft sealings
    • F04D29/102Shaft sealings especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/058Bearings magnetic; electromagnetic

Definitions

  • the invention relates to a turbomachine with a rotor and a shaft seal for sealing the rotor, wherein the shaft seal is designed as a magnetic bearing for sealing the rotor, which can be controlled such that active forces can be applied to the rotor by the magnetic bearing.
  • a turbomachine is used to continuously change the thermodynamic state of a fluid flow, such as a compression or expansion of a gas flow.
  • the turbomachine is supplied with the gas stream whose thermodynamic state inside the turbomachine is correspondingly changed by a fluid mechanical process.
  • the turbomachine has a rotor which is surrounded by a housing and which is rotatable relative to the housing. Between the outside of the rotor and the inside of the housing, a gap is provided, which is prevented that the rotor strikes during its rotation to the housing.
  • the rotor is generally supported on at least one bearing which is supported on the housing or on a separate bearing block and located in an atmospheric environment.
  • the gap is sealed in a region between the bearing and the interior of the housing so that the interior of the housing is virtually gas-tightly isolated to the atmospheric environment and gas exchange between the interior of the housing and the atmospheric environment hardly take place can.
  • the turbomachine has several stages in which the thermodynamic state of the gas stream is changed step by step, the gap in the area between the steps is correspondingly sealed, so that a gas exchange between the stages is virtually eliminated.
  • the sealing of the rotor is accomplished with a shaft seal.
  • the shaft seal is constructed such that on the one hand, the relative movement between the rotor and the housing is possible and on the other hand, a gas leakage through the shaft seal is low.
  • the shaft seal is designed, for example, as a labyrinthine labyrinth seal.
  • the labyrinth seal has the disadvantage that it can have destabilizing tangential forces that can destabilize the rotor.
  • a further disadvantage of the labyrinth seal is that the labyrinth tips are easily clogged when soiled in the gas, whereby the operation of the labyrinth seal is impaired.
  • the labyrinth tips are sensitive to mechanical wear, especially when the rotor is out of round.
  • the vibration behavior of the rotor i. the radial offset and / or the deflection of the rotor during operation of the turbomachine is determined mainly by the rotor dynamic characteristics of the rotor.
  • the rotor dynamic characteristic of the rotor is characterized by certain modes of vibration, which is determined by the geometry of the rotor, the material properties of the rotor material, the stiffness and the damping of the rotor bearing and the thermodynamic conditions inside the housing.
  • a good-natured rotor dynamic characteristic is characterized by the fact that under all possible operating conditions of the turbomachine, the rotor experiences only small radial movements and / or only a slight deflection.
  • the vibration behavior of the rotor may also be influenced due to instability conditions in the rotor bearing and / or the shaft seal.
  • a shaft seal with a passive damping characteristic for example a Damper-Seal (Honeycomb and / or Hole Pattern Seal).
  • the damper seal has the advantage that it acts on a radial movement of the rotor damping, so that thereby the maximum radial amplitude of the rotor is limited.
  • Damper-Seal The disadvantage of Damper-Seal is that its damping effect is determined by design. This makes it impossible to adapt the damping effect of the Damper-Seal to a respective operating condition of the turbomachine, whereby the damping effect of the Damper-Seal is ineffective. Furthermore, the Damper-Seal is sensitive to contamination in the gas, so it clogs easily. A clogged damper seal can even have a negative effect on the rotor dynamic characteristics of the rotor. This keeps the Damper-Seal clean at all times, making the Damper-Seal's maintenance high. Thus, the availability of the turbomachine is limited.
  • German patent application DE 41 05 258 A1 which is considered to be the closest prior art, and the DE 25 15 315 A1 in each case the combination of a shaft seal of the labyrinth construction with a magnetic shaft bearing is known.
  • the German patent DE 37 29 486 C1 discloses a largely sealless arrangement of a compressor and an electric motor in a common housing, wherein a common rotor is magnetically supported.
  • the object of the invention is to provide a shaft seal for a turbomachine, wherein the shaft seal of the turbomachine gives a high availability, and to provide a turbomachine with a high availability.
  • the shaft seal according to the invention for a turbomachine with a rotor is designed as a magnetic bearing for sealing the rotor, which can be controlled in such a way that forces can be actively applied to the rotor by the magnetic bearing.
  • the magnetic bearing has a magnetic bearing stator mounted on the casing of the turbomachine and a magnetic bearing rotor mounted on the rotor. If the rotor rotates during operation of the turbomachine, a relative movement takes place between the magnetic bearing rotor and the magnetic bearing stator. Between the magnetic bearing rotor and the magnetic bearing stator, a gap is provided, so that the Magnetic bearing rotor does not rub against the magnetic bearing stator and does not damage it mechanically.
  • the gap is in its geometric dimensions, in particular its width and height, comparable to the gap, for example, a honeycomb or a hole pattern seal. As a result, the leakage rate of the magnetic bearing in a similar order of magnitude as in the Honeycomp or Hole Pattern Seal, whereby the magnetic bearing has a common sealing effect.
  • the magnetic bearing for sealing the rotor can be controlled in such a way that forces can be actively applied to the rotor by the magnetic bearing.
  • These forces can be tangential forces and / or radial forces.
  • the rotor dynamic behavior of the rotor can be manipulated in a controlled manner.
  • the activation of the magnetic bearing can be tuned individually to a specific operating state of the turbomachine.
  • the actively applied forces for example, depending on the density of the fluid flowing through the turbomachine, the rotational speed of the rotor, and / or a frequency-dependent behavior of the magnetic bearing and / or other shaft seal for any operating point of the turbomachine can be tuned.
  • an appropriate control of the magnetic bearing can be responded to an unexpected event, such as a state of instability in a camp, such as oil whip or oil Whirl in a plain bearing or a hydrodynamic sliding bearing, for example a Radialkippsegmentgleitlager with which the rotor is mounted ,
  • the magnetic bearing on the magnetic bearing rotor and the magnetic bearing stator wherein the magnetic bearing rotor and / or the magnetic bearing stator are designed labyrinth-like or hole pattern seal or honeycombartig or as a smooth gap, so that the sealing effect of the magnetic bearing is increased.
  • the flow resistance in the gap formed between the magnetic bearing stator and the magnetic bearing rotor is higher than in a smooth design. As a result, the leakage rate of the magnetic bearing is low.
  • the turbomachine according to the invention has the rotor and the shaft seal according to the invention for sealing the rotor.
  • the shaft seal is located at a position of the rotor on which the rotor-seal the rotor-dynamic characteristics of the rotor can be manipulated.
  • the rigid-body mode and / or the bending shape of the rotor can preferably be damped by the shaft seal.
  • the rotor is threaded symmetrically and supported at its longitudinal end regions, then this point lies, for example, essentially in the center of the rotor.
  • the shaft seal is used for sealing the turbomachine against the atmosphere, in particular against an overpressure.
  • the turbomachine has at least one impeller whose pressure levels are mutually sealed by the shaft seal.
  • the turbomachine has at least one balance piston
  • the balance piston has the shaft seal
  • a plurality of shaft seals can be provided on the rotor, which are designed as the magnetic bearing.
  • the turbomachine is a turbocompressor which has two identical pressure stages which are arranged back-to-back
  • the usually turbocompressor in the rotor center is equipped with the balancing piston.
  • the balance piston preferably has the shaft seal with which the balance piston is sealed against the rotor. Characterized in that the shaft seal is designed as the magnetic bearing, thus active forces can be exerted on the rotor in the rotor center, naturally, the rotor bends most in the rotor center. As a result, the rotordynamic behavior of the rotor can be well manipulated by means of the shaft seal attached to the compensating piston.
  • the turbomachine is preferably the turbocompressor, more preferably a single-shaft compressor and particularly preferably a centrifugal compressor or an axial compressor.
  • the turbomachine is the turbocompressor, more preferably a single-shaft compressor, and particularly preferably a centrifugal compressor or an axial compressor.
  • turbomachine is a gas turbine or a steam turbine.
  • FIG. 1 shows a longitudinal section of the embodiment of the turbomachine.
  • a turbomachine is designed as a single-shaft turbocompressor 1.
  • the turbocompressor 1 is composed of an LP stage 3 (low-pressure stage) and an HD stage 4 (high-pressure stage).
  • the turbocompressor 1 is designed to compress gas and is used in its construction, for example in the oil and gas industry. The gas is first compressed in the LP stage 3 and then in the HD stage.
  • the turbocompressor 1 has a housing 2.
  • the housing 2 has for the LP stage 3, a LP suction nozzle 5 and an LP discharge nozzle 6 and for the HD stage 4, a high-pressure suction nozzle 7 and a high-pressure nozzle 8.
  • the gas is sucked from the LP intake 5, compressed in the LP stage 3 and discharged from the LP discharge port 6.
  • the gas flows through an intercooler (not shown) in which the gas is cooled. Thereafter, the gas flows through the HP suction port 7 in the HD stage 4 for further compression and is then discharged from the HP pressure port 8.
  • the turbocompressor 1 has a rotor 9 on which a section for the LP stage 3 and a section for the HD stage 4 are provided.
  • the rotor 9 has a shaft 10, which in turn has a coupling 11, on which the rotor 9 can be driven by means of a drive (not shown).
  • the shaft 10 has two mutually remote longitudinal end regions on which the rotor 9 is mounted by means of radial / axial bearings 12.
  • the rotor 9 For the LP stage 3, the rotor 9 has four LP wheels 13, and for the HD stage 4, the rotor 9 has four HD wheels 14. Upstream of the wheels 13, 14 is provided in each case a return channel, which are formed in the LP stage 3 of the LP shelves 15 and in the HD stage 4 of the HD shelves 16.
  • the rotor 9 is sealed against the housing 2 to the atmospheric environment by means of designed as labyrinth seals 17 gas seals.
  • the gas seals can also be designed, for example, as floating ring seals or as mechanical seals.
  • the ND wheels 13 and the HD wheels 14 are threaded in back-to-back arrangement on the shaft 10.
  • a balance piston 18 is provided, which separates the LP stage 3 from the HD stage 4.
  • the end pressure of the LP stage 3 and, at the other side of the balancing piston 18 facing the HP stage 4 the final pressure of the HP stage 4 is applied to one side of the compensation piston 18 facing the LP stage 3.
  • a pressure difference arises across the balance piston 18.
  • the compensating piston 18 has a magnetic bearing 19 with which the compensating piston 18 is sealed against the shaft 10.
  • the magnetic bearing 19 has a Magnatlagerstator which is fixedly mounted on the balance piston 18, and a magnetic bearing rotor which is fixedly mounted on the shaft 10. Between the magnetic bearing stator and the magnetic bearing rotor, a gap is provided, so that during operation of the turbocompressor 1, the magnetic bearing rotor does not touch the magnetic bearing stator. According to the chemical composition and the ignitability of the gas, the magnetic bearing 19 is encapsulated or unencapsulated.
  • the gap is designed in its width and height such that the gas leakage is low.
  • the rotor 9 has in each case the same number of ND impellers 13 and HD impellers 14, namely four, so that the balance piston 18 is located in the center of the rotor 9. In the middle of the rotor 9, this has the greatest bending amplitude in operation of the turbocompressor 1 with respect to the first bending mode.
  • the magnetic bearing 19 can be actuated from outside the turbocompressor 1 by means of a controller (not shown), so that forces can be actively applied by the magnetic bearing 19 to the shaft 10 and thus to the rotor 9. Due to the fact that the magnetic bearing 19 is arranged in the center of the rotor 9, forces can be applied to the rotor 9 where the greatest bending amplitude of the rotor 9 prevails during operation of the turbocompressor. As a result, for example, radial forces and / or tangential forces can be applied to the rotor, as a result of which the rotor-dynamic behavior of the rotor 9 can be influenced effectively.
  • the magnetic bearing 19 is used as a third bearing and / or stabilizer (for example, if only tangential forces are applied) in addition to the two radial / axial bearings 12 in the middle of the rotor 9. Further, by means of the magnetic bearing 19, an additional damping of the rotor 9 can be provided, whereby lateral vibrations of the rotor 9 can be effectively damped. As a result, the shaft vibrations of the rotor are low, as a result of which the rotating sealing elements of the turbocompressor 1 have less wear and thus a longer service life. Therefore, the labyrinth gaps can be made smaller, thereby reducing leakage and circling quantities.
  • the maximum possible length of the rotor 9 is specified inter alia by its rotor dynamic behavior. Characterized in that the magnetic bearing 19 acts limiting to the lateral vibrations of the rotor 9, the rotor 9 can be provided with a length that is greater than the maximum possible length, which would only be possible if the magnetic bearing 19 is not provided.
  • tangential forces can be applied to the rotor 9 by the magnetic bearing 19 in a targeted manner, as a result of which the typically destabilizing sealing forces can be counteracted by means of the magnetic bearing 19.

Description

  • Die Erfindung betrifft eine Turbomaschine mit einem Rotor und einer Wellendichtung zur Abdichtung des Rotors , wobei die Wellendichtung als ein Magnetlager zum Abdichten des Rotors ausgeführt ist, das derart ansteuerbar ist, dass durch das Magnetlager auf den Rotor aktiv Kräfte aufbringbar sind.
  • Eine Turbomaschine dient zur kontinuierlichen Änderung des thermodynamischen Zustands eines Fluidstroms, wie beispielsweise eine Verdichtung oder eine Expansion eines Gasstroms. Der Turbomaschine wird der Gasstrom zugeführt, dessen thermodynamischer Zustand im Inneren der Turbomaschine durch einen strömungsmechanischen Prozess entsprechend verändert wird.
  • Prinzipiell weist die Turbomaschine einen Rotor auf, der von einem Gehäuse umgeben und der relativ zum Gehäuse drehbar ist. Zwischen der Außenseite des Rotors und der Innenseite des Gehäuses ist ein Spalt vorgesehen, wodurch unterbunden ist, dass der Rotor bei seiner Drehung an das Gehäuse anstreift. Der Rotor ist im Allgemeinen an mindestens einem Lager abgestützt, das an dem Gehäuse oder an einem separaten Lagerbock abgestützt und in atmosphärischer Umgebung angesiedelt ist.
  • Im Inneren des Gehäuses liegen typischerweise thermodynamische Zustände vor, die unterschiedlich zur atmosphärischen Umgebung sind. Deshalb ist der Spalt in einem Bereich zwischen dem Lager und dem Inneren des Gehäuses abgedichtet, so dass das Innere des Gehäuses zur atmosphärischen Umgebung hin so gut wie gasdicht isoliert ist und ein Gasaustausch zwischen dem Inneren des Gehäuses und der atmosphärischen Umgebung so gut wie nicht stattfinden kann. Weist die Turbomaschine beispielsweise mehrere Stufen auf, in denen stufenweise der thermodynamische Zustand des Gasstroms verändert wird, so ist der Spalt im Bereich zwischen den Stufen entsprechend abgedichtet, so dass ein Gasaustausch zwischen den Stufen so gut wie unterbunden ist.
  • Herkömmlich wird die Abdichtung des Rotors mit einer Wellendichtung bewerkstelligt. Die Wellendichtung ist derart konstruiert, dass einerseits die Relativbewegung zwischen dem Rotor und dem Gehäuse möglich ist und andererseits eine Gasleckage durch die Wellendichtung hindurch gering ist.
  • Herkömmlich wird die Wellendichtung beispielsweise als eine Labyrinthspitzen aufweisende Labyrinthdichtung ausgeführt. Die Labyrinthdichtung hat jedoch den Nachteil, dass in ihr destabilisierende Tangentialkräfte auftreten können, die den Rotor destabilisieren können. Ein weiterer Nachteil der Labyrinthdichtung ist, dass die Labyrinthspitzen sich bei einer Verschmutzung im Gas leicht zusetzen, wodurch die Wirkungsweise der Labyrinthdichtung beeinträchtigt ist. Ferner sind die Labyrinthspitzen empfindlich gegen mechanischen Verschleiß, insbesondere bei Unrundlauf des Rotors.
  • Das Schwingungsverhalten des Rotors, d.h. der radiale Versatz und/oder die Durchbiegung des Rotors, während des Betriebs der Turbomaschine wird hauptsächlich von der rotordynamischen Charakteristik des Rotors bestimmt. Die rotordynamische Charakteristik des Rotors ist gekennzeichnet durch bestimmte Schwingungsmodi, die von der Geometrie des Rotors, den Stoffeigenschaften des Rotormaterials, der Steifheit und der Dämpfung der Rotorlagerung und den thermodynamischen Zuständen im Inneren des Gehäuses bestimmt ist. Eine gutmütige rotordynamische Charakteristik zeichnet sich dadurch aus, dass bei allen möglichen Betriebsbedingungen der Turbomaschine der Rotor nur kleine radiale Bewegungen und/oder nur eine geringe Durchbiegung erfährt.
  • Das Schwingungsverhalten des Rotors kann auch aufgrund von Instabilitätszuständen in der Rotorlagerung und/oder der Wellendichtung beeinflusst sein.
  • Zur Verbesserung der rotordynamischen Charakteristik des Rotors ist der Einsatz einer Wellendichtung mit einer passiven Dämpfungscharakteristik bekannt, beispielsweise einer Damper-Seal (Honeycomb und/oder Hole Pattern Seal). Die Damper-Seal hat den Vorteil, dass sie auf eine Radialbewegung des Rotors dämpfend wirkt, so dass dadurch die radiale Maximalamplitude des Rotors begrenzt ist.
  • Nachteil der Damper-Seal ist, dass ihre Dämpfungswirkung konstruktiv bedingt festgelegt ist. Dadurch ist es unmöglich die Dämpfungswirkung der Damper-Seal auf eine jeweilige Betriebsbedingung der Turbomaschine anzupassen, wodurch die Dämpfungswirkung der Damper-Seal uneffektiv ist. Ferner ist die Damper-Seal empfindlich gegen Verschmutzungen im Gas, so dass sie leicht verstopft. Eine verstopfte Damper-Seal kann sogar einen negativen Effekt auf die rotordynamische Charakteristik des Rotors haben. Dadurch ist die Damper-Seal ständig sauber zu halten, wodurch der Wartungsaufwand der Damper-Seal hoch ist. Somit ist die Verfügbarkeit der Turbomaschine eingeschränkt.
  • Aus der deutschen Offenlegungsschrift DE 41 05 258 A1 , die als nächstliegender Stand der Technik angesehen wird, und der DE 25 15 315 A1 ist jeweils die Kombination einer Wellendichtung der Labyrinthbauweise mit einer magnetischen Wellenlagerung bekannt. Die deutsche Patentschrift DE 37 29 486 C1 offenbart eine weitestgehend dichtungslose Anordnung eines Verdichters und eines Elektromotors in einem gemeinsamen Gehäuse, wobei ein gemeinsamer Rotor magnetisch gelagert ist. Diese bekannten Ausführungen ermöglichen keine bedeutende Einflussnahme auf die Durchbiegung des Rotors und das Schwingungsverhalten, insbesondere bezüglich Biegeschwingungen.
  • Aufgabe der Erfindung ist es eine Wellendichtung für eine Turbomaschine zu schaffen, wobei die Wellendichtung der Turbomaschine eine hohe Verfügbarkeit verleiht, und eine Turbomaschine mit einer hohen Verfügbarkeit zu schaffen.
  • Die erfindungsgemäße Wellendichtung für eine Turbomaschine mit einem Rotor ist als ein Magnetlager zum Abdichten des Rotors ausgeführt, das derart ansteuerbar ist, dass durch das Magnetlager auf den Rotor aktiv Kräfte aufbringbar sind.
  • Das Magnetlager weist einen Magnetlagerstator, der an dem Gehäuse der Turbomaschine montiert ist, und einen Magnetlagerrotor auf, der an dem Rotor angebaut ist. Dreht sich der Rotor beim Betrieb der Turbomaschine, so findet eine Relativbewegung zwischen dem Magnetlagerrotor und dem Magnetlagerstator statt. Zwischen dem Magnetlagerrotor und dem Magnetlagerstator ist ein Spalt vorgesehen, so dass der Magnetlagerrotor nicht an den Magnetlagerstator anstreift und diesen nicht mechanisch beschädigt. Der Spalt ist in seinen geometrischen Abmaßen, insbesondere seiner Breite und seiner Höhe, vergleichbar mit dem Spalt beispielsweise einer Honeycomb oder einer Hole Pattern Seal. Dadurch ist die Leckagerate des Magnetlagers in einer ähnlichen Größenordnung wie bei der Honeycomp oder der Hole Pattern Seal, wodurch das Magnetlager eine übliche Abdichtwirkung hat.
  • Ferner ist erfindungsgemäß das Magnetlager zum Abdichten des Rotors derart ansteuerbar, dass durch das Magnetlager auf den Rotor aktiv Kräfte aufbringbar sind.
  • Diese Kräfte können Tangentialkräfte und/oder Radialkräfte sein. Mit den aktiv aufgebrachten Kräften kann gesteuert das rotordynamische Verhalten des Rotors manipuliert werden. Beispielsweise kann das Ansteuern des Magnetlagers individuell auf einen bestimmten Betriebszustand der Turbomaschine abgestimmt sein. So können die aktiv aufgebrachten Kräfte beispielsweise in Abhängigkeit der Dichte des Fluids, das die Turbomaschine durchströmt, der Drehzahl des Rotors, und/oder eines frequenzabhängigen Verhaltes des Magnetlagers und/oder einer anderen Wellendichtung für jeden beliebigen Betriebspunkt der Turbomaschine abgestimmt werden.
  • Ferner kann durch eine entsprechende Ansteuerung des Magnetlagers auf ein unerwartetes Ereignis reagiert werden, wie beispielsweise ein Instabilitätszustand in einem Lager, wie beispielsweise Oil-Whip oder Oil-Whirl in einem Gleitlager oder einem hydrodynamischen Gleitlager, beispielsweise einem Radialkippsegmentgleitlager, mit dem der Rotor gelagert ist.
  • Mittels des angesteuerten Magnetlagers können nahezu beliebig Kräfte aktiv auf den Rotor aufgebracht werden, so dass so gut wie jeder noch so ungünstige rotordynamische Zustand des Rotors beherrschbar ist.
  • Bevorzugt weist das Magnetlager den Magnetlagerrotor und den Magnetlagerstator auf, wobei der Magnetlagerrotor und/oder der Magnetlagerstator labyrinthartig oder als Hole Pattern Dichtung oder honeycombartig oder als glatter Spalt ausgeführt sind, so dass die Abdichtwirkung des Magnetlagers erhöht ist.
  • Durch die labyrinthartige Ausführung des Magnetlagerstators und/oder des Magnetlagerrotors ist der Strömungswiderstand in dem Spalt, der zwischen dem Magnetlagerstator und dem Magnetlagerrotors ausgebildet ist, höher als bei einer glatten Ausführung. Dadurch ist die Leckagerate des Magnetlagers niedrig.
  • Die erfindungsgemäße Turbomaschine weist den Rotor und die erfindungsgemäße Wellendichtung zur Abdichtung des Rotors auf.
  • Bevorzugt ist die Wellendichtung an einer Stelle des Rotors angesiedelt, an der durch die Wellendichtung die rotordynamische Charakteristik des Rotors manipulierbar ist. Bevorzugt ist durch die Wellendichtung der Starrkörpermode und/oder die Biegeform des Rotors dämpfbar.
  • Dadurch kann bei entsprechender Ansteuerung des Magnetlagers aktiv eine Kraft auf den Rotor an dieser Stelle einwirken, so dass durch diese Kraft das rotordynamische Verhalten des Rotors verbessert werden kann.
  • Ist beispielsweise der Rotor symmetrisch aufgefädelt und an seinen Längsendbereichen gelagert, so liegt diese Stelle beispielsweise im Wesentlichen in der Mitte des Rotors.
  • Es ist bevorzugt, dass die Wellendichtung zur Abdichtung der Turbomaschine gegen die Atmosphäre, insbesondere gegen einen Überdruck, verwendet ist.
  • Alternativ ist bevorzugt, dass die Turbomaschine mindestens ein Laufrad aufweist, deren Druckniveaus von der Wellendichtung gegenseitig abgedichtet sind.
  • Alternativ ist es bevorzugt, dass, wenn die Turbomaschine mindestens einen Ausgleichskolben aufweist, der Ausgleichskolben die Wellendichtung aufweist.
  • Somit können vorteilhaft mehrere Wellenabdichtungen an dem Rotor vorgesehen werden, die als das Magnetlager ausgeführt sind. Dadurch ist es vorteilhaft ermöglicht an mehreren Stellen des Rotors aktiv Kräfte mittels der Magnetlager auf den Rotor ausüben, wodurch das rotordynamische Verhalten des Rotors entsprechend umfangreich manipulierbar ist.
  • Ist beispielsweise die Turbomaschine ein Turboverdichter, der zwei gleichartige Druckstufen aufweist, die Back-To-back angeordnet sind, so ist der üblicherweise Turboverdichter in der Rotormitte mit dem Ausgleichskolben ausgestattet. Der Ausgleichskolben weist bevorzugt die Wellendichtung auf, mit der der Ausgleichskolben gegen den Rotor abgedichtet ist. Dadurch, dass die Wellendichtung als das Magnetlager ausgeführt ist, können somit in der Rotormitte aktiv Kräfte auf den Rotor ausgeübt werden, wobei naturgemäß sich der Rotor in der Rotormitte am stärksten durchbiegt. Dadurch ist mittels der an dem Ausgleichskolben angebrachten Wellendichtung das rotordynamische Verhalten des Rotors gut manipulierbar.
  • Bevorzugt ist die Turbomaschine der Turboverdichter, noch bevorzugter ein Einwellenverdichter und besonders bevorzugt ein Radialverdichter oder ein Axialverdichter.
  • Ferner ist es bevorzugt, dass die Turbomaschine der Turboverdichter, noch bevorzugter ein Einwellenverdichter und besonders bevorzugt ein Radialverdichter oder ein Axialverdichter.
  • Außerdem ist es bevorzugt, dass die Turbomaschine eine Gasturbine oder eine Dampfturbine ist.
  • Im folgenden wird ein bevorzugtes Ausführungsbeispiel der erfindungsgemäßen Turbomaschine anhand der beigefügten schematischen Zeichnungen erläutert. Es zeigt Fig. 1 einen Längsschnitt des Ausführungsbeispiels der Turbomaschine.
  • Wie es aus Fig. 1 ersichtlich ist, ist eine Turbomaschine als ein Einwellen-Turboverdichter 1 ausgeführt. Der Turboverdichter 1 ist aufgebaut aus einer ND-Stufe 3 (Niederdruckstufe) und einer HD-Stufe 4 (Hochdruckstufe). Der Turboverdichter 1 ist konstruiert Gas zu verdichten und findet in seiner Bauweise beispielsweise in der Öl- und Gasindustrie Anwendung. Das Gas wird zuerst in der ND-Stufe 3 und dann in der HD-Stufe verdichtet.
  • Der Turboverdichter 1 weist ein Gehäuse 2 auf. Das Gehäuse 2 weist für die ND-Stufe 3 einen ND-Saugstutzen 5 und einen ND-Druckstutzen 6 und für die HD-Stufe 4 einen HD-Saugstutzen 7 und einen HD-Druckstutzen 8 auf. Das Gas wird von dem ND-Saugstutzen 5 angesaugt, in der ND-Stufe 3 verdichtet und von dem ND-Druckstutzen 6 abgegeben. Dann strömt das Gas durch einen Zwischenkühler (nicht gezeigt), in dem das Gas gekühlt wird. Danach strömt das Gas durch den HD-Saugstutzen 7 in die HD-Stufe 4 zur weiteren Verdichtung und wird danach von dem HD-Druckstutzen 8 abgegeben.
  • Der Turboverdichter 1 weist einen Rotor 9 auf, an dem ein Abschnitt für die ND-Stufe 3 und ein Abschnitt für die HD-Stufe 4 vorgesehen ist. Der Rotor 9 weist eine Welle 10 auf, die ihrerseits eine Kupplung 11 aufweist, an der der Rotor 9 mittels eines Antriebs (nicht gezeigt) antreibbar ist. Die Welle 10 weist zwei einander abgewandte Längsendbereiche auf, an denen der Rotor 9 mittels Radial-/Axiallagern 12 gelagert ist.
  • Für die ND-Stufe 3 weist der Rotor 9 vier ND-Laufräder 13, und für die HD-Stufe 4 weist der Rotor 9 vier HD-Laufräder 14 auf. Stromauf der Laufräder 13, 14 ist jeweils ein Rückführkanal vorgesehen, der in der ND-Stufe 3 von den ND-Zwischenböden 15 und in der HD-Stufe 4 von den HD-Zwischenböden 16 gebildet sind.
  • Außerhalb des Turboverdichters 1 herrscht eine atmosphärische Umgebung. An den Radial-/Axiallagern 12 ist der Rotor 9 gegen das Gehäuse 2 zur atmosphärischen Umgebung hin mittels als Labyrinthdichtungen 17 ausgeführte Gasdichtungen abgedichtet. Die Gasdichtungen können beispielsweise auch als Schwimmringdichtungen oder als Gleitringdichtungen ausgeführt sein.
  • Die ND-Laufräder 13 und die HD-Laufräder 14 sind in Back-to-back-Anordnung auf der Welle 10 aufgefädelt. Zwischen der ND-Stufe 3 und der HD-Stufe 4 ist ein Ausgleichskolben 18 vorgesehen, der die ND-Stufe 3 von der HD-Stufe 4 abtrennt. Beim Betrieb des Turboverdichters 1 liegt an der einen der ND-Stufe 3 zugewandten Seite des Ausgleichskolben 18 der Enddruck der ND-Stufe 3, und an der anderen der HD-Stufe 4 zugewandten Seite des Ausgleichskolbens 18 der Enddruck der HD-Stufe 4 an. Dadurch stellt sich quer zum Ausgleichskolben 18 ein Druckunterschied ein.
  • Der Ausgleichskolben 18 weist ein Magnetlager 19 auf, mit dem der Ausgleichskolben 18 gegen die Welle 10 abgedichtet ist. Das Magnetlager 19 weist einen Magnatlagerstator, der an dem Ausgleichskolben 18 fest angebaut ist, und einen Magnetlagerrotor auf, der auf der Welle 10 fest montiert ist. Zwischen dem Magnetlagerstator und dem Magnetlagerrotor ist ein Spalt vorgesehen, so dass im Betrieb des Turboverdichters 1 der Magnetlagerrotor nicht an den Magnetlagerstator anstreift. Entsprechend der chemischen Zusammensetzung und der Entzündbarkeit des Gases ist das Magnetlager 19 gekapselt oder ungekapselt ausgeführt.
  • Hervorgerufen durch den Druckunterschied quer zum Ausgleichskolben 18 stellt sich im Betrieb des Turboverdichters 1 eine Gasleckage von der HD-Stufe 4 zur ND-Stufe 3 ein. Der Spalt ist in seiner Breite und Höhe derart gestaltet, dass die Gasleckage gering ist.
  • Der Rotor 9 weist jeweils dieselbe Anzahl von ND-Laufrädern 13 und HD-Laufrädern 14 auf, nämlich vier, so dass der Ausgleichskolben 18 in der Mitte des Rotors 9 angesiedelt ist. In der Mitte des Rotors 9 hat dieser bezüglich des ersten Biegemodes die größte Biegeamplitude beim Betrieb des Turboverdichters 1.
  • Das Magnetlager 19 ist von außerhalb des Turboverdichters 1 mittels einer Steuerung (nicht gezeigt) ansteuerbar, so dass durch das Magnetlager 19 auf die Welle 10 und somit auf den Rotor 9 aktiv Kräfte aufbringbar sind. Dadurch, dass das Magnetlager 19 in der Mitte des Rotors 9 angeordnet ist, können genau dort aktiv Kräfte auf den Rotor 9 aufgebracht werden, wo die größte Biegeamplitude des Rotors 9 beim Betrieb des Turboverdichters herrscht. Dadurch können beispielsweise Radialkräfte und/oder Tangentialkräfte auf den Rotor aufgebracht werden, wodurch das rotordynamische Verhalten des Rotors 9 effektiv beinflussbar ist. Dabei wird das Magnetlager 19 als ein drittes Lager und/oder Stabilisator (z.B. wenn nur Tangentialkräfte aufgebracht werden) neben den beiden Radial-/Axiallagern 12 in der Mitte des Rotors 9 benutzt. Ferner kann mittels des Magnetlagers 19 eine zusätzliche Dämpfung des Rotors 9 bereitgestellt werden, wodurch Lateralschwingungen des Rotors 9 wirksam gedämpft werden können. Dadurch sind die Wellenschwingungen des Rotors gering, wodurch die rotierenden Dichtelemente des Turboverdichters 1 weniger Verschleiß und dadurch eine längere Lebensdauer haben. Deshalb können die Labyrinthspalte kleiner ausgeführt und dadurch die Leckagen und kreisenden Mengen verringert werden.
  • Generell ist die maximal mögliche Baulänge des Rotors 9 unter anderem durch sein rotordynamisches Verhalten vorgegeben. Dadurch, dass das Magnetlager 19 begrenzend auf die Lateralschwingungen des Rotors 9 einwirkt, kann der Rotor 9 mit einer Baulänge vorgesehen werden, die größer ist als die maximal mögliche Baulänge, die lediglich möglich wäre, wenn das Magnetlager 19 nicht vorgesehen ist.
  • Ferner können durch das Magnetlager 19 gezielt Tangentialkräfte auf den Rotor 9 aufgebracht werden, wodurch den typischerweise destabilisierenden Dichtungskräften mittels des Magnetlagers 19 entgegengewirkt werden kann.
  • Bezugszeichenliste
  • 1
    Turboverdichter
    2
    Gehäuse
    3
    ND-Stufe
    4
    HD-Stufe
    5
    ND-Saugstutzen
    6
    ND-Druckstutzen
    7
    HD-Saugstutzen
    8
    HD-Druckstutzen
    9
    Rotor
    10
    Welle
    11
    Kupplung
    12
    Radial-/oder Axiallager
    13
    ND-Laufrad
    14
    HD-Laufrad
    15
    ND-Zwischenboden
    16
    HD-Zwischenboden
    17
    Labyrinthdichtung
    18
    Ausgleichskolben
    19
    Magnetlager

Claims (10)

  1. Turbomaschine mit einem Rotor (9) und einer Wellendichtung (19) zur Abdichtung des Rotors (9),
    wobei die Wellendichtung als ein Magnetlager (19) zum Abdichten des Rotors (9) ausgeführt ist, das derart ansteuerbar ist, dass durch das Magnetlager (19) auf den Rotor (9) aktiv Kräfte aufbringbar sind,
    dadurch gekennzeichnet, dass die Turbomaschine mindestens einen Ausgleichskolben (18) mit der Wellendichtung (19) aufweist.
  2. Turbomaschine gemäß Anspruch 1,
    wobei das Magnetlager (19) einen Magnetlagerrotor und einen Magnetlagerstator aufweist, wobei der Magnetlagerrotor und/oder der Magnetlagerstator labyrinthartig oder als Hole Pattern Dichtung oder honeycombartig oder als glatter Spalt ausgeführt sind, so dass die Abdichtwirkung des Magnetlagers (19) erhöht ist.
  3. Turbomaschine gemäß Anspruch 1,
    wobei die Wellendichtung (19) an einer Stelle des Rotors (9) angesiedelt ist, an der durch die Wellendichtung (19) die rotordynamische Charakteristik des Rotors (9) manipulierbar ist.
  4. Turbomaschine gemäß Anspruch 3,
    wobei durch die Wellendichtung (19) der Starrkörpermode und/oder die Biegeform des Rotors dämpfbar ist.
  5. Turbomaschine gemäß einem der Ansprüche 2 bis 4,
    wobei die Wellendichtung (19) zur Abdichtung der Turbomaschine (1) gegen die Atmosphäre, insbesondere gegen einen Überdruck, verwendet ist.
  6. Turbomaschine gemäß einem der Ansprüche 2 bis 5,
    wobei die Turbomaschine (1) mindestens ein Laufrad aufweist, deren Druckniveaus von der Wellendichtung (19) gegenseitig abgedichtet sind.
  7. Turbomaschine gemäß einem der Ansprüche 2 bis 6,
    wobei die Turbomaschine ein Turboverdichter (1) ist.
  8. Turbomaschine gemäß Anspruch 7,
    wobei der Turboverdichter ein Einwellenverdichter (1) ist.
  9. Turbomaschine gemäß Anspruch 8,
    wobei der Turboverdichter ein Radialverdichter (1) oder ein Axialverdichter ist.
  10. Turbomaschine gemäß einem der Ansprüche 2 bis 7,
    wobei die Turbomaschine eine Gasturbine oder eine Dampfturbine ist.
EP07012721A 2007-06-28 2007-06-28 Wellendichtung für eine Turbomaschine Not-in-force EP2009286B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE502007004562T DE502007004562D1 (de) 2007-06-28 2007-06-28 Wellendichtung für eine Turbomaschine
ES07012721T ES2348890T3 (es) 2007-06-28 2007-06-28 Anillo de estanqueidad para una turbomaquina.
EP07012721A EP2009286B1 (de) 2007-06-28 2007-06-28 Wellendichtung für eine Turbomaschine
AT07012721T ATE475806T1 (de) 2007-06-28 2007-06-28 Wellendichtung für eine turbomaschine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07012721A EP2009286B1 (de) 2007-06-28 2007-06-28 Wellendichtung für eine Turbomaschine

Publications (2)

Publication Number Publication Date
EP2009286A1 EP2009286A1 (de) 2008-12-31
EP2009286B1 true EP2009286B1 (de) 2010-07-28

Family

ID=38707241

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07012721A Not-in-force EP2009286B1 (de) 2007-06-28 2007-06-28 Wellendichtung für eine Turbomaschine

Country Status (4)

Country Link
EP (1) EP2009286B1 (de)
AT (1) ATE475806T1 (de)
DE (1) DE502007004562D1 (de)
ES (1) ES2348890T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103161738A (zh) * 2013-01-11 2013-06-19 中航黎明锦西化工机械(集团)有限责任公司 一种离心式硫化氢压缩机

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2253852A1 (de) * 2009-05-19 2010-11-24 Siemens Aktiengesellschaft Verdichteranordnung mit aktivem Magnetlager
IT1399171B1 (it) * 2009-07-10 2013-04-11 Nuovo Pignone Spa Unita' di compressione ad alta pressione per fluidi di processo di impianti industriali e relativo metodo di funzionamento
IT1396885B1 (it) * 2009-12-17 2012-12-20 Nuovo Pignone Spa Cuscinetto a gas intermedio
DE102014209766A1 (de) * 2014-05-22 2015-11-26 Siemens Aktiengesellschaft Dampfturbine und Dichtschale für eine Dampfturbine
CN112112896B (zh) * 2020-09-10 2022-05-31 山东博特轴承有限公司 一种磁力轴向轴承

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2515315A1 (de) * 1975-04-08 1976-10-21 Borsig Gmbh Lager und wellendichtung fuer turbomaschinen
DE3221380C1 (de) * 1982-06-05 1983-07-28 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 4200 Oberhausen Wellendichtung mit aktiv-magnetisch geregeltem Dichtspalt
FR2528923A1 (fr) * 1982-06-17 1983-12-23 Europ Propulsion Dispositif de suspension magnetique d'un rotor place dans une enceinte etanche
DE3729486C1 (de) * 1987-09-03 1988-12-15 Gutehoffnungshuette Man Kompressoreinheit
DE4105258A1 (de) * 1991-02-20 1992-08-27 Abb Patent Gmbh Radiales magnetlager fuer einen rotor
US5254893A (en) * 1992-01-30 1993-10-19 Ide Russell D Shaft support assembly for use in a polygon mirror drive motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103161738A (zh) * 2013-01-11 2013-06-19 中航黎明锦西化工机械(集团)有限责任公司 一种离心式硫化氢压缩机
CN103161738B (zh) * 2013-01-11 2015-09-02 中航黎明锦西化工机械(集团)有限责任公司 一种离心式硫化氢压缩机

Also Published As

Publication number Publication date
ES2348890T3 (es) 2010-12-16
EP2009286A1 (de) 2008-12-31
DE502007004562D1 (de) 2010-09-09
ATE475806T1 (de) 2010-08-15

Similar Documents

Publication Publication Date Title
EP2009286B1 (de) Wellendichtung für eine Turbomaschine
EP1391587B1 (de) Abgasturbolader
DE102014220317A1 (de) Fluggasturbinentriebwerk mit Stoßdämpfungselement für Fanschaufelverlust
DE3505491A1 (de) Dichtung fuer eine stroemungsmaschine
DE60217365T2 (de) Dichtungsverfahren und vorichtung für die welle einer gasturbine
DE102012102730A1 (de) Ansaugflächendichtung und zugehöriges Verfahren
DE102015222270A1 (de) Modulare turbolader-spaltdichtung
DE112013002029T5 (de) Schleuderscheiben-Öldichtung und Turbolader mit Schleuderscheiben-Öldichtung
EP1977145A1 (de) Mehrstufige bürstendichtung
EP3699405A1 (de) Lagergehäuse und ein abgasturbolader mit einem solchen gehäuse
EP2514975B1 (de) Strömungsmaschine
DE102016111855A1 (de) Ölverteilungssystem und Turbomaschine mit einem Ölverteilungssystem
DE102006060694B4 (de) Rotor- und Statorschaufel-Anordnung für ein Gasturbinentriebwerk
DE102012201048B4 (de) Verfahren und Dämpfungseinrichtung zur Schwingungsdämpfung einer Schaufel einer Strömungsmaschine, sowie Strömungsmaschine
EP2284426B1 (de) Strömungsmaschine
EP2113637A2 (de) Rotierende Einheit für einen Axialkompressor
DE112016002752T5 (de) Dichtungsstruktur und turbolader
WO2003078841A1 (de) Pumpe
WO2015169509A1 (de) Verdichtergehäuse
EP3832155B1 (de) Radial- und axialgasdrucklager
EP2048327B1 (de) Dichtungssystem für eine Turbomaschine
DE102017114007A1 (de) Diffusor für einen Radialverdichter
DE102007014466A1 (de) Doppelgebläse auf einer Motorwelle
WO2013115361A1 (ja) シール構造及びこれを備えた回転機械
DE3026558A1 (de) Radiale turbomaschinen, insbesondere abgasturbolader fuer brennkraftmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20090630

17Q First examination report despatched

Effective date: 20090729

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502007004562

Country of ref document: DE

Date of ref document: 20100909

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100728

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Effective date: 20101202

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100728

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100728

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101129

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101128

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100728

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101028

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100728

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100728

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101029

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100728

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100728

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100728

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100728

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100728

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100728

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110429

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007004562

Country of ref document: DE

Effective date: 20110429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100728

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20110630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120626

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130628

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20150727

Year of fee payment: 9

Ref country code: CH

Payment date: 20150902

Year of fee payment: 9

Ref country code: DE

Payment date: 20150821

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160610

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20160510

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007004562

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170103

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 475806

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170628

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160629

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170628

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181203