EP2009129A1 - Verfahren zur Herstellung eines galvanisierten oder Galvanneal-Stahlblechs durch DFF-Regulierung - Google Patents

Verfahren zur Herstellung eines galvanisierten oder Galvanneal-Stahlblechs durch DFF-Regulierung Download PDF

Info

Publication number
EP2009129A1
EP2009129A1 EP07290816A EP07290816A EP2009129A1 EP 2009129 A1 EP2009129 A1 EP 2009129A1 EP 07290816 A EP07290816 A EP 07290816A EP 07290816 A EP07290816 A EP 07290816A EP 2009129 A1 EP2009129 A1 EP 2009129A1
Authority
EP
European Patent Office
Prior art keywords
steel sheet
oxide
temperature
process according
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07290816A
Other languages
English (en)
French (fr)
Inventor
Jean-Michel Mataigne
Florence Bertrand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArcelorMittal France SA
Original Assignee
ArcelorMittal France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38608886&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2009129(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ArcelorMittal France SA filed Critical ArcelorMittal France SA
Priority to EP07290816A priority Critical patent/EP2009129A1/de
Priority to KR1020107001332A priority patent/KR101273308B1/ko
Priority to RU2010102924/02A priority patent/RU2451107C2/ru
Priority to JP2010514160A priority patent/JP5713673B2/ja
Priority to PCT/IB2008/001462 priority patent/WO2009004425A1/en
Priority to ES08762800T priority patent/ES2371985T3/es
Priority to CA2701091A priority patent/CA2701091C/en
Priority to US12/666,702 priority patent/US20100193081A1/en
Priority to EP08762800A priority patent/EP2171116B1/de
Priority to BRPI0813687A priority patent/BRPI0813687B1/pt
Priority to AT08762800T priority patent/ATE521726T1/de
Priority to CN200880025372.2A priority patent/CN101809182B/zh
Priority to PL08762800T priority patent/PL2171116T3/pl
Priority to ARP080102782A priority patent/AR067339A1/es
Publication of EP2009129A1 publication Critical patent/EP2009129A1/de
Priority to JP2014227461A priority patent/JP2015078438A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/52Methods of heating with flames
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/561Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/11Making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0222Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/261After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips

Definitions

  • the present invention relates to a process for manufacturing a hot-dip galvannealed steel sheet having a TRIP microstructure.
  • TRIP steels (the term TRIP standing for transformation-induced plasticity), which combine very high mechanical strength with the possibility of very high levels of deformation.
  • TRIP steels have a microstructure comprising ferrite, residual austenite and optionally martensite and/or bainite, which allows them to achieve tensile strength from 600 to 1000 MPa.
  • This type of steel is widely used for production of energy-absorbing parts, such as for example structural and safety parts such as longitudinal members and reinforcements.
  • galvanized steel sheets are often submitted to an annealing which promotes the alloying of the zinc coating with the iron of the steel (so-called galvannealing).
  • This kind of coating made of a zinc-iron alloy offers a better weldability than a zinc coating.
  • TRIP steel sheets are obtained by adding a large amount of silicon to steel. Silicon stabilizes the ferrite and the austenite at room temperature, and prevents residual austenite from decomposing to form carbide.
  • TRIP steel sheets containing more than 0.2% by weight of silicon are galvanized with difficulty, because silicon oxides are formed on the surface of the steel sheet during the annealing taking place just before the coating. These silicon oxides show a poor wettability toward the molten zinc, and deteriorate the plating performance of the steel sheet.
  • TRIP steel having low silicon content (less than 0.2% by weight).
  • this has a major drawback: a high level of tensile strength, that is to say about 800 MPa, can be achieved only if the content of carbon is increased. But, this has the effect to lower the mechanical resistance of the welded points.
  • the TRIP effect is observed when the TRIP steel sheet is being deformed, as the residual austenite is transformed into martensite under the effect of the deformation, and the strength of the TRIP steel sheet increases.
  • the purpose of the present invention is therefore to remedy the aforementioned drawbacks and to propose a process for hot-dip galvannealing a steel sheet having a high silicon content (more than 0.2% by weight) and a TRIP microstructure showing high mechanical characteristics, that guarantees a good wettability of the surface steel sheet and no non-coated portions, and thus guarantees a good adhesion and a nice surface appearance of the zinc alloy coating on the steel sheet, and that preserves the TRIP effect.
  • the first subject of the invention is a process for manufacturing a hot-dip galvannealed steel sheet having a TRIP microstructure comprising ferrite, residual austenite and optionally martensite and/or bainite, said process comprising the steps consisting in:
  • the balance of the composition consists of iron and other elements that are usually expected to be found and impurities resulting from the smelting of the steel, in proportions that have no influence on the desired properties.
  • the steel sheet having the above composition is first subjected to an oxidation followed by a reduction, before being hot-dip galvanized in a bath of molten zinc and heat-treated to form said galvannealed steel sheet.
  • the aim is to form an oxidized steel sheet having an outer layer of iron oxide with a controlled thickness which will protect the steel from the selective outer oxidation of silicon, manganese and aluminium, while the steel sheet is annealed before the hot-dip galvanization.
  • Said oxidation of the steel sheet is performed under conditions that allow the formation, on the surface of the steel sheet, of a layer of iron oxide containing no superficial oxides selected from the group consisting of silicon oxide, manganese oxide, aluminium oxide, complex oxide comprising silicon and/or manganese and/or aluminium.
  • a layer of iron oxide containing no superficial oxides selected from the group consisting of silicon oxide, manganese oxide, aluminium oxide, complex oxide comprising silicon and/or manganese and/or aluminium.
  • a layer of an internal oxide of at least one type of oxide selected from the group consisting of silicon oxide, manganese oxide, aluminium oxide, complex oxide comprising Si and Mn, complex oxide comprising Si and Al, complex oxide comprising Mn and Al and complex oxide comprising Si, Mn and Al is thus formed.
  • the oxidation is preferably performed by heating said steel sheet from ambient temperature to a heating temperature T1 which is between 680 and 800°C, in a direct flame furnace where the atmosphere comprises air and fuel, with a ratio air-to-fuel preferably between 1 and 1.2.
  • the iron oxide layer formed on the surface of the steel sheet will contain manganese coming from the steel, and the wettability will be impaired. If the temperature T1 is below 680°C, the internal oxidation of silicon, manganese and aluminium will not be favoured, and the galvanizability of the steel sheet will be insufficient.
  • An atmosphere having a ratio air-to-fuel less than 1 leads to the formation of superficial oxidation of silicon, manganese and aluminium, and thus a superficial layer of oxides selected from the group consisting of silicon oxide, manganese oxide, aluminium oxide, and complex oxide comprising silicon and/or manganese and/or aluminium, possibly in combination with iron oxide is formed, and the wettability is impaired.
  • a ratio air-to-fuel above 1.2 the layer of iron oxide is too thick, and will not be completely reduced. Thus, the wettability will also be impaired.
  • the oxidized steel sheet When leaving the direct flame furnace, the oxidized steel sheet is reduced in conditions permitting the achievement of the complete reduction of the iron oxide into iron.
  • This reduction step can be performed in a radiant tube furnace or in a resistance furnace.
  • Said oxidized steel sheet is thus heat treated in an atmosphere comprising preferably more than 15% by volume of hydrogen, the balance being nitrogen and unavoidable impurities. Indeed, if the content of hydrogen in the atmosphere is less than 15% by volume, the layer of iron oxide can be insufficiently reduced and the wettability is impaired.
  • Said oxidized steel sheet is heated from the heating temperature T1 to a soaking temperature T2, then it is soaked at said soaking temperature T2 for a soaking time t2, and is finally cooled from said soaking temperature T2 to a cooling temperature T3.
  • Said soaking temperature T2 is preferably between 770 and 850°C.
  • T2 When the steel sheet is at the temperature T2, a dual phase microstructure composed of ferrite and austenite is formed.
  • T2 When T2 is above 850°C, the volume ratio of austenite grows too much, and external selective oxidation occurs on the steel surface. But when T2 is below 770°C, the time required to form a sufficient volume ratio of austenite is too high.
  • sufficient austenite must be formed during the soaking step, so that sufficient residual austenite is maintained during the cooling step.
  • the soaking is performed for a time t2, which is preferably between 20 and 180s. If the time t2 is longer than 180s, the austenite grains coarsen and the yield strength R e of the steel after forming will be limited. Furthermore, the hardenability of the steel is low. However, if the steel sheet is soaked for a time t2 less than 20s, the proportion of austenite formed will be insufficient and sufficient residual austenite and bainite will not form when cooling.
  • the reduced steel sheet is finally cooled at a cooling temperature T3 near the temperature of the bath of molten zinc, in order to avoid the cooling or the re-heating of said bath.
  • T3 is thus preferably between 460 and 510°C. Therefore, a zinc-based coating having a homogenous microstructure can be obtained.
  • the steel sheet When the steel sheet is cooled, it is hot dipped in the bath of molten zinc whose temperature is preferably between 450 and 500°C.
  • This bath can contain 0.08 to 0.135% by weight of dissolved aluminium, the balance being zinc and unavoidable impurities. Aluminium is added in the bath in order to deoxidize the molten zinc, and to make it easier to control the thickness of the zinc-based coating. In that condition, precipitation of delta phase (FeZn 7 ) is induced at the interface of the steel and of the zinc-based coating.
  • the steel sheet When leaving the bath, the steel sheet is wiped by projection of a gas, in order to adjust the thickness of the zinc-based coating.
  • This thickness which is generally between 3 and 10 ⁇ m, is determined according to the required resistance to corrosion.
  • the hot-dip galvanized steel sheet is finally heat-treated so that a coating made of a zinc-iron alloy is obtained, by diffusion of the iron from steel to the zinc of the coating.
  • This alloying treatment can be performed by maintaining said steel sheet at a temperature T4 between 460 and 510°C for a soaking time t4 between 10 and 30s. Thanks to the absence of external selective oxidation of silicon, manganese and aluminium, this temperature T4 is lower than the conventional alloying temperatures. For that reason, large quantities of molybdenum to the steel are not required, and the content of molybdenum in the steel can be limited to less than 0.01% by weight. If the temperature T4 is below 460°C, the alloying of iron and zinc is not possible.
  • the time t4 is adjusted so that the average iron content in the alloy is between 8 and 12% by weight, which is a good compromise for improving the weldability of the coating and limiting the powdering while shaping.
  • Samples A and B are pre-heated from ambient temperature (20°C) to 750°C, in a direct flame furnace. They are subsequently and continuously annealed in a radiant tube furnace, where they are heated from 750° to 800°C, then they are soaked at 800°C for 60 s, and finally they are cooled to 460 °C.
  • the atmosphere in the radiant tube furnace comprises 30% by volume of hydrogen, the balance being nitrogen and unavoidable impurities.
  • samples A and B are hot dip galvanized in a molten zinc-based bath comprising 0.12% by weight of aluminium, the balance being zinc and unavoidable impurities.
  • the temperature of said bath is 460 °C.
  • the thickness of the zinc-based coating is 7 ⁇ m.
  • the aim is to compare the wettablilty and the adherence of these samples, when the air-to-fuel ratio in the direct flame furnace fluctuates.
  • the air-to-fuel ratio is 0.90 for sample A, and 1.05 according to the invention for sample B.
  • the results are shown in table II.
  • the wettability is visually controlled by an operator.
  • the adherence of the coating is also visually controlled after a 180° bending test of samples.
  • Table I chemical composition of the steel of samples A and B, in % by weight, the balance of the composition being iron and unavoidable impurities (sample A and B).
  • Table I C Mn Sl Al Mo Cr P Ti V Ni Nb 0.20 1.73 1.73 0.01 0.005 0.02 0.01 0.005 0.005 0.01 0.005
  • Table II Wettabilty Adherence Aspect of the surface Sample A** Bad Bad Bad Sample B* Good Good Good Good * according to the invention ** according to the conventional process
  • Figure 1 is a photography of sample A after the pre-heating step and before the annealing step
  • figure 2 is a photography of sample B after the pre-heating step and before the annealing step.
  • the aim is to show the effect of the internal selective oxidation of silicon and manganese on the temperature of alloying.
  • the temperature of alloying treatment applied to sample B in order to obtain a galvannealed steel sheet according to the invention is compared with the temperature of alloying of sample A.
  • Sample B which has been hot dip galvanized is then subjected to an alloying treatment by heating it to 480°C, and by maintaining it at this temperature for 19 s .
  • the inventors have checked that the TRIP microstructure of the obtained hot dip galvannealed steel sheet according to the invention was not lost by this alloying treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
EP07290816A 2007-06-29 2007-06-29 Verfahren zur Herstellung eines galvanisierten oder Galvanneal-Stahlblechs durch DFF-Regulierung Withdrawn EP2009129A1 (de)

Priority Applications (15)

Application Number Priority Date Filing Date Title
EP07290816A EP2009129A1 (de) 2007-06-29 2007-06-29 Verfahren zur Herstellung eines galvanisierten oder Galvanneal-Stahlblechs durch DFF-Regulierung
PL08762800T PL2171116T3 (pl) 2007-06-29 2008-06-06 Proces produkcji blachy stalowej cynkowanej zanurzeniowo z krótkotrwałym wyżarzaniem przez regulację DFF
CA2701091A CA2701091C (en) 2007-06-29 2008-06-06 Process for manufacturing a galvannealed steel sheet by dff regulation
EP08762800A EP2171116B1 (de) 2007-06-29 2008-06-06 Verfahren zur herstellung eines verzinkten und dann wärmebehandelten stahlblechs durch dff-regulierung
JP2010514160A JP5713673B2 (ja) 2007-06-29 2008-06-06 Dff調整によって合金化亜鉛めっき鋼板を製造する方法
PCT/IB2008/001462 WO2009004425A1 (en) 2007-06-29 2008-06-06 Process for manufacturing a galvannealed steel sheet by dff regulation
ES08762800T ES2371985T3 (es) 2007-06-29 2008-06-06 Procedimiento para la producción de una chapa de acero recocida y galvanizada mediante regulación dff.
KR1020107001332A KR101273308B1 (ko) 2007-06-29 2008-06-06 Dff 조절에 의한 합금화 아연도금 강판의 제조 방법
US12/666,702 US20100193081A1 (en) 2007-06-29 2008-06-06 Process for manufacturing a galvannealed steel sheet by dff regulation
RU2010102924/02A RU2451107C2 (ru) 2007-06-29 2008-06-06 Способ производства оцинкованного и отожженного стального листа путем регулирования пламенной печи прямого действия
BRPI0813687A BRPI0813687B1 (pt) 2007-06-29 2008-06-06 processo para produção de uma chapa de aço galvanizada e recozida
AT08762800T ATE521726T1 (de) 2007-06-29 2008-06-06 Verfahren zur herstellung eines verzinkten und dann wärmebehandelten stahlblechs durch dff- regulierung
CN200880025372.2A CN101809182B (zh) 2007-06-29 2008-06-06 通过dff调节制造锌镀层退火的钢片材的方法
ARP080102782A AR067339A1 (es) 2007-06-29 2008-06-27 Procedimiento para fabricar una lamina de acero galvanizada y recocida
JP2014227461A JP2015078438A (ja) 2007-06-29 2014-11-07 Dff調整によって合金化亜鉛めっき鋼板を製造する方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07290816A EP2009129A1 (de) 2007-06-29 2007-06-29 Verfahren zur Herstellung eines galvanisierten oder Galvanneal-Stahlblechs durch DFF-Regulierung

Publications (1)

Publication Number Publication Date
EP2009129A1 true EP2009129A1 (de) 2008-12-31

Family

ID=38608886

Family Applications (2)

Application Number Title Priority Date Filing Date
EP07290816A Withdrawn EP2009129A1 (de) 2007-06-29 2007-06-29 Verfahren zur Herstellung eines galvanisierten oder Galvanneal-Stahlblechs durch DFF-Regulierung
EP08762800A Active EP2171116B1 (de) 2007-06-29 2008-06-06 Verfahren zur herstellung eines verzinkten und dann wärmebehandelten stahlblechs durch dff-regulierung

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP08762800A Active EP2171116B1 (de) 2007-06-29 2008-06-06 Verfahren zur herstellung eines verzinkten und dann wärmebehandelten stahlblechs durch dff-regulierung

Country Status (13)

Country Link
US (1) US20100193081A1 (de)
EP (2) EP2009129A1 (de)
JP (2) JP5713673B2 (de)
KR (1) KR101273308B1 (de)
CN (1) CN101809182B (de)
AR (1) AR067339A1 (de)
AT (1) ATE521726T1 (de)
BR (1) BRPI0813687B1 (de)
CA (1) CA2701091C (de)
ES (1) ES2371985T3 (de)
PL (1) PL2171116T3 (de)
RU (1) RU2451107C2 (de)
WO (1) WO2009004425A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2659016A2 (de) 2010-12-28 2013-11-06 Posco Schmelztauchbeschichtetes stahlblech mit hervorragender plattierungshaftung und herstellungsverfahren dafür
WO2015001367A1 (en) * 2013-07-04 2015-01-08 Arcelormittal Investigación Y Desarrollo Sl Cold rolled steel sheet, method of manufacturing and vehicle
EP2840161A1 (de) * 2012-04-17 2015-02-25 JFE Steel Corporation Verfahren zur herstellung eines legierten feuerverzinkten stahlbleches mit hervorragender haftung an plattierung und ausgezeichneten gleiteigenschaften
EP2942419A4 (de) * 2013-03-05 2016-02-24 Jfe Steel Corp Hochfestes feuerverzinktes stahlblech und verfahren zur herstellung davon
EP2921569A4 (de) * 2012-11-15 2016-07-27 Baoshan Iron & Steel Hochverformbares und extrem feste feuerverzinkte stahlplatte und herstellungsverfahren dafür
EP3045559A4 (de) * 2013-09-12 2016-09-28 Jfe Steel Corp Feuerverzinktes stahlblech und galvanisch geglühtes stahlblech mit ausgezeichneter erscheinung und überzugshaftung sowie herstellungsverfahren dafür
EP3080312A4 (de) * 2013-12-10 2017-09-20 Arcelormittal S.A. Verfahren zum glühen von stahlblechen

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9068255B2 (en) 2009-12-29 2015-06-30 Posco Zinc-plated steel sheet for hot pressing having outstanding surface characteristics, hot-pressed moulded parts obtained using the same, and a production method for the same
BR112014007530B1 (pt) * 2011-09-30 2018-12-11 Nippon Steel & Sumitomo Metal Corporation chapa de aço galvanizada por imersão a quente de alta resistência e processo para produção da mesma
KR20130076589A (ko) * 2011-12-28 2013-07-08 주식회사 포스코 도금표면 품질 및 도금밀착성이 우수한 고강도 용융아연도금강판 및 그 제조방법
WO2014037627A1 (fr) 2012-09-06 2014-03-13 Arcelormittal Investigación Y Desarrollo Sl Procede de fabrication de pieces d'acier revêtues et durcies a la presse, et tôles prerevêtues permettant la fabrication de ces pieces
WO2014135753A1 (fr) 2013-03-06 2014-09-12 Arcelormittal Investigacion Y Desarrollo, S.L. Procédé de réalisation d'une tôle à revêtement znal avec un essorage optimisé, tôle, pièce et véhicule correspondants
TWI613325B (zh) * 2013-05-17 2018-02-01 Ak鋼鐵資產公司 供壓模淬火(press hardening)應用之鍍鋅鋼及製造方法
WO2017006144A1 (en) 2015-07-09 2017-01-12 Arcelormittal Steel for press hardening and press hardened part manufactured from such steel
WO2018138791A1 (ja) * 2017-01-25 2018-08-02 新日鐵住金株式会社 鋼板
WO2018234839A1 (en) 2017-06-20 2018-12-27 Arcelormittal ZINC COATED STEEL SHEET HAVING HIGH STRENGTH POINTS WELDABILITY
WO2019092467A1 (en) * 2017-11-08 2019-05-16 Arcelormittal A galvannealed steel sheet
CN108165892A (zh) * 2017-11-23 2018-06-15 南阳汉冶特钢有限公司 一种低温压力容器用35-50mm厚Q420R高强钢及其生产方法
CN113969336B (zh) * 2020-07-23 2023-03-28 宝山钢铁股份有限公司 一种热镀锌钢板的制造方法、钢板及车用构件

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3925579A (en) * 1974-05-24 1975-12-09 Armco Steel Corp Method of coating low alloy steels
US3936543A (en) * 1974-08-22 1976-02-03 Armco Steel Corporation Method of coating carbon steel
EP0448351A1 (de) * 1990-03-20 1991-09-25 Kawasaki Steel Corporation Verfahren zum Heissmetallisieren von Bandstahl
US20030047255A1 (en) * 2001-08-21 2003-03-13 Didier Delaunay Process for the hot-dip galvanizing of metal strip made of high-strength steel
BE1014997A3 (fr) * 2001-03-28 2004-08-03 Ct Rech Metallurgiques Asbl Procede de recuit en continu de bandes en acier en vue de leur galvanisation au trempe et four pour sa mise en oeuvre.
EP1612288A1 (de) * 2003-04-10 2006-01-04 Nippon Steel Corporation Feuerverzinktes stahlblech mit hoher festigkeit und herstellungsverfahren dafür
WO2006061151A1 (de) * 2004-12-09 2006-06-15 Thyssenkrupp Steel Ag Verfahren zum schmelztauchbeschichten eines bandes aus höherfestem stahl
WO2007064172A1 (en) * 2005-12-01 2007-06-07 Posco Steel sheet for hot press forming having excellent heat treatment and impact property, hot press parts made of it and the method for manufacturing thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2970445B2 (ja) * 1994-12-14 1999-11-02 住友金属工業株式会社 Si添加高張力鋼材の溶融亜鉛めっき方法
RU2128719C1 (ru) * 1997-03-05 1999-04-10 Научно-производственный институт АО "Новолипецкий металлургический комбинат" Способ производства горячеоцинкованного металла высших категорий вытяжки с тончайшим цинковым покрытием с превосходной штампуемостью
JP4729850B2 (ja) * 2003-02-10 2011-07-20 Jfeスチール株式会社 めっき密着性に優れた合金化溶融亜鉛めっき鋼板およびその製造方法
JP4464720B2 (ja) * 2003-04-10 2010-05-19 新日本製鐵株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
JP4119804B2 (ja) * 2003-08-19 2008-07-16 新日本製鐵株式会社 密着性の優れた高強度合金化溶融亜鉛めっき鋼板及びその製造方法
JP5040093B2 (ja) * 2004-10-07 2012-10-03 Jfeスチール株式会社 溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板
WO2006068169A1 (ja) * 2004-12-21 2006-06-29 Kabushiki Kaisha Kobe Seiko Sho 溶融亜鉛めっき方法及び溶融亜鉛めっき設備
JP4741376B2 (ja) * 2005-01-31 2011-08-03 新日本製鐵株式会社 外観が良好な高強度合金化溶融亜鉛めっき鋼板及びその製造方法と製造設備
BRPI0607715B1 (pt) * 2005-03-30 2014-12-16 Nippon Steel & Sumitomo Metal Corp "equipamento para produção de tira de aço laminada a quente revestida por imersão a quente".
JP4644077B2 (ja) * 2005-09-05 2011-03-02 新日本製鐵株式会社 耐食性と成形性に優れた溶融亜鉛めっき高強度鋼板および合金化溶融亜鉛めっき高強度鋼板、およびそれらの製造方法
US8025982B2 (en) * 2005-12-06 2011-09-27 Kobe Steel, Ltd. High-strength hot dip galvannealed steel sheet having high powdering resistance and method for producing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3925579A (en) * 1974-05-24 1975-12-09 Armco Steel Corp Method of coating low alloy steels
US3936543A (en) * 1974-08-22 1976-02-03 Armco Steel Corporation Method of coating carbon steel
EP0448351A1 (de) * 1990-03-20 1991-09-25 Kawasaki Steel Corporation Verfahren zum Heissmetallisieren von Bandstahl
BE1014997A3 (fr) * 2001-03-28 2004-08-03 Ct Rech Metallurgiques Asbl Procede de recuit en continu de bandes en acier en vue de leur galvanisation au trempe et four pour sa mise en oeuvre.
US20030047255A1 (en) * 2001-08-21 2003-03-13 Didier Delaunay Process for the hot-dip galvanizing of metal strip made of high-strength steel
EP1612288A1 (de) * 2003-04-10 2006-01-04 Nippon Steel Corporation Feuerverzinktes stahlblech mit hoher festigkeit und herstellungsverfahren dafür
WO2006061151A1 (de) * 2004-12-09 2006-06-15 Thyssenkrupp Steel Ag Verfahren zum schmelztauchbeschichten eines bandes aus höherfestem stahl
WO2007064172A1 (en) * 2005-12-01 2007-06-07 Posco Steel sheet for hot press forming having excellent heat treatment and impact property, hot press parts made of it and the method for manufacturing thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2659016A4 (de) * 2010-12-28 2015-04-15 Posco Schmelztauchbeschichtetes stahlblech mit hervorragender plattierungshaftung und herstellungsverfahren dafür
EP2659016A2 (de) 2010-12-28 2013-11-06 Posco Schmelztauchbeschichtetes stahlblech mit hervorragender plattierungshaftung und herstellungsverfahren dafür
EP2840161A4 (de) * 2012-04-17 2015-04-29 Jfe Steel Corp Verfahren zur herstellung eines legierten feuerverzinkten stahlbleches mit hervorragender haftung an plattierung und ausgezeichneten gleiteigenschaften
EP2840161A1 (de) * 2012-04-17 2015-02-25 JFE Steel Corporation Verfahren zur herstellung eines legierten feuerverzinkten stahlbleches mit hervorragender haftung an plattierung und ausgezeichneten gleiteigenschaften
US10100385B2 (en) 2012-11-15 2018-10-16 Baoshan Iron & Steel Co., Ltd. High-formability and super-strength hot galvanizing steel plate and manufacturing method thereof
EP2921569A4 (de) * 2012-11-15 2016-07-27 Baoshan Iron & Steel Hochverformbares und extrem feste feuerverzinkte stahlplatte und herstellungsverfahren dafür
EP2942419A4 (de) * 2013-03-05 2016-02-24 Jfe Steel Corp Hochfestes feuerverzinktes stahlblech und verfahren zur herstellung davon
WO2015001414A1 (en) * 2013-07-04 2015-01-08 Arcelormittal Investigación Y Desarrollo Sl Cold rolled steel sheet, method of manufacturing and vehicle
RU2648722C2 (ru) * 2013-07-04 2018-03-28 Арселормитталь Инвестигасьон И Десарролло Сл Холоднокатаная листовая сталь, способ ее производства и автотранспортное средство
WO2015001367A1 (en) * 2013-07-04 2015-01-08 Arcelormittal Investigación Y Desarrollo Sl Cold rolled steel sheet, method of manufacturing and vehicle
US10400315B2 (en) 2013-07-04 2019-09-03 ArcelorMittal Investigación y Desarrollo, S.L. Cold rolled steel sheet and vehicle
EP3045559A4 (de) * 2013-09-12 2016-09-28 Jfe Steel Corp Feuerverzinktes stahlblech und galvanisch geglühtes stahlblech mit ausgezeichneter erscheinung und überzugshaftung sowie herstellungsverfahren dafür
US9873934B2 (en) 2013-09-12 2018-01-23 Jfe Steel Corporation Hot-dip galvanized steel sheets and galvannealed steel sheets that have good appearance and adhesion to coating and methods for producing the same
EP3080312A4 (de) * 2013-12-10 2017-09-20 Arcelormittal S.A. Verfahren zum glühen von stahlblechen
US10570472B2 (en) 2013-12-10 2020-02-25 Arcelormittal Method of annealing steel sheets
EP4215628A1 (de) * 2013-12-10 2023-07-26 Arcelormittal S.A. Verfahren zum glühen von stahlblechen

Also Published As

Publication number Publication date
AR067339A1 (es) 2009-10-07
CA2701091C (en) 2012-04-17
JP2015078438A (ja) 2015-04-23
ES2371985T3 (es) 2012-01-12
CA2701091A1 (en) 2009-01-08
CN101809182A (zh) 2010-08-18
BRPI0813687A8 (pt) 2015-12-15
US20100193081A1 (en) 2010-08-05
ATE521726T1 (de) 2011-09-15
JP5713673B2 (ja) 2015-05-07
CN101809182B (zh) 2015-08-05
JP2010532820A (ja) 2010-10-14
EP2171116B1 (de) 2011-08-24
WO2009004425A1 (en) 2009-01-08
BRPI0813687B1 (pt) 2018-10-30
PL2171116T3 (pl) 2012-01-31
BRPI0813687A2 (pt) 2014-12-30
KR20100055389A (ko) 2010-05-26
RU2010102924A (ru) 2011-08-10
KR101273308B1 (ko) 2013-06-11
RU2451107C2 (ru) 2012-05-20
EP2171116A1 (de) 2010-04-07

Similar Documents

Publication Publication Date Title
EP2171116B1 (de) Verfahren zur herstellung eines verzinkten und dann wärmebehandelten stahlblechs durch dff-regulierung
EP2171117B1 (de) Verfahren zur herstellung eines verzinkten oder verzinkten und dann wärmebehandelten stahlblechs durch dff-regulierung
EP2179070B1 (de) Verzinkter oder verzinkter und dann wärmebehandelter siliciumstahl
EP3392363B1 (de) Hochfestes feuerverzinktes stahlblech mit hervorragender oberflächenqualität und punktschweissbarkeit sowie herstellungsverfahren dafür
EP3081665B1 (de) Verfahren zur herstellung eines hochfesten feuerverzinkten stahlblechs
KR102231412B1 (ko) 고강도 용융 아연 도금 강판의 제조 방법
KR101647225B1 (ko) 표면품질 및 내파우더링성이 우수한 고강도 합금화용융아연도금강판 및 그 제조방법
KR20180111931A (ko) 고강도 용융 아연 도금 강판의 제조 방법
KR102632877B1 (ko) 우수한 표면 특성을 가지는 초고강도 용융아연도금 강재 및 그 제조방법
KR20220041502A (ko) 로내 노점 제어를 통하여 가공성이 증가된 합금화 용융아연도금 강판의 제조방법
JPH08104925A (ja) めっき性に優れた高張力溶融亜鉛めっき鋼板の製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20090630

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AXX Extension fees paid

Extension state: RS

Payment date: 20090630

Extension state: MK

Payment date: 20090630

Extension state: HR

Payment date: 20090630

Extension state: BA

Payment date: 20090630

Extension state: AL

Payment date: 20090630

17Q First examination report despatched

Effective date: 20091009

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100220