EP2004983B1 - Kraftstoffinjektor - Google Patents

Kraftstoffinjektor Download PDF

Info

Publication number
EP2004983B1
EP2004983B1 EP07704610A EP07704610A EP2004983B1 EP 2004983 B1 EP2004983 B1 EP 2004983B1 EP 07704610 A EP07704610 A EP 07704610A EP 07704610 A EP07704610 A EP 07704610A EP 2004983 B1 EP2004983 B1 EP 2004983B1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
chamber
fuel injector
pressure
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07704610A
Other languages
English (en)
French (fr)
Other versions
EP2004983A1 (de
Inventor
Patrick Mattes
Michael Mennicken
Hans-Christoph Magel
Friedrich Boecking
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2004983A1 publication Critical patent/EP2004983A1/de
Application granted granted Critical
Publication of EP2004983B1 publication Critical patent/EP2004983B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0635Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/167Means for compensating clearance or thermal expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0057Means for avoiding fuel contact with valve actuator, e.g. isolating actuators by using bellows or diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/31Fuel-injection apparatus having hydraulic pressure fluctuations damping elements
    • F02M2200/315Fuel-injection apparatus having hydraulic pressure fluctuations damping elements for damping fuel pressure fluctuations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/40Fuel-injection apparatus with fuel accumulators, e.g. a fuel injector having an integrated fuel accumulator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/70Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger
    • F02M2200/703Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger hydraulic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/70Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger
    • F02M2200/703Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger hydraulic
    • F02M2200/708Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger hydraulic with hydraulic chambers formed by a movable sleeve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/80Fuel injection apparatus manufacture, repair or assembly
    • F02M2200/8046Fuel injection apparatus manufacture, repair or assembly the manufacture involving injection moulding, e.g. of plastic or metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/90Selection of particular materials
    • F02M2200/9015Elastomeric or plastic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2547/00Special features for fuel-injection valves actuated by fluid pressure
    • F02M2547/001Control chambers formed by movable sleeves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails

Definitions

  • the invention relates to a fuel injector according to the preamble of claim 1.
  • a fuel injector with a directly controlled nozzle needle opening outward in gasoline injection applications is off DE 199 63 568 A1 known.
  • the fuel injector in addition to the nozzle needle to a coupler piston which is drive-coupled with a magnetic actuator.
  • the movement between the coupler piston and the nozzle needle is transmitted to the Hubübera via a hydraulic coupler.
  • Another fuel injector with a directly controlled nozzle needle is off WO 2006/008200 A1 known.
  • the fuel injector to a nozzle needle and a coupler piston, wherein the nozzle needle is exposed to a rear pressure surface of a control chamber and the coupler piston with a pressure surface a coupler space.
  • a hydraulic connection is formed in order to transmit the pressure differences from the coupler chamber to the control chamber.
  • the coupler piston is in this case driven by a piezoelectric actuator, wherein the opening of the nozzle needle is effected by a pulling Aktorhub.
  • the object of the invention is to provide a fuel injector according to the preamble of claim 1, which is inexpensive to produce.
  • the object is achieved by a fuel injector with the characterizing features of claim 1. Characterized in that the combustion chamber remote end of the coupler piston limits a compensating volume, which communicates with a storage volume in which the combustion chamber near the end of the coupler piston is arranged, it is achieved that the control piston is completely pressure-balanced.
  • a preferred embodiment of the fuel injector is characterized in that the partial combustion chamber remote from the combustion chamber is delimited by a spring-biased sleeve, which is guided on the end of the coupler piston close to the combustion chamber and bears against a throttle plate with a biting edge.
  • the spring biasing force is sufficiently small and is preferably between 10 and 20 Newtons.
  • a further preferred exemplary embodiment of the fuel injector is characterized in that the throttle plate has a through hole which connects the partial combustion chamber remote from the combustion chamber to a partial control chamber close to the combustion chamber, which is delimited by the end of the nozzle needle remote from the combustion chamber. Through the through hole, a pressure reduction is transferred from the combustion chamber remote to the partial combustion chamber near the combustion chamber.
  • Another preferred exemplary embodiment of the fuel injector is characterized in that the end of the coupler piston close to the combustion chamber has a larger diameter than the end of the nozzle needle remote from the combustion chamber.
  • the combustion chamber near End of the coupler piston preferably has a diameter of about 8 mm.
  • the combustion chamber remote end of the nozzle needle preferably has a diameter of about 3.5 mm.
  • a further preferred embodiment of the fuel injector is characterized in that the coupler piston is guided by a coupler piston guide portion which connects the storage volume with a Magnetaktorfactraum in which the magnetic actuator is accommodated.
  • the diameter of the coupler piston guide portion is selected to minimize the leakage from the storage volume into the solenoid actuator housing space.
  • a further preferred embodiment of the fuel injector is characterized in that the magnet actuator receiving space is in communication with a pressure relief space. The leakage occurring at the coupler piston guide portion is discharged into the pressure relief space.
  • the fuel injector described in the previous sections allows multiple injection while optimizing overall hydraulic efficiency.
  • the fuel injector comprises an integrated damping volume or storage volume.
  • the fuel injector according to the invention enables the avoidance of leakage losses or control quantities.
  • An economically producible direct-acting fuel injector with magnetic actuator is provided. By integrating the magnetic actuator in a holding body of the injector, the length of the fuel injector can be reduced.
  • the associated operating principle allows an optimization of the overall hydraulic efficiency, which allows the use of smaller high-pressure pumps. Since the number of injections or control quantities is no longer contained in the total quantity balance of the system, higher applicative degrees of freedom can be achieved. By avoiding a hydraulic reaction (Ab Kunststoffenfin) on the magnetic actuator, the performance of the injector can be improved. In particular, the representation of a cost-effective system by eliminating a rail and a pressure control valve is made possible, which is achieved by a targeted leakage of pressure reduction.
  • control chamber is bounded by a control chamber limiting sleeve, which under sealing effect the combustion chamber remote end of the nozzle needle is guided.
  • the control room which is also referred to as a coupling room, may also include a plurality of sub-coupling spaces, which communicate with each other. By using a throttle between the sub-coupling spaces, the opening characteristic of the nozzle needle can be further optimized. By damping the opening speed, it is thus possible to achieve an optimized minimum quantity capability and an advantageous injection rate profile.
  • a further preferred embodiment of the fuel injector is characterized in that the magnetic actuator is arranged in an actuator chamber, which is acted upon by high-pressure fuel.
  • the actuator room also serves as a damping and storage volume.
  • a further preferred embodiment of the fuel injector is characterized in that the actuator chamber communicates with the control chamber.
  • the connection may be realized by respective coupler gaps provided, for example, between the coupler piston and the injector housing.
  • the nozzle needle has a double seat.
  • the nozzle needle then has a plurality of flow channels, which allow a central fuel supply to the needle tip.
  • the injection holes are preferably sealed by two sealing seats of the nozzle needle.
  • the two Seal seats open at the same time, which can have a relatively large diameter, without generating large needle forces.
  • a Entdrosselung the nozzle is achieved with a small nozzle needle, for example, at 50 microns.
  • a fuel injector with an injector 81 is shown in longitudinal section.
  • the injector housing 81 comprises a nozzle body 82, with its lower free end 89 in a Combustion chamber of an internal combustion engine protrudes. With its upper end face remote from the combustion chamber, the nozzle body 82 is braced against a holding body 85 with the interposition of a throttle plate 83 with the aid of a clamping nut 84.
  • a nozzle needle 88 is reciprocally received, which opens or closes depending on the pressure in a control chamber at least one injection opening at the end 89 of the nozzle body 82.
  • the control chamber 90 comprises a partial combustion chamber 91 close to the combustion chamber, which is delimited in the axial direction by the combustion chamber distal end of the nozzle needle 88 and the throttle plate 83. In the radial direction of the combustion chamber near the partial control chamber 91 is bounded by a spring-biased sleeve 95, which rests with a biting edge close to the throttle plate.
  • the partial combustion chamber 91 close to the combustion chamber communicates via a through-hole 93, which extends through the throttle plate 83, with a partial control chamber 92 remote from the combustion chamber.
  • the combustion chamber remote sub-control chamber 92 is limited in the axial direction, that is, in the direction of a longitudinal axis 86 of the fuel injector of the throttle plate 83 and the combustion chamber near the end of a coupler piston 102. In the radial direction, the partial combustion chamber 92 remote from the combustion chamber is delimited by a spring-biased sleeve 108, which rests against the throttle plate 83 with a biting edge.
  • the throttle plate 83 has radially outside the through-hole 93 connecting channels 97, 98, which has an annular space 96, which in the nozzle body 82nd is provided radially outside of the nozzle needle 88, connect to a storage volume 100 which is provided in the holding body 85 radially outside of the coupler piston 102.
  • the coupler piston 102 has a combustion piston near coupler piston portion 103 with an outer diameter 106 of about 8 mm.
  • the combustion chamber near the coupler piston portion 103 is integrally connected to a combustion chamber remote coupler piston portion 104 having an outer diameter 105 of 3.5 mm.
  • the sleeve 108 is guided at the end of the combustion chamber near the combustion chamber near coupler piston portion 103.
  • the sleeve 95 is guided at the combustion chamber distal end of the nozzle needle 88, which has an outer diameter 107 of 3.5 mm.
  • the outer diameter 107 of the combustion chamber distal end of the nozzle needle 88 is thus equal to the outer diameter 105 of the combustion chamber remote coupler piston portion 104.
  • the sleeve 108 is biased by a helical compression spring 109 which is clamped between the sleeve 108 and a collar 110 which is attached to the combustion chamber near coupler piston portion 103 ,
  • the coupler piston 102 is guided with its combustion chamber remote coupler piston portion 104 in a through hole 112 which is provided in the holding body 85 and is also referred to as Kopplerkolben arrangementsabites.
  • the through-hole 112 connects the storage volume 100 to a solenoid actuator accommodating space 115.
  • a magnetic actuator 120 Disposed in the solenoid actuator accommodating space 115 is a magnetic actuator 120 including an armature 121 fixed to the coupler piston portion 104 remote from the combustion space.
  • the anchor 104 is biased by a spring 122 toward the combustion chamber.
  • the spring 122 is clamped between the armature 121 and the combustion chamber distal end of the holding body 85.
  • a magnet or a magnetic coil 124 is disposed in the magnet actuator receiving space 115 within the holding body 85.
  • the solenoid coil 124 When the solenoid coil 124 is energized, the armature 121 is attracted toward the solenoid coil 124.
  • the associated armature stroke is designated 140 and is 30 microns.
  • connection 125 serves to dissipate leakage occurring at the high pressure passage of the combustion chamber remote coupler piston portion 104 through the through hole 112 between the high pressure accumulator volume 100 and the low pressure solenoid actuator accommodating space 115.
  • the combustion chamber remote end of the remote Kopplerkolbenabitess 104 is guided in a blind hole 128 in the combustion chamber distal end of the holding body 85 and bounded with its front side a compensation volume 130.
  • the compensation volume 130 is connected via a high-pressure connection line 132 with a high-pressure fuel source in connection, which is indicated by an arrow 134.
  • a high-pressure line 136 in which a throttle 138 is provided, the high-pressure fuel source 134 and the high-pressure fuel line 132 communicate with the storage volume 100.
  • the magnetic actuator 120 which is also referred to as a magnetic actuator, can only produce smaller forces in the order of 50 to 100 Newton. In contrast, the ability of the magnetic actuator 120 to realize larger travel, which has an advantageous effect on the size of the fuel injector.
  • the area ratio between the combustion chamber near the coupler piston portion 103 and the combustion chamber remote end of the nozzle needle 88 is selected so that with the magnetic actuator 120, a needle stroke of 140 to 240 microns can be achieved.
  • a needle stroke of 180 microns can be achieved.
  • the injection process is initiated by energizing the solenoid coil 124. Proportional to the stroke of the armature 121, the pressure in the control chamber 90 is lowered, so that the nozzle needle 88 lifts after falling below the opening pressure from the seat.
  • the coupler piston 102 is completely pressure-balanced in itself. To ensure a safe closing, the closing operation takes place after switching off the solenoid 124 by the spring 122 attached to the armature 121.
  • the biasing force of the spring 122 is between 50 and 100 Newton, preferably between 70 and 90 Newton.
  • the throttle 138 in the high pressure line 136 serves to reduce the high pressure in the storage volume 100 with respect to the equalization volume 130.
  • the biasing force of the spring 109 is preferably between 10 and 20 Newtons.
  • the solenoid actuator receiving space 115 may be subjected to low pressure, as indicated by the angled arrow 125. However, the solenoid actuator receiving space 115 may also be subjected to high pressure.
  • low pressure creates a permanent leakage at the high pressure passages of the combustion chamber remote coupler piston portion 104 in the holding body 85.
  • diameter at the high pressure passages that is, the through hole 112 and the blind hole 128 in the holding body 85 can achieve a desired mass balance in the overall system are, in particular, since in the illustrated Injektoriere no tax amounts incurred.
  • With permanent leakage it is possible to reduce the pressure during overrun of the vehicle.

Description

  • Die Erfindung betrifft einen Kraftstoffinjektor gemäß dem Oberbegriff des Anspruchs 1.
  • Stand der Technik
  • Es ist bekannt zur Einbringung von Kraftstoff in direkteinspritzende Dieselmotoren hubgesteuerte Kraftstoffinjektoren zu verwenden. Das hat den Vorteil, dass der Einspritzdruck an Last und Drehzahl angepasst werden kann. Die Ansteuerung der Injektoren kann durch einen Piezoaktor direkt oder unter Zwischenschaltung eines Servo-Steuerraums erfolgen.
  • Ein Kraftstoffinjektor mit einer direkt angesteuerten Düsennadel, die bei Anwendungen für die Benzineinspritzung nach außen öffnet, ist aus DE 199 63 568 A1 bekannt. Dabei weist der Kraftstoffinjektor neben der Düsennadel einen Kopplerkolben auf, der mit einem Magnetaktor antriebsgekoppelt ist. Die Bewegung zwischen dem Kopplerkolben und der Düsennadel wird zur Hubübersetzung über einen hydraulischen Koppler übertragen.
  • Ein weiterer Kraftstoffinjektor mit einer direkt angesteuerten Düsennadel ist aus WO 2006/008200 A1 bekannt. Hierbei weist der Kraftstoffinjektor eine Düsennadel und einen Kopplerkolben auf, wobei die Düsennadel mit einer rückwärtigen Druckfläche einem Steuerraum und der Kopplerkolben mit einer Druckfläche einem Kopplerraum ausgesetzt ist. Zwischen dem Steuerraum und dem Kopplerraum ist eine hydraulische Verbindung ausgebildet, um die Druckunterschiede vom Kopplerraum auf den Steuerraum zu übertragen. Der Kopplerkolben wird hierbei von einem Piezoaktor angetrieben, wobei die Öffnung der Düsennadel durch einen ziehenden Aktorhub bewirkt wird.
  • Offenbarung der Erfindung
  • Aufgabe der Erfindung ist es, einen Kraftstoffinjektor gemäß dem Oberbegriff des Anspruchs 1 zu schaffen, der kostengünstig herstellbar ist.
  • Die Aufgabe wird durch einen Kraftstoffinjektor mit den kennzeichnenden Merkmalen des Anspruchs 1 gelöst. Dadurch, dass das brennraumferne Ende des Kopplerkolbens ein Ausgleichsvolumen begrenzt, das mit einem Speichervolumen in Verbindung steht, in dem das brennraumnahe Ende des Kopplerkolbens angeordnet ist, wird erreicht, dass der Steuerkolben vollständig druckausgeglichen ist.
  • Ein bevorzugtes Ausführungsbeispiel des Kraftstoffinjektors ist dadurch gekennzeichnet, dass der brennraumferne Teilsteuerraum von einer federvorgespannten Hülse begrenzt wird, die an dem brennraumnahen Ende des Kopplerkolbens geführt ist und mit einer Beißkante an einer Drosselplatte anliegt. Die Federvorspannkraft ist hinreichend klein und beträgt vorzugsweise zwischen 10 und 20 Newton.
  • Ein weiteres bevorzugtes Ausführungsbeispiel des Kraftstoffinjektors ist dadurch gekennzeichnet, dass die Drosselplatte ein Durchgangsloch aufweist, das den brennraumfernen Teilsteuerraum mit einem brennraumnahen Teilsteuerraum verbindet, der durch das brennraumferne Ende der Düsennadel begrenzt ist. Durch das Durchgangsloch wird eine Druckabsenkung von dem brennraumfernen auf den brennraumnahen Teilsteuerraum übertragen.
  • Ein weiteres bevorzugtes Ausführungsbeispiel des Kraftstoffinjektors ist dadurch gekennzeichnet, dass das brennraumnahe Ende des Kopplerkolbens einen größeren Durchmesser aufweist als das brennraumferne Ende der Düsennadel. Das brennraumnahe Ende des Kopplerkolbens weist vorzugsweise einen Durchmesser von etwa 8 mm auf. Das brennraumferne Ende der Düsennadel weist vorzugsweise einen Durchmesser von etwa 3,5 mm auf. So kann mit einem Ankerhub von 30 µm ein Nadelhub von etwa 180 µm erzielt werden.
  • Ein weiteres bevorzugtes Ausführungsbeispiel des Kraftstoffinjektors ist dadurch gekennzeichnet, dass der Kopplerkolben durch einen Kopplerkolbenführungsabschnitt geführt ist, der das Speichervolumen mit einem Magnetaktoraufnahmeraum verbindet, in welchem der Magnetaktor aufgenommen ist. Der Durchmesser des Kopplerkolbenführungsabschnitts ist so gewählt, dass die Leckage von dem Speichervolumen in den Magnetaktoraufnahmeraum gering gehalten wird.
  • Ein weiteres bevorzugtes Ausführungsbeispiel des Kraftstoffinjektors ist dadurch gekennzeichnet, dass der Magnetaktoraufnahmeraum mit einem Druckentlastungsraum in Verbindung steht. Die an dem Kopplerkolbenführungsabschnitt auftretende Leckage wird in den Druckentlastungsraum abgeführt.
  • Der in den vorangegangenen Abschnitten beschriebene Kraftstoffinjektor ermöglicht eine Mehrfacheinspritzung bei gleichzeitig optimiertem hydraulischem Gesamtwirkungsgrad. Gemäß einem wesentlichen Aspekt der Erfindung umfasst der Kraftstoffinjektor ein integriertes Dämpfungsvolumen oder Speichervolumen. Darüber hinaus ermöglicht der erfindungsgemäße Kraftstoffinjektor die Vermeidung von Leckageverlusten beziehungsweise Steuermengen. Es wird ein kostengünstig herstellbarer direktschaltender Kraftstoffinjektor mit Magnetsteller bereitgestellt. Durch die Integration des Magnetstellers in einen Haltekörper des Injektorgehäuses kann die Baulänge des Kraftstoffinjektors reduziert werden.
  • Das zugehörige Funktionsprinzip erlaubt eine Optimierung des hydraulischen Gesamtwirkungsgrads, was die Verwendung kleinerer Hochdruckpumpen ermöglicht. Da die Anzahl der Einspritzungen beziehungsweise Steuermengen nicht mehr in der Gesamtmengenbilanz des Systems enthalten ist, können höhere applikative Freiheitsgrade erreicht werden. Durch die Vermeidung einer hydraulischen Rückwirkung (Absteuerstoß) auf den Magnetsteller kann die Performance des Injektors verbessert werden. Insbesondere wird die Darstellung eines kostengünstigen Systems durch Entfall eines Rails und eines Druckregelventils ermöglicht, wobei durch eine gezielte Leckage der Druckabbau erreicht wird.
  • Ein weiteres bevorzugtes Ausführungsbeispiel des Kraftstoffinjektors ist dadurch gekennzeichnet, dass der Steuerraum von einer Steuerraumbegrenzungshülse begrenzt wird, die unter Dichtwirkung an dem brennraumfernen Ende der Düsennadel geführt ist. Der Steuerraum, der auch als Kopplungsraum bezeichnet wird, kann auch mehrere Teilkopplungsräume umfassen, die miteinander in Verbindung stehen. Durch die Verwendung einer Drossel zwischen den Teilkopplungsräumen kann die Öffnungscharakteristik der Düsennadel weiter optimiert werden. Durch eine Dämpfung der Öffnungsgeschwindigkeit kann damit eine optimierte Kleinstmengenfähigkeit und ein vorteilhafter Einspritzratenverlauf erreicht werden.
  • Ein weiteres bevorzugtes Ausführungsbeispiel des Kraftstoffinjektors ist dadurch gekennzeichnet, dass der Magnetaktor in einem Aktorraum angeordnet ist, der mit unter Hochdruck stehendem Kraftstoff beaufschlagt ist. Der Aktorraum dient gleichzeitig als Dämpfungs- und Speichervolumen.
  • Ein weiteres bevorzugtes Ausführungsbeispiel des Kraftstoffinjektors ist dadurch gekennzeichnet, dass der Aktorraum mit dem Steuerraum in Verbindung steht. Die Verbindung kann durch entsprechende Kopplerspalte realisiert werden, die zum Beispiel zwischen dem Kopplerkolben und dem Injektorgehäuse vorgesehen sind.
  • Ein weiteres bevorzugtes Ausführungsbeispiel des Kraftstoffinjektors ist dadurch gekennzeichnet, dass die Düsennadel einen Doppelsitz aufweist. Die Düsennadel weist dann mehrere Strömungskanäle auf, die eine zentrale Kraftstoffzufuhr an die Nadelspitze ermöglichen. Die Spritzlöcher sind vorzugsweise durch zwei Dichtsitze der Düsennadel abgedichtet. Beim Öffnen der Düsennadel werden die zwei Dichtsitze gleichzeitig geöffnet, die einen relativ großen Durchmesser aufweisen können, ohne große Nadelkräfte zu erzeugen. Dadurch wird eine Entdrosselung der Düse bei geringem Düsennadelhub erreicht, zum Beispiel bei 50 µm.
  • Kurze Beschreibung der Zeichnung
  • Es zeigen:
  • Figur 1
    eine vereinfachte Darstellung eines er- findungsgemäßen Kraftstoffinjektors im Längsschnitt.
    Ausführungsform der Erfindung
  • In Figur 1 ist ein Kraftstoffinjektor mit einem Injektorgehäuse 81 im Längsschnitt dargestellt. Das Injektorgehäuse 81 umfasst einen Düsenkörper 82, der mit seinem unteren freien Ende 89 in einen Brennraum einer Brennkraftmaschine ragt. Mit seiner oberen brennraumfernen Stirnfläche ist der Düsenkörper 82 unter Zwischenschaltung einer Drosselplatte 83 mit Hilfe einer Spannmutter 84 gegen einen Haltekörper 85 verspannt. In dem Düsenkörper 82 ist eine Düsennadel 88 hin und her bewegbar aufgenommen, die in Abhängigkeit vom dem Druck in einem Steuerraum mindestens eine Einspritzöffnung an dem Ende 89 des Düsenkörpers 82 öffnet oder verschließt.
  • Der Steuerraum 90 umfasst einen brennraumnahen Teilsteuerraum 91, der in axialer Richtung von dem brennraumfernen Ende der Düsennadel 88 und der Drosselplatte 83 begrenzt wird. In radialer Richtung wird der brennraumnahe Teilsteuerraum 91 von einer federvorgespannten Hülse 95 begrenzt, die mit einer Beißkante dicht an der Drosselplatte anliegt. Der brennraumnahe Teilsteuerraum 91 steht über ein Durchgangsloch 93, das sich durch die Drosselplatte 83 erstreckt, mit einem brennraumfernen Teilsteuerraum 92 in Verbindung. Der brennraumferne Teilsteuerraum 92 wird in axialer Richtung, das heißt in Richtung einer Längsachse 86 des Kraftstoffinjektors, von der Drosselplatte 83 und dem brennraumnahen Ende eines Kopplerkolbens 102 begrenzt. In radialer Richtung wird der brennraumferne Teilsteuerraum 92 von einer federvorgespannten Hülse 108 begrenzt, die mit einer Beißkante an der Drosselplatte 83 anliegt.
  • Die Drosselplatte 83 weist radial außerhalb des Durchgangslochs 93 Verbindungskanäle 97, 98 auf, die einen Ringraum 96, der in dem Düsenkörper 82 radial außerhalb der Düsennadel 88 vorgesehen ist, mit einem Speichervolumen 100 verbinden, das in dem Haltekörper 85 radial außerhalb des Kopplerkolbens 102 vorgesehen ist.
  • Der Kopplerkolben 102 weist einen brennraumnahen Kopplerkolbenabschnitt 103 mit einem Außendurchmesser 106 von etwa 8 mm auf. Der brennraumnahe Kopplerkolbenabschnitt 103 ist einstückig mit einem brennraumfernen Kopplerkolbenabschnitt 104 verbunden, der einen Außendurchmesser 105 von 3,5 mm aufweist. Die Hülse 108 ist an dem brennraumnahen Ende des brennraumnahen Kopplerkolbenabschnitts 103 geführt. Analog ist die Hülse 95 an dem brennraumfernen Ende der Düsennadel 88 geführt, das einen Auβendurchmesser 107 von 3,5 mm aufweist. Der Außendurchmesser 107 des brennraumfernen Endes der Düsennadel 88 ist also gleich dem Außendurchmesser 105 des brennraumfernen Kopplerkolbenabschnitts 104. Die Hülse 108 ist durch eine Schraubendruckfeder 109 vorgespannt, die zwischen der Hülse 108 und einem Bund 110 eingespannt ist, der an dem brennraumnahen Kopplerkolbenabschnitt 103 befestigt ist.
  • Der Kopplerkolben 102 ist mit seinem brennraumfernen Kopplerkolbenabschnitt 104 in einem Durchgangsloch 112 geführt, das in dem Haltekörper 85 vorgesehen ist und auch als Kopplerkolbenführungsabschnitt bezeichnet wird. Das Durchgangsloch 112 verbindet das Speichervolumen 100 mit einem Magnetaktoraufnahmeraum 115. In dem Magnetaktoraufnahmeraum 115 ist ein Magnetaktor 120 angeordnet, der einen Anker 121 umfasst, der an dem brennraumfernen Kopplerkolbenabschnitt 104 befestigt ist. Der Anker 104 ist durch eine Feder 122 zum Brennraum hin vorgespannt. Die Feder 122 ist zwischen dem Anker 121 und dem brennraumfernen Ende des Haltekörpers 85 eingespannt. Radial außerhalb der Feder 122 ist in dem Magnetaktoraufnahmeraum 115 innerhalb des Haltekörpers 85 ein Magnet beziehungsweise eine Magnetspule 124 angeordnet. Wenn die Magnetspule 124 bestromt wird, dann wird der Anker 121 zur Magnetspule 124 hin angezogen. Der zugehörige Ankerhub ist mit 140 bezeichnet und beträgt 30 µm.
  • Durch einen abgewinkelten Pfeil 125 ist angedeutet, dass der Magnetaktoraufnahmeraum 115 mit einem Druckentlastungsraum in Verbindung steht. Die Verbindung 125 dient dazu, Leckage abzuführen, die an der Hochdruckdurchführung des brennraumfernen Kopplerkolbenabschnitts 104 durch das Durchgangsloch 112 zwischen dem mit Hochdruck beaufschlagten Speichervolumen 100 und dem mit Niederdruck beaufschlagten Magnetaktoraufnahmeraum 115 auftritt.
  • Das brennraumferne Ende des brennfernen Kopplerkolbenabschnitts 104 ist in einem Sackloch 128 im brennraumfernen Ende des Haltekörpers 85 geführt und begrenzt mit seiner Stirnseite ein Ausgleichsvolumen 130. Das Ausgleichsvolumen 130 steht über eine Hochdruckverbindungsleitung 132 mit einer Kraftstoffhochdruckquelle in Verbindung, die durch einen Pfeil 134 angedeutet ist. Über eine Hochdruckleitung 136, in der eine Drossel 138 vorgesehen ist, stehen die Kraftstoffhochdruckquelle 134 und die Kraftstoffhochdruckleitung 132 mit dem Speichervolumen 100 in Verbindung.
  • Im Vergleich zu einem Piezoaktor vermag der Magnetaktor 120, der auch als Magnetsteller bezeichnet wird, nur kleinere Kräfte in der Größenordnung von 50 bis 100 Newton zu erzeugen. Demgegenüber steht die Fähigkeit des Magnetaktors 120, größere Stellwege zu realisieren, was sich vorteilhaft auf die Baugröße des Kraftstoffinjektors auswirkt. Das Flächenverhältnis zwischen dem brennraumnahen Kopplerkolbenabschnitt 103 und dem brennraumfernen Ende der Düsennadel 88 ist so gewählt, dass mit dem Magnetsteller 120 ein Nadelhub von 140 bis 240 µm erzielt werden kann. So kann bei einem Ankerhub 140 von 30 µm durch die Durchmesserstufung 3,5 mm/8 mm ein Nadelhub von 180 µm erzielt werden.
  • Der Einspritzvorgang wird durch Bestromung der Magnetspule 124 eingeleitet. Proportional zum Hub des Ankers 121 wird der Druck in dem Steuerraum 90 abgesenkt, so dass sich die Düsennadel 88 nach Unterschreiten des Öffnungsdrucks aus dem Sitz hebt. Der Kopplerkolben 102 ist in sich vollständig druckausgeglichen. Damit ein sicheres Schließen gewährleistet ist, erfolgt der Schließvorgang nach Abschalten der Magnetspule 124 durch die an dem Anker 121 angebrachte Feder 122. Die Vorspannkraft der Feder 122 beträgt zwischen 50 und 100 Newton, vorzugsweise zwischen 70 und 90 Newton.
  • Die Drossel 138 in der Hochdruckleitung 136 dient dazu, den Hochdruck im Speichervolumen 100 gegenüber dem Ausgleichsvolumen 130 zu verringern. Dadurch kann auch die Hülse 108 an dem brennraumnahen Kopplerkolbenabschnitt 103 leichter abheben, da die Vorspannkraft der Feder 109 hinreichend klein ist. Die Vorspannkraft der Feder 109 beträgt vorzugsweise zwischen 10 und 20 Newton.
  • Der Magnetaktoraufnahmeraum 115 kann, wie durch den abgewinkelten Pfeil 125 angedeutet ist, mit Niederdruck beaufschlagt sein. Der Magnetaktoraufnahmeraum 115 kann aber auch mit Hochdruck beaufschlagt sein. Bei der Installation im Niederdruck entsteht eine permanente Leckage an den Hochdruckdurchführungen des brennraumfernen Kopplerkolbenabschnitts 104 in dem Haltekörper 85. Durch entsprechende Wahl der Durchmesser an den Hochdruckdurchführungen, das heißt des Durchgangslochs 112 und des Sacklochs 128 in dem Haltekörper 85 kann eine gewünschte Mengenbilanz im Gesamtsystem erreicht werden, insbesondere da bei dem dargestellten Injektorkonzept keine Steuermengen anfallen. Darüber hinaus besteht mit einer permanenten Leckage die Möglichkeit, den Druck im Schubbetrieb des Fahrzeugs abzubauen. Bei einer Integration des Magnetstellers 120 im Hochdruck müssen unter Umständen aufwendigere Abdichtungen für die Magnetspule 124 und die elektrische Kontaktierung verwendet werden.

Claims (10)

  1. Kraftstoffinjektor mit einem Injektorgehäuse (81), das einen Kraftstoffhochdruckanschluss aufweist, der mit einer Kraftstoffhochdruckquelle (134) außerhalb und mit einem Druckraum innerhalb des injektorgehäuses (81) in Verbindung steht, aus dem in Abhängigkeit von dem Druck in einem Steuerraum (90) mit Hochdruck beaufschlagter Kraftstoff in einen Brennraum einer Brennkraftmaschine eingespritzt wird, wenn eine Düsennadel (88) öffnet, wobei der Druck in dem Steuerraum (90) durch einen Magnetaktor (120) direkt gesteuert wird, wobei der Magnetaktor (120) eine Spule (124) umfasst, die mit einem Anker (121) zusammenwirkt, der, wenn die Spule (124) aktiviert wird, durch eine Magnetkraft einen Ankerhub ausführt, wobei der Anker (121) über einen hydraulischen Koppler mit der Düsennadel (88) gekoppelt ist, wobei der hydraulische Koppler einen Kopplerkolben (102) aufweist, der mechanisch mit dem Anker (121) gekoppelt ist und dessen brennraumnahes Ende einen brennraumfernen Teilsteuerraum (92) begrenzt, dadurch gekennzeichnet, dass das brennraumferne Ende des Kopplerkolbens (102) ein Ausgleichsvolumen (130) begrenzt, das mit einem Speichervolumen (100) in Verbindung steht, in dem das brennraumnahe Ende des Kopplerkolbens (102) angeordnet ist.
  2. Kraftstoffinjektor nach Anspruch 1, dadurch gekennzeichnet, dass der brennraumferne Teilsteuerraum (92) von einer federvorgespannten Hülse (108) begrenzt wird, die an dem brennraumnahen Ende des Kopplerkolbens 102 geführt ist und mit einer Beißkante an einer Drosselplatte (83) anliegt,
  3. Kraftstoffinjektor nach Anspruch 2, dadurch gekennzeichnet, dass die Drosselplatte (83) ein Durchgangsloch (93) aufweist, das den brennraumfernen Teilsteuerraum (92) mit einem brennraumnahen Teilsteuerraum (91) verbindet, der durch das brennraumferne Ende der Düsennadel (88) begrenzt ist.
  4. Kraftstoffinjektor nach Anspruche 1, dadurch gekennzeichnet, dass das brennraumnahe Ende des Kopplerkolbens (102) einen größeren Durchmesser aufweist als das brennraumferne Ende der Düsennadel (88).
  5. Kraftstoffinjektor nach Anspruch 1, dadurch gekennzeichnet, dass der Kopplerkolben (102) durch einen Kopplerkolbenführungsabschnitt (112) geführt ist, der das Speichervolumen (100) mit einem Magnetaktoraufnahmeraum (115) verbindet, in welchem der Magnetaktor (120) aufgenommen ist.
  6. Kraftstoffinjektor nach Anspruch 5, dadurch gekennzeichnet, dass der Magnetaktoraufnahmeraum (115) mit einem Druckentlastungsraum in Verbindung steht.
  7. Kraftstoffinjektor nach Anspruche 2, dadurch gekennzeichnet, dass der brennraumnahe Teilsteuerraum (91) von einer Steuerraumbegrenzungshülse (95) begrenzt wird, die unter Dichtwirkung an dem brennraumfernen Ende der Düsennadel (88) geführt ist.
  8. Kraftstoffinjektor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Magnetaktor (30;120) in einem Aktorraum (25;115) angeordnet ist, der mit unter Hochdruck stehendem Kraftstoff beaufschlagt ist.
  9. Kraftstoffinjektor nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass der Aktorraum (25) mit dem Steuerraum (44) in Verbindung steht.
  10. Kraftstoffinjektor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Düsennadel (8;88) einen Doppelsitz aufweist.
EP07704610A 2006-04-04 2007-02-16 Kraftstoffinjektor Not-in-force EP2004983B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102006015744 2006-04-04
DE102007002758A DE102007002758A1 (de) 2006-04-04 2007-01-18 Kraftstoffinjektor
PCT/EP2007/051487 WO2007115853A1 (de) 2006-04-04 2007-02-16 Kraftstoffinjektor

Publications (2)

Publication Number Publication Date
EP2004983A1 EP2004983A1 (de) 2008-12-24
EP2004983B1 true EP2004983B1 (de) 2011-07-27

Family

ID=37898527

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07704610A Not-in-force EP2004983B1 (de) 2006-04-04 2007-02-16 Kraftstoffinjektor

Country Status (7)

Country Link
US (1) US20090108093A1 (de)
EP (1) EP2004983B1 (de)
JP (1) JP2009532622A (de)
CN (1) CN101415934B (de)
AT (1) ATE518058T1 (de)
DE (1) DE102007002758A1 (de)
WO (1) WO2007115853A1 (de)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006051583A1 (de) * 2006-11-02 2008-05-08 Robert Bosch Gmbh Kraftstoffinjektor mit Speichervolumensegment
DE102007052204A1 (de) * 2007-10-30 2009-05-07 Robert Bosch Gmbh Spulenkontaktierung
DE102008002153B4 (de) * 2008-06-02 2016-02-18 Robert Bosch Gmbh Kraftstoff-Injektor
EP2246552A1 (de) * 2009-04-22 2010-11-03 Delphi Technologies Holding S.à.r.l. Kraftstoffeinspritzventil
DE102009047559A1 (de) * 2009-12-07 2011-06-09 Robert Bosch Gmbh Kraftstoffinjektor
DE102009047560A1 (de) * 2009-12-07 2011-06-09 Robert Bosch Gmbh Kraftstoffinjektor
DE102010002646A1 (de) 2010-03-08 2011-09-08 Robert Bosch Gmbh Kraftstoffinjektor
DE102010002845A1 (de) * 2010-03-15 2011-09-15 Robert Bosch Gmbh Kraftstoff-Injektor
DE102010040323A1 (de) 2010-09-07 2012-03-08 Robert Bosch Gmbh Kraftstoffinjektor
DE102010042688A1 (de) * 2010-10-20 2012-04-26 Robert Bosch Gmbh Kraftstoffinjektor
DE102010044205A1 (de) * 2010-11-22 2012-05-24 Robert Bosch Gmbh Kraftstoffinjektor
DE102011002422A1 (de) * 2011-01-04 2012-07-05 Robert Bosch Gmbh Einspritzventil zum Einspritzen eines Fluids
DE102011077618A1 (de) * 2011-06-16 2012-12-20 Robert Bosch Gmbh Injektor, insbesondere Kraftstoffinjektor für eine Brennkraftmaschine
DE102012204659A1 (de) * 2012-03-22 2013-09-26 Man Diesel & Turbo Se Injektor für eine Kraftstoffversorgungsanlage einer Brennkraftmaschine sowie Kraftstoffversorgungsanlage
DE102012208075A1 (de) * 2012-05-15 2013-11-21 Man Diesel & Turbo Se Injektor für eine Kraftstoffversorgungsanlage einer Brennkraftmaschine sowie Kraftstoffversorgungsanlage
WO2014066696A1 (en) * 2012-10-25 2014-05-01 Picospray, Llc Fuel injection system
US9429120B2 (en) * 2012-10-29 2016-08-30 Woodward, Inc. Detecting leaks in a feedthrough device
DE102012222076A1 (de) 2012-12-03 2014-06-05 Robert Bosch Gmbh Kraftstoffinjektor mit Magnetaktor
DE102013218934A1 (de) 2013-09-20 2015-03-26 Robert Bosch Gmbh Magnetaktor zur Betätigung von Kraftstoffinjektoren, Kraftstoffinjektor
DE102013221536A1 (de) 2013-10-23 2015-04-23 Robert Bosch Gmbh Kraftstoffinjektor
DE102013221532A1 (de) 2013-10-23 2015-04-23 Robert Bosch Gmbh Kraftstoffinjektor
DE102013222563A1 (de) 2013-11-06 2015-05-07 Robert Bosch Gmbh Kraftstoffinjektor
DE102013224090A1 (de) 2013-11-26 2015-05-28 Robert Bosch Gmbh Kraftstoffinjektor
DE102013224960A1 (de) 2013-12-05 2015-06-11 Robert Bosch Gmbh Kraftstoffinjektor
DE102013225096A1 (de) 2013-12-06 2015-06-11 Robert Bosch Gmbh Kraftstoffinjektor, Verfahren zum Betreiben eines Kraftstoffinjektors
DE102013226776A1 (de) 2013-12-19 2015-06-25 Robert Bosch Gmbh Kraftstoffinjektor
EP3455498A4 (de) 2016-05-12 2020-01-01 Briggs & Stratton Corporation Kraftstoffförderinjektor
CN106014729B (zh) * 2016-05-23 2018-08-07 中国第一汽车股份有限公司无锡油泵油嘴研究所 用于提高共轨喷油器响应性能的结构
CN109790806B (zh) 2016-07-27 2021-05-25 布里格斯斯特拉顿有限责任公司 往复式泵喷射器
US10947940B2 (en) 2017-03-28 2021-03-16 Briggs & Stratton, Llc Fuel delivery system
US11668270B2 (en) 2018-10-12 2023-06-06 Briggs & Stratton, Llc Electronic fuel injection module

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2141574C1 (ru) * 1994-02-15 1999-11-20 Инвент Инджиниринг ПТИ Лтд. Система топливной форсунки для двигателя внутреннего сгорания (варианты), способ повышения надежности дизельного двигателя, оснащенного топливной форсункой, и способ снижения шума, исходящего от дизельного двигателя
CN1070997C (zh) * 1995-06-30 2001-09-12 奥德E·斯特曼 高速燃料喷射器
US5860597A (en) * 1997-03-24 1999-01-19 Cummins Engine Company, Inc. Injection rate shaping nozzle assembly for a fuel injector
GB9805854D0 (en) * 1998-03-20 1998-05-13 Lucas France Fuel injector
US6113014A (en) * 1998-07-13 2000-09-05 Caterpillar Inc. Dual solenoids on a single circuit and fuel injector using same
DE19946840A1 (de) * 1999-09-30 2001-05-03 Bosch Gmbh Robert Ventil zum Steuern von Flüssigkeiten
DE19963568A1 (de) * 1999-12-29 2001-07-05 Bosch Gmbh Robert Brennstoffeinspritzventil
US6293254B1 (en) * 2000-01-07 2001-09-25 Cummins Engine Company, Inc. Fuel injector with floating sleeve control chamber
US6467391B2 (en) * 2000-12-19 2002-10-22 Caterpillar Inc Hydraulic device with anti-stiction features
DE102004035280A1 (de) 2004-07-21 2006-03-16 Robert Bosch Gmbh Kraftstoffinjektor mit direkter mehrstufiger Einspritzventilgliedansteuerung

Also Published As

Publication number Publication date
CN101415934B (zh) 2012-07-11
WO2007115853A1 (de) 2007-10-18
CN101415934A (zh) 2009-04-22
US20090108093A1 (en) 2009-04-30
ATE518058T1 (de) 2011-08-15
DE102007002758A1 (de) 2007-10-11
EP2004983A1 (de) 2008-12-24
JP2009532622A (ja) 2009-09-10

Similar Documents

Publication Publication Date Title
EP2004983B1 (de) Kraftstoffinjektor
EP1756415B1 (de) Kraftstoffinjektor mit variabler aktorübersetzung
EP2079922B1 (de) Injektor zum einspritzen von kraftstoff
DE102009000394B4 (de) Regelrückschlagventil und Kraftstoffeinspritzventil, das selbiges aufweist
WO2005075811A1 (de) Kraftstoffinjektor mit direktgesteuertem einspritzventilglied
EP2215349A1 (de) Einspritzdüse für kraftstoff mit kugelventil
DE102009047559A1 (de) Kraftstoffinjektor
EP1651862A1 (de) Schaltventil für einen kraftstoffinjektor mit druckübersetzer
EP1923564A2 (de) Kraftstoffinjektor
EP1144842B1 (de) Injektor für ein kraftstoffeinspritzsystem für brennkraftmaschinen mit in den ventilsteuerraum ragender düsennadel
EP1939441A2 (de) Kraftstoffinjektor
EP1983186A2 (de) Druckausgeglichenes Stellelement
DE102013226776A1 (de) Kraftstoffinjektor
DE102012221157A1 (de) Druckregelventil für einen Hochdruckspeicher eines Verbrennungsmotors
EP2147206B1 (de) Kraftstoffinjektor mit magnetventil
EP1362179A1 (de) Einspritzventil
DE102007009167A1 (de) Mehrwegeventil
WO2009141175A1 (de) Brennstoffeinspritzventil
EP1911966A2 (de) Kraftstoffinjektor für eine Brennkraftmaschine
EP1392963B1 (de) Brennstoffeinspritzventil
DE102013222483A1 (de) Druckregelventil
WO2010052099A1 (de) Brennstoffeinspritzventil
DE102007038430A1 (de) Kraftstoffeinspritzventileinrichtung
DE102021202731A1 (de) Kraftstoffeinspritzeinrichtung
DE102011076666A1 (de) Kraftstoffinjektor für eine Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081104

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090417

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007007788

Country of ref document: DE

Effective date: 20110915

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111128

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111028

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

26N No opposition filed

Effective date: 20120502

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007007788

Country of ref document: DE

Effective date: 20120502

BERE Be: lapsed

Owner name: ROBERT BOSCH G.M.B.H.

Effective date: 20120228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120216

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 518058

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111027

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070216

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160222

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160222

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160426

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007007788

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170901

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170216