EP2003316B1 - Adaptation de manette de gaz pondérée - Google Patents

Adaptation de manette de gaz pondérée Download PDF

Info

Publication number
EP2003316B1
EP2003316B1 EP20070110342 EP07110342A EP2003316B1 EP 2003316 B1 EP2003316 B1 EP 2003316B1 EP 20070110342 EP20070110342 EP 20070110342 EP 07110342 A EP07110342 A EP 07110342A EP 2003316 B1 EP2003316 B1 EP 2003316B1
Authority
EP
European Patent Office
Prior art keywords
throttle
throttle area
optimization
weight
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP20070110342
Other languages
German (de)
English (en)
Other versions
EP2003316A1 (fr
Inventor
Jan-Ola Olsson
Stefan Solyom
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volvo Car Corp
Original Assignee
Ford Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Global Technologies LLC filed Critical Ford Global Technologies LLC
Priority to EP20070110342 priority Critical patent/EP2003316B1/fr
Publication of EP2003316A1 publication Critical patent/EP2003316A1/fr
Application granted granted Critical
Publication of EP2003316B1 publication Critical patent/EP2003316B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/105Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the function converting demand to actuation, e.g. a map indicating relations between an accelerator pedal position and throttle valve opening or target engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D2011/101Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the means for actuating the throttles
    • F02D2011/102Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the means for actuating the throttles at least one throttle being moved only by an electric actuator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2477Methods of calibrating or learning characterised by the method used for learning

Definitions

  • the present invention is related to a system for controlling an air/fuel relationship of an internal combustion engine having a throttle and an intake manifold in accordance with the preamble of claim 1.
  • Throttle area is an important parameter in air-mass flow computation for an internal combustion engine.
  • a nominal throttle area is given, that describes a new throttle, which is the throttle without any contamination.
  • Throttle area adaptation is a well known method for compensating for such deviations. Throttle area adaptation uses measurements and models of variables that under some circumstances may be used to calculate the true throttle area. The parameters of a correction equation may be estimated through comparing the true throttle area to the modelled throttle area.
  • US 2003196639 relates to a method and apparatus that compensates throttle area in an engine control system with an electronic throttle using intake diagnostic residuals that represent differences between actual and estimated airflow and actual and estimated manifold absolute pressure (MAP). These residual values can be used individually, averaged or otherwise weighted.
  • a plurality of tables relate throttle area, breakpoint numbers, flow loss factors and residual values. An absolute value of a difference between the rounded first breakpoint number and the first breakpoint number is compared to a hysteresis calibration value. Certain of the tables are only updated with weighted values if the absolute value is less than the hysteresis calibration value. At least one of the tables is updated based on the intake diagnostic residuals to generate a compensated throttle area.
  • An object of the present invention is to provide an improved system for controlling an air/fuel relationship of an internal combustion engine having a throttle and an intake manifold that may eliminate or at least reduce the problems described above.
  • this object is achieved in accordance with claim 1, which specifies a system for controlling an air/fuel relationship of an internal combustion engine having a throttle and an intake manifold, characterised in that it comprises: means for calculating a true throttle area based on sampled measurements of operational data and models of variables where each data sample is weighted by a weight factor determining its importance and; means for estimating parameters of a correction equation through comparing the true throttle area to a modelled throttle area and minimizing the estimation error through optimization; and means for using the correction equation for controlling the air/fuel relationship of the internal combustion engine.
  • a further object of the present invention is to provide an improved method for controlling an air/fuel relationship of an internal combustion engine having a throttle and an intake manifold that may eliminate or at least reduce the problems described above.
  • this object is achieved in accordance with claim 7, which specifies a method for controlling an air/fuel relationship of an internal combustion engine having a throttle and an intake manifold, characterised in that it comprises the steps of: calculating a true throttle area based on sampled measurements of operational data and models of variables where each data sample is weighted by a weight factor determining its importance and; estimating parameters of a correction equation through comparing the true throttle area to a modelled throttle area and minimizing the estimation error through optimization; using the correction equation for controlling the air/fuel relationship of the internal combustion engine.
  • the present invention relates to a system for controlling an air/fuel relationship of an internal combustion engine based on throttle area adaptation using measurements and models of variables to calculate a true throttle area.
  • Measurements may comprise measurements of pressure in an intake manifold of the internal combustion engine upstream and down-stream of the throttle, throttle angle, temperatures at various locations in the intake manifold etc..
  • parameters of a correction equation may be estimated. It especially addresses the problem of over fitting the estimates. This is a natural problem when the data used in the identification is not uniformly distributed.
  • weighted adaptation i.e. an adaptation which is based on the optimization of a weighted loss function.
  • the data from the measurements may be weighted, i.e. the cost function receives data weighted by a factor which determines its "importance" in the optimization problem.
  • the measured data samples for adaptation will be given a lower weight, i.e. the samples will not be fully taken into consideration in the optimization. This will cause the adaptation to freeze before the error is fully removed in one operating point.
  • the weight is again increased in order to allow adaptation at full speed.
  • This optimization problem may be solved in a number of ways.
  • a preferred method is presented, namely the recursive weighted least squares method.
  • e(t) y ( t ) - ⁇ T ( t ) ⁇ ( t -1)
  • ⁇ ( t ) are the regressors
  • y ( t ) is the measurement
  • is the forgetting factor used in the algorithm.
  • Another alternative is to use a continuously updated histogram with a forgetting factor. As long as the bin of the actual operating point in the histogram contains a low or moderate fraction of the samples, the weight is high. When the fraction of samples in the bin of the operating point exceeds a desired amount, the associated weight is reduced. The reduced weight should also reduce the forgetting factor, such that the update of the histogram is consistent with the use of samples.
  • weighting functions Some examples of weighting functions will be given below. The commonality for these functions is that they tend to return a small weight if the data point is often encountered and a high weight otherwise.
  • a more advanced method of weighting the data is by classifying and counting the data points. In this way the number of data points from each group U i , accounted for in the optimization is limited.
  • ⁇ , ⁇ , ⁇ are tuning parameters.
  • the first two are self explanatory while the third is a time constant that act as a forgetting factor for the counted data points.
  • Throttle area is an important parameter, in air-mass flow computation.
  • a nominal throttle area is given, that describes a new throttle, i.e. the throttle without any contamination. Due to dirt loading on the throttle during usage and also individual differences between throttles, the modelled throttle area may deviate from the true area. To compensate for this, throttle area adaptation is the preferred method.
  • Throttle area adaptation uses measurements and models of variables that under some circumstances may be used to calculate the true throttle area. Through comparing the true throttle area to the modelled throttle area, the parameters of a correction equation may be estimated. In the following an affine correction is considered, however, as will be evident to the person skilled in the art, the method may be easily used for higher order corrections as well.
  • Figure 2 shows a histogram over the data. Notice that most of the data points are sampled when the throttle is up to 20% opened.
  • Figure 3 shows the same data set as above with sorting based weighting in accordance with algorithm 8 as presented above. Observe that the estimation is switched off during lack of excitation, i.e. shortly after the start of the sequence, due to the fact that the weight factors at that time are very small.
  • Figure 4 shows the distribution of the weights resulting from the algorithm. Notice that the first bin is reduced by a factor of 100 for ease of readability as a large majority of all samples are awarded a very low weight.
  • an Engine Control Unit which comprises a system as described above.
  • the Engine Control Unit also known as an Engine Management System (EMS)
  • EMS Engine Management System
  • ASIC application specific integrated circuit
  • ASIC application specific integrated circuit
  • processor shared, dedicated, or group
  • memory that execute one or more software or firmware programs, a combinational logic circuit, or other suitable components that provide the described functionality.
  • an automotive vehicle which comprises such an Engine Control Unit.
  • an automotive vehicle which comprises a system as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Claims (10)

  1. Système de contrôle d'une relation air/carburant d'un moteur à combustion interne ayant un papillon des gaz et un collecteur d'admission, caractérisé en ce qu'il comprend :
    des moyens pour calculer une aire de papillon réelle sur la base de mesures échantillonnées de données opérationnelles et de modèles de variables où chaque échantillon de données est pondéré au moyen d'un facteur de pondération déterminant son importance ; et
    des moyens pour estimer des paramètres d'une équation de correction par comparaison de l'aire de papillon réelle avec une aire de papillon modélisée et pour minimiser l'erreur d'estimation par optimisation ; et
    des moyens pour utiliser l'équation de correction pour contrôler la relation air/carburant du moteur à combustion interne.
  2. Système selon la revendication 1, caractérisé en ce qu'il comprend une fonction de pondération prévue pour pondérer chaque échantillon de données de telle sorte qu'il soit affecté à l'échantillon une faible pondération si une durée prédéterminée se passe au même point d'opération et de telle sorte que la pondération de l'échantillon soit augmentée lorsqu'un nouveau point de fonctionnement est atteint.
  3. Système selon la revendication 2, caractérisé en ce que la fonction de pondération est assurée par filtrage d'un angle de papillon ou d'une aire de papillon nominale en utilisant un filtre ayant des caractéristiques passe-haut, de telle sorte qu'à la suite d'un changement de point de fonctionnement, la puissance soit élevée pendant une durée prédéterminée.
  4. Système selon la revendication 2, caractérisé en ce que la fonction de pondération est assurée en utilisant un histogramme mis à jour en continu avec un facteur d'oubli, où, tant que le fichier d'un point de fonctionnement réel dans l'histogramme contient une fraction faible ou modérée prédéterminée des échantillons, la pondération est élevée, et lorsque la fraction des échantillons dans le fichier du point de fonctionnement excède une quantité prédéterminée, la pondération associée est diminuée.
  5. Système selon l'une quelconque des revendications 1 à 4, caractérisé en ce que les moyens pour minimiser l'erreur d'estimation par optimisation sont prévus pour effectuer cette optimisation en utilisant la méthode des moindres carrés pondérés récursifs.
  6. Système selon l'une quelconque des revendications 1 à 4, caractérisé en ce que les moyens pour minimiser l'erreur d'estimation par optimisation sont prévus pour effectuer cette optimisation en utilisant la méthode du gradient.
  7. Procédé de contrôle d'une relation air/carburant d'un moteur à combustion interne ayant un papillon des gaz et un collecteur d'admission, caractérisé en ce qu'il comprend les étapes consistant à :
    calculer une aire de papillon réelle sur la base de mesures échantillonnées de données opérationnelles et de modèles de variables où chaque échantillon de données est pondéré au moyen d'un facteur de pondération déterminant son importance ; et
    estimer des paramètres d'une équation de correction par comparaison de l'aire de papillon réelle avec une aire de papillon modélisée et minimiser l'erreur d'estimation par optimisation ;
    utiliser l'équation de correction pour contrôler la relation air/carburant du moteur à combustion interne.
  8. Unité de Commande du Moteur (ECU) caractérisée en ce qu'elle comprend un système selon l'une quelconque des revendications 1 à 6.
  9. Véhicule automobile caractérisé en ce qu'il comprend une Unité de Commande du Moteur selon la revendication 8.
  10. Véhicule automobile caractérisé en ce qu'il comprend un système selon l'une quelconque des revendications 1 à 6.
EP20070110342 2007-06-15 2007-06-15 Adaptation de manette de gaz pondérée Expired - Fee Related EP2003316B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20070110342 EP2003316B1 (fr) 2007-06-15 2007-06-15 Adaptation de manette de gaz pondérée

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20070110342 EP2003316B1 (fr) 2007-06-15 2007-06-15 Adaptation de manette de gaz pondérée

Publications (2)

Publication Number Publication Date
EP2003316A1 EP2003316A1 (fr) 2008-12-17
EP2003316B1 true EP2003316B1 (fr) 2011-06-22

Family

ID=38657157

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20070110342 Expired - Fee Related EP2003316B1 (fr) 2007-06-15 2007-06-15 Adaptation de manette de gaz pondérée

Country Status (1)

Country Link
EP (1) EP2003316B1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113288087B (zh) * 2021-06-25 2022-08-16 成都泰盟软件有限公司 一种基于生理信号的虚实联动实验系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6698398B2 (en) 2002-04-23 2004-03-02 General Motors Corporation Compensation of throttle area using intake diagnostic residuals
US7024305B2 (en) * 2004-02-20 2006-04-04 General Motors Corporation Airflow variation learning using electronic throttle control
US6957140B1 (en) * 2004-07-14 2005-10-18 General Motors Corporation Learned airflow variation
JP4450228B2 (ja) * 2005-10-28 2010-04-14 株式会社デンソー エンジン制御装置

Also Published As

Publication number Publication date
EP2003316A1 (fr) 2008-12-17

Similar Documents

Publication Publication Date Title
US7438061B2 (en) Method and apparatus for estimating exhaust pressure of an internal combustion engine
US7107143B2 (en) Estimation of oxygen concentration in the intake manifold of an unthrottled lean burn engine
EP2017452B1 (fr) Procédé d'évaluation de débit d'air et appareil pour moteur à combustion interne
US6016460A (en) Internal combustion engine control with model-based barometric pressure estimator
EP3124776B1 (fr) Dispositif de contrôle pour moteur à combustion interne
US20140034026A1 (en) Control device for supercharged engine
JP2008138630A (ja) 内燃機関の制御装置
JP5277349B2 (ja) 内燃機関の吸気パラメータ算出装置および吸気パラメータ算出方法
US8051641B2 (en) Exhaust gas purifying apparatus for internal combustion engine
EP2052144B1 (fr) Appareil et procédé de commande d'un moteur à combustion interne équipé d'un turbocompresseur
US20210317795A1 (en) Control device of supercharger-equipped engine
US11035301B1 (en) Method for preventing engine air flow calculation error and engine system thereof
EP2003316B1 (fr) Adaptation de manette de gaz pondérée
US9163572B2 (en) Method for determining a pressure at the output of an exhaust gas system
EP2514955B1 (fr) Procédé d'actualisation d'une fonction de calcul de la pression du gaz d'échappement dans un moteur à combustion interne
EP3112652B1 (fr) Procédé de commande et dispositif de recyclage des gaz d'échappement
US20180038295A1 (en) Control device for internal-combustion engine
JP2015190397A (ja) 内燃機関のスート排出量推定装置
CN108999709B (zh) 用于计算内燃机的充气量的方法
CN114718750B (zh) 温度故障诊断下的航空活塞发动机冷起动控制系统及方法
JP5391850B2 (ja) 内燃機関の大気圧推定装置
US7383117B2 (en) Method for optimizing a valve-lift changeover on spark-ignition engines
JP2006336608A (ja) 吸気流量測定装置
JP2010090736A (ja) 内燃機関の異常診断装置
Dutka et al. Data driven engine model identification and real-time adaptation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20090526

AKX Designation fees paid

Designated state(s): DE GB SE

17Q First examination report despatched

Effective date: 20091228

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007015338

Country of ref document: DE

Effective date: 20110811

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: VOLVO CAR CORPORATION

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20111103 AND 20111109

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120323

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007015338

Country of ref document: DE

Effective date: 20120323

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160613

Year of fee payment: 10

Ref country code: GB

Payment date: 20160615

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20160622

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007015338

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170615

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180103