EP2002275A1 - Composant sensible a un champ magnetique comportant un semi-conducteur magnetique dilue, dispositifs l'incorporant et procede de mise en oeuvre - Google Patents

Composant sensible a un champ magnetique comportant un semi-conducteur magnetique dilue, dispositifs l'incorporant et procede de mise en oeuvre

Info

Publication number
EP2002275A1
EP2002275A1 EP07731102A EP07731102A EP2002275A1 EP 2002275 A1 EP2002275 A1 EP 2002275A1 EP 07731102 A EP07731102 A EP 07731102A EP 07731102 A EP07731102 A EP 07731102A EP 2002275 A1 EP2002275 A1 EP 2002275A1
Authority
EP
European Patent Office
Prior art keywords
semiconductor
component
magnetic
volume
ferromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07731102A
Other languages
German (de)
English (en)
Inventor
Patrick Warin
Matthieu Jamet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP2002275A1 publication Critical patent/EP2002275A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/18Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using Hall-effect devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • H10N52/101Semiconductor Hall-effect devices

Definitions

  • the present invention relates to a magnetic field sensitive component comprising at least one diluted magnetic semiconductor, a magnetic field sensor device and a memory structure each incorporating this component, and a method for detecting a magnetic field by means of this component.
  • Magnetic field sensors are used in a large number of devices, such as magnetometers, compasses, angle sensors, sensitive elements of hard disk read heads or magnetic tape readers. Different principles are used, but for many applications, such as the read heads of magnetic hard disks, it is sought to obtain a greater sensitivity to magnetic fields of low intensity and / or very magnetic fields. located.
  • Hall effect probes and magnetoresistive sensors are commonly used as magnetic field sensors. These latter sensors are in particular used in the read heads of modern hard disks, where they have advantageously replaced the inductive reading heads because of their greater sensitivity to magnetic fields of low intensity. Nevertheless, these magnetoresistive sensors have the disadvantage of being limited to a narrow range of magnetic field intensities for obtaining a high sensitivity, before saturation of the magnetization of the active layer which is generally chosen from a material soft. Inductive sensors, which do not have this limitation in accessible field range, but which can only be used to detect variations, are also used in known manner. of a magnetic field, and not the intensities of a static magnetic field.
  • a major disadvantage of the devices described in these documents is that they do not detect magnetic fields that have a very low intensity and / or are very localized in space.
  • US-B-6 910 382 discloses a device for detecting magnetic fields, in particular for hard disk read heads, which is based on the giant-type planar Hall effect in diluted magnetic semiconductors. More specifically, this device is adapted to detect changes in domain wall properties, such as changes in magnetization domain orientations.
  • An object of the present invention is to provide a component sensitive to a magnetic field, comprising at least one diluted magnetic semiconductor, first means for generating an electric current in said semiconductor in a predetermined direction, and second means for producing a signal representative of a Hall electrical voltage transverse to said direction on either side of said semiconductor, which makes it possible to overcome all of the aforementioned drawbacks by making it possible to detect magnetic fields of very low intensities and / or very localized in space, with an increased sensitivity compared to that of the state of the prior art.
  • the component according to the invention is such that the semiconductor is selected from the group consisting of IIA / I and IV / IV semiconductors and comprises a zone sensitive to said field which forms all or part of a magnetic quantum well, in which charge carriers are incorporated by doping with said semiconductor and inducing in said well ferromagnetic exchange interactions at the origin of a giant Zeemann effect, so that said component is suitable, directly from said signal, detecting the presence of said field with respect to a reference threshold and / or measuring an intensity of said field independently of any reference threshold.
  • this giant Zeemann effect makes it possible to reach sensitivities that are very significantly increased compared with those relating to known semiconductors. Indeed, the ion exchange interaction / charge carriers, at the origin of the giant Zeeman effect, is several orders of magnitude greater than the interaction inducing the classic Zeeman effect.
  • this component according to the invention makes it possible to overcome the aforementioned limitation inherent in magnetoresistive sensors, ie the narrow range of magnetic field intensities where a high sensitivity is obtained.
  • a substantial advantage of the component according to the invention is that the saturation of the magnetization of the active layer only takes place at magnetic fields of very high intensities, thus considerably extending the range of magnetic fields accessible to the measurement. comparison of that provided by magnetoresistive sensors.
  • this component according to the invention does not have the aforementioned disadvantage in relation to the inductive sensors, because it allows the measurement of static magnetic fields even very localized, and always with great sensitivity.
  • Said diluted magnetic semiconductor may have either n-type or p-type doping, and it advantageously incorporates at least one magnetic doping element in an atomic fraction of between 0.1% and 10%.
  • said magnetic doping element is selected from the group consisting of manganese, iron, cobalt and chromium.
  • said diluted magnetic semiconductor is based on a type II / VI semiconductor selected from the group consisting of CdTe 1 ZnTe and ZnO semiconductors, or else based on a type IV / IV semiconductor selected from the group consisting of Si and Ge semiconductors.
  • said diluted magnetic semiconductor is based on a type II / VI semiconductor and, even more preferably, on a CdMnTe semiconductor, ie which contains manganese as a magnetic doping element.
  • Said diluted magnetic semiconductor may further incorporate at least one other doping element that may be, for example, aluminum (n-type doping) or nitrogen (p-type doping), in particular for a CdMnTe semiconductor.
  • said magnetic element may be incorporated in said semiconductor by any suitable method to dilute it.
  • this magnetic doping element is introduced during the step of growth of the semiconductor, for example by co-depositing this magnetic element simultaneously with the constituents of the semiconductor.
  • said sensitive zone may advantageously be comprised in a thin layer of said semiconductor on whose faces two barriers are applied which are adapted to confine said charge carriers and which each have a more forbidden band. wide than that of said semiconductor (typically a few hundred meV), said sensitive area being delimited by an edge perpendicular to said thin layer.
  • This barrier effect can be obtained by modulating the doping of said semiconductor.
  • said component comprises means for electrically connecting said semiconductor to said first and second means, said connection means being arranged locally outside and in close proximity to said sensitive zone.
  • the structure of said component consists of the following stack of H-Vl semiconductor layers: Cd o.78 Mg 0.22 Te (25 nm) / Cd 0, 9 ⁇ M 0 , o 9 Te (10 nm) /
  • connection means comprise at least two pairs of electrical contacts in one metallic material, preferably based on copper, these contacts being obtainable by local diffusion of said metallic material in said semiconductor for connection to said first and / or second means.
  • a magnetic field sensor device such as a magnetometer, is adapted to detect an intensity of a magnetic field greater than a determined reference threshold and / or to measure an intensity of said field independently of any reference threshold. , and this device is such that it comprises the component according to the invention as defined above.
  • a memory structure according to the invention can be used in a magnetic read head, for example for a hard disk, and it comprises at least one ferromagnetic solid volume which is capable of supporting at least two stable magnetization states and which is located at immediate proximity of at least one component according to the invention, in order to create a magnetic field detected by this component and having different intensities depending on the magnetization state of said or each volume.
  • said or each ferromagnetic volume is adapted to support information and to write them by a modification of its magnetization (for example via the application of a magnetic field or a spin polarized current in the structure), said second means of measuring the Hall voltage being adapted to provide measurements representative of a modification of said voltage at the sensitive zone of said component, for reading said information by this sensitive zone.
  • said or each ferromagnetic volume is located at a distance from said sensitive zone which is between 5 nm and 50 nm.
  • said or each ferromagnetic volume is located vertically of the sensitive zone of said well, and has a magnetization perpendicular to the plane of this sensitive zone.
  • said or each ferromagnetic volume may be of monolayer type based on an iron / platinum alloy, or of multilayer type, such as platinum / cobalt / platinum layers.
  • said or each ferromagnetic volume is offset relative to the vertical of the sensitive zone of said well, and has a magnetization parallel to the plane of this sensitive zone, so that the magnetic field of leakage of said or each volume is perpendicular to the plane of said sensitive zone.
  • said memory structure may comprise a single ferromagnetic volume, thus constituting the elementary cell of a solid magnetic memory, or a plurality of ferromagnetic volumes distributed in one or two directions, for obtaining a linear or matrix memory structure, respectively.
  • the memory structure is of matrix type and it comprises a plurality of conductive metal lines, such as copper lines, which are adapted to locally apply the magnetic field necessary for the magnetization reversal of a ferromagnetic volume, by applying simultaneously two current pulses in two conductive lines crossing in close proximity to said addressed ferromagnetic volume.
  • conductive metal lines such as copper lines
  • a method for detecting a magnetic field according to the invention is implemented by means of said component according to the invention which comprises at least one diluted magnetic semiconductor, this method comprising the generation of an electric current in said semiconductor. conductive in a predetermined direction, and the production of a signal representative of a Hall voltage across transverse to this direction on either side of said semiconductor.
  • this method comprises forming in said semiconductor, which is selected from the group consisting of II / VI and IV / IV semiconductors, of a zone sensitive to said field forming all or part of a magnetic quantum well, such that charge carriers incorporated by doping with said semiconductor and confined in said well induce ferromagnetic exchange interactions therefrom, advantageously of the RKKY type (as described in T. Dietl et al., Phys. Rev. B, 55 R3347 (1997)), which generate a giant Zeemann effect to detect with increased sensitivity, applying a. coefficient of proportionality to said signal, the presence of the field relative to a reference threshold and / or to accurately measure the intensity of the field independently of any reference threshold.
  • this method according to the invention is implemented at an operating temperature which is close to the temperature of
  • “Close” here means “substantially equal” in that the operator is placed in a temperature range where the magnetic susceptibility of the semiconductor is greatly increased, the latter having a known peak in the vicinity of the temperature of Curie. Since the dependence of the Hall voltage with the applied magnetic field is also observed beyond the Curie temperature of the semiconductor, it will be noted that this method according to the invention has the advantage of being able to be implemented at a higher temperature.
  • operating temperature which is higher than this Curie temperature and which is then advantageously ambient temperature, ie typically a temperature of the order of 20 ° C to 25 ° C. This operating temperature can thus be equal to or greater than 293 K , and for example close to 300 K.
  • the magnetic susceptibility X of the semiconductor which measures the sensitivity of the component according to the invention, is proportional to 1 / (T-Tc), where T is the operating temperature and Tc la Curie temperature of said semiconductor.
  • Tc the sensitivity of the component of the invention will depend on the susceptibility of the material used for the semiconductor.
  • the method of the invention comprises the association with said component of at least one ferromagnetic solid volume which is capable of supporting at least two stable magnetization states and which is situated in the immediate vicinity of said component in order to create therein a magnetic field detected by this component and having different intensities depending on the magnetization state of said or each volume, to form a memory structure which is usable in a magnetic read head and which comprises said component and said each volume.
  • said or each ferromagnetic volume supports more than two information states, said states corresponding to various values of the magnetic field created in said component by reversing the magnetization of said or each volume. between several states.
  • the magnetization reversal of said or each ferromagnetic volume can be carried out by injecting a spin polarized current from another ferromagnetic volume.
  • FIG. 1 is a schematic top view of a component according to the invention sensitive to a magnetic field
  • Figure 2 is a partial sectional view along the plane H-II of Figure 1 of this component
  • FIG. 3 is a schematic top view of a matrix memory structure according to the invention incorporating said component
  • FIG. 4 is a partial sectional view along plane IV-IV of FIG. 3 of the memory structure. which is illustrated therein
  • FIG. 5 is a partial sectional view along the plane VV of FIG. 3 of a variant of this memory structure.
  • Component 1 according to the invention illustrated in FIG. 1 essentially comprises:
  • a diluted magnetic semiconductor 2 for example of the CdMnTe type (i.e. based on cadmium and tellurium and incorporating manganese as a doping magnetic element),
  • first means 3 for generating an electric current I in the semiconductor 2 in a predetermined direction D via a pair of first electrical contacts 4, and
  • the semiconductor 2 comprises a zone 7 sensitive to a magnetic field, which corresponds to at least a part of a magnetic quantum well 8 (see FIG. 2) and which is intended to be traversed by the current I , while the transverse tension V is measured for the detection of the magnetic field (static or not) which is applied to this well 8 or for the measurement of its intensity.
  • the electrical contacts 4 and 6 were made in the immediate vicinity but outside the sensitive zone 7 of the well 8, by diffusion of a metal by means of a deposit made on the surface of the contact regions 4 and 6 (see FIG. 2), this metal being preferably copper in the case in the case of this quantum well 8 in CdMnTe.
  • the semiconductor 2 is made in the form of a thin layer 9, situated between two insulating barriers 10 and 11 which have a wider band gap than that of the semiconductor 2 and which allow to confine within it the charge carriers provided by the doping magnetic element, such as manganese.
  • This barrier effect is for example obtained by modulating the doping of the semiconductor 2.
  • the sensitive zone 7 it is delimited by a lateral edge 7a vertical which is perpendicular to the thin layer 9 and the barriers 10 and 11.
  • the doping magnetic element has for example been introduced during the growth of the semiconductor 2, for example by co-depositing this magnetic element simultaneously with the other constituents of the semiconductor 2.
  • 3 and 4 illustrate an advantageous use of a variant 1 'according to the invention of the component 1, to constitute a matrix-type solid memory structure 30 which is traversed by the electric current I and which makes it possible to store a large number of of elementary bits via the component 1 "that it integrates.
  • the memory structure 30 comprises, in addition to this component 1, ferromagnetic volumes 21 (only one is visible in FIG. 4) for the information carrier, each of which is capable of supporting at least two stable magnetization states.
  • Each ferromagnetic volume 12 is positioned near the quantum well 8, preferably at a distance of between 5 nm and 50 nm, so as to create a different magnetic field according to its magnetization state.
  • each ferromagnetic volume 21 is magnetized perpendicular to the plane of the quantum well 8 (see arrows H in FIG. 4), and this volume 21 is for example made of a material such as a chemically ordered Fe-Pt alloy with its perpendicular axis c, which gives it a strong perpendicular magnetic anisotropy.
  • each volume 21 can be produced via a multilayer structure such as Pt / Co / Pt where, for cobalt thicknesses between 0.4 nm and 1 nm, the magnetization is perpendicular.
  • the matrix memory structure 30 visible in FIG. 3 comprises, in this example, copper lines adapted to apply locally the magnetic field B required for the magnetization reversal of a ferromagnetic volume 21. This effect is obtained by simultaneously applying two pulses of current in the two copper lines intersecting near each ferromagnetic volume 21 addressed, at a distance that is of the order of the size of the volume 21 whose magnetization is to return.
  • Each ferromagnetic volume 21 is adapted to write on the tracks 32 via a modification of its magnetization, for example by applying a magnetic field or a spin polarized current in the structure 30.
  • FIG. 5 illustrates an alternative embodiment of the memory structure 30 of FIG. 4, in which the elementary memory element
  • ferromagnetic volume 41 which is chosen parallel to the plane of the quantum well 8 (see arrows H 'in FIG. volume 41 is offset from the vertical of the sensitive area 7 of the well 8, so as to create a magnetic field with a perpendicular component, via the contacts 4 '.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Semiconductor Memories (AREA)
  • Hall/Mr Elements (AREA)

Abstract

La presente invention concerne un composant sensible à un champ magnetique, un dispositif capteur de champ magnetique et une structure de memoire incorporant chacun ce composant, et un procede de detection d'un champ magnetique au moyen de ce composant. Un composant (1) selon I'invention comporte; au moins un semi-conducteur magnetique dilue (2), des premiers moyens (3) pour generer un courant electrique (I) dans ledit semi-conducteur selon une direction (D) predeterminee, et des seconds moyens (5) pour produire un signal representatif d'une tension de Hall (V) transverse a cette direction, et il est tel que Ie semi-conducteur est choisi dans Ie groupe constitue par les semi-conducteurs de II/VI et de type IV/IV et comprend une zone (7) sensible audit champ qui forme tout ou partie d'un puits quantique magnetique, dans lequel sont confines des porteurs de charge incorpores par dopage au semi-conducteur et induisant dans ce puits des interactions d'echange ferromagnetiques.

Description

COMPOSANT SENSIBLE A UN CHAMP MAGNETIQUE COMPORTANT UN SEMI-CONDUCTEUR MAGNETIQUE DILUE, DISPOSITIFS L'INCORPORANT ET PROCEDE DE MISE EN OEUVRE.
La présente invention concerne un composant sensible à un champ magnétique comportant au moins un semi-conducteur magnétique dilué, un dispositif capteur de champ magnétique et une structure de mémoire incorporant chacun ce composant, et un procédé de détection d'un champ magnétique au moyen de ce composant.
Les capteurs de champs magnétiques sont utilisés dans un grand nombre de dispositifs, tels que des magnétomètres, des boussoles, des capteurs angulaires, des éléments sensibles des têtes de lecture de disques durs ou encore des lecteurs de bandes magnétiques. Différents principes sont utilisés, mais pour beaucoup d'applications, telles que les têtes de lecture des disques durs magnétiques, on recherche l'obtention d'une plus grande sensibilité à des champs magnétiques d'intensité faible et/ou à des champs magnétiques très localisés.
Actuellement, on utilise communément, à titre de capteurs de champs magnétiques, les sondes à effet Hall et les capteurs magnétorésistifs (à magnétorésistance anisotrope ou géante). Ces derniers capteurs sont en particulier utilisés dans les têtes de lecture des disques durs modernes, où ils ont remplacé avantageusement les têtes de lecture inductives du fait de leur plus grande sensibilité à des champs magnétiques d'intensité faible. Néanmoins, ces capteurs magnétorésistifs présentent l'inconvénient d'être limités à une gamme étroite d'intensités de champs magnétiques pour l'obtention d'une sensibilité élevée, avant saturation de l'aimantation de la couche active qui est généralement choisie dans un matériau doux. On utilise également de manière connue des capteurs inductifs, qui ne présentent pas cette limitation en gamme de champ accessibles, mais qui ne peuvent être utilisés que pour détecter des variations d'un champ magnétique, et non des intensités d'un champ magnétique statique.
Plus récemment, pour répondre à des besoins de sensibilité toujours accrue, on a cherché à développer des capteurs de champs magnétiques basés sur la magnétorésistance tunnel, pour constituer l'élément sensible des têtes de lecture des disques durs. Il est cependant prévisible que la diminution de la taille des bits magnétiques supportant l'information dans les disques durs, et donc la diminution du champ magnétique rayonné qui peut être détecté par l'élément de lecture, amènera à rechercher des capteurs d'un nouveau type encore plus sensibles à ces champs magnétiques faibles.
A. D. Kent et al, J. App. Phys., 76 6656 (1994) ont proposé dans cet article un nouveau concept de capteur de champ magnétique, basé sur la mesure de l'effet Hall dans un gaz bidimensionnel de porteurs de charge (électrons ou trous) au sein d'une couche mince semi-conductrice. Dans de tels systèmes, tels qu'une couche mince d'un semi-conducteur GaAs entre deux couches de AIGaAs, la tension de Hall mesurée est d'autant plus élevée que la concentration en porteurs est faible.
On peut également citer les travaux réalisés par F. Takano et al, Physica E, 12 370 (2002), qui se sont placés dans des conditions particulières de faible concentration en éléments magnétiques et à basse température, pour observer l'effet Hall quantique dans un puits magnétique d'un semi-conducteur magnétique dilué de type CdMnTe. Il convient de noter que dans ces conditions, la réponse en plateau de l'effet Hall quantique en fonction du champ magnétique appliqué a conduit à des gammes d'intensité de champ magnétique où aucune variation de la tension de Hall ne peut être détectée.
Un inconvénient majeur des dispositifs décrits dans ces documents est qu'ils ne permettent pas de détecter des champs magnétiques qui présentent une intensité très faible et/ou qui sont très localisés dans l'espace.
Encore plus récemment, le document US-B-6 910 382 a présenté un dispositif de détection de champs magnétiques, en particulier pour des têtes de lecture de disques durs, qui est basé sur l'effet Hall planaire de type géant dans des semi-conducteurs magnétiques dilués. Plus précisément, ce dispositif est adapté pour détecter des changements de propriétés de parois de domaines, tels que des changements d'orientations de domaines d'aimantation.
On notera que le dispositif décrit dans ce document n'est pas conçu pour mesurer des intensités de champs magnétiques, mais seulement des changements de propriétés magnétiques.
Un but de la présente invention est de proposer un composant sensible à un champ magnétique, comportant au moins un semi-conducteur magnétique dilué, des premiers moyens pour générer un courant électrique dans ledit semi-conducteur selon une direction prédéterminée, et des seconds moyens pour produire un signal représentatif d'une tension électrique de Hall transverse à ladite direction de part et d'autre dudit semi-conducteur, qui permette de remédier à l'ensemble des inconvénients précités en permettant de détecter des champs magnétiques d'intensités très faibles et/ou très localisés dans l'espace, avec une sensibilité accrue par rapport à celle de l'état de la technique antérieure. A cet effet, le composant selon l'invention est tel que le semiconducteur est choisi dans le groupe constitué par les semi-conducteurs de IIA/I et de type IV/IV et comprend une zone sensible audit champ qui forme tout ou partie d'un puits quantique magnétique, dans lequel sont confinés des porteurs de charge incorporés par dopage audit semi-conducteur et induisant dans ledit puits des interactions d'échange ferromagnétiques à l'origine d'un effet Zeemann géant, de sorte que ledit composant soit apte, directement à partir dudit signal, à détecter la présence dudit champ par rapport à un seuil de référence et/ou à mesurer une intensité dudit champ indépendamment de tout seuil de référence. On notera que cet effet Zeemann géant permet d'atteindre des sensibilités très nettement augmentées en comparaison de celles relatives aux semi-conducteurs connus. En effet, l'interaction d'échange ions/ porteurs de charge, à l'origine de l'effet Zeeman géant, est de plusieurs ordres de grandeur supérieure à l'interaction induisant l'effet Zeeman classique.
On notera également que ce composant selon l'invention permet de s'affranchir de la limitation précitée inhérente aux capteurs magnétorésistifs, i.e. la gamme étroite d'intensités de champ magnétique où une sensibilité élevée est obtenue.
En effet, un avantage substantiel du composant selon l'invention est que la saturation de l'aimantation de la couche active a seulement lieu à des champs magnétiques d'intensités très élevées, étendant ainsi considérablement la gamme de champs magnétiques accessibles à la mesure en comparaison de celle procurée par les capteurs magnétorésistifs.
On notera en outre que ce composant selon l'invention ne présente pas l'inconvénient précité en relation avec les capteurs inductifs, du fait qu'il permet la mesure de champs magnétiques statiques même très localisés, et toujours avec une grande sensibilité.
Ledit semi-conducteur magnétique dilué peut présenter indifféremment un dopage de type n ou p, et il incorpore avantageusement au moins un élément dopant magnétique selon une fraction atomique comprise entre 0,1 % et 10 %.
De préférence, ledit élément dopant magnétique est choisi dans le groupe constitué par le manganèse, le fer, le cobalt et le chrome.
Selon des exemples de réalisation de l'invention, ledit semiconducteur magnétique dilué est à base d'un semi-conducteur de type II/VI choisi dans le groupe constitué par les semi-conducteurs CdTe1 ZnTe et ZnO, ou bien à base d'un semi-conducteur de type IV/IV choisi dans le groupe constitué par les semi-conducteurs Si et Ge.
A titre préférentiel, ledit semi-conducteur magnétique dilué est à base d'un semi-conducteur de type II/VI et, encore plus préférentiellement, d'un semi-conducteur CdMnTe, i.e. qui contient du manganèse à titre d'élément dopant magnétique. Ledit semi-conducteur magnétique dilué peut incorporer en outre au moins un autre élément dopant pouvant être par exemple l'aluminium (dopage de type n) ou l'azote (dopage de type p), notamment pour un semiconducteur CdMnTe.
D'une manière générale, ledit élément magnétique peut être incorporé audit semi-conducteur par toute méthode appropriée pour le diluer.
De préférence, on introduit cet élément dopant magnétique lors de l'étape de croissance du semi-conducteur, par exemple en co- déposant cet élément magnétique simultanément aux constituants du semiconducteur.
Selon une autre caractéristique de l'invention, ladite zone sensible peut être avantageusement comprise dans une couche mince dudit semi-conducteur sur les faces de laquelle sont appliquées deux barrières qui sont adaptées pour confiner lesdits porteurs de charge et qui présentent chacune une bande interdite plus large que celle dudit semi-conducteur (typiquement quelques centaines de meV), ladite zone sensible étant délimitée par un bord perpendiculaire à ladite couche mince. Cet effet de barrière peut être obtenu en modulant le dopage dudit semi-conducteur.
Selon une autre caractéristique de l'invention, ledit composant comprend des moyens de connexion électrique dudit semi-conducteur auxdits premiers et seconds moyens, lesdits moyens de connexion étant agencés localement en dehors et à proximité immédiate de ladite zone sensible.
Dans une voie de réalisation de l'invention, la structure dudit composant est constituée de l'empilement suivant de couches à base de semi-conducteurs H-Vl : Cdo.78Mg0,22Te (25 nm) / Cd0,9iMn0,o9Te (10 nm) /
CdOt78Mgo,22Te (25 nm) / Cdo,96Zno,o4Te (substrat orienté (001)). Dans ce dernier cas, après mise à l'air de l'échantillon, l'oxydation de surface crée des états accepteurs dans la barrière supérieure de Cdo,Mgo,22Te. De cette façon, la densité de trous dans le puits quantique peut atteindre environ 1011 cm"2. La prise de contact sur le puits quantique se fera avantageusement sous ultra-vide : après un décapage ionique jusqu'à atteindre ledit puits, un dépôt de cuivre (double accepteur dans CdTe) suivi d'un recuit jusqu'à 200° C permettra d'obtenir un contact ohmique sur le puits quantique servant de détecteur. Avantageusement, lesdits moyens de connexion comportent au moins deux paires de contacts électriques en un matériau métallique, de préférence à base de cuivre, ces contacts pouvant être obtenus par diffusion locale dudit matériau métallique dans ledit semi-conducteur pour la connexion au(x)dit(s) premier et/ou second moyens.
Un dispositif capteur de champ magnétique selon l'invention, tel qu'un magnétomètre, est adapté pour détecter une intensité d'un champ magnétique supérieure à un seuil de référence déterminé et/ou pour mesurer une intensité dudit champ indépendamment de tout seuil de référence, et ce dispositif est tel qu'il comporte le composant selon l'invention tel que défini ci- dessus.
Une structure de mémoire selon l'invention est utilisable dans une tête de lecture magnétique par exemple pour un disque dur, et elle comprend au moins un volume solide ferromagnétique qui est apte à supporter au moins deux états d'aimantation stables et qui est situé à proximité immédiate d'au moins un composant selon l'invention, en vue d'y créer un champ magnétique détecté par ce composant et présentant des intensités différentes en fonction de l'état d'aimantation dudit ou de chaque volume.
Selon une autre caractéristique avantageuse de l'invention, ledit ou chaque volume ferromagnétique est adapté pour supporter des informations et pour les écrire par une modification de son aimantation (par exemple via l'application d'un champ magnétique où d'un courant polarisé en spin dans la structure), lesdits seconds moyens de mesure de la tension de Hall étant adaptés pour fournir des mesures représentatives d'une modification de ladite tension au niveau de la zone sensible dudit composant, pour la lecture desdites informations par cette zone sensible.
De préférence, ledit ou chaque volume ferromagnétique est situé à une distance de ladite zone sensible qui est comprise entre 5 nm et 50 nm. Selon un premier mode de réalisation de l'invention, ledit ou chaque volume ferromagnétique est situé à la verticale de la zone sensible dudit puits, et présente une aimantation perpendiculaire au plan de cette zone sensible. Dans ce cas, ledit ou chaque volume ferromagnétique peut être de type monocouche à base d'un alliage fer/ platine, ou bien de type multicouches, telle que des couches platine/ cobalt/ platine.
Selon un second mode de réalisation de l'invention, ledit ou chaque volume ferromagnétique est décalé par rapport à la verticale de la zone sensible dudit puits, et présente une aimantation parallèle au plan de cette zone sensible, de telle sorte que le champ magnétique de fuite dudit ou chaque volume soit perpendiculaire au plan de ladite zone sensible.
D'une manière générale, ladite structure de mémoire peut comporter un seul volume ferromagnétique, constituant alors la cellule élémentaire d'une mémoire magnétique solide, ou bien une pluralité de volumes ferromagnétiques répartis selon une ou deux directions, pour l'obtention d'une structure de mémoire linéaire ou matricielle, respectivement.
Avantageusement, la structure de mémoire est de type matricielle et elle comporte une pluralité de lignes métalliques conductrices, telles que des lignes de cuivre, qui sont adaptées pour appliquer localement le champ magnétique nécessaire au retournement d'aimantation d'un volume ferromagnétique, en appliquant simultanément deux impulsions de courant dans deux lignes conductrices se croisant à proximité immédiate dudit volume ferromagnétique adressé.
Un procédé de détection d'un champ magnétique selon l'invention est mis en oeuvre au moyen dudit composant selon l'invention qui comporte au moins un semi-conducteur magnétique dilué, ce procédé comprenant la génération d'un courant électrique dans ledit semi-conducteur selon une direction prédéterminée, et la production d'un signal représentatif d'une tension électrique de Hall transverse à cette direction de part et d'autre dudit semi-conducteur.
Selon l'invention, ce procédé comprend la formation dans ledit semi-conducteur, lequel est choisi dans le groupe constitué par les semiconducteurs de II/VI et de type IV/IV, d'une zone sensible audit champ formant tout ou partie d'un puits quantique magnétique, de manière que des porteurs de charge incorporés par dopage audit semi-conducteur et confinés dans ledit puits y induisent des interactions d'échange ferromagnétiques, avantageusement de type RKKY (comme décrit dans T. Dietl et al, Phys. Rev. B, 55 R3347 (1997)), qui génèrent un effet Zeemann géant pour détecter avec une sensibilité accrue, en appliquant un. coefficient de proportionnalité audit signal, la présence du champ par rapport à un seuil de référence et/ou pour mesurer précisément l'intensité du champ indépendamment de tout seuil de référence.
De préférence, ce procédé selon l'invention est mis en œuvre à une température de fonctionnement qui est proche de la température de
Curie dudit semi-conducteur magnétique dilué, soit par une sélection appropriée du matériau semi-conducteur, soit par ajustement de cette température de fonctionnement à ladite température de Curie. Le terme
« proche » signifie ici « sensiblement égal », en ce sens que l'opérateur se place dans une gamme de températures où la susceptibilité magnétique du semi-conducteur est fortement accrue, celle-ci présentant de manière connue un pic aux abords de la température de Curie. Comme la dépendance de la tension de Hall avec le champ magnétique appliqué est observée également au-delà de la température de Curie du semi-conducteur, on notera que ce procédé selon l'invention présente l'avantage de pouvoir être mis en œuvre à une température de fonctionnement qui est supérieure à cette température de Curie et qui est alors avantageusement la température ambiante, i.e. typiquement une température de l'ordre de 20° C à 25° C. Cette température de fonctionnement peut ainsi être égale ou supérieure à 293 K, et par exemple proche de 300 K.
Au-delà de cette température de Curie, la susceptibilité magnétique X du semi-conducteur, qui mesure la sensibilité du composant selon l'invention, est proportionnelle à 1 /(T-Tc) ,où T est la température de fonctionnement et Tc la température de Curie dudit semi-conducteur. En dessous de Tc, la sensibilité du composant de l'invention dépendra de la susceptibilité du matériau utilisé pour le semi-conducteur.
Avantageusement, le procédé de l'invention comprend l'association audit composant d'au moins un volume solide ferromagnétique qui est apte à supporter au moins deux états d'aimantation stables et qui est situé à proximité immédiate dudit composant en vue d'y créer un champ magnétique détecté par ce composant et présentant des intensités différentes en fonction de l'état d'aimantation dudit ou de chaque volume, pour former une structure de mémoire qui est utilisable dans une tête de lecture magnétique et qui comprend ledit composant et ledit ou chaque volume.
Selon une autre caractéristique de ce procédé selon l'invention, ledit ou chaque volume ferromagnétique supporte plus de deux états d'informations, lesdits états correspondant à diverses valeurs du champ magnétique créé dans ledit composant par retournement de l'aimantation dudit ou de chaque volume entre plusieurs états. Avantageusement, on peut réaliser le retournement d'aimantation dudit ou de chaque volume ferromagnétique par injection d'un courant polarisé en spin depuis un autre volume ferromagnétique.
Les caractéristiques précitées de la présente invention, ainsi que d'autres, seront mieux comprises à la lecture de la description suivante de plusieurs exemples de réalisation de l'invention, donnés à titre illustratif et non limitatif, ladite description étant réalisée en relation avec les dessins joints, parmi lesquels : la figure 1 est une vue de dessus schématique d'un composant selon l'invention sensible à un champ magnétique, la figure 2 est une vue partielle en coupe suivant le plan H-Il de la figure 1 de ce composant, la figure 3 est une vue de dessus schématique d'une structure de mémoire matricielle selon l'invention incorporant ledit composant, la figure 4 est une vue partielle en coupe suivant le plan IV-IV de la figure 3 de la structure de mémoire qui y est illustrée, et la figure 5 est une vue partielle en coupe suivant le plan V-V de la figure 3 d'une variante de cette structure de mémoire.
Le composant 1 selon l'invention illustré à la figure 1 comporte essentiellement :
- un semi-conducteur 2 magnétique dilué, par exemple de type CdMnTe (i.e. à base de cadmium et de tellure et incorporant du manganèse à titre d'élément magnétique dopant),
- des premiers moyens 3 pour générer un courant électrique I dans le semi-conducteur 2 selon une direction D prédéterminée via une paire de premiers contacts électriques 4, et
- des seconds moyens 5 pour produire un signal représentatif de la tension électrique V de Hall transverse à cette direction de part et d'autre du semi-conducteur 2 via une autre paire de contacts électriques 6. Selon l'invention, le semi-conducteur 2 comprend une zone 7 sensible à un champ magnétique, qui correspond à au moins une partie d'un puits quantique magnétique 8 (voir figure 2) et qui est destinée à être parcourue par le courant I, tandis que la tension V transverse est mesurée pour la détection du champ magnétique (statique ou non) qui est appliqué à ce puits 8 ou bien pour la mesure de son intensité.
Les contacts électriques 4 et 6 ont été réalisés à proximité immédiate mais en dehors de la zone sensible 7 du puits 8, par diffusion d'un métal au moyen d'un dépôt effectué à la surface des régions de contacts 4 et 6 (voir figure 2), ce métal étant de préférence le cuivre dans le cas dans le cas de ce puits quantique 8 en CdMnTe.
Dans l'exemple de réalisation de la figure 2, le semiconducteur 2 est réalisé sous la forme d'une couche mince 9, située entre deux barrières isolantes 10 et 11 qui présentent une bande interdite plus large que celle du semi-conducteur 2 et qui permettent de confiner au sein de celui- ci les porteurs de charge apportés par l'élément magnétique dopant, tel que le manganèse. Cet effet de barrière est par exemple obtenu en modulant le dopage du semi-conducteur 2. Quant à la zone sensible 7, elle est délimitée par un bord latéral 7a vertical qui est perpendiculaire à la couche mince 9 et aux barrières 10 et 11.
Pour réaliser le semi-conducteur 2, on a par exemple introduit l'élément magnétique dopant lors de la croissance du semi-conducteur 2, par exemple en co-déposant cet élément magnétique simultanément aux autres constituants du semi-conducteur 2. On a ainsi obtenu un semi-conducteur dit « magnétique dilué » au sein duquel les porteurs de charge issus de l'élément magnétique dopant permettent une interaction d'échange ferromagnétique entre les atomes magnétiques, qui est par exemple de type RKKY. Cette interaction est à l'origine d'un effet Zeemann géant qui permet d'atteindre des sensibilités de détection et de mesure du champ magnétique très nettement augmentées en comparaison de celles relatives aux semi-conducteurs connus. Les figures 3 et 4 illustrent une utilisation avantageuse d'une variante 1 ' selon l'invention du composant 1 , pour constituer une structure de mémoire solide 30 de type matricielle qui est parcourue par le courant électrique I et qui permet de stocker un grand nombre de bits élémentaires via le composant 1" qu'elle intègre.
La structure de mémoire 30 comprend, outre ce composant l', des volumes ferromagnétiques 21 (un seul est visible à la figure 4) pour le support d'informations, qui sont chacun aptes à supporter au moins deux états d'aimantation stables. Chaque volume ferromagnétique 12 est positionné à proximité du puits quantique 8, de préférence à une distance comprise entre 5 nm et 50 nm, de manière à y créer un champ magnétique différent en fonction de son état d'aimantation.
Dans l'exemple de réalisation de la figure 4, chaque volume ferromagnétique 21 est à aimantation perpendiculaire par rapport au plan du puits quantique 8 (voir flèches H à la figure 4), et ce volume 21 est par exemple réalisé en un matériau tel qu'un alliage Fe-Pt chimiquement ordonné avec son axe c perpendiculaire, ce qui lui confère une forte anisotropie magnétique perpendiculaire. En variante, chaque volume 21 peut être réalisé via une structure multicouches telle que Pt/Co/Pt où, pour des épaisseurs de cobalt comprises entre 0,4 nm et 1 nm, l'aimantation est perpendiculaire.
La structure de mémoire matricielle 30 visible à la figure 3 comporte dans cet exemple des lignes de cuivre adaptées pour appliquer localement le champ magnétique B nécessaire au retournement d'aimantation d'un volume ferromagnétique 21. Cet effet est obtenu en appliquant simultanément deux impulsions de courant dans les deux lignes de cuivre se croisant à proximité de chaque volume ferromagnétique 21 adressé, à une distance qui est de l'ordre de la taille du volume 21 dont l'aimantation est à retourner.
Sont visibles en vue de dessus à la figure 3 des pistes de lecture 31 des informations par la zone sensible 7 du puits 8 et des pistes d'écriture 32 de ces informations par les volume ferromagnétiques 21 (ces pistes 31 et 32 sont respectivement appelées « bit lines » et word fines » en anglais). Chaque volume ferromagnétique 21 est adapté pour écrire sur les pistes 32 via une modification de son aimantation, par exemple par application d'un champ magnétique où d'un courant polarisé en spin dans la structure 30.
La figure 5 illustre une variante de réalisation de la structure de mémoire 30 de la figure 4, dans laquelle l'élément de mémoire élémentaire
40 qui y est représenté comporte, outre un composant 1" selon l'invention, un volume ferromagnétique 41 dont l'aimantation est choisie parallèle au plan du puits quantique 8 (voir flèches H' à la figure 5). Dans ce cas, le volume 41 est décalé par rapport à la verticale de la zone sensible 7 du puits 8, de manière à y créer un champ magnétique avec une composante perpendiculaire, via les contacts 4'.

Claims

REVENDICATIONS
1) Composant (1 , V, 1") sensible à un champ magnétique, comportant : - au moins un semi-conducteur magnétique dilué (2),
- des premiers moyens (3) pour générer un courant électrique (I) dans ledit semi-conducteur selon une direction (D) prédéterminée, et
- des seconds moyens (5) pour produire un signal représentatif d'une tension électrique de Hall (V) transverse à ladite direction de part et d'autre dudit semi-conducteur, caractérisé en ce que ledit semi-conducteur est choisi dans le groupe constitué par les semi-conducteurs de type II/VI et IV/IV et comprend une zone (7) sensible audit champ qui forme tout ou partie d'un puits quantique magnétique (8), dans lequel sont confinés des porteurs de charge incorporés par dopage audit semi-conducteur et induisant dans ledit puits des interactions d'échange ferromagnétiques de telle sorte que ledit composant soit apte, directement à partir dudit signal, à détecter la présence dudit champ par rapport à un seuil de référence et/ou à mesurer une intensité dudit champ indépendamment de tout seuil de référence.
2) Composant (1 , l', 1") selon la revendication 1 , caractérisé en ce que ladite zone sensible (7) est comprise dans une couche mince (9) dudit semi-conducteur sur les faces de laquelle sont appliquées deux barrières (10 et 11 ) qui sont adaptées pour confiner lesdits porteurs de charge et qui présentent chacune une bande interdite plus large que celle dudit semiconducteur (2), ladite zone sensible étant délimitée par un bord perpendiculaire à ladite couche mince.
3) Composant (1 , l', 1") selon une des revendications précédentes, caractérisé en ce qu'il comprend des moyens de connexion électrique (4, 4,' 6, 31 , 32) dudit semi-conducteur (2) aυxdits premiers et seconds moyens (3 et 5), lesdits moyens de connexion étant agencés localement en dehors de ladite zone sensible (7) et à proximité immédiate de cette dernière.
4) Composant (1) selon la revendication 3, caractérisé en ce que lesdits moyens de connexion (4, 6) comportent au moins deux paires de contacts électriques en un matériau métallique, tel que du cuivre, ces contacts étant obtenus par diffusion locale dudit matériau métallique dans ledit semiconducteur (2) pour la connexion au(x)dit(s) premier et/ou second moyens (3, 5).
5) Composant (1 , V, 1") selon une des revendications précédentes, caractérisé en ce que ledit semi-conducteur incorpore au moins un élément dopant magnétique selon une fraction atomique comprise entre 0,1 % et 10 %.
6) Composant (1 , l', 1") selon la revendication 5, caractérisé en ce que ledit élément dopant magnétique est choisi dans le groupe constitué par le manganèse, le fer, le cobalt et le chrome.
7) Composant (1 , 1 ', 1") selon une des revendications 1 à 6, caractérisé en ce que ledit semi-conducteur magnétique dilué (2) est à base d'un semi-conducteur de type II/VI choisi dans le groupe constitué par les semi-conducteurs CdTe, ZnTe et ZnO.
8) Composant (1 , l', 1") selon une des revendications 1 à 6, caractérisé en ce que ledit semi-conducteur magnétique dilué (2) est à base d'un semi-conducteur de type IV/IV choisi dans le groupe constitué par les semi-conducteurs Si et Ge.
9) Composant (1 , V, 1 ") selon les revendications 4, 6 et 7, caractérisé en ce que ledit semi-conducteur magnétique dilué (2) est un semiconducteur CdMnTe, qui contient du manganèse à titre d'élément dopant magnétique, et en ce que lesdits contacts électriques (4, 4\ 6, 31 , 32) sont à base de cuivre.
10) Composant (1 , l', 1 ") selon la revendication 9, caractérisé en ce que ledit semi-conducteur (2) incorpore en outre au moins un autre élément dopant choisi dans le groupe constitué par l'aluminium et l'azote.
11 ) Dispositif capteur de champ magnétique, tel qu'un magnétomètre, ledit dispositif étant adapté pour détecter une intensité d'un champ magnétique supérieure à un seuil de référence déterminé et/ou pour mesurer une intensité dudit champ indépendamment de tout seuil de référence, caractérisé en ce qu'il comporte un composant (1) tel que défini à l'une des revendications 1 à 10.
12) Structure de mémoire (30, 40) utilisable dans une tête de lecture magnétique, comprenant au moins un volume solide ferromagnétique (21 , 41) qui est apte à supporter au moins deux états d'aimantation stables et qui est situé à proximité immédiate d'au moins un composant (1', 1") sensible à un champ magnétique en vue d'y créer un champ magnétique détecté par ledit composant et présentant des intensités différentes en fonction de l'état d'aimantation dudit ou de chaque volume, caractérisée en ce que ledit composant est tel que défini à l'une des revendications 1 à 10.
13) Structure de mémoire (30, 40) selon la revendication 12, caractérisée en ce que ledit ou chaque volume ferromagnétique (21 , 41) est adapté pour supporter des informations et pour les écrire par une modification de son aimantation, lesdits seconds moyens de mesure (5) de la tension de
Hall (V) étant adaptés pour fournir des mesures représentatives d'une modification de ladite tension au niveau de la zone sensible (7) dudit composant (1', 1"), pour la lecture desdites informations par cette zone sensible. 14) Structure de mémoire (30) selon la revendication 12 ou 13, caractérisée en ce que ledit ou chaque volume ferromagnétique (21 ) est situé à une distance de ladite zone sensible (7) qui est comprise entre 5 nm et 50 nm.
15) Structure de mémoire (30) selon une des revendications 12 à 14, caractérisée en ce que ledit ou chaque volume ferromagnétique (21) est situé à la verticale de ladite zone sensible (7), et présente une aimantation perpendiculaire au plan de cette zone sensible.
16) Structure de mémoire (30) selon la revendication 15, caractérisée en ce que ledit ou chaque volume ferromagnétique (21 ) est de type monocouche à base d'un alliage fer/ platine.
17) Structure de mémoire (30) selon la revendication 15, caractérisée en ce que ledit ou chaque volume ferromagnétique (21 ) est de type multicouches, telle que des couches platine/ cobalt/ platine.
18) Structure de mémoire (40) selon une des revendications 12 à 17, caractérisée en ce que ledit ou chaque volume ferromagnétique (41) est décalé par rapport à la verticale de ladite zone sensible (7), et présente une aimantation parallèle au plan de cette zone sensible, de telle sorte que le champ magnétique de fuite dudit ou chaque volume soit perpendiculaire au plan de ladite zone sensible.
19) Structure de mémoire (30, 40) selon une des revendications 12 à 18, caractérisée en ce qu'elle comporte une pluralité desdits volumes ferromagnétiques (21 , 41 ) répartis selon une ou deux directions, pour l'obtention d'une structure de mémoire linéaire ou matricielle, respectivement. 20) Structure de mémoire (30) de type matricielle selon la revendication 19, caractérisée en ce qu'elle comporte une pluralité de lignes métalliques conductrices, telles que des lignes de cuivre, qui sont adaptées pour appliquer localement le champ magnétique (B) nécessaire au retournement d'aimantation d'un volume ferromagnétique (21), en appliquant simultanément deux impulsions de courant (I) dans deux lignes conductrices (31 et 32) se croisant à proximité immédiate dudit volume ferromagnétique adressé.
21) Procédé de détection d'un champ magnétique au moyen d'un composant (1, V, 1") sensible audit champ qui comporte au moins un semi-conducteur magnétique dilué (2), ce procédé comprenant la génération d'un courant électrique (I) dans ledit semi-conducteur selon une direction (D) prédéterminée, et la production d'un signal représentatif d'une tension électrique de Hall (V) transverse à cette direction de part et d'autre dudit semiconducteur, caractérisé en ce qu'il comprend Ia formation dans ledit semiconducteur, lequel est choisi dans le groupe constitué par les semiconducteurs de type II/VI et IV/IV, d'une zone sensible (7) audit champ formant tout ou partie d'un puits quantique magnétique (8), de manière que des porteurs de charge incorporés par dopage audit semi-conducteur et confinés dans ledit puits y induisent des interactions d'échange ferromagnétiques qui génèrent un effet Zeemann géant, pour détecter avec une sensibilité accrue, en appliquant un coefficient de proportionnalité audit signal, la présence dudit champ par rapport à un seuil de référence et/ou pour mesurer précisément l'intensité dudit champ indépendamment de tout seuil de référence.
22) Procédé selon la revendication 21 , caractérisé en ce qu'il est mis en œuvre à une température de fonctionnement T qui est sensiblement égale à la température de Curie Tc dudit semi-conducteur magnétique dilué (2). 23) Procédé selon la revendication 21 ou 22, caractérisé en ce que ladite température de fonctionnement T est supérieure à la température de Curie Tc dudit semi-conducteur magnétique dilué (2).
24) Procédé selon la revendication 23, caractérisé en ce que ladite température de fonctionnement T est égale ou supérieure à 293 K.
25) Procédé selon une des revendications 21 à 24, caractérisé en ce que lesdits porteurs de charge confinés induisent dans ledit puits quantique (8) des interactions d'échange ferromagnétiques de type RKKY.
26) Procédé selon une des revendications 21 à 25, caractérisé en ce que l'on associe audit composant (1', 1 ") au moins un volume solide ferromagnétique (21 , 41 ) qui est apte à supporter au moins deux états d'aimantation stables et qui est situé à proximité immédiate dudit composant en vue d'y créer un champ magnétique détecté par ce composant et présentant des intensités différentes en fonction de l'état d'aimantation dudit ou de chaque volume, pour former une structure de mémoire (30, 40) qui est utilisable dans une tête de lecture magnétique et qui comprend ledit composant et ledit ou chaque volume.
27) Procédé selon la revendication 26, caractérisé en ce que ledit ou chaque volume ferromagnétique (21 , 41 ) supporte plus de deux états d'informations, lesdits états correspondant à diverses valeurs du champ magnétique créé dans ledit composant (1', 1") par retournement de l'aimantation dudit ou de chaque volume entre plusieurs états.
28) Procédé selon la revendication 27, caractérisé en ce que l'on réalise le retournement d'aimantation dudit ou de chaque volume (21 , 41) ferromagnétique par injection d'un courant polarisé en spin depuis un autre volume ferromagnétique.
EP07731102A 2006-03-07 2007-03-07 Composant sensible a un champ magnetique comportant un semi-conducteur magnetique dilue, dispositifs l'incorporant et procede de mise en oeuvre Withdrawn EP2002275A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0602009A FR2898414B1 (fr) 2006-03-07 2006-03-07 Composant sensible a un champ magnetique comportant un semi-conducteur magnetique dilue, dispositifs l'incorporant et procede de mise en oeuvre.
PCT/FR2007/000404 WO2007101943A1 (fr) 2006-03-07 2007-03-07 Composant sensible a un champ magnetique comportant un semi-conducteur magnetique dilue, dispositifs l'incorporant et procede de mise en oeuvre

Publications (1)

Publication Number Publication Date
EP2002275A1 true EP2002275A1 (fr) 2008-12-17

Family

ID=37667424

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07731102A Withdrawn EP2002275A1 (fr) 2006-03-07 2007-03-07 Composant sensible a un champ magnetique comportant un semi-conducteur magnetique dilue, dispositifs l'incorporant et procede de mise en oeuvre

Country Status (4)

Country Link
US (1) US8154282B2 (fr)
EP (1) EP2002275A1 (fr)
FR (1) FR2898414B1 (fr)
WO (1) WO2007101943A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2015307B8 (fr) * 2007-07-13 2013-05-15 Hitachi Ltd. Dispositif magnétorésistif
US9142229B2 (en) 2013-03-15 2015-09-22 Seagate Technology Llc Heat assisted magnetic recording head having thermal sensor with high-TCR transparent conducting oxide
US9978412B1 (en) 2015-11-06 2018-05-22 Seagate Technology Llc Transparent thermocouple for heat-assisted magnetic recording device
CZ309143B6 (cs) * 2021-01-12 2022-03-02 Ústav Fyziky Plazmatu Av Čr, V. V. I. Chromový Hallův senzor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5089991A (en) * 1990-01-18 1992-02-18 Micro Unity Systems Engineering, Inc. Non-volatile memory cell
US5191223A (en) * 1991-07-03 1993-03-02 International Business Machines Corporation Device for selective magnetization and method
US5314547A (en) * 1992-09-28 1994-05-24 General Motors Corporation Rare earth slab doping of group III-V compounds
US6741494B2 (en) * 1995-04-21 2004-05-25 Mark B. Johnson Magnetoelectronic memory element with inductively coupled write wires
US6910382B2 (en) * 2002-06-21 2005-06-28 California Institute Of Technology Sensors based on giant planar hall effect in dilute magnetic semiconductors
KR100492482B1 (ko) * 2002-09-04 2005-06-03 한국과학기술연구원 Pembe로 제조된 상온 자성반도체 및 그 소자

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007101943A1 *

Also Published As

Publication number Publication date
US20090251139A1 (en) 2009-10-08
US8154282B2 (en) 2012-04-10
WO2007101943A1 (fr) 2007-09-13
FR2898414A1 (fr) 2007-09-14
FR2898414B1 (fr) 2008-06-06

Similar Documents

Publication Publication Date Title
EP1055259B1 (fr) Magnetoresistance a effet tunnel et capteur magnetique utilisant une telle magnetoresistance
KR100696960B1 (ko) 좁은 밴드갭을 갖는 이종 반도체에 있어서의 실온에서의이상 자기저항
US6574079B2 (en) Magnetic tunnel junction device and method including a tunneling barrier layer formed by oxidations of metallic alloys
EP2167985B1 (fr) Capteur de champ magnétique à faible bruit utilisant un transfert de spin lateral
EP3528256A1 (fr) Empilement magnetique, multicouche, jonction tunnel, point memoire et capteur comportant un tel empilement
WO2011092406A1 (fr) Magnetometre integre et son procede de fabrication
FR2902890A1 (fr) Procede et systeme pour ajuster la sensibilite d'un capteur magnetoresistif
WO2004083881A1 (fr) Capteur magnetoresistif comprenant un element sensible ferromagnetique/antiferromagnetique
EP0206865B1 (fr) Capteur à effet magnéto-résistif linéaire, son procédé de réalisation et son application dans un détecteur de domaines magnétiques
EP0909391A1 (fr) Capteur de champ magnetique en couche mince
JP3362774B2 (ja) 磁気抵抗センサ
JP3307593B2 (ja) 自己バイアス非磁性巨大磁気抵抗センサ
WO2007101943A1 (fr) Composant sensible a un champ magnetique comportant un semi-conducteur magnetique dilue, dispositifs l'incorporant et procede de mise en oeuvre
US20030214004A1 (en) Spin valve transistor, magnetic reproducing head and magnetic information storage system
EP0616484A1 (fr) Transducteur magnétorésistif et procédé de réalisation
FR2710753A1 (fr) Capteur de courant comprenant un ruban magnétorésistif et son procédé de réalisation.
EP0642181B1 (fr) Composant et capteur magnétorésistifs à motif géométrique répété
WO2001088562A1 (fr) Capteur de champ magnetique utilisant la magnetoresistance, et procede de fabrication
WO2000036429A1 (fr) Capteur de champ magnetique a magnetoresistance geante
KR980012641A (ko) 셀프 바이어싱, 비자성, 큰 자기저항 센서
EP0779610A2 (fr) Dispositif d'enregistrement à micropointe recouverte d'une multicouche magnétorésistive
JP2006099872A (ja) 磁気抵抗効果型磁気ヘッド及び磁気テープ装置
US8035927B2 (en) EMR magnetic sensor having its active quantum well layer extending beyond an over-lying semiconductor layer end with tab and lead structure for improved electrical contact
Solin et al. Thin, horizontal-plane Hall sensors for read heads in magnetic recording
US20100140109A1 (en) Nanoscale spintronic chemical sensor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080924

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20131001