EP2002123A1 - Pompe a fluide - Google Patents
Pompe a fluideInfo
- Publication number
- EP2002123A1 EP2002123A1 EP06806138A EP06806138A EP2002123A1 EP 2002123 A1 EP2002123 A1 EP 2002123A1 EP 06806138 A EP06806138 A EP 06806138A EP 06806138 A EP06806138 A EP 06806138A EP 2002123 A1 EP2002123 A1 EP 2002123A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- housing part
- pump
- stator
- motor housing
- fluid pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 27
- 238000002485 combustion reaction Methods 0.000 claims description 10
- 238000004804 winding Methods 0.000 claims description 6
- 238000011144 upstream manufacturing Methods 0.000 claims description 4
- 101100495769 Caenorhabditis elegans che-1 gene Proteins 0.000 claims 1
- 238000010276 construction Methods 0.000 abstract description 2
- 239000002826 coolant Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 239000002775 capsule Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000004512 die casting Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D13/00—Pumping installations or systems
- F04D13/02—Units comprising pumps and their driving means
- F04D13/06—Units comprising pumps and their driving means the pump being electrically driven
- F04D13/0606—Canned motor pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/52—Casings; Connections of working fluid for axial pumps
- F04D29/528—Casings; Connections of working fluid for axial pumps especially adapted for liquid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/52—Casings; Connections of working fluid for axial pumps
- F04D29/54—Fluid-guiding means, e.g. diffusers
- F04D29/548—Specially adapted for liquid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D3/00—Axial-flow pumps
Definitions
- the invention relates to a fluid pump for internal combustion engines with an electric motor having a rotor arranged in a motor housing and a stator, wherein the rotor is at least rotationally fixed on a drive shaft, an impeller which is mounted on the drive shaft, at least one stator, which is arranged in the flow direction of the fluid to be conveyed behind the impeller, and a pump housing, which surrounds the motor housing, the impeller and the stator and on which at the axial ends opposite a discharge nozzle and a suction nozzle are formed.
- Fluid pumps for internal combustion engines are used in particular as coolant pumps in the cooling circuit. Whereas in the past there was a direct coupling to the engine speed and the pumps were driven by belt drives or chain drives, in newer engines variable speed electric coolant pumps with split tubes are increasingly used to realize a modern heat management. An abundance in the flow rate can thus be prevented, so that, for example, a faster heating of the internal combustion engine after the cold start is possible.
- the flow rate can be regulated according to the actually required cooling capacity.
- Such a pump is known for example from MTZ no.11 Jg.2005 (S. 872-877).
- This electric coolant pump comprises an EC motor as a drive unit and has a pump head with axial inlet and tangential outlet.
- the components used here and in particular housing parts are relatively large for the power consumption of the pump, since a relatively large drive motor must be used.
- an electric fluid pump is disclosed in Halbaxialbauweise, with the same power consumption of the electric motor, this can be made smaller to achieve higher speeds, so that with smaller size equal flow rates can be achieved.
- It has a completely encapsulated electric motor, on whose outer side a stator is formed. In the flow direction behind the stator, however, obstacles to carry out the electrical contact with the electronics unit arise.
- the impeller side the entire motor is sealed by seals against the environment. To what extent such a seal on the rotating parts is sufficient at least questionable.
- the pump housing is made in two parts and has different gradations and through holes for the electrical contact. Depending on the desired maximum flow rate different electric motors and housings have to be designed. Complete twist freedom is probably not achieved due to the relatively short vanes. Also, the pressure loss through the feedthroughs of the electrical contact is relatively high, so that the gain in terms of power consumption of the electric motor is partially counteracted by the pressure losses occurring.
- This object is achieved in that support ribs between a radially outer pump housing part and a first radially inner motor housing part are arranged, which surrounds the electric motor radially, wherein the radially outer pump housing part with the first motor housing part and the support ribs is integrally formed.
- the radially outer pump housing part is cylindrical, whereby the connection to a suction-side and a pressure-side pump housing part is easy to produce and low losses occur.
- the support ribs are preferably shaped in such a way that they serve as a stator of the fluid pump. As a result, the support ribs assume the additional function of converting the tangential flow component into an axial flow component without higher pressure losses. The efficiency is increased and components saved.
- the support ribs have such a width that an electrical contact element of an electronic unit to the stator winding through a hole in one or more of the support ribs is feasible is particularly advantageous. This reduces the flow resistance and increases the efficiency of the pump, since internal internals are omitted in the flow.
- a suction-side pump housing part which widens in the flow direction is formed integrally with a housing part of an upstream valve. It can thus be achieved a modular design with upstream bypass or thermostatic valves, which in turn reduces parts and costs are saved.
- the first motor housing part limits the electric motor on the suction side.
- the production remains cost-effective, for example, in aluminum die casting, again the number of parts is low, the sensitivity to corrosion is low and assembly errors are avoided.
- the figure shows a side view of a fluid pump according to the invention in a sectional representation.
- the fluid pump shown in the figure which is particularly suitable as a coolant pump in internal combustion engines, is driven by an electronically commutated electric motor 1, which consists of a stator 2 and a rotor 4 arranged on a drive shaft 3.
- an impeller 5 is arranged, which is designed in a semi-axial design and by the rotation of the fluid to be delivered, in particular a coolant from a suction nozzle 6 is conveyed substantially axially through the fluid pump to a discharge nozzle 7.
- the electric motor 1 is arranged in a motor housing which consists of a first suction-side motor housing part 8 and a second pressure-side motor housing part 9.
- the suction-side motor housing part 8 Through the suction-side motor housing part 8, the drive shaft 3 is guided, on which the impeller 5 is arranged.
- the suction-side motor housing part 8 has a bore 10 in which a first bearing 11 for supporting the drive shaft 3 is arranged.
- the spacer serves to extend the distance of the first bearing 11 to a second bearing 15, whereby an angular error in the manufacture of the bore 10 for receiving the bearing can be better compensated.
- a rotor laminated core 16 is arranged on the shaft, which has slits extending in the axial direction for receiving magnets 17, which correspond in a known manner to a stator winding 18.
- the rotor 4 is bounded axially and radially by a capsule 19.
- the stator winding 18 is wound on an insulating body 20 and axially limited in a known manner a stator lamination 21.
- This Statorblechmulti 21 is to close of the magnetic circuit positively connected to a return plate 22.
- This return plate 22 abuts against a stop 23, which is formed on an inner surface of the first suction-side motor housing part 8.
- the rotor 4 is separated from the stator 2 by a split tube 24, which rests on the suction side of the pump in a corresponding receiving opening 25 of the suction-side motor housing part 8 and the opposite axial end is in turn arranged in a corresponding receiving opening 26 of the pressure-side motor housing part 9.
- the stator 2 with its sensitive winding 18 thus lies in a dry space separated by the two motor housing parts 8 and 9 and the can 24.
- a closure member 27 is arranged, in which the second bearing 15 is arranged for mounting the drive shaft 3. Axially, this closure member 27 is secured by the pressure-side motor housing part 9, which is arranged with the interposition of a seal 28 in a receiving opening 29 of the suction-side motor housing part 8.
- the support ribs 31 are shaped such that they also serve as a stator, so that no additional stator immediately behind the impeller 5 is necessary. This allows a simple one-piece production of the suction-side motor housing 8 with the support ribs and a cylindrical ra- dial outer pump housing part 32. This pump housing part 32 surrounds the radially inner motor housing part 8 and the entire electric motor. 1
- the suction side in the flow direction expanding pump housing part 33 comprises the suction nozzle 6 which is designed as a cylindrical portion 35 and an adjoining widening portion 36.
- the semi-axial impeller 5 of the fluid pump is arranged in the transition region 37 between the first portion 35 and the second portion 36.
- the expanding section 36 is followed by another short cylindrical section 38 of larger diameter, in order to achieve a clean transition to the cylindrical pump housing part 32.
- grooves 39 are formed in the identical pump housing parts 33, 34, into which radial ends 40 of return vanes 41 engage.
- These return blades 41 serve as a Nachleitapparat 42 by means of which behind the discharge nozzle 7 a completely twist-free flow is achieved.
- This Nachleitapparat 42 is formed on a surface 43 of the pressure-side motor housing part 9 and is therefore necessary that the serving as a stator support ribs 31 are made relatively short and in this area of the fluid pump complete swirl reduction is not achieved in the rule.
- the pressure-side motor housing part 9 can be produced in plastic, while the suction-side motor housing part is made as far as possible in aluminum and is therefore more expensive.
- the fluid to be delivered in particular the coolant
- the impeller 5 which consists of a plurality of impeller blades 44
- a part of the fluid flows behind the impeller 5 through holes 45 which are formed in the suction-side motor housing part 8. Another part of the fluid also flows behind the impeller 5 to the drive shaft 3 and here between the first bearing 11 and the drive shaft 3, so that the existing sliding bearing is sufficiently lubricated.
- coolant is in the rotor chamber, which in turn is continued between the drive shaft 3 and the second bearing 15 and by non-visible holes in the closure member 27 in a space 46 behind it.
- This space 46 is connected via a further bore 47, which extends axially through the pressure-side motor housing part 9, with the space behind it. This results in both a lubrication of the bearings 11, 15 as well as a possibility for cooling and removal of possibly existing amounts of air in the rotor chamber.
- This semi-axial pump is characterized in particular by the fact that it is very small to build, since the same power consumption an equal capacity with a smaller motor size and increased speed compared to known pumps can be achieved. This is achieved in particular by the extremely reduced pressure losses in such a design, but also by the semi-axial design.
- the suction-side pump housing part 33 it is also conceivable, by the simplicity, in particular of the suction-side pump housing part 33, to carry this integrally with valve housing parts, so that the pump housing part 33 has, for example, a receptacle for a bypass or an integrated thermostatic valve. Also, parts of the housing of a sliding ring valve could be made in one piece with the suction-side pump housing part 33. It should be noted that the illustrated embodiment is merely a possible embodiment of the invention, the construction of which is subject to change without departing from the scope of the claims.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Rotary Pumps (AREA)
- Valves And Accessory Devices For Braking Systems (AREA)
- Details And Applications Of Rotary Liquid Pumps (AREA)
Abstract
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005054026A DE102005054026A1 (de) | 2005-11-10 | 2005-11-10 | Fluidpumpe |
PCT/EP2006/009761 WO2007054169A1 (fr) | 2005-11-10 | 2006-10-10 | Pompe a fluide |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2002123A1 true EP2002123A1 (fr) | 2008-12-17 |
EP2002123B1 EP2002123B1 (fr) | 2011-09-14 |
Family
ID=37667636
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06806138A Not-in-force EP2002123B1 (fr) | 2005-11-10 | 2006-10-10 | Pompe a fluide |
Country Status (7)
Country | Link |
---|---|
US (1) | US20110164995A1 (fr) |
EP (1) | EP2002123B1 (fr) |
JP (1) | JP2009515084A (fr) |
CN (1) | CN101356374B (fr) |
AT (1) | ATE524656T1 (fr) |
DE (1) | DE102005054026A1 (fr) |
WO (1) | WO2007054169A1 (fr) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105749394B (zh) * | 2009-08-11 | 2018-12-04 | 瑞思迈发动机及马达技术股份有限公司 | 单级轴对称鼓风机和便携式通风机 |
FR2984035A1 (fr) * | 2011-12-13 | 2013-06-14 | Victor Jean Ballestra | Moteur pour pompe ou broyeur sanitaire, du type rotor-stator immerge dans de l'huile dans une carcasse etanche |
DE102013009451A1 (de) * | 2013-06-06 | 2014-12-11 | Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg | Elektrische Kühlmittelpumpe |
DE102014113412B3 (de) * | 2014-09-17 | 2015-09-24 | Nidec Gpm Gmbh | Strömungsgekühlte Kühlmittelpumpe mit Nassläufer |
US20190120249A1 (en) * | 2017-10-25 | 2019-04-25 | Flowserve Management Company | Modular, multi-stage, integral sealed motor pump with integrally-cooled motors and independently controlled rotor speeds |
US11323003B2 (en) * | 2017-10-25 | 2022-05-03 | Flowserve Management Company | Compact, modular, pump or turbine with integral modular motor or generator and coaxial fluid flow |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1949796A (en) * | 1931-08-29 | 1934-03-06 | Himmelwerk Ag | Pump or impeller |
US2824520A (en) * | 1952-11-10 | 1958-02-25 | Henning G Bartels | Device for increasing the pressure or the speed of a fluid flowing within a pipe-line |
US2855141A (en) * | 1955-11-25 | 1958-10-07 | Jacobus C Van Rijn | Two-piece cantilever fan and motor |
US2968249A (en) * | 1958-09-04 | 1961-01-17 | Borg Warner | Axial flow apparatus |
US3102679A (en) * | 1962-01-15 | 1963-09-03 | Loren Cook Company | Centrifugal impeller units |
US3135212A (en) * | 1962-03-29 | 1964-06-02 | Symington Wayne Corp | Submersible pump |
JPS4119177Y1 (fr) * | 1964-03-12 | 1966-09-07 | ||
US3398694A (en) * | 1966-08-11 | 1968-08-27 | Marine Constr & Design Co | Submersible pump device for net brailing |
DE2159025C2 (de) * | 1971-11-29 | 1982-12-30 | Robert Bosch Gmbh, 7000 Stuttgart | Kraftstofförderaggregat, bestehend aus einer Seitenkanalpumpe und einem Elektromotor |
FR2222885A5 (fr) * | 1973-03-23 | 1974-10-18 | Lucas Industries Ltd | |
US4213745A (en) * | 1978-09-11 | 1980-07-22 | Roberts Samuel A | Pump for central heating system |
US5487644A (en) * | 1987-02-13 | 1996-01-30 | Ishigaki Mechanical Industry Co., Ltd | Pump having a single or a plurality of helical blades |
DE4312154A1 (de) * | 1992-04-14 | 1993-10-21 | Ebara Corp | Aus Metallblech hergestelltes Pumpengehäuse |
JP2958218B2 (ja) * | 1993-07-16 | 1999-10-06 | 株式会社荏原製作所 | ポンプ |
US6056518A (en) * | 1997-06-16 | 2000-05-02 | Engineered Machined Products | Fluid pump |
EP0987441B1 (fr) * | 1998-09-15 | 2003-12-10 | Wilo Ag | Pompe à tube |
CN1093607C (zh) * | 1998-09-25 | 2002-10-30 | 振源(厦门)工业有限公司 | 制造密封式微型潜水泵的方法 |
US6135098A (en) * | 1998-10-06 | 2000-10-24 | Engineered Machine Products, Inc. | Flow-through controllable air charger |
US6659737B2 (en) * | 2001-02-05 | 2003-12-09 | Engineered Machined Products, Inc. | Electronic fluid pump with an encapsulated stator assembly |
US6761532B2 (en) * | 2001-03-14 | 2004-07-13 | Vascor, Inc. | Touch down of blood pump impellers |
DE20201183U1 (de) * | 2002-01-25 | 2002-07-04 | Allweiler Ag, 78315 Radolfzell | Pumpe mit einen Antriebsmotor durchsetzender Pumpenwelle |
JP4122852B2 (ja) * | 2002-06-14 | 2008-07-23 | 株式会社デンソー | 冷却水用ポンプ |
US6702555B2 (en) * | 2002-07-17 | 2004-03-09 | Engineered Machined Products, Inc. | Fluid pump having an isolated stator assembly |
US6843638B2 (en) * | 2002-12-10 | 2005-01-18 | Honeywell International Inc. | Vane radial mounting apparatus |
-
2005
- 2005-11-10 DE DE102005054026A patent/DE102005054026A1/de not_active Withdrawn
-
2006
- 2006-10-10 AT AT06806138T patent/ATE524656T1/de active
- 2006-10-10 JP JP2008539272A patent/JP2009515084A/ja active Pending
- 2006-10-10 US US12/093,419 patent/US20110164995A1/en not_active Abandoned
- 2006-10-10 WO PCT/EP2006/009761 patent/WO2007054169A1/fr active Application Filing
- 2006-10-10 EP EP06806138A patent/EP2002123B1/fr not_active Not-in-force
- 2006-10-10 CN CN2006800506623A patent/CN101356374B/zh not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
See references of WO2007054169A1 * |
Also Published As
Publication number | Publication date |
---|---|
DE102005054026A1 (de) | 2007-05-16 |
WO2007054169A1 (fr) | 2007-05-18 |
JP2009515084A (ja) | 2009-04-09 |
CN101356374A (zh) | 2009-01-28 |
ATE524656T1 (de) | 2011-09-15 |
EP2002123B1 (fr) | 2011-09-14 |
US20110164995A1 (en) | 2011-07-07 |
CN101356374B (zh) | 2011-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3179106A1 (fr) | Pompe à liquide entraînée par un moteur électrique | |
EP0346730B1 (fr) | Unité de pompe submersible | |
EP3374642B1 (fr) | Pompe à liquide axiale électrique pour véhicule automobile | |
EP1725775A1 (fr) | Ensemble comprenant un moteur a induit exterieur a commutation electronique | |
EP2002123B1 (fr) | Pompe a fluide | |
DE102014201487B3 (de) | Kreiselpumpenlaufrad | |
DE102016115291A1 (de) | Elektrische Kühlmittelpumpe | |
EP1767786A1 (fr) | Unité de pompe submersible | |
EP1945955B1 (fr) | Pompe a fluide | |
WO2007033818A1 (fr) | Gaine | |
DE102011055599A1 (de) | Pumpe für einen Temperaturkreislauf in einem Fahrzeug | |
EP2473740A1 (fr) | Pompe centrifuge à deux étages | |
WO2016000930A1 (fr) | Compresseur électrique pour moteur à combustion interne | |
WO2007033817A1 (fr) | Groupe motopompe | |
WO2010145730A1 (fr) | Ensemble rotor pour une machine à énergie fluidique, et turbocompresseur entraîné électriquement | |
WO2013007278A1 (fr) | Pompe à vide destinée à être utilisée dans le domaine des véhicules automobiles | |
EP1945954A1 (fr) | Pompe a fluide | |
DE102011077777B3 (de) | Tauchpumpe und Verfahren zum Zusammenbau einer Tauchpumpe | |
EP3542066B1 (fr) | Turbomachine à double flux | |
WO2016000929A1 (fr) | Compresseur électrique pour moteur à combustion interne | |
EP1310672B1 (fr) | Pompe à carburant pour un système d'alimentation de moteur à combustion interne et système d'alimentation | |
EP2626510B1 (fr) | Pompe à vide pour agrégat auxiliaire de véhicule automobile | |
DE19949322C1 (de) | Kühlgebläse, insbesondere Kühlerventilator für Kraftfahrzeuge | |
DE202006005067U1 (de) | Hydraulikpumpe | |
DE102004047637B4 (de) | Elektrisch betriebene Pumpe mit Außenrotor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080407 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502006010190 Country of ref document: DE Effective date: 20111110 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20110914 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110914 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110914 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110914 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20110914 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110914 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110914 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111215 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110914 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
BERE | Be: lapsed |
Owner name: PIERBURG G.M.B.H. Effective date: 20111031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120114 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110914 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110914 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110914 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110914 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110914 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110914 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120116 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111031 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110914 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111031 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111031 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110914 |
|
26N | No opposition filed |
Effective date: 20120615 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20111214 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502006010190 Country of ref document: DE Effective date: 20120615 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111214 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 524656 Country of ref document: AT Kind code of ref document: T Effective date: 20111010 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111010 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111010 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110914 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110914 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20181024 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20181022 Year of fee payment: 13 Ref country code: FR Payment date: 20181023 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502006010190 Country of ref document: DE Representative=s name: TERPATENT PATENTANWAELTE TER SMITTEN EBERLEIN-, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502006010190 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191010 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191031 |