EP2000557B1 - Erosionssperre für Wärmedämmschichten - Google Patents

Erosionssperre für Wärmedämmschichten Download PDF

Info

Publication number
EP2000557B1
EP2000557B1 EP20070252248 EP07252248A EP2000557B1 EP 2000557 B1 EP2000557 B1 EP 2000557B1 EP 20070252248 EP20070252248 EP 20070252248 EP 07252248 A EP07252248 A EP 07252248A EP 2000557 B1 EP2000557 B1 EP 2000557B1
Authority
EP
European Patent Office
Prior art keywords
suspension
range
workpiece
step comprises
barrier coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP20070252248
Other languages
English (en)
French (fr)
Other versions
EP2000557A1 (de
Inventor
Joshua E. Persky
David L. Lambert
David A. Litton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Technologies Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Priority to EP20070252248 priority Critical patent/EP2000557B1/de
Publication of EP2000557A1 publication Critical patent/EP2000557A1/de
Application granted granted Critical
Publication of EP2000557B1 publication Critical patent/EP2000557B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/02Electrophoretic coating characterised by the process with inorganic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/286Particular treatment of blades, e.g. to increase durability or resistance against corrosion or erosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/80Repairing, retrofitting or upgrading methods

Definitions

  • the present invention relates to an erosion barrier for thermal barrier coatings and to processes for forming the erosion barrier.
  • thermal barrier coating to protect the underlying substrate.
  • High velocity particles in the gas path of an engine cause considerable erosion damage to the thermal barrier coating.
  • the erosion of the thermal barrier coating leads to premature failure of the coated turbine engine part.
  • EP 0783043 discloses a thermal barrier coating having an erosion-resistant composition dispersed within or overlaying a ceramic layer
  • EP 1788122 discloses a process for forming a protective deposit over a ceramic thermal barrier layer.
  • the present invention provides a process for forming an erosion barrier for protecting a thermal barrier coating on a workpiece as claimed in claim 1.
  • a hard exterior shell is formed that is strongly bonded to the thermal barrier coating.
  • the erosion barrier may be formed from aluminum oxide, silicon carbide, silicon nitride, and molybdenum disilicide.
  • the present invention involves forming a hard shell exterior coating which acts as an erosion barrier on a thermal barrier coating applied to a substrate such as a turbine engine component.
  • the exterior coating erosion barrier is formed by electrophoretic deposition.
  • the workpiece 50 such as a turbine engine component or part, forming the substrate is immersed in a suspension 10 and electrically connected to one terminal of a voltage source 12.
  • a thermal barrier coating 52 such as a zirconia based thermal barrier coating, is applied to the turbine engine component 50.
  • the thermal barrier coating 52 may be applied to the turbine engine component using any suitable technique known in the art.
  • the suspension 10 consists of very fine ceramic particles ranging in size from about 0.02 microns to 0.2 microns in sol form. Preferably, the ceramic particles have a size in the range of from about 0.02 to 0.05 microns.
  • the ceramic particles may be suspended in a solvent such as water, alcohols including, but not limited to, ethanol or methanol, and water-alcohol mixtures.
  • a solvent such as water, alcohols including, but not limited to, ethanol or methanol, and water-alcohol mixtures.
  • organic solvents such as tricholoethane, however, such use may be prohibited by health and environmental issues.
  • an aluminum oxide (alumina) sol is put in suspension in water, alcohol, or mixtures thereof, and stabilized by the addition of sufficient acid to keep the pH of the solution below 4.25. This results in a positive charge on the alumina particles, such that they repel each other, avoiding agglomeration and sedimentation of the particles out of solution.
  • Candidates for acids to be added to the solution include, but is not limited to, nitric acid, hydrochloric acid, acetic acid, and stearic acid. Reducing the pH of the solution as low as 2.0 is possible, but low pHs could result in acid attack of any exposed metal on the parts or components to be coated in the suspension.
  • the preferred pH for alumina sol suspensions in water and/or alcohol is from 3.0 to 4.5.
  • the part or component 50 to be coated may be strongly biased with a negative DC voltage to accelerate the suspended particles in the suspension toward the thermal barrier coated surface of the part or component 50.
  • Typical negative biasing voltages range from about 50 to 2000V, preferably from about 900 to 1100V. Higher voltages lead to higher deposition rates, but are potentially hazardous by increasing the system's potential energy to a level that can compromise workplace safety.
  • alumina sol in suspension In addition to alumina sol in suspension, other hard ceramic materials that would be suitable include silicon nitride sol, silicon carbide sol, and molybdenum disilicide sol.
  • the suitable pH range required to produce a stable suspension varies with the composition of the fine ceramic particles in the suspension. This is due to surface chemistry variations which lead to different buildups of charge on the surfaces of the particles as a function of the pH of the suspension. At low pH, surfaces are positively charged, and at high pH, surfaces are negatively charged. Thus, there exists a pH level that corresponds to zero surface charge on the particles, which is known as the isoelectric point or pHiep.
  • Alumina has a pHiep of 4.5, while silicon nitride has a pHiep of 9.0, silicon nitride has a pHiep of 5.4, and molybdenum disilicide has a pHiep of 2.2.
  • the present invention may be used to form hard shell materials deposited on zirconia based thermal barrier coatings, it may also be advantageous to operate in a pH range that results in negative charge on the zirconia based coatings. This can be done by operating above the pHiep of zirconia which is 4.0. With regard to alumina particles in a suspension, the biasing of the zirconia coating would supply plenty of negative charge to the zirconia surface, thereby extending the useable pH lower limit downwards to 3.0.
  • silicon nitride may have an advantage over the other coatings since its pHiep is high at 9.0. This system has the additional advantage of being able to be deposited at neutral pH, which has health and safety advantages.
  • the pH level at which the electrophoretic deposition is carried out may be raised by modifying the surface chemistry of the sols prior to putting them into suspension. For example, nitriding alumina sols, or aluminizing molybdenum disilicide sols may raise the operating pH level, minimizing damage to parts or components 50.
  • Hardness of the hard shell materials at room temperature are:
  • the concentration of sols in the suspensions may range from about 0.001 wt% to 5.0 wt% solids. Preferably, the concentration of sols in the suspensions may be from about 0.005 to 0.05 wt% solids.
  • the part or component 50 After the part or component 50 is removed from the suspension after the erosion barrier coating has been deposited, it may be dried using any suitable drying technique known in the art. Drying may be carried out at a temperature in the range of from about room temperature to 650°F (20°C to 343°C). Drying times at room temperature may range from about 1.0 to 20 hours, preferably from about 3.0 to 10 hours. At drying temperatures in the range of 250°F to 650°F (121°C to 343°C), the drying times may be reduced from about 0.5 to 5.0 hours with a preferred drying time range of from about 1.0 to 2.0 hours.
  • the coated part or component may be subjected to a sintering operation to form strong bonds within the deposited erosion barrier coating and between the erosion barrier coating and the thermal barrier coating. Also, sintering reduces porosity in the erosion barrier coating which drives the hardness values toward the bulk hardness values discussed hereinbefore. Sintering may be carried out using any suitable technique known in the art. Sintering times may range from about 3.0 to 4.0 hours at a temperature in the range of from about 1950°F to 2000°F (1066°C to 1093°C).
  • one or more dispersants such as polymethyl methacrylate alcohol and ammonium stearate could be added to the suspension to avoid agglomeration and settling of particles.
  • the dispersant(s) may be present in a concentration from 0.01 to 1.0 wt%, preferably from 0.4 to 0.8 wt%.
  • polyvinyl alcohol can be added as a binder to the suspension to increase the strength of the hard shell prior to sintering if necessary.
  • the polyvinyl alcohol may be added in an amount from 0.1 to 3.0 wt%, preferably from 1.0 to 2.0 wt%.
  • the goal of the polyvinyl alcohol binder addition is to coat each particle of sol in the suspension with a monolayer of binder.
  • the processes of the present invention preferably yield a component or part 50 having a thermal barrier coating (TBC) 52 and a hard shell erosion barrier coating 54 deposited over the thermal barrier coating 52.
  • TBC thermal barrier coating
  • An infiltrated region 56 may be formed between the coating 54 and the coating 52.
  • the infiltrated region may constitute from 5.0 to 100% of the thickness of the TBC measured down from the surface of the TBC.
  • the thickness of the infiltrated region is from 10-20% of the TBC thickness.
  • the component or part 50 may be formed from any suitable metallic material known in the art such as a nickel based superalloy.
  • TBCs Erosion of TBCs tends to happen on specific areas of turbine engine components. For example, blade tips get eroded, especially on the suction side. Outer buttresses of vanes also get eroded due to centrifugal forces. Most particulates in the turbine gas stream are centrifuged out to the outer diameter of the turbine, where they do most of their damage. Any relatively steep contours on the turbine engine components get eroded, simply because steep contours increase the local pressure on the part surface by compressing the gas stream, which increases the frequency of collisions with both molecules and any particulates in the gas stream--thus increasing erosion. To minimize the weight added by the hard shell coating and to minimize any potential detrimental effects a hard shell coating might have on TBCs on any turbine engine component, such as reduction of strain tolerance, it would be beneficial to put the hard shell coating only on areas with known susceptibility to erosion.
  • a hard shell coating on only a portion of a turbine engine component may be done using a painting process, a dipping process, or an electrophoretic approach.
  • An organic maskant may be applied to all surfaces not intended to be coated.
  • the placement of the hard shell coating may be done by applying a UV curable resin, such as a commercially available resin known as PHOTORESIST, on the turbine engine component. Then one could apply a sheet metal mask to the areas onto which the deposition of the hard coating is desired. Thereafter, the resin-coated, masked component may be exposed to UV light for a time period from 1.0 to 10 minutes to cure all exposed resin. After curing, the sheet metal mask is removed. Any uncured resin may be washed off. Then one can proceed to the hard coating process. If photolithography is used, drying may be carried out at a temperature in the range of from 600°F to 900°F (316°C to 482°C) for a time in the range of from 2.0 to 4.0 hours to burn off the cured resin.
  • a UV curable resin such as a commercially available resin known as PHOTORESIST
  • the processes of the present invention may be used to form an erosion barrier coating on a wide variety of parts and components having a thermal barrier coating thereon.
  • the parts or components which may be treated include, but are not limited, any part having an airfoil, any part having a seal, airfoils, seals, and the like. Examples of such parts or components include blades, vanes, stators, mid-turbine frames, combustor panels, combustor cans, combustor bulkhead panels, disk side plates, and fuel nozzle guides.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Claims (21)

  1. Verfahren zum Bilden einer Erosionssperre zum Schützen einer Wärmesperrschicht (52) an einem Werkstück (50), wobei das Verfahren folgende Schritte umfasst:
    Bilden einer Suspension (10) aus Keramikpartikeln, die in einem Lösungsmittel suspendiert werden; und
    Abscheiden von Partikeln in der Suspension auf die Wärmesperrschicht (52);
    dadurch gekennzeichnet, dass:
    der Schritt des Bildens der Suspension das Zusetzen einer Säure oder einer Basis zu der Suspension (10) umfasst, derart, dass die Suspension einen pH-Wert von nicht höher als 9,0 aufweist;
    wobei der Schritt des Abscheidens elektrophoretisches Abscheiden der Partikel in der Suspension (10) auf der Wärmesperrschicht durch Vorspannen des Werkstücks mit der Wärmesperrschicht (52) mit einer Gleichspannung umfasst, die ausreicht, um suspendierte Partikel in der Suspension (10) zu einer Oberfläche des Werkstücks (50) hin zu beschleunigen; und
    durch Trocknen der Partikel, die auf der Wärmesperrschicht (52) abgeschieden wurden, um eine Erosionssperrschicht (54) zu bilden, die eine Vickers-Härte im Bereich von 1300 bis 2750 kgf/mm2 (12,8 bis 27,0 GPa) aufweist.
  2. Verfahren nach Anspruch 1, wobei der Schritt des Bildens der Suspension das Bilden einer Suspension mithilfe eines Lösungsmittels umfasst, das ausgewählt wird aus der Gruppe bestehend aus Wasser, Alkohol und Gemischen davon.
  3. Verfahren nach Anspruch 1 oder 2, wobei der Schritt des Bildens der Suspension das Bilden einer Suspension (10) mit Keramikpartikeln umfasst, die ausgewählt werden aus der Gruppe bestehend aus Aluminiumoxid, Siliziumnitrid, Siliziumkarbid und Molybdändisilizid.
  4. Verfahren nach einem der vorangehenden Ansprüche, wobei der Schritt des Bildens der Suspension das Bilden einer Suspension mit Keramikpartikeln umfasst, die eine Partikelgröße im Bereich von 0,02 bis 0,2 Mikrometern aufweisen.
  5. Verfahren nach einem der vorangehenden Ansprüche, ferner umfassend Halten der Suspension (10) auf einer Temperatur im Bereich von Raumtemperatur (68 °F) bis 120 °F (20 °C bis 49 °C).
  6. Verfahren nach einem der vorangehenden Ansprüche, ferner umfassend Bilden der Suspension (10) derart, dass die Keramikpartikel in einer Konzentration von 0,001 bis 5,0 Gew.-% vorliegen.
  7. Verfahren nach Anspruch 6, umfassend Bilden der Suspension (10) derart, dass die Keramikpartikel in einer Konzentration von 0,005 bis 0,05 Gew.-% vorliegen.
  8. Verfahren nach einem der vorangehenden Ansprüche, wobei der Schritt des Zusetzens das Zusetzen einer Säure umfasst, die den pH-Wert der Suspension bei einem von: (i) unter 4,25; und (ii) im Bereich von 2,0 bis 4,25 hält.
  9. Verfahren nach Anspruch 8, wobei der Schritt des Zusetzens einer Säure umfasst, die ausgewählt wird aus der Gruppe bestehend aus Salpetersäure, Salzsäure, Essigsäure und Stearinsäure.
  10. Verfahren nach einem der Ansprüche 1 bis 7, wobei der Schritt des Zusetzens einer Basis das Zusetzen einer Basis umfasst, die ausgewählt wird aus der Gruppe bestehend aus Aluminiumhydroxid und Ammoniumhydroxid, um den pH-Wert der Suspension (10) zu erhöhen.
  11. Verfahren nach einem der vorangehenden Ansprüche, ferner umfassend Zusetzen von 0,01 bis 1,0 Gew.-% eines Dispersionsmittels, ausgewählt aus der Gruppe bestehend aus Polymethylmethacrylatalkohol und Ammoniumstearat zu der Suspension, um ein Agglomerieren und ein Absetzen der Partikel zu vermeiden.
  12. Verfahren nach einem der vorangehenden Ansprüche, ferner umfassend Zusetzen von 0,1 bis 3,0 Gew.-% eines Bindemittels zu der Suspension, um die Festigkeit eines Mantels zu erhöhen, der durch die Erosionssperre gebildet wird.
  13. Verfahren nach Anspruch 12, wobei der Schritt des Zusetzens des Bindemittels das Zusetzen von 1,0 bis 2,0 Gew.-% Polyvinylalkohol umfasst.
  14. Verfahren nach einem der vorangehenden Ansprüche, wobei der Schritt des Abscheidens das Anlegen einer Spannung im Bereich von 50 bis 2000 V an das Werkstück (50) umfasst.
  15. Verfahren nach Anspruch 14, wobei der Schritt des Abscheidens das Anlegen einer Spannung im Bereich von 900 bis 1100 V an das Werkstück (50) umfasst.
  16. Verfahren nach einem der vorangehenden Ansprüche, ferner umfassend Entfernen des Werkstücks (50) mit den abgeschiedenen Partikeln aus der Suspension, wobei der Schritt des Trocknens das Trocknen des Werkstücks bei einer Temperatur im Bereich von Raumtemperatur (68 °F) bis 650 °F (20 °F bis 343 °C) für eine Dauer im Bereich von 0,5 bis 20 Stunden umfasst.
  17. Verfahren nach Anspruch 16, wobei der Schritt des Trocknens eins der Folgenden umfasst: (i) Trocknen des Werkstücks bei Raumtemperatur für eine Dauer im Bereich von 1 bis 20 Stunden; (ii) Trocknen des Werkstücks bei Raumtemperatur für eine Dauer im Bereich von 3 bis 10 Stunden; (iii) Trocknen des Werkstücks bei einer Temperatur im Bereich von 250 °F bis 650 °F (121 °C bis 343 °C) für eine Dauer im Bereich von 0,5 bis 5,0 Stunden; und (iv) Trocknen des Werkstücks bei einer Temperatur im Bereich von 250 °F bis 650 °F (121 °C bis 343 °C) für eine Dauer im Bereich von 1,0 bis 2,0 Stunden.
  18. Verfahren nach einem der vorangehenden Ansprüche, ferner umfassend Sintern des Werkstücks (50) bei einer Temperatur im Bereich von 1950 °F bis 2000 °F (1066 °C bis 1093 °C) für eine Dauer im Bereich von 3,0 bis 4,0 Stunden.
  19. Verfahren nach einem der vorangehenden Ansprüche, wobei die Wärmesperrschicht (52) eine auf Zirkonium basierte Wärmesperrschicht umfasst.
  20. Verfahren nach einem der vorangehenden Ansprüche, wobei eine infiltrierte Region (56) zwischen der Wärmesperrschicht (52) und der Erosionssperrschicht (54) gebildet wird.
  21. Verfahren nach einem der vorangehenden Ansprüche, wobei das Werkstück (50) ein Bauteil eines Turbinentriebwerks umfasst.
EP20070252248 2007-06-04 2007-06-04 Erosionssperre für Wärmedämmschichten Expired - Fee Related EP2000557B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20070252248 EP2000557B1 (de) 2007-06-04 2007-06-04 Erosionssperre für Wärmedämmschichten

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20070252248 EP2000557B1 (de) 2007-06-04 2007-06-04 Erosionssperre für Wärmedämmschichten

Publications (2)

Publication Number Publication Date
EP2000557A1 EP2000557A1 (de) 2008-12-10
EP2000557B1 true EP2000557B1 (de) 2015-04-29

Family

ID=38477385

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20070252248 Expired - Fee Related EP2000557B1 (de) 2007-06-04 2007-06-04 Erosionssperre für Wärmedämmschichten

Country Status (1)

Country Link
EP (1) EP2000557B1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3707297B1 (de) * 2017-11-21 2023-06-21 Safran Helicopter Engines Verfahren zur herstellung einer wärmebarriere an einem teil einer turbomaschine

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090274850A1 (en) 2008-05-01 2009-11-05 United Technologies Corporation Low cost non-line-of -sight protective coatings
US8186946B2 (en) 2009-04-17 2012-05-29 United Technologies Corporation Abrasive thermal coating
ITMI20090934A1 (it) * 2009-05-27 2010-11-28 Elettroplast Spa Procedimento elettroforetico di deposizione di rivestimenti
WO2011007019A1 (es) * 2009-07-15 2011-01-20 Fundacion Cidetec Procedimiento para la obtención de un recubrimiento cerámico mediante deposición electroforética
DE102011100724A1 (de) * 2011-05-06 2012-11-08 Li-Tec Battery Gmbh Elektrode für Lithiumionen-Batterien
CA2938031C (fr) 2014-01-29 2022-05-10 Universite Paul Sabatier - Toulouse Iii Procede de reparation localisee d'une barriere thermique endommagee
JP6908973B2 (ja) * 2016-06-08 2021-07-28 三菱重工業株式会社 遮熱コーティング、タービン部材、ガスタービン、ならびに遮熱コーティングの製造方法
CN109913870A (zh) * 2019-04-30 2019-06-21 江苏理工学院 一种铌合金表面MoSi2涂层的制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2007501A1 (en) * 1989-02-01 1990-08-01 Jau-Ho Jean Process for the electrophoretic deposition of barrier coatings on precious metals
WO1995026431A1 (en) * 1994-03-29 1995-10-05 United Technologies Corporation Electrophoretic process for the deposition of multiple coatings on fibers
US5683825A (en) 1996-01-02 1997-11-04 General Electric Company Thermal barrier coating resistant to erosion and impact by particulate matter
US6261643B1 (en) * 1997-04-08 2001-07-17 General Electric Company Protected thermal barrier coating composite with multiple coatings
US6444271B2 (en) * 1999-07-20 2002-09-03 Lockheed Martin Corporation Durable refractory ceramic coating
DE10119538C2 (de) * 2001-04-21 2003-06-26 Itn Nanovation Gmbh Verfahren zur Beschichtung von Substraten und deren Verwendungen
EP1745161A1 (de) * 2004-01-22 2007-01-24 The University of Manchester Keramikbeschichtung
US20070116883A1 (en) 2005-11-22 2007-05-24 General Electric Company Process for forming thermal barrier coating resistant to infiltration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3707297B1 (de) * 2017-11-21 2023-06-21 Safran Helicopter Engines Verfahren zur herstellung einer wärmebarriere an einem teil einer turbomaschine

Also Published As

Publication number Publication date
EP2000557A1 (de) 2008-12-10

Similar Documents

Publication Publication Date Title
US8470458B1 (en) Erosion barrier for thermal barrier coatings
EP2000557B1 (de) Erosionssperre für Wärmedämmschichten
US7579087B2 (en) Thermal barrier coating compositions, processes for applying same and articles coated with same
EP1626039B1 (de) Verfahren zur Beschichtung von komplex geformten Strukturen
US7476703B2 (en) In-situ method and composition for repairing a thermal barrier coating
US7780832B2 (en) Methods for applying mitigation coatings, and related articles
EP1829847B1 (de) Verfahren zur Herstellung einer Schutzschicht
EP1630256B1 (de) Nichthaftende Vorrichtungen zur Maskierung und Verfahren zur Herstellung derselben
US6827969B1 (en) Field repairable high temperature smooth wear coating
EP2113586A2 (de) Preisgünstige, nicht in der Sichtlinie angeordnete Schutzüberzüge
EP2298951B1 (de) Zusammensetzung und Verfahren für ein Wärmebeschichtungssystem
EP1829989A2 (de) Dichte Schutzschichten, Herstellungsverfahren dafür und beschichtete Artikel
US20090098394A1 (en) Strain tolerant corrosion protecting coating and tape method of application
EP1369404B1 (de) Verfahren zum Schutz eines Substrats mit einer mehrschichtigen Oxid/Phospaht Beschichtung, die bei mehreren Temperaturstufen gehärtet wird
JP2008297613A (ja) 加工物の遮熱コーティングを保護する腐食バリヤを形成する方法、および加工物

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20090309

17Q First examination report despatched

Effective date: 20090417

AKX Designation fees paid

Designated state(s): DE GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141216

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007041235

Country of ref document: DE

Effective date: 20150603

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007041235

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602007041235

Country of ref document: DE

Representative=s name: SCHMITT-NILSON SCHRAUD WAIBEL WOHLFROM PATENTA, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602007041235

Country of ref document: DE

Representative=s name: SCHMITT-NILSON SCHRAUD WAIBEL WOHLFROM PATENTA, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602007041235

Country of ref document: DE

Owner name: UNITED TECHNOLOGIES CORP. (N.D.GES.D. STAATES , US

Free format text: FORMER OWNER: UNITED TECHNOLOGIES CORP., HARTFORD, CONN., US

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190521

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190522

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007041235

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210101